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Abstract

To further knowledge on cell wall composition in early land plants, we localized cell wall constituents in placental cells of
the liverwort Marchantia polymorpha L. using monoclonal antibodies (MAbs) in the transmission electron microscope and
histochemical staining. The placenta of M. polymorpha is similar to the majority of bryophytes in that both generations con-
tain transfer cells with extensive wall ingrowths. Although the four major cell wall polymers, i.e., cellulose, pectins, hemi-
celluloses, and arabinogalactan proteins, are present, there are variations in the richness and specificity across generations.
An abundance of homogalacturonan pectins in all placental cell walls is consistent with maintaining cell wall permeability
and an acidic apoplastic pH necessary for solute transport. Although similar in ultrastructure, transfer cell walls on the
sporophyte side in M. polymorpha are enriched with xyloglucans and diverse AGPs not detected on the gametophyte side
of the placenta. Gametophyte wall ingrowths are more uniform in polymer composition. Lastly, extensins and callose are
not components of transfer cell walls of M. polymorpha, which deviates from studies on transfer cells in other plants. The
difference in polymer localizations in transfer cell walls between generations is consistent with directional movement from

gametophyte to sporophyte in this liverwort.
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Gaxiola 2017). As the bridge between two generations that
have different needs and environmental and genetic con-
straints, the placenta plays a critical role in the lifecycle of
these plants, namely, to ensure nourishment during the pro-
duction of meiotic spores (Ligrone et al. 1993, 2012a, b).
Considerable variability occurs in the organization and
structure of the placenta of bryophytes, especially in the
location of transfer cells. Transfer cells are specialized cells
with elaborate wall ingrowths that maximize transport poten-

Introduction

In bryophytes (mosses, liverworts, and hornworts), water

and nutrients are transported from the gametophyte to the
dependent sporophyte across a persistent apoplastic junc-
tion known as the placenta (Gunning et al. 1974; Ligrone
and Gambardella 1988; Pate and Gunning 1972; Regmi and

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s10265-020-01232-w) contains
supplementary material, which is available to authorized users.
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tial by vastly increasing cell membrane surface (Browning
and Gunning 1979a; Ligrone et al. 1993; Offler et al. 2003).
In most mosses and liverworts, transfer cells occur on both
sides of the placenta, but in some taxa, they are restricted
to one generation or are absent. Only in hornworts is the
placenta comprised of transfer cells that are exclusive to
the gametophyte side and are intermingled with elongated
haustorial cells of the sporophyte foot (Gambardella and
Ligrone 1987; Vaughn and Hasegawa 1993). Although much
is known about placental diversity across bryophytes, there
are no comprehensive studies of cell wall composition in the
specialized cells that make up the gametophyte-sporophyte
junction.
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The properties of cell walls are dictated by the composi-
tion and arrangement of their constituent polymers (Humphrey
et al. 2007). The prevailing model of the primary plant cell
wall is a cellulose and hemicellulose foundation integrated
with an interacting and abundant pectin network (Broxter-
man and Schols 2018; Cosgrove 2005). In general, pectins
are responsible for porosity, flexibility, and adhesion, while
cellulose and hemicelluloses serve a supportive structural
role. Although macromolecules of primary walls in plants are
assembled to impart structural integrity, cell adhesion, and
facilitate signal transduction, they play an additional role in the
walls of transfer cells of the placenta. Here, macromolecules
of the apoplast are the matrix in which nutrients, including
sugars and amino acids, flow across generations (Browning
and Gunning 1979b; Graham and Wilcox, 2000; Regmi and
Gaxiola 2017; Renault et al. 1992). Given the significance and
diversity of the bryophyte placenta, this tissue complex pro-
vides a unique opportunity to correlate cell wall architecture
with carbohydrate/ proteoglycan composition and to assess
these variations in light of the known functions of specific
cell wall polymers.

In an effort to gain a deeper understanding of the carbohy-
drate composition of placental cell walls in early land plants,
we conducted a study of cell wall composition in the model
liverwort Marchantia polymorpha L. (Bowman et al. 2017,
Shimamura 2016). The occurrence of transfer cells in both
generations of M. polymorpha provides a platform on which
to explore the variability of wall composition in architecturally
distinct walls that have a common function, i.e., directional
transport (Ligrone et al. 1993). We addressed the following
fundamental question: How do cell wall constituents differ in
the two generations of the placenta of this bryophyte? Specifi-
cally, if cells with similar wall ingrowths are present on both
sides of the path of transport, is there a difference in cell wall
composition?

Using immunogold labeling at the TEM level, we probed
with 16 monoclonal antibodies to cell wall carbohydrates and
arabinogalactan proteins (AGPs) to identify the major poly-
mers present in the placenta of this liverwort. We demonstrate
that all the major polymers in plant primary cell walls (cellu-
lose, pectin, hemicellulose and AGPs) are differentially local-
ized in gametophyte and sporophyte transfer cell walls, and
that callose and extensins are absent in both. The difference in
relative abundance and localization of polymers in transfer cell
walls between generations is consistent with the directional
flow of nutrients from gametophyte to sporophyte.

@ Springer

Materials and methods
Gametophyte culture

Marchantia polymorpha was purchased from Carolina Bio-
logical Supply Company, North Carolina. Plants were placed
in a growth chamber and maintained under a constant tem-
perature of 15 °C with 12 h light and 12 h dark each day until
archegoniophores and sporophytes were mature.

Light microscopy

Specimens were thick sectioned (1-1.5 pm) on an ultrami-
crotome, placed on glass slides, and stained with toluidine
blue. Sporophytes were screened for developmental stages.
Further examination was restricted to placentae with post-
meiotic developing spores with the expectation that the
wall ingrowths at this stage are fully developed and fully
functional.

Preparation for transmission electron microscopy

Plants were prepared for TEM observation using the stand-
ard fixation protocol outlined in Renzaglia et al. (2017).
Excised portions of gametophytic tissue with embedded
feet were fixed in 2.5% v/v glutaraldehyde in 0.05 M Soren-
son’s buffer (pH 7.2) for one h at room temperature and
overnight at 4 °C. Following 2-3 rinses in same buffer for
15 min each, plants were post-fixed in 2% buffered osmium
tetroxide and rinsed in autoclaved, distilled water. The
specimens were dehydrated in progressively higher etha-
nol to water concentrations and rinsed twice in anhydrous
ethanol. Infiltration was achieved by progressive placement
of specimens in higher concentrations of LR White resin
diluted with ethanol. Once specimens reached 100% LR
White and exchanged twice, they were placed in gel cap-
sules and heated in an oven at 60 °C for 48 h. The samples
were sectioned on an ultramicrotome until the placenta was
located. Either thin Sects. (90-100 nm) were collected on
200 mesh nickel grids for immunogold labeling, or thick
Sects. (1000 to 1500 nm) were collected on glass slides for
histochemical fluorescence staining.

Fluorescence staining

To visualize cellulose, resin-embedded thick-Sects. (1 um)
were placed on glass slides and incubated for 3—-5 min in a
drop of Calcofluor White (Sigma-Aldrich) and a drop of 10%
KOH buffer in the dark. Calcofluor White is a fluorescent
dye specific for fibrillar f(1 —4) glucans of plant cell walls
such as cellulose (Maeda and Ishida 1967). In order to
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localize callose, 1-1.5 um sections were collected on slides,
covered by 1% aniline blue in 0.067 M Na,HPO, (pH 8.5),
placed in the dark at 4 °C for 3-5 days, and rinsed in buffer.
Controls were made using the respective buffers without ani-
line blue or Calcofluor White. Three replicates were made
for each treatment and controls. All stained material was
viewed with a Leica DM500B compound microscope (exci-
tation filter equipped with ultraviolet fluorescence between
360 and 400 nm). Images were collected digitally using a
Q-Imaging Retiga 2000R digital camera.

Immunogold labeling

Specimens were processed as follows and outlined in (Lopez
et al. 2017). Grids were placed in BSA/PBS overnight at
4 °C and then overnight on a primary antibody specific to
the desired wall epitope. Samples were then rinsed 4 X4 min
each in 0.05 M BSA/PBS. Samples were treated with a sec-
ondary antibody with a gold tag attached for 30 min at room

temperature. Samples were then rinsed in PBS 4 X4 min per
each and rinsed with a jet of sterile H,O.

Samples were observed before and after post-staining
using lead citrate and uranyl acetate. These stains result
in better contrast but may obscure the immunogold labels
in the transmission electron microscope. Control grids
were prepared by excluding the primary antibodies. For
each treatment, 3-5 replicates were examined. Samples
were viewed, and digital micrographs were collected in a
Hitachi H7650. The monoclonal antibodies (MAbs) used in
this study are listed in Table 1.

Scoring label abundance

Images were opened in the PhotoScapeX (Mooii Tech) edit-
ing app. Three counting frames 100X 100 pixels in size were
randomly placed onto the wall in the image and labels within
the frames were counted. This process was repeated three
times per 10—15 images for each MAb. The average of all
counts was calculated. Averages of 1 to 4 labels per frame

Table 1 Primary antibodies used to immunogold label carbohydrates and arabinogalactan proteins in transfer cell walls of placentae in Marchan-

tia polymorpha

Antibody  Antigen (s)/epitope

Reference/source

Anticallose Callose/ (1,3)-p-linked penta-to-hexa-glucan

LM15 XXXG motif of xyloglucan

LM21 Mannan/ -(1,4)-manno-oligosaccharide

LM25 Galactoxylated xyloglucans

LM28 Glucuronoxylan

LM19 Homogalacturonan/ Un-esterified

LM20 Homogalacturonan/ Methyl-esterified

JIMS Homogalacturonan/ Un-esterified

JIM7 Homogalacturonan/ Methyl-esterified

LM5 Galactan, rhamnogalacturonan-1/ (1-4)-p-p-galactan

LM6 Arabinan, rhamnogalacturonan-1/ (1-5)-a-L-arabinan (also
labels AGP)

LM13 Arabinan, rhamnogalacturonan-1/ (1-5)-a-L-arabinan (linear)

JIM12 Extensin

LM2 Arabinogalactan protein (AGP)/ -p-GlcA (glucuronic acid)

JIMS Arabinogalactan protein (AGP)/ unknown

JIM13 Arabinogalactan protein (AGP)/

B-p-GlcA-(1,3)-a-p-GalpA-(1,2)-L.-Rha
(glucuronic acid-galacturonic acid-rhamnose)

Meikle et al. 1991/Biosupplies Australia
Marcus et al. 2008/J. P. Knox PlantProbes University of Leeds,

UK

Marcus et al. 2010/J. P. Knox PlantProbes, University of Leeds,
UK

Pedersen et al. 2012/]. P. Knox PlantProbes, University of Leeds,
UK

Cornuault et al., 2015/ J. P. Knox PlantProbes, University of
Leeds, UK

Verhertbruggen et al. 2009a/J. P. Knox PlantProbes, University of
Leeds, UK

Verhertbruggen et al. 2009a/J. P. Knox PlantProbes, University of
Leeds, UK

Knox et al. 1990/J. P. Knox PlantProbes, University of Leeds, UK

Willats et al. 2000/M. Hahn, Complex Carbohydrate Research
Center, University of Georgia, USA

Jones et al. 1997/J. P. Knox PlantProbes, University of Leeds, UK

Willats et al. 1998; Verhertbruggen et al. 2009b/J. P. Knox Plant-
Probes, University of Leeds, UK

Moller et al. 2007/J. P. Knox PlantProbes, University of Leeds,
UK

Smallwood et al. 1994/J. P. Knox PlantProbes, University of
Leeds, UK

Smallwood et al. 1996/]. P. Knox PlantProbes, University of
Leeds, UK

Pennell et al. 1991/J. P. Knox PlantProbes, University of Leeds,
UK

Yates et al. 1996/J. P. Knox PlantProbes, University of Leeds, UK
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«Fig. 1 Marchantia polymorpha sporophyte and placenta. a Light
micrograph longitudinal section of a sporophyte composed of a
capsule (c), short seta (st), and anchor-shaped foot (f) embedded in
gametophyte tissue (g) on the underside of the archegoniophore. b
Higher magnification light micrograph of the placental region show-
ing the arrangement of sporophyte (s) and gametophyte (g) cells
and intergenerational space (*). Cell wall ingrowths are particularly
prominent in sporophyte cells. ¢ Light microscope showing the exten-
sive wall ingrowths in sporophyte cells (s) (large arrow) adjacent to
intergenerational space (*) and gametophyte cells with less prominent
wall ingrowths (g) (small arrow). d TEM showing gametophyte (g)
and adjacent sporophyte (s) transfer cells with robust wall ingrowths.
e Calcofluor White fluorescence identifies the presence of cellulose in
the primary walls and in wall ingrowths in gametophyte cells (small
arrow) but is visible only in wall ingrowths near the primary walls in
sporophyte (s) cells (large arrow) (cf., 1b, ¢). Scale bars: 10 um for a;
0.5 ym for d; 5.0 um for b, ¢, e

were assigned a single plus (+), and two pluses (++) were
assigned to averages between 5 and 9 labels. Any averages
that were greater than 10 labels per frame received a triple
plus (+++). Antibodies with average label density between
0 and 1 and were assigned a plus/ minus ().

Results

The sporophyte of M. polymorpha is composed of a capsule,
short seta and anchor-shaped foot that is embedded on the
underside of the elongated archegoniophore (Fig. 1a). The
placenta consists of gametophyte and sporophyte transfer
cells that are intermingled (Fig. 1b). A narrow irregular
space separates the generations (Fig. 1b, c¢). The labyrinth
apparatus is remarkably larger in sporophyte than gameto-
phyte transfer cells (Fig. 1c). In both generations, the wall
labyrinth lies above a thin cell wall, henceforth referred to
as the basal wall (Fig. 1d). As expected, Calcofluor White
staining showed that cellulose is a constituent of all cell
walls, including the labyrinth apparatus of gametophyte
transfer cells and the underlying cell wall; interestingly,
however, no Calcofluor White staining was observed in the
labyrinth apparatus of sporophyte transfer cells (Fig. le),
denoting a significant reduction in the cellulose content rela-
tive to the other cell walls in the same tissue complex.
Table 2 summarizes the location and relative abun-
dance of the 16 MAbs used to probe cell wall constituents.
Homogalacturonan pectins (MAbs JIM7, JIMS, LM20 and
LM19) occur in cell walls on both sides of the placenta of M.
polymorpha, but no RG-I pectins (MAbs LM5, LM6, and
LM13) are present (Table 2, Fig. 2). The JIM7 epitope is
moderately detected in the wall ingrowths of both genera-
tions, with labels more concentrated in the electron dense
regions of gametophyte wall ingrowth (Fig. 2a, b). The JIMS5
MAD labels both generations, and this epitope is abundant
in primary walls and in older portions of wall ingrowths
near the primary wall with scattered labels throughout older

ingrowth regions (Fig. 2c, d). Labeling with the LM20 MAb
is aggregated in the electron dense cores of the cell wall
ingrowths in both generations with fewer labels in the spo-
rophyte (Fig. 2e, f). Sparse and scattered labeling with the
LM19 MAD is seen in both generations and is most notable
in the electron dense regions of the basal wall layer (Fig. 2g,
h).

Four MAbs (LM15, LM25, LM21, LM28) were used to
target hemicellulose epitopes (Fig. 3). LM15, LM25, and
LM28 identify xyloglucans. LM 15 abundantly labels the
intergenerational zone while wall ingrowths lightly label in
the electron dense regions (Fig. 3a). Labels with the LM25
MAD are abundant throughout sporophytic wall ingrowths
and are scattered along electron dense regions in wall
ingrowths of the gametophyte (Fig. 3b). The LM21 MAb
that binds to mannan epitopes sparsely labels throughout
wall ingrowths in both generations (Figs. 3c, d), with some
concentration in outer regions. LM28 MAD (glucuronic
xylans) is not detected in any cell walls (not shown).

Considerable diversity in AGP localizations (MAbs
JIM13, LM2, JIMS8, LM6) exists between placental cell
walls in the two generations (Fig. 4). Heavy labeling with
JIM13 occurs throughout sporophyte placental cells, espe-
cially wall ingrowths, while gametophyte cells are sparsely
labeled, mostly near the plasma membrane along wall
ingrowths (Fig. 4a). LM2 epitopes are concentrated in
the electron dense areas in the original wall layer of the
sporophyte generation, with fewer labels visible in the
wall ingrowths (Fig. 4b). JIM8 AGP epitopes show similar
distribution in both generations in M. polymorpha, occurring
along the outside of wall ingrowths (shown in the sporophyte
only) (Fig. 4c). The LM6 MAD does not label the placental
cells of either generation (not shown).

No detection of the extensin epitope was seen with JIM12
localization. Callose, as visualized with the anti-callose
MAD, is also lacking.

Parenchyma cell walls adjacent to transfer cells show a
similar difference between generations with LM25, LM2
and JIM13 but labeling is much less abundant than in wall
ingrowths (Fig. S1).

Discussion

All four major types of cell wall constituents, i.e., cellulose,
pectins, hemicellulose and arabinogalactan proteins (AGPs),
are present in the transfer cell walls in M. polymorpha. As
such, these cell walls are comparable to the primary cell
walls of bryophytes (Mansouri 2012; Roberts et al. 2012)
and tracheophytes in composition, but with notable varia-
tions in the abundance and specificity of each polymer type
across generations. As evidenced by Calcoflour White fluo-
rescence, cellulose is the structural foundation of primary

@ Springer

Journal : Large 10265 Article No : 1232 Pages : 14

MS Code : 1232

Dispatch : 17-10-2020 |

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

253

254
255
256
257
258
259
260
261
262



Author Proof

Journal of Plant Research

Table 2 Relative intensity of immunogold labeling of placental cells
in Marchantia polymorpha with the following monoclonal antibod-
ies: JIM7, JIMS, LM19, LM20, LM13, LM5, LM15, LM21, LM25,
LM28, JIMS, JIM13, LM2, and anti-callose

Primary antibody Marchantia Marchantia
sporophyte gametophyte

JIM7 partially methyl-esterified HG + ++

LM20 methyl-esterified + ++

JIMS partially de-esterified HG ++ ++

LM19 de-esterified HG + +

LMS5 RG-I galactan _ _

LM6"RG-T arabinan - -

LM13 RG-I arabinan - -

LMI5 xyloglucan +2 +°

LM21mannan + +

LM25 galactoxyloglucan +++ +

LM28 glucoxyloglucans - -

JIM8 AGP + +

JIM13 AGP +++ +

JIM12 extensin - -

Callose - -

Notes: + + +, strong; + 4+, moderate; 4+, weak; +, present; —, absent
“Intergenerational zone
®LMB6 binds to arabinan residues in RG-I pectins and AGPs

cell walls, but is less prominent in wall ingrowths on the spo-

264
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270
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274
275
276
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278
279
280
281
282
283
284
285
286
287
288
289

rophyte side. Homogalacturonan (HG) pectins are abundant
in all cell walls while rhamnogalacturonan (RG-I) pectins
are undetected (Table 2). Xyloglucans are plentiful in the
matrix between generations, in sporophytic wall ingrowths,
and primary cell walls but are scattered around the periphery
of gametophyte wall ingrowths. AGP epitopes are abundant
in sporophyte wall ingrowths in M. polymorpha with little
detection of these epitopes in the gametophyte.

Pectins account for 30% of polysaccharides found in
the primary cell walls of dicots, gymnosperms, and non-
Poales monocots (10% in Poales) (Carpita 1996; O’Neill
and York 2018; Ridley et al. 2001). The content of spe-
cific pectic domains and their arrangement within the cell
wall play significant roles in the cell wall properties and
hence their function (Caffall and Mohnen 2009) (Table 3).
Homogalacturonan pectins (HG) are laid down in an esteri-
fied form (Clausen et al. 2003), and de-esterification hap-
pens in muro. Methyl-esterified HGs are stretchable, influ-
ence the porosity of cell walls and have a lower apoplastic
pH, all of which would support nutrient uptake and move-
ment (Clausen et al. 2003). These properties explain the
high levels of methyl-esterified HG pectins and their rela-
tively even distribution across generations in the placental
of M. polymorpha. Methyl-esterified HGs also occur in the
wall ingrowths in transfer cells of the fern Ceratopteris
richardii (Johnson 2008), epidermal transfer cells of Vicia
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faba (Vaughn et al. 2007), and in meristematic cells of the
developing gametophore of Physcomitrium (Physcomitrella)
patens (Berry et al. 2016; Mansouri 2012), supporting simi-
lar roles in wall extension and porosity across plant tissues
and groups. Interestingly, HG pectins were not detected in
the wall ingrowths of Elodea canadensis leaf transfer cells
but were present in their outer wall layers (Ligrone et al.
2011).

De-esterified HG pectic domains localize in the placental
cells of both the sporophyte and gametophyte generations of
M. polymorpha and are more abundant in older portions of
wall ingrowths, a finding that is consistent with the concept
that a de-esterified pectin layer provides a rigid platform
upon which additional walls are constructed (Liners et al.
1989; Xia 2018) (Table 3). De-esterified pectins play a simi-
lar structural role in undifferentiated cells and protonemata
in P. patens (Berry et al. 2016; Lee et al. 2005; Mansouri
2012).

In general, RG-I pectins are not major polymers in the
primary cell walls of bryophytes and ferns as detected by
comprehensive microarray polymer profiling (CoMPP)
(Moller et al. 2007), and glycan microarrays analysis (Eeck-
hout et al. 2014). RG-I pectins are absent from the exten-
sive wall ingrowths in placental cells of M. polymorpha, as
they are in the fern C. richardii (Johnson 2008). They are
sparse in epidermal transfer cells in Vicia faba (Vaughn et al.
2007), Pisum sativum (Dahiya and Brewin 2000) and Elo-
dea canadensis (Ligrone et al. 2011). In some mosses, RG-I
pectins are abundant in water conducting cells but they are
less abundant and non-specific in liverworts (Ligrone et al.
2002; Mansouri 2012).

Although hemicelluloses associate with both cellulose
networks and acidic pectins across land plants, they occur
at much lower concentrations in bryophyte primary walls
than in seed plants (Cornuault et al. 2018; Popper and Fry
2003; Sarkar et al. 2009). In spite of the report that xylo-
glucans in liverworts and mosses have different motifs and
structures than those of hornworts and tracheophytes (Pefia
et al. 2008), the angiosperm MAbs used in this study (LM15,
and LM25) reveal the abundance of these polymers in the
M. polymorpha placenta. Hemicelluloses targeted with
polyclonal antibodies also show high levels of labeling in
epidermal transfer cells of V. faba (Vaughn et al. 2007). The
location of xyloglucans in the sporophyte wall ingrowths and
intergenerational zone of M. polymorpha, the latter location
is consistent with the muco-adhesive nature of these hemi-
celluloses (Madgulkar et al. 2016) (Table 3). The differential
pattern of labeling of xyloglucans differs from gametophyte
and sporophyte vegetative cell walls that evenly label with
the LM 15 MAD (Fig. Sla). Mannans occurs in both gen-
erations of the placenta in small amounts and because they
occur in protonemata and rhizoids in P. patens these poly-
mers have been speculated to facilitate nutrient uptake, water
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Fig.2 TEM immunogold labeling with monoclonal antibodies to
pectin epitopes. S=sporophyte transfer cell and G=gametophyte
transfer cell. a JIM7 labels throughout the wall ingrowths (wi) and
less so in the basal wall (bw) of sporophyte cells. b JIM7 labels the
electron dense regions of the wall ingrowths (wi) in gametophyte
cells. ¢ JIMS5 labels the basal wall (bw) and wall ingrowths (wi) in
sporophyte cells. d In gametophyte placental cells, JIMS5 labels the
electron dense regions of the basal wall (bw) and wall ingrowths (wi)

sensing and cell wall reinforcement (Dehors et al. 2019;
Moore 2009; Plancot et al. 2019) (Table 3).
Arabinogalactan proteins (AGPs) are suspected to be
involved in several vital processes in plants, such as differen-
tiation, cell to cell recognition, embryogenesis, programmed

with decreased labeling away from the original wall. e LM20 labeling
occurs in gametophyte transfer cell throughout wall ingrowths (wi).
f LM20 labeling is sparse in the sporophyte basal wall (bw) and in
sporophyte (s) cell walls and wall ingrowths (wi). g LM19 sparsely
labels the electron dense material of the basal wall (bw) in gameto-
phyte cells with fewer labels in wall ingrowth (wi). h LM19 labels
the basal wall (bw), wall ingrowths (wi), and middle lamella (ml) of
sporophyte cells. scale bars: 0.5 um for (a-h)

cell death, and tip-growth (Gaspar et al. 2001; Majewska-
Sawka and Nothnagel 2000; Nguema-Ona et al. 2012)
(Table 3). AGPs are also speculated to function as pectin
plasticizers in cell walls. When AGPs separate from their
GPI anchors in the plasmalemma and are released into the
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Fig.3 TEM immunogold labeling with monoclonal antibodies to
hemicellulose epitopes. a LM15 is abundant in the intergenerational
zone (iz) and scattered in the basal wall (bw) and wall ingrowths
(wi) of both sporophyte (s) and the gametophyte (g) cells. b LM25
is abundant in the basal wall (bw) in both the gametophyte (g) and
sporophyte (s) and in the electron dense regions of wall ingrowths

cell wall, they increase porosity and keep HG domains from
crosslinking (Lamport et al. 2006). AGPs are also involved
in pH-dependent signaling by releasing Ca>* as a secondary
messenger that regulates development (Lamport and Varnai
2013; Lamport et al. 2014). As evidenced by immunolabe-
ling with MAbs, AGPs are common in the placenta of M.
polymorpha but are variable across generations (Table 2).
Sporophyte transfer cell walls abundantly contain both
JIM13 and LM2 epitopes, while these epitopes are sparse
to absent in gametophyte transfer cells. Johnson (2008)
documented intense labeling for AGPs in the placental cells
of C. richardii; the outer regions of wall ingrowths in the

@ Springer

(wi) in sporophyte cells. Sparse labeling occurs in gametophyte
wall ingrowths. ¢ LM21 lightly labels the basal wall (bw) and wall
ingrowths (wi) of sporophyte (s) cells. d LM21 lightly labels the
basal wall (bw) and wall ingrowths (wi) of gametophyte (g) cells.
Scale bars: 0.5 um for (a—d)

gametophyte label and the electron-lucent regions of wall
ingrowths label in both generations. Small amounts of AGP
epitopes are detected in wall ingrowths of transfer cells of
the cotyledon epidermis in V. faba, and cells treated with the
AGP inhibitor 8-D-glucosyl Yariv, showed roughly a 50%
reduction in the density of wall ingrowths, which points to
structural and developmental roles in these walls (Vaughn
et al. 2007).

The structure, location, and role of AGPs in bryophytes
are slowly emerging (Happ and Classen 2019). Locations
of these proteoglycans include water conducting cells
in both mosses and liverworts (Ligrone et al. 2002) and
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Fig.4 TEM immunogold labeling with monoclonal antibodies »

to AGPs. a JIMI13 strongly labels sporophyte (s) cells through-
out the basal wall (bw) and wall ingrowths (wi) while labels are
sparse (arrows) around the dark fibrillar region of gametophyte (g)
ingrowths (wi).b LM2 labels are restricted to the basal wall (bw) and
wall ingrowths (wi) in the sporophyte (s). ¢ Few JIMS labels occur
(arrows) along the outer edges of the wall ingrowth (wi) in sporo-
phyte transfer cells (s). Scale bars: 0.5 um for (a—d)

hyaline cell walls in Sphagnum novo-zelandicum (Kremer
et al. 2004). In M. polymorpha, AGPs have been impli-
cated in protonemata differentiation (Shibaya et al. 2005),
cell wall regeneration of cultured protoplasts (Shibaya and
Sugawara 2007) and cell plate formation (Shibaya and
Sugawara 2009). They are involved with tip cell extension
of protonemata and water balance in P. patens (Kobayashi
et al. 2011; Lee et al. 2005). AGPs are also abundant dur-
ing spermatogenesis and oogenesis in C. richardii (Lopez
and Renzaglia 2014, 2016) and spermatogenesis in the
moss Aulacomnium palustre (Lopez-Swalls 2016).

Extensins were not detected in the placenta of M.
polymorpha in sharp contrast with wall ingrowths of the
transfer cells in root nodules of Pisum sativum, where
abundant labeling with extensin antibodies suggests that
these hydroxyproline-rich glycoproteins are involved in
nodule development (Dihaya and Brewin 2000). Because
extensins are highly diverse, probing with additional anti-
bodies to other epitopes may well identify this constituent
in the transfer cell walls of bryophytes. The absence of cal-
lose in M. polymorpha placental cells also contrasts with
studies on transfer cells in tracheophytes. In V. faba, cal-
lose is a prominent constituent of the translucent outer
layer of transfer cell wall ingrowths, suggesting this poly-
mer is involved in a "spreading" process similar to that in
cell plate formation (Samuels et al. 1995; Vaughn et al.
1996). Callose was also detected in “channel-like” struc-
tures found in transfer cell wall ingrowths that form next
to plasmodesmata in P. sativum root nodules (Dihaya and
Brewin 2000).

A key finding in this study is the differential localization
of cell wall polymers in the transfer cells on either side of the
placenta in M. polymorpha. Although similar in ultrastruc-
ture, cell walls on the sporophyte side are cellulose poor and
enriched with xyloglucans (LM25) and diverse AGPs not
found or absent on the gametophyte side. Both xyloglucans
and AGPs would impart strength while maintaining flex-
ibility in the absence of cellulose. These wall constituents
play a similar role in male gamete maturation in both mosses
and ferns (Lopez and Renzaglia 2014; Lopez-Swalls 2016).
AGPs are likely involved in signaling through calcium bind-
ing and release in M. polymorpha sporophyte placental cells
as has been speculated in sperm cell differentiation. This
is consistent with directional signaling from gametophyte
through the apoplast into foot cells.
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Table 3 Cell wall polymers and their associated properties in the wall

Cell wall polymer Associated wall properties References

Esterified HG Porosity Braybrook and Jonsson (2016); Cornuault et al. (2017); Verhertbruggen
Expansibility (2009)
Elasticity

De-esterified HG Ca®* binding increases rigidity
Resistance to mechanical stress

Cell adhesion

Spatially buffer HG
Flexibility/elasticity
Expansibility

Porosity

Water holding capacity
Signaling

RG-I Pectin Arabinan

Galactan  Rigidity

Tip growth in some cells

Hemicellulose Xyloglucan Expansibility

Cell to cell adhesion
Cross-linkage/ tethering
Regulating yield threshold

Nutrient supply

Mannan Anchorage to substrate

Interaction with soil particles and/or
microorganisms

Nutrient uptake

Water sensing

Strengthening

Hydrated/de-hydrated cycles

Cross-link with cellulose

Nutrient supply

AGPs Developmental processes

Cell identity

Structural integrity

Galactan turnover

Ca* regulation/signal transduction
Plasticity — unidirectional deformation
Desiccation tolerance

Membrane integrity

Tip growth

Sexual reproduction

Extensins Cell wall assembly and growth
Tip growth in pollen tubes/root hairs

Cell wall/cytoplasm communication

Callose Stress response

Sieve plate/ sieve areas
Cell plate formation
Plasmodesmata
Developmental processes
Tip growth/ Pollen tube
Spore wall development
Sperm cell differentiation
Desiccation tolerance

Cornuault et al. (2017); Verhertbruggen et al. (2013); Verhertbruggen
(2009)

Cornuault et al. (2017); McCartney et al. (2003); Jones et al. (2003);
Verhertbruggen et al. (2013)

McCartney et al. (2003); Cornuault et al. (2017)

Braybrook and Jonsson (2016); Whitney et al. (2006); Chanliaud et al.
(2002); Ordaz-Ortiz et al. (2009); Bunterngsook et al. (2015)

Marcus et al. (2010); Scheller and Ulvskov (2010); Dehors et al.
(2019); Plancot et al. (2019)

Torode et al. (2018); McCartney et al. (2003); Lamport et al. (2014);
Lamport et al. (2018); Lee et al. (2005); Lopez et al. (2014)

Diet et al. 2006; Ringli 2010; Velasquez et al. 2012; Bascom et al. 2018

Samuels et al. 1995; Vaughn et al. 1996; Renzaglia et al. 2000; Lopez
etal. 2017;

Schuette et al. 2009; Cao et al. 2014; Moller et al. 2007; Tang 2007;
Berry et al. 2016; Bopp et al. 1991; Renzaglia et al. 2015; Renzaglia
and Garbary 2001; Radford 1998

Characterization of the carbohydrate and protein constitu-
ents of cell walls is the first step in understanding the inter-
actions and specific functions of wall polymers in bryophyte
cell walls. As evidenced in this study of the labyrinth cell
walls of placental transfer cells, similarities in architecture
are not necessarily reflective of common wall composition

@ Springer

and organization. Clearly, additional studies of cell walls
across tissue types and across the diversity of bryophytes
are now required to assess variability and changes in cell
wall architecture through evolution. With this fundamen-
tal information, targeted genetic studies can be conducted
to identify the function of individual genes involved in the
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manufacturing of cell wall polymers and their effects on
wall properties. Because of their abundance and differential
expression, AGP genes are of particular interest in the pla-
centa of Marchantia polymorpha. In particular, the GT31
gene subfamilies hyp-galactosyltransferases (Hyp-GALTs
and HPGTs) that are involved in AGP glycosylation (Show-
alter and Basu 2016) are widespread across land plants (Har-
holt et al. 2012; Ogawa-Ohnishi and Matsubayashi 2015)
and are good candidates for studying the role AGPs play in
multiple tissues and processes. Such work would not only
advance understanding of the genetic mechanisms involved
in the construction and function of special cell walls such as
those in transfer cells but also primary cell walls in general.
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