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ABSTRACT

This research focuses on ways in which balance scales mediate students’ 
relational understandings of the equal sign. Participants included 21 
Kindergarten–Grade 2 students who took part in an early algebra classroom 
intervention focused in part on developing a relational understanding of the 
equal sign through the use of balance scales. Students participated in pre-, 
mid- and post-intervention interviews in which they were asked to evaluate 
true-false equations and solve open number sentences. Students often 
worked with balance scales while solving these tasks. Interview analyses 
revealed several categories of affordances of these tools for supporting 
students’ productive thinking about equations.

ARTICLE HISTORY 

Received 22 January 2020  
Revised 29 June 2020  
Accepted 4 July 2020 

KEYWORDS 

Early algebra; elementary 
grades; equal sign; 
mathematical tools; balance 
scales

In response to low secondary school mathematics achievement and the correlation between advanced 
mathematics course taking and mathematics achievement, many districts across the U.S. have 
increased mathematics graduation requirements or have implemented “algebra for all” policies that 
promote or require the enrollment of all eighth-grade or ninth-grade students in algebra courses 
(Clotfelter et al., 2015; Plunk et al., 2014). While such policies are generally enacted with good 
intentions, negative impacts have been felt by many students. Clotfelter et al. (2015), for example, 
found that district-wide initiatives to greatly increase the number of eighth-grade students in Algebra 
I (a typical first-year algebra course in the U.S.) significantly weakened performance in that course as 
well as Geometry, the typical follow-up course. Inequities between low and high performing students 
were exacerbated as lower and moderately performing students experienced increased failure rates and 
were more apt to retake Algebra I in high school. Carolan (2014) likewise found negative academic 
consequences for Black male and female special education students, Black males of low-socio- 
economic status (SES), Hispanic females, Hispanic males who were English language learners, 
White females (especially those eligible for Special Education services), and Special Education students 
of all races and genders following a district-wide ninth-grade “Algebra for Everyone” initiative. These 
negative consequences included fewer mathematics credits earned, a reduction in the level of the 
highest mathematics class taken, lower mathematics and overall GPAs, lower college entrance exam 
scores, and an increased high school drop-out rate. Increased high school drop-out rates across 
demographic groups – but especially for Black and Hispanic men – have likewise been documented 
as a consequence of increased math and science graduation requirements (Plunk et al., 2014).

Why have “algebra for all” policies, often implemented with the intention of increasing the 
achievement of historically marginalized students, done just the opposite? We believe the answer 
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lies in what comes before. That is, we find it unreasonable to assume that an elementary and middle 
school mathematics education that does not build students’ informal intuitions about arithmetic into 
more formalized ways of reasoning algebraically can be followed by “the most pernicious curricular 
element of today’s school mathematics – late, abrupt, isolated, and superficial high school algebra 
courses” (Kaput, 1998, p. 25) with an expectation of success.

We prefer to interpret “algebra for all” as a call to provide all students with elementary school 
experiences in which they are allowed the time and space necessary to develop algebraic ways of 
reasoning in the context of their arithmetic experiences so that the transition to secondary school 
algebra is not abrupt. Indeed, in reflecting on their findings, Clotfelter et al. (2015) suggested, “It is 
quite possible that a more thoroughgoing reform of the math curriculum, by way of promoting 
readiness for algebra by eighth grade, could well prove beneficial” (p. 161).

What is needed, then, is research that explores young students’ algebraic thinking and the instruc-
tion, tasks, and tools that support such thinking. Our program of research, Project LEAP (Learning 
through an Early Algebra Progression) has involved developing and testing an early algebra interven-
tion framed by core algebraic ideas and thinking practices in order to produce a curriculum and 
assessments from which we can better understand early algebra’s impact on students’ algebraic 
thinking. In a series of projects aimed at testing the effectiveness of our Grades 3–5 early algebra 
intervention and documenting progressions in students’ algebraic thinking, we found that students 
who experienced the intervention outperformed their control counterparts on measures of algebra 
understanding and used more algebraic strategies in problem-solving (Blanton, Isler-Baykal et al., 
2019; Blanton et al., 2015; Blanton, Stroud et al., 2019).

In our current work, we are extending our Grades 3–5 program of research while also drawing on 
additional work in Grades K–2 by Blanton and colleagues (Blanton et al., 2017, 2018) to develop and 
test a Grades K–2 intervention with the goal of establishing a research-vetted Grades K–5 program of 
early algebra education. In the work described here, we focus on one core aspect of early algebraic 
thinking – students’ understandings of mathematical equivalence and reasoning with equations – and 
explore Grades K–2 students’ moment-to-moment shifts in thinking as they engaged in tasks designed 
to help them explore this core concept. Importantly, we focus on the experiences of traditionally 
marginalized students – students of color, students of low SES, and students who have mathematics 
difficulties. As it is these students who have so often suffered the consequences of ill-conceived policy 
initiatives, they must be centered in research efforts that aim to ameliorate “the algebra problem” 
(Kaput, 2008).

Conceptual framework

Mathematical equivalence: a foundation for algebraic thinking

The concept of mathematical equivalence is foundational to arithmetic and algebraic thinking 
(Baroody & Ginsburg, 1983; Carpenter et al., 2003; Kieran, 1981; Knuth et al., 2006). Central to this 
concept is the understanding that the equal sign is a relational symbol denoting the equivalence or 
“sameness” of the quantities or expressions on either side of an equation. Unfortunately, decades of 
research have demonstrated that elementary and middle school students consistently struggle to 
develop a robust understanding of the equal sign as a relational symbol indicating an equivalence 
relationship (Behr et al., 1980; Matthews et al., 2012; McNeil & Alibali, 2005). This is evidenced in the 
definitions students give for the equal sign, their abilities to encode (i.e., reproduce from memory) 
equations, their solutions to missing-value items, and even the equation forms they are willing to 
accept as possible. Students who lack a robust understanding of the equal sign often assign an 
“operational” definition to the symbol, stating that it means “give the answer” or “the total” (Knuth 
et al., 2008; McNeil & Alibali, 2005). Such students often solve open number sentences such as 
8 + 4 = ___ + 5 by writing 12 or 17 in the blank (Carpenter et al., 2003) and have difficulty accepting 
equations of forms other than a + b = c because they are in conflict with their operational 
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interpretations of the equal sign (Falkner et al., 1999). Moreover, research suggests that operational 
thinking is partially rooted in children’s informal mathematical experiences prior to kindergarten and 
formal instruction on equations, underscoring the need to understand how to support children’s 
relational thinking at the start of formal schooling (e.g., Blanton et al., 2018; Seo & Ginsburg, 2003).

Given the well-documented difficulties students have with the equal sign and the genesis of these 
difficulties in early childhood experiences, we wondered how concrete tools might mediate a relational 
understanding of the equal sign before an operational conception becomes more entrenched in 
students’ thinking. One model often used to teach elementary and middle grades students about 
mathematical equivalence and equation solving is a balance scale (e.g., Alibali, 1999; Fyfe et al., 2015; 
Linchevski & Herscovics, 1996). Rationales for the use of such a model include the analogy that can be 
made between balancing a scale and balancing an equation (e.g., Warren & Cooper, 2005), the model’s 
grounding in physical experience (e.g., Alibali, 1999; Araya et al., 2010) and the link such a model 
provides between concrete experience and abstract representations (e.g., Fyfe et al., 2015). In a review 
of 34 research articles in which the use of a balance model was reported, Otten et al. (2019) found great 
diversity in terms of the specific types of models used, the purposes of their use, and learning outcomes 
for students. While their analysis identified some trends, the authors conclude that more research is 
necessary on the effects of using balance models of different types with students with varying levels of 
algebra experience.

This paper explores how diverse Kindergarten through second-grade students used physical 
balance scales to reason about equations. We use the term “diverse” in the way it is often used – to 
refer to heterogeneity in terms of race, SES, and language status – but we also use it to refer to the fact 
that many students from one of our (majority White and higher SES) school sites were identified as 
having mathematics difficulties (see Participants). We focus here on the affordances of physical 
balance scales for strengthening students’ understandings of the equal sign as a relational symbol 
and their flexibility in thinking about equations. We also share misconceptions or difficulties related to 
equations that were revealed in students’ thinking as students used these tools.

Affordances and the use of tools to shape students’ thinking

Vygotsky (1978) argued that our thoughts are impacted by the tools that we use. These tools externally 
mediate actions that can make explicit processes that come to be internalized by individuals. We draw 
from Vygotsky in framing our study around the idea that mathematical tools can shape students’ 
thinking. As Hiebert et al. (1997) state, “tools should help students do things more easily or help 
students do things they could not do alone” (p. 53) and in fact “can enable some thoughts that would 
hardly be possible without them” (p. 53). While tools are defined very broadly to include oral language, 
physical materials, written symbols, and existing skills (Hiebert et al., Vygotsky), we focus more 
narrowly on the use of balance scales. We are interested in exploring the ways in which these tools 
externally mediate action and influence students’ conceptions about the meaning of the equal sign and 
equations.

In sharing our results, we invoke the notion of “affordances” of the balance scales. Our conception 
of affordance aligns with that of Greeno (1994) who used the term to refer to “whatever it is about the 
environment that contributes to the kind of interaction that occurs” (p. 338). Like Greeno, we also 
draw from Gibson (1977; as cited in Brown & Stillman, 2014) in stressing the importance of the 
relationship between environment and actor. That is, an affordance is neither solely in the environ-
ment (in our case, a balance scale) nor in the mind of an individual but rather arises in the interaction 
of the two.

Much of the work on affordances in mathematics education has taken place in the context of 
technological tools. At times, affordances are treated as inherent properties of the technology whereas 
in other cases (e.g., Brown, 2013; as cited in Brown & Stillman, 2014) the interaction between the 
technology and learner are considered. Like Brown and Stillman, we do not believe reducing the 
notion of affordance to something inherent in an object is particularly useful given our goal of 
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observing how students interact with tools (in this case, balance scales) to extend their understanding 
(in this case, of mathematical equivalence).

While Otten et al. (2019) found various justifications for the use of balance scales in teaching 
students about linear equation solving, the overarching justification concerned the concept of equality 
and strategies that invoke the idea of balance. The notion of balance was likewise central to our work 
with students as we investigated their thinking about mathematical equivalence and equations as they 
worked with pan balances (see Figure 1) and number balances (see Figure 2). Our goal was to identify 
how students reasoned about the equal sign and equations using these particular tools and, in turn, 
how these tools shaped students’ thinking about equivalence. This also included characterizing 
misconceptions students demonstrated about equations or the equal sign that these tools helped 
reveal. Our research question was the following: How does students’ use of balance scales mediate their 
relational understanding of the equal sign?

Method

The data we report in this paper come from a larger cross-sectional study in which, building on our 
work in Grades 3–5, we are developing an instructional intervention designed to engage Grades K–2 
students in early algebraic thinking. The study reported here occurred as part of the development of 
the intervention. We focus here on data collected from students who participated in individual, task- 
based interviews concerning the meaning of the equal sign and work with equations. The data we share 
here come from interviews conducted before, during, and after the implementation of our early 
algebra intervention during our testing phase and in which balance scales were used as part of 
instruction. However, our focus here is not on pre-to-post growth in students’ understandings. 
Rather, we focus on observations made across the interviews that shed light on how the balance 
models mediated students’ relational thinking.

Figure 1. Pan balance representing an inequality relationship.
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Participants

Twenty-one students (ten kindergarten students, six first-grade students, and five second-grade 
students) from two schools participated in task-based interviews concerning the meaning of the 
equal sign. Given the importance of centering the experiences of students from historically margin-
alized populations who are most apt to experience negative consequences from an abrupt introduction 
of algebra that does not take into account the quality of their prior experiences, we were purposeful in 
our selection of research sites. We selected one of the schools based on its diversity in terms of student 
ethnicity (64% students of color), socioeconomic status (63% of students qualifying for free or 
reduced-price lunch), and language status (27% English Language Learners). The second school was 
selected based on the fact that it serves a high percentage of students with learning difficulties, 
including learning differences and disabilities.1

Early algebra lessons

Interview participants took part in the whole-class early algebra intervention along with their 
classmates. Eighteen lessons of approximately 30 minutes each were taught in each of Kindergarten, 
first grade, and second grade. These lessons were spaced throughout the school year (October–May), 
took place during students’ regular mathematics instruction time and were taught by a member of our 
research team. They addressed a range of early algebra concepts identified and developed in our 
previous Grades 3–5 work, including mathematical equivalence and equations, generalizations about 
arithmetic properties and the properties of even and odd numbers, the use of variable, and functional 
thinking (see Blanton et al., 2015; Fonger et al., 2018 for details regarding the development of the 
curricular framework used in the previous and current studies).

Nine lessons in Kindergarten, six lessons in first grade, and five lessons in second grade primarily 
engaged students in thinking about mathematical equivalence and equations. Kindergarten lessons 
first had students compare the weights of unspecified quantities with a pan balance, using this as 
a context to develop the notion of balance and introduce the equal sign and equations.

For example, given two opaque bags containing an unknown number of equally weighted small 
plastic bears (a common mathematics manipulative), students were asked to use the scale to determine 
if the quantities in the bags were equal or not equal and eventually wrote equations of the form a = a to 

Figure 2. Number balance representing the equation 10 + 5 = 6 + 9.
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represent the relationship between equal quantities. Lessons then examined simple true-false and open 
equations, using pan balances and number balances to explore the relational meaning of the equal 
sign. The number balance was introduced by having students place one weight on the left side of the 
scale and then think about where they would need to place a weight on the right side to make the scale 
balance. This progressed to placing one weight on the left side of the scale and then asking students if 
they could place two weights on the right side to make the scale balance. The resulting balanced scales 
were represented with equations (e.g., at first 3 = 3 or 5 = 5 and then 5 = 1 + 4 or 5 = 2 + 3).

First-grade students worked with somewhat more challenging true-false and open number sen-
tences (e.g., equations of the form a + b = c + d) using number balances, while second-grade students 
extended this work to include discussions about properties of equations. For example, they were asked 
to explore equations that exemplified the Commutative Property of Addition.

When not participating in our early algebra intervention (i.e., outside of the 18 lessons), students 
were taught mathematics by their regular classroom teachers. Teachers at the first school had no 
prescribed curricula but were expected to follow district pacing guidelines and had access to resources 
aligned with the Common Core State Standards (National Governors Association Center for Best 
Practices & Council of Chief State School Officers, 2010) provided by their state’s department of public 
instruction and district personnel. Teachers at the second school taught using the enVision Math and 
GO Math! curricula.

Data collection

Students participated in teaching experiment interviews in the spirit of Vygotsky’s (1978) laboratory 
experiments that “provide maximum opportunity for the subject to engage in a variety of activities that 
can be observed, not just rigidly controlled” (p. 12) and furnish data that are “not performance level as 
such but the methods by which the performance is achieved” (p. 13). These interviews addressed 
a wide range of early algebra content and took place prior to the early algebra intervention, mid-way 
through the intervention, and after the conclusion of the intervention. The particular tasks that are the 
focus of this paper are those that engaged students in solving true-false and open number sentences 
(see Table 1 for specific tasks included in the interview protocol).

Students were often encouraged to show their thinking using balance scales, while at other times the 
scales were simply available for students’ use at their discretion. While these tools were initially 
unfamiliar at the time of the pre-intervention interview, students comfortably engaged with them 
after a brief introduction and continued to do so during the mid- and post-intervention interviews. To 
introduce the balance scales, the interviewer used a “think aloud” strategy that involved talking 
through her thinking about how she would determine if the amounts on both sides of a pan balance 
were the same, or how she would place two weights to balance a number balance or solve a particular 

Table 1. Equation tasks posed to students.

Kindergarten Grades 1–2

True/False equations 5 = 5 True/False equations 7 = 3 + 2
7 = 3 + 2 8 = 8
4 = 4 3 + 5 = 7
5 = 1 + 4 9 = 4 + 3
4 + 2 = 3 4 + 5 = 9 + 3
2 + 3 = 5 + 1 3 + 6 = 2 + 7
3 = 1 + 2
4 = 1 + 2 Open number sentences 4 = 3 + ___
2 + 4 = 3 + 3 6 = ___
6 = 3 + 2 3 + ___ = 5
4 = 2 + 2 3 + 2 = ____ +3 

4 + 2 = ____ + 4
4 + 1 = 1 + ___
4 + ___ = 8 + 4
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open number sentence. The think aloud instructional strategy has been identified as a useful approach 
for struggling learners (Gersten et al., 2009).

The number of tasks in which a particular student was asked to engage depended on the time 
available and the degree to which students were able to engage with the tasks (with interviews prior to 
the intervention tending to be shorter than those that took place during or after the intervention). Of 
the 21 participating students, 13 completed equal sign tasks during all three interviews (pre, mid, and 
post), seven completed these tasks only during the mid-interview, and one completed these tasks only 
during the pre- and post-interviews.2 Interviews were conducted by a member of the research team 
and were videotaped.

Data analysis

Given that the goals of the project include understanding how instructional tools help a diverse 
population of learners think about early algebraic concepts, our analysis of the videotaped interviews 
started with a grounded approach in which coders freely noted what they observed in students’ 
responses about mathematical equivalence and the instructional prompts, discussion, and tools that 
may have led to such responses. At least two coders watched each video and discussed observations 
with each other. After this first pass, discussion among all coders focused on the identification of 
particular categories that would provide the focus for subsequent analyses. These categories were 
first posited from the pre-intervention interview data and then extended and refined with the 
subsequent mid- and post-interview data. Subsequent analyses involved a primary coder watching 
the interview video and populating the categories with interview excerpts while a second coder 
watched the video and noted agreement or disagreement with the first coder. Any disagreements 
were discussed and resolved. The majority of categories that emerged from the data – and what we 
focus on here – concerned the affordances of the balance scales in mediating students’ relational 
understandings of the equal sign as well as the mathematical difficulties and misconceptions these 
tools helped reveal.

Results

We share the categories of affordances and difficulties observed in the interviews with the intention of 
highlighting the ways in which students’ use of balance scales mediated their understandings of 
equivalence and the ways in which they interpreted equations. Like Otten et al. (2019) reported in 
their meta-analysis, we found that the overall benefit of these tools was that they helped students link 
the notion of balance on a scale with the property of equivalence in equations. Here we discuss more 
specifically how we observed this benefit play out in the ways in which students interacted with the 
scales. We identified one overarching affordance that was revealed in students’ work with both types of 
balance scales and three related, more narrowly defined, affordances that were revealed by students’ 
work with the number balance. We report on these here. We also report on a student difficulty that 
work with both types of balance scales helped to reveal. We exemplify these categories with excerpts 
from the interviews.

Observed affordances of the balance scales

Recall that only Kindergarten students worked with the pan balance while students from all three 
grades worked with the number balance. We identified one broad and three more specific “subset” 
categories of affordances of these tools in terms how they mediated students’ thinking about equations 
and the meaning of the equal sign.
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Interactions with balance scales challenged students’ initial interpretations of equations

Students’ interactions with both the pan balance and the number balance led the majority of students 
to question their initial interpretations of multiple equations. Importantly, this included expanding the 
forms of equations students accepted as legitimate.

For example, while a Kindergarten student initially viewed the equation 5 = 1 + 4 as false, his 
exploration of this equation on the pan balance led him to change his mind. 

Interviewer [I] How could we test [the equation 5 = 1 + 4]? Do you think it’s true or false? Any ideas?

Student [S] If we do that [represent the equation on the scale] they will not balance.

I You don’t think it’s going to balance?

[S places five cubes on one side and one and four cubes on the other side.] 

I What do you think?

S It did.

I Yeah, it did balance, didn’t it? So, is this [equation] right or wrong?

S It’s right, cause, look, 1 [holding up one finger on left hand] and 2, 3, 4, 5 [holding up four fingers on 
right hand]!

Here, the student counted one and four fingers to show that the sum 1 + 4 [the right side of the 
given equation] is equal to 5. 

I So, how many cubes do you have on each side?

S So, this is five [pointing to right side], and this is five, too [pointing to left side].

I That’s a great observation.

S That’s why it’s balancing.

The student counted with his fingers to provide evidence of why the balanced scale showed the 
equation’s truth value (“It’s right, cause, look . . . ”). Importantly, it was his interaction with the pan 
balance that caused him to rethink his initial position and prompted him to construct the justification. In 
this, the pan balance functioned as a mediating tool by which he explored a mathematical idea embodied 
in a concrete representation (that is, the idea of equivalence embodied in a balanced scale) as a proxy for 
reasoning about its abstract, symbolic counterpart (that is, the truth of the equation 5 = 4 + 1). Enabling 
such connections is an important way to support struggling learners (Gersten et al., 2009).

Given 2 + 3 = 5 + 1, another kindergartner correctly read the equation aloud but did not know 
whether the equation was true or false. She used the pan balance to explore. As she explained, she 
placed “two and three” on the left side and “five and one” on the right side. After observing that the 
scale did not balance, she stated, “not true.” Note that this student was successful in determining the 
equation’s truth value by relying completely on the scale’s status without needing to compute. This 
example underscores that students can use balance as a metaphor to reason about equivalence even 
before they fully understand symbolized expressions and equations such as 2 + 3, 5 + 1 and 
2 + 3 = 5 + 1 and can perform these operations. In this way, a balance scale where quantities are 
not specified can mediate students’ intuitive, pre-symbolic thinking about equivalence in ways that 
potentially prepare them for reasoning with symbolized operations.

Like the pan balance, the number balance served as a tool to introduce unfamiliar equation forms to 
students as well as challenge students’ initial conceptions of equations. As an example of the former, 
when first introducing the number balance to a first grader during the pre-interview, the interviewer 
employed a think aloud strategy to consider how she could make the scale balance by placing one 
weight on each side of the scale. Describing her actions and thinking aloud for the student, she placed 
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a weight on the “5” on each side and wrote “5 = 5” to show the student what the scale was representing, 
pointing out the “5 s” on each side of the scale and on each side of the equation. The student said he 
had never seen that kind of equation before, but that it made sense. That he did not reject the equation 
outright (as young students who are unfamiliar with equations of the form a = a often do) suggests that 
introducing equivalence through the concrete representation of the balance scale mediated the 
student’s thinking about the validity of its abstract representation (the equation 5 = 5).

As an example of the latter, many students initially said that 8 = 8 was false but were challenged to 
reconsider after working with the number balance. One first grader explained that 8 = 8 was false 
because “they didn’t put a plus and a zero there [pointing to the blank space to the left of the 
equation].” Such a response is not unusual among students first learning about the equal sign, as 
many expect equations to involve operations (e.g., Behr et al., 1980). When asked to represent the 
equation on the scale, this student correctly placed the weights and said, “It says it is true.” When 
asked, “Did we have to do a plus zero here for this to be true?” the student shook his head. When this 
same student was later asked to solve 6 = ___, he initially exclaimed, “What?! There are only two 
numbers.” (We believe he assumed the blank represented one number, which was our intention.) He 
placed a weight at six on the left side of the scale and after thinking for a moment placed a weight at six 
on the right side as well. Upon seeing the scale balance, he wrote “6” in the blank. 

I Is six the same as six? Is six equal to six?

S Well, but if you put a zero, then it’s six.

I You mean like a plus zero?

S Yeah.

I You want to put a plus zero?

S A zero and then a plus.

I Okay. You can write that in.

[S writes “0 +” before the equation, making it 0 + 6 = 6]. 

I Was it still balanced even without that?

S Yes, still because there is no zero on it, and . . .

I Well, I guess we could think of the very middle as zero. Let’s see what happens if we add zero [placing 
a weight in the center of the scale].

S It still is because if you put it right here [moving the center weight to “1” on the left side] it goes in 
another way.

While this student still clearly preferred that equations have operations, the number balance was 
acting to challenge this thinking and, in doing so, provided a context for discussing whether equations 
such as 8 = 8 and 6 = 6 are legitimate given that they contain no operations.

Other students were aided by the scale in accepting what they initially deemed as “backwards” 
equations. A first grader, for example, initially said that 5 = 3 + 2 was false for this reason but, after 
representing the equation on the scale, changed her mind, and decided it was true.

We focus next on a series of tasks presented to a first grader to illustrate how the number balance 
mediated his thinking about the validity of equations in different forms, a critical component in 
understanding equivalence. This student initially said 7 = 3 + 2 was false “because these numbers 
[indicating the right side of the equation] need to go right here [indicating the left side of the 
equation].” While the student was correct that the equation is false, and confirmed this using the 
scale, his reasoning was not correct and indicated difficulty accepting equations of forms other than 
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a + b = c. When next asked whether 3 + 2 = 7 was true or false, the student reasoned correctly that it 
was false “because three plus two is not seven, it’s five.”

The student was next posed the equation 8 = 8 and said it was false. The interviewer asked him to 
try the equation on the number balance. The student correctly placed the weights on the scale and 
then, looking a little surprised, said “It’s right.” He noted that when he put a weight on the same 
number on each side, the scale balanced. He explained that he initially thought the equation was false 
“because I thought that eight plus eight was 16,” indicating his difficulty with equations lacking an 
operation. Research shows that students with misconceptions about the equal sign can interpret an 
equation such as 8 = 8 as 8 + 8 = 16, just as this student did (Blanton et al., 2018). That is, even though 
the equation 8 = 8 does not contain a “16” or a “+,” students who have an operational view of the equal 
sign might still “see” it as 8 + 8 = 16. Moreover, there is nothing inherent in the symbolism itself that 
challenges their thinking. However, as with this student, a concrete tool such as a number balance can 
prompt students to begin to rethink previously held misconceptions.

The student then indicated that 3 + 5 = 7 was false “because it’s three and then you put five more, 
it’s eight” and confirmed this on the scale. Next, 9 = 4 + 3 was determined to be false because “it’s the 
same but with different numbers.” In retrospect, we are not sure if this student was referring to the 
earlier 7 = 3 + 2 and was indicating that the operations should be on the left side of the equation or was 
referring to the immediately prior 3 + 5 = 7 and was indicating that the sum was incorrect. The 
equation was confirmed to be false using the scale.

The equation 4 + 5 = 9 + 3 was next deemed false because “if it says equal [pointing to equal sign], 
and right here is not equal [pointing to the space after the three].” 

I So there is no equal sign after the three? Why would you want there to be an equal sign after the 
three?

S Because if there’s no equal [sign] we don’t know what the answer is.

The student confirmed the equation was false on the scale, but again, the fact that it is false allowed 
the faulty reasoning to go unchallenged.

The next equation posed to the student, 3 + 6 = 2 + 7, did challenge his thinking. The student 
initially said the equation was false because it had the same problem as the last one (i.e., there needed 
to be an equal sign after the seven). The student represented the equation correctly on the scale and 
was surprised to see that, unlike the previous equation, it balanced. The interviewer tried to help him 
make sense of this surprise: 

I What is 3 + 6? Can you figure that out for me?

S [Counting on fingers] Nine.

[I writes 9 above “3 + 6”] 

I How about 2 + 7?

S [Counting on fingers] Nine.

[I writes 9 above “2 + 7”] 

I This [pointing to equation] is saying that nine [pointing to the left nine] is the same as [pointing to 
the equal sign] nine [pointing to the right nine]. Do you agree with that?

S Yeah.

I Yeah. So, does it make sense that our scale would balance?

S [Hesitantly] Yeah.
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This student’s thinking was clearly challenged, and he was beginning to make progress toward 
accepting equations in unfamiliar forms. He was then posed a series of open number sentences, 
starting with 4 = 3 + ___. 

S One.

I How did you already know that?

S Because four [holding out four fingers on his right hand] and three [holding out three fingers on his 
left hand] and these are the same [matching up three fingers from each hand and showing one 
unmatched finger] and if you take the three you have one.

The student confirmed this solution with the scale, accepting an equation form that was recently 
rejected as backwards. He was next posed 6 = ___. 

S [After thinking for 15 seconds] Six?

I What should the scale do if this is true?

S If you put it on the same one [placing weights on six on either side], it will go like that [indicating 
a balanced scale].

As illustrated by this extended example, the number balance served as a tool to challenge this 
student’s conception that equations must be in the form a + b = c. True equations of the form a = a, 
c = a + b, and a + b = c + d proved especially fruitful for creating a contradiction between this student’s 
initial conception and the feedback he received after placing weights on the number balance. This was 
the case for several students when they were asked to use the pan and number balances to represent 
true equations that they initially deemed to be false. This is not to suggest that all difficulties were 
eliminated, but the balance scales served as a tool to mediate students’ thinking about equations that 
they had initially rejected because of their form.

We next share three related affordances of the number balance with respect to mediating students’ 
understandings of the equal sign. These affordances are related in the sense that they, too, lead 
students’ initial conceptions of equations to be challenged. They might be considered “subset” 
affordances in the sense that they are more narrowly defined than those described thus far.

Interactions with the number balance encouraged trial-and-error equation solving

One helpful feature of the number balance is that it allowed for a “trial and error” approach when 
solving open equations. Students could move weights from number to number on either side of the 
scale until balance was achieved. Achieving balance was often followed by reflection on the solution 
and sometimes a rethinking of students’ initial understandings of the equations. This “trial and error” 
affordance of the number balance was demonstrated by over one-third of students across the inter-
views. That is, rather than serving as a way for students to simply show an already existing form of 
(correct or incorrect) thinking about equivalence, the number balance actually prompted a sequence 
of refinements in problem-solving as they engaged with the tool.

As an example of this “trial and error” affordance, consider the approach taken by a first grader just 
being introduced to the number balance. While the interviewer began a think aloud with the equation 
4 = 3 + ___, placing a weight on four on the left side and three on the right, the student took the 
remaining weight and tested it in various places on the right side of the number balance, trying four, 
eight, and nine before finding the balance at one. She then immediately wrote “1” in the equation’s 
blank, indicating an understanding of the relationship between the scale’s status and the equation’s 
solution.

Another student demonstrated operational thinking about the equal sign that was challenged by 
her experiences with the number balance. Given 4 + 2 = ___ + 4, a second grader initially wrote “6” in 
the blank “because four plus two equals six” (a common “add to the equal sign” response among 
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students with an operational view of the equal sign). The interviewer asked her to test her answer on 
the number balance, at which point she noticed the scale did not balance and the equation as she 
completed it was thus not true. 

I Should we put another number there [indicating the blank]?

S Yeah.

I What do you think? What number would make this true?

S Ten?

I Tell me how you got ten.

S Because six plus four equals ten.

While the student did not gesture to the equation, it appeared she was reading the right side of the 
equation with her inserted “6” in the blank. The interviewer encouraged her to test this on the number 
balance. She moved the weight currently on six to ten and found that it again did not balance. She then 
engaged in trial and error, moving the weight to seven, five, four, and three before ultimately finding 
the balance at two. The interviewer then asked the student to read the completed equation aloud and 
think about why replacing the blank with two made the equation true. While the student did not note 
the Commutative Property of Addition relationship, she did state that “they both equal six.” The fact 
that the equal sign indicates an equivalence relationship between the quantities on either side of the 
symbol is an important understanding that was mediated by this student’s use of the number balance. 
This tool allowed this student to reconsider her thinking in a way that simply working with an 
equation on paper might not.

Interactions with the number balance encouraged productive “tinkering” and play

Closely related to the trial and error affordance is the notion that the number balance can encourage 
students to “tinker” and play to explore questions of their own. While less frequently observed than the 
aforementioned categories, we noted that occasionally students veered from the specific task at hand to 
do some exploring of their own. This typically occurred with false equations, when students sometimes 
wanted to figure out how the equation could be changed so that it would be true. Two first graders did 
this after representing 3 + 5 = 7 on the number balance and finding it to be unbalanced. One first 
grader moved the weight that was placed on five to four to balance the scale, representing the equation 
3 + 4 = 7. The other first grader moved the weight that was placed on seven to eight to balance the 
scale, representing the equation 3 + 5 = 8. A second grader similarly represented 9 = 4 + 3 and then 
sought to make the scale balance by moving the weight placed on nine to eight and then to seven, 
representing the equation 7 = 4 + 3. In this, the scale encouraged students to modify and extend the 
original task (from “decide if the equation is true or false” to “find a way to make the equation true”), 
something that equations in their abstract (symbolic) form generally do not. That is, in our experience 
students who evaluate an equation such as 9 = 4 + 3 as false in a paper/pencil format rarely, if ever, step 
spontaneously further into the task to imagine how they might make a false equation true.

Interactions with the number balance helped students notice equation structure

Our first- and second-grade interviews included the open number sentences 4 + 2 = ___ + 4, 
3 + 2 = ___ + 3, 4 + 1 = 1 + ___, and 4 + ___ = 8 + 4 to exemplify the Commutative Property of 
Addition. We found that the majority of first and second graders explicitly recognized equation 
structure (if not the Commutative Property explicitly) as a consequence of their number balance 
work on one or more of these equations.

For example, given the equation 4 + 2 = ___ + 4, a first grader used the number balance to place the 
four, the two, and the four correctly and then hung a weight at six on the right side before quickly 
finding that the scale balanced when the weight was placed at two. Upon seeing the balance, he 

12 A. STEPHENS ET AL.



immediately said “Oh! Because it’s the same. Because this is two and this is four [pointing to weights 
on left side of scale] and this is two and this is four [pointing to weights on right side of scale].”

Another student initially said he would put six in the blank given 4 + 1 = 1 + ___, using the “add all” 
strategy previously mentioned. He placed weights on the number balance to confirm and found that 
the scale was unbalanced. He then moved the weight that was at six to four because “1 + 4 is on this 
side [pointing to right side of scale] and 1 + 4 is on this side [pointing to left side of scale].” The student 
then solved 4 + ___ = 8 + 4, immediately placing the weights in the correct places on the scale and 
writing eight in the blank. When asked how he knew so quickly, the student pointed to the earlier 
4 + 1 = 1 + ___ equation on his paper. He had difficulty articulating his thinking, but it was clear he 
was seeing a parallel in these two equations. The student’s work with the number balance given 
4 + 1 = 1 + ___ mediated his thinking in a way that allowed him to solve 4 + ___ = 8 + 4 very quickly, 
only using the number balance to demonstrate his solution.

In sum, we found that the balance scales helped students engage with equations in ways that would 
not have been possible without these tools and that advanced their understandings of equivalence. In 
addition to promoting understanding, the balance scales also made visible some of the difficulties 
students faced when working with equations. We turn to this next.

Difficulty revealed through students’ interactions with the balance scales

While we have focused thus far on the affordances of the pan and number balances in terms of 
encouraging students to think in new ways, another benefit we observed was that the ways that 
students used these tools often revealed difficulties in their thinking about the equal sign and the role 
that it plays in an equation. While many cases of students treating the equal sign as an operational 
symbol have already been highlighted in our discussion of tool affordances, we focus here on 
a difficulty that was revealed immediately in the ways in which students initially represented equations 
on the scales.

We observed that the majority of students, at times throughout the interviews, had difficulty 
viewing an equation as a comparison of two equivalent quantities. This difficulty was manifested in 
two ways. First, students at times did not attend to the “sides” of given equations when representing 
these equations on the balance scale, instead representing numbers from both sides of an equation on 
one side of the scale. Second, students at times did not attend to equations in their entirety when 
representing them on the balance scales.

For example, we observed a kindergartner putting two cubes and three cubes on the same side of 
the pan balance given the equation 4 + 2 = 3; a kindergartner placing weights at three on the left side 
and six and two on the right side of the number balance given the equation 6 = 3 + 2 and all weights 
on the left side given the equation 2 + 3 = 5; and a second grader putting two weights at four on the 
left side and one weight at 8 on the right side given the equation 4 + ___ = 8 + 4. These errors 
suggest a lack of understanding of the equal sign and its role in an equation of denoting 
a comparison of two separate quantities. A secondary issue could be in how students understand 
the tool itself.

As examples of students not attending to equations in their entirety, two kindergartners ignored the 
two in 7 = 3 + 2, representing this equation with a pan balance by placing seven cubes on one side and 
three cubes on the other. One of these same kindergartners represented 4 = 1 + 2 on the number 
balance by placing only the four and one on opposite sides. The other of these kindergartners 
approached 6 = 3 + 2 with an “add all” strategy, looking for an 11 on which to place his weight on 
the number balance.

While the fact that students do not always attend to the equal sign or to equations in their entirety 
has been previously documented (e.g., McNeil, 2014), we believe what is important here is the fact that 
these difficulties were revealed through students’ engagement with the balance scales. In what follows, 
we discuss what the results shared above reveal about the potential of balance scales to mediate 
students’ relational understanding of the equal sign.
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Discussion

The importance of a robust understanding of the equal sign and its role in equations has been 
established as critical to students’ success in algebra (Knuth et al., 2006). Mathematical equivalence 
has thus emerged as a core concept on which to focus early algebra efforts (e.g., Blanton et al., 2015) 
that seek to build formalized ways of thinking from students’ experiences in arithmetic. Working from 
the stance that tools mediate thinking (Vygotsky, 1978), we sought to investigate the ways in which 
two particular tools – the pan balance and the number balance – could mediate students’ under-
standing of equivalence, particularly the equal sign. It is in understanding how these tools mediate 
students’ mathematical thinking with a diverse student participant group – including those with math 
difficulties – that our work makes a contribution.

We drew from Greeno (1994) in stressing that the “affordances” of a particular tool – in our case 
balances scales – concern the interaction of learners with the tool. The affordances of the balance scales 
we identified from our observations of Kindergarten through second-grade students had largely to do 
with helping students (begin to) build appropriate conceptions of the equal sign and equations in 
a way that may have been more difficult to do had the only tools available been a written equation and 
a pencil. We highlight here a few of these conceptions and discuss how students’ interactions with 
balance scales helped shape their thinking.

The equal sign indicates the equivalence of two quantities

In their meta-analysis of research studies where balance scales were used to teach linear equation 
solving, Otten et al. (2019) found that the overarching reason these scales were used was to help 
students understand equivalence. In the studies they reviewed, “inherent properties of the balance 
were connected to the concept of equality and the strategies that can be applied while maintaining the 
balance” (p. 12). This equality-balance connection was evidenced in the responses of many of our 
participants who demonstrated an understanding that whether a scale balanced or not was “telling 
them” something about the equation. These students connected the concept of a balancing scale with 
a balancing equation and thus were able to allow the tool to impact their thinking (Vygotsky, 1978) 
about whether particular equations were true or false or what their solutions were. At times the 
feedback obtained from the balance scales was surprising; for example, in the case of the second grader 
who, given 4 + 2 = ___ + 4, thought a six should be placed in the blank and upon placing weights on 
the number balance realized that something was not right. Interacting with the scale allowed the 
student to revise her solution because she understood what the status of the tool (balanced or not 
balanced) indicated about the more abstract equation. At times the conflict between operational 
misconceptions of the equal sign and the expectation of the equality-balance connection were not 
resolved, but the scales clearly provided an opportunity for students to at least begin to develop this 
important conception.

Equations do not have to look like 5 + 3 = 8

Given the experiences of many students in arithmetic-focused elementary school mathematics 
classrooms, it should not be surprising that many students believe that equations should look 
something like 5 + 3 = 8, 2 + 2 = 4, or 5 + 0 = 5 (Seo & Ginsburg, 2003). The students we observed 
made many statements indicating they held this misconception; for example, the first grader who 
said 7 = 3 + 2 was false “because these numbers [indicating the right side of the equation] need to go 
right here [indicating the left side of the equation].” However, reasoning with balance scales created 
for students a cognitive conflict about this misconception which, in some cases, resolved to 
a complete, relational understanding. This again was possible because the students had developed 
an understanding of the way in which the concrete tool provided information about the more 
abstract equation. The first grader who said 7 = 3 + 2 was false (with faulty reasoning), for example, 
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came to hesitantly agree that 3 + 5 = 2 + 7 was true because he understood that a balanced scale was 
an indication of a balanced (or true) equation. His thinking was shaped by his experience interacting 
with the tool (Greeno, 1994; Vygotsky, 1978), and he was later able to successfully and confidently 
solve 4 = 3 + ___.

Equations do not need to involve operations

The understanding that an equation does not need to involve an operation is a subset of the 
aforementioned “equations do not have to look like 5 + 3 = 8,” but it is one that is worth mentioning 
given how frequently discomfort with 6 = 6 or 8 = 8 was observed among our first- and second-grade 
participants (who likely had more experiences with equations than our Kindergartners and thus more 
opportunities to develop entrenched operational conceptions of the equal sign). Exclamations such as, 
“What?! There are only two numbers.” and the desire to insert a “plus zero” were not uncommon and 
not surprising given the aforementioned difficulties students often experience seeing the equal sign as 
a relational symbol. As was the case with equations of the form c = a + b and a + b = c + d, students 
moved toward acceptance of equations of the form a = a when their experiences with balance scales 
challenged their thinking and they were able to draw on their understanding of the equivalence- 
balance connection. We emphasize again that it is not simply that the balance scales “told” students 
they were wrong (e.g., about thinking that 6 = 6 or 8 = 8 are not true) but that their interaction with the 
scale and their understanding of the connection between a balancing scale and a balancing equation 
allowed their thinking about the abstract forms to change.

Equations can be reasoned about without computation

In the presentation of the results, we at times alluded to the fact that students working with the balance 
scales worked with individual numbers and did not immediately (or ever) engage in computation. For 
example, we described a kindergartner who placed “two and three” and “five and one” on the two sides 
of a pan balance rather than “five” and “six,” respectively. While this may seem trivial, we observed 
that computations such as these were in fact difficult for some of our participants. Recall that half of 
our participants came from a school that served a high percentage of struggling students, including 
those with learning difficulties. Given our desire to help all students be successful in algebra, it is 
important to find creative entryways into algebraic thinking that do not require computational fluency 
as a prerequisite to engagement. The balance scales served as a tool to allow students to consider, for 
example, whether 2 + 3 = 5 + 1 was true or false, and thus engage in important thinking about 
equations, balance, and the meaning of the equal sign, without being denied these opportunities due to 
difficulties with computation. We believe this was possible because students’ work with the scales 
encouraged them to think about equations holistically – in terms of whether the equations balanced or 
not – rather than as computations that needed to be performed.

Conclusion

An important goal in the shift toward introducing core algebraic ideas in the elementary grades is the 
engagement of all learners in algebraic thinking. Meeting this goal requires the use of instructional 
strategies, tasks, and mathematical tools that build on what students already know and help move their 
thinking forward. Future research might include implementing the early algebra intervention with 
a larger number of students and investigating the impact on students’ understanding of mathematical 
equivalence; investigating the knowledge that students initially bring to balance scales or even the 
concept of balance itself and how we might build on these early conceptions; comparing the impact of 
different forms of balance scales (e.g., physical scales, pictures, or embodied experiences) on students’ 
understandings; and exploring any possible connections between students’ growing algebraic thinking 
and their computational fluency.
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We purposefully included a diverse (broadly defined) student sample in this study knowing that it is 
these students who often feel the negative impact of algebra’s gatekeeper status (Carolan, 2014; 
Clotfelter et al., 2015; Plunk et al., 2014) and for whom new approaches to algebra teaching and 
learning must be successful. The Kindergarten through second-grade students whom we interviewed 
showed that they were able to move forward in their understanding of equations and the meaning of 
the equal sign through the use of balance scales. Importantly, this included students who lacked 
fluency with computation, a skill that in many mathematics classrooms might be viewed as prerequi-
site to engagement in algebraic thinking. We argue that the balance scales did, in fact, “enable some 
thoughts that would hardly be possible without them” (Hiebert et al., p. 53) and in doing so allowed 
students to engage more deeply in algebraic thinking.

Notes

1. The population at this second school included 18% students of color and 17% who qualified for free or reduced- 
price lunch. We do not have data regarding the number of students in these classrooms with identified disabilities 
but can report that of the elementary schools in this district, this school is known for having a concentration of 
resources to support students with learning difficulties. Students struggling to meet grade-level expectations were 
identified by classroom teachers for participation in interviews.

2. Three different interview forms – two of which included equivalence tasks – were implemented in this study. As 
students had not yet encountered some of the early algebra content included in the intervention by the time of the 
mid-interview, more students were asked questions from interview forms that included equivalence tasks (i.e., 
content that had already been addressed in the intervention) at this time point.
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