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Abstract

To further knowledge on cell wall composition in early land plants, we localized cell wall constituents in placental cells of 

the liverwort Marchantia polymorpha L. using monoclonal antibodies (MAbs) in the transmission electron microscope and 

histochemical staining. The placenta of M. polymorpha is similar to the majority of bryophytes in that both generations con-

tain transfer cells with extensive wall ingrowths. Although the four major cell wall polymers, i.e., cellulose, pectins, hemi-

celluloses, and arabinogalactan proteins, are present, there are variations in the richness and speciicity across generations. 

An abundance of homogalacturonan pectins in all placental cell walls is consistent with maintaining cell wall permeability 

and an acidic apoplastic pH necessary for solute transport. Although similar in ultrastructure, transfer cell walls on the 

sporophyte side in M. polymorpha are enriched with xyloglucans and diverse AGPs not detected on the gametophyte side 

of the placenta. Gametophyte wall ingrowths are more uniform in polymer composition. Lastly, extensins and callose are 

not components of transfer cell walls of M. polymorpha, which deviates from studies on transfer cells in other plants. The 

diference in polymer localizations in transfer cell walls between generations is consistent with directional movement from 

gametophyte to sporophyte in this liverwort.

Keywords AGP · Cell wall · Hemicellulose · Marchantia polymorpha · Pectin · Transfer cell · Wall ingrowth

Abbreviations

AGP  Arabinogalactan protein

HG  Homogalacturonan

MAb  Monoclonal antibody

Introduction

In bryophytes (mosses, liverworts, and hornworts), water 

and nutrients are transported from the gametophyte to the 

dependent sporophyte across a persistent apoplastic junc-

tion known as the placenta (Gunning et al. 1974; Ligrone 

and Gambardella 1988; Pate and Gunning 1972; Regmi and 

Gaxiola 2017). As the bridge between two generations that 

have diferent needs and environmental and genetic con-

straints, the placenta plays a critical role in the lifecycle of 

these plants, namely, to ensure nourishment during the pro-

duction of meiotic spores (Ligrone et al. 1993, 2012a, b).

Considerable variability occurs in the organization and 

structure of the placenta of bryophytes, especially in the 

location of transfer cells. Transfer cells are specialized cells 

with elaborate wall ingrowths that maximize transport poten-

tial by vastly increasing cell membrane surface (Browning 

and Gunning 1979a; Ligrone et al. 1993; Oler et al. 2003). 

In most mosses and liverworts, transfer cells occur on both 

sides of the placenta, but in some taxa, they are restricted 

to one generation or are absent. Only in hornworts is the 

placenta comprised of transfer cells that are exclusive to 

the gametophyte side and are intermingled with elongated 

haustorial cells of the sporophyte foot (Gambardella and 

Ligrone 1987; Vaughn and Hasegawa 1993). Although much 

is known about placental diversity across bryophytes, there 

are no comprehensive studies of cell wall composition in the 

specialized cells that make up the gametophyte-sporophyte 

junction.

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s1026 5-020-01232 -w) contains 
supplementary material, which is available to authorized users.
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The properties of cell walls are dictated by the composi-

tion and arrangement of their constituent polymers (Humphrey 

et al. 2007). The prevailing model of the primary plant cell 

wall is a cellulose and hemicellulose foundation integrated 

with an interacting and abundant pectin network (Broxter-

man and Schols 2018; Cosgrove 2005). In general, pectins 

are responsible for porosity, lexibility, and adhesion, while 

cellulose and hemicelluloses serve a supportive structural 

role. Although macromolecules of primary walls in plants are 

assembled to impart structural integrity, cell adhesion, and 

facilitate signal transduction, they play an additional role in the 

walls of transfer cells of the placenta. Here, macromolecules 

of the apoplast are the matrix in which nutrients, including 

sugars and amino acids, low across generations (Browning 

and Gunning 1979b; Graham and Wilcox, 2000; Regmi and 

Gaxiola 2017; Renault et al. 1992). Given the signiicance and 

diversity of the bryophyte placenta, this tissue complex pro-

vides a unique opportunity to correlate cell wall architecture 

with carbohydrate/ proteoglycan composition and to assess 

these variations in light of the known functions of speciic 

cell wall polymers.

In an efort to gain a deeper understanding of the carbohy-

drate composition of placental cell walls in early land plants, 

we conducted a study of cell wall composition in the model 

liverwort Marchantia polymorpha L. (Bowman et al. 2017; 

Shimamura 2016). The occurrence of transfer cells in both 

generations of M. polymorpha provides a platform on which 

to explore the variability of wall composition in architecturally 

distinct walls that have a common function, i.e., directional 

transport (Ligrone et al. 1993). We addressed the following 

fundamental question: How do cell wall constituents difer in 

the two generations of the placenta of this bryophyte? Specii-

cally, if cells with similar wall ingrowths are present on both 

sides of the path of transport, is there a diference in cell wall 

composition?

Using immunogold labeling at the TEM level, we probed 

with 16 monoclonal antibodies to cell wall carbohydrates and 

arabinogalactan proteins (AGPs) to identify the major poly-

mers present in the placenta of this liverwort. We demonstrate 

that all the major polymers in plant primary cell walls (cellu-

lose, pectin, hemicellulose and AGPs) are diferentially local-

ized in gametophyte and sporophyte transfer cell walls, and 

that callose and extensins are absent in both. The diference in 

relative abundance and localization of polymers in transfer cell 

walls between generations is consistent with the directional 

low of nutrients from gametophyte to sporophyte.

Materials and methods

Gametophyte culture

Marchantia polymorpha was purchased from Carolina Bio-

logical Supply Company, North Carolina. Plants were placed 

in a growth chamber and maintained under a constant tem-

perature of 15 °C with 12 h light and 12 h dark each day until 

archegoniophores and sporophytes were mature.

Light microscopy

Specimens were thick sectioned (1–1.5 µm) on an ultrami-

crotome, placed on glass slides, and stained with toluidine 

blue. Sporophytes were screened for developmental stages. 

Further examination was restricted to placentae with post-

meiotic developing spores with the expectation that the 

wall ingrowths at this stage are fully developed and fully 

functional.

Preparation for transmission electron microscopy

Plants were prepared for TEM observation using the stand-

ard ixation protocol outlined in Renzaglia et al. (2017). 

Excised portions of gametophytic tissue with embedded 

feet were ixed in 2.5% v/v glutaraldehyde in 0.05 M Soren-

son’s bufer (pH 7.2) for one h at room temperature and 

overnight at 4 °C. Following 2–3 rinses in same bufer for 

15 min each, plants were post-ixed in 2% bufered osmium 

tetroxide and rinsed in autoclaved, distilled water. The 

specimens were dehydrated in progressively higher etha-

nol to water concentrations and rinsed twice in anhydrous 

ethanol. Iniltration was achieved by progressive placement 

of specimens in higher concentrations of LR White resin 

diluted with ethanol. Once specimens reached 100% LR 

White and exchanged twice, they were placed in gel cap-

sules and heated in an oven at 60 °C for 48 h. The samples 

were sectioned on an ultramicrotome until the placenta was 

located. Either thin Sects. (90–100 nm) were collected on 

200 mesh nickel grids for immunogold labeling, or thick 

Sects. (1000 to 1500 nm) were collected on glass slides for 

histochemical luorescence staining.

Fluorescence staining

To visualize cellulose, resin-embedded thick-Sects. (1 µm) 

were placed on glass slides and incubated for 3–5 min in a 

drop of Calcoluor White (Sigma-Aldrich) and a drop of 10% 

KOH bufer in the dark. Calcoluor White is a luorescent 

dye speciic for ibrillar β(1 → 4) glucans of plant cell walls 

such as cellulose (Maeda and Ishida 1967). In order to 
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localize callose, 1–1.5 µm sections were collected on slides, 

covered by 1% aniline blue in 0.067 M  Na2HPO4 (pH 8.5), 

placed in the dark at 4 °C for 3–5 days, and rinsed in bufer. 

Controls were made using the respective bufers without ani-

line blue or Calcoluor White. Three replicates were made 

for each treatment and controls. All stained material was 

viewed with a Leica DM500B compound microscope (exci-

tation ilter equipped with ultraviolet luorescence between 

360 and 400 nm). Images were collected digitally using a 

Q-Imaging Retiga 2000R digital camera.

Immunogold labeling

Specimens were processed as follows and outlined in (Lopez 

et al. 2017). Grids were placed in BSA/PBS overnight at 

4 °C and then overnight on a primary antibody speciic to 

the desired wall epitope. Samples were then rinsed 4 × 4 min 

each in 0.05 M BSA/PBS. Samples were treated with a sec-

ondary antibody with a gold tag attached for 30 min at room 

temperature. Samples were then rinsed in PBS 4 × 4 min per 

each and rinsed with a jet of sterile  H2O.

Samples were observed before and after post-staining 

using lead citrate and uranyl acetate. These stains result 

in better contrast but may obscure the immunogold labels 

in the transmission electron microscope. Control grids 

were prepared by excluding the primary antibodies. For 

each treatment, 3–5 replicates were examined. Samples 

were viewed, and digital micrographs were collected in a 

Hitachi H7650. The monoclonal antibodies (MAbs) used in 

this study are listed in Table 1.

Scoring label abundance

Images were opened in the PhotoScapeX (Mooii Tech) edit-

ing app. Three counting frames 100 × 100 pixels in size were 

randomly placed onto the wall in the image and labels within 

the frames were counted. This process was repeated three 

times per 10–15 images for each MAb. The average of all 

counts was calculated. Averages of 1 to 4 labels per frame 

Table 1  Primary antibodies used to immunogold label carbohydrates and arabinogalactan proteins in transfer cell walls of placentae in Marchan-

tia polymorpha 

Antibody Antigen (s)/epitope Reference/source

Anticallose Callose/ (1,3)-β-linked penta-to-hexa-glucan Meikle et al. 1991/Biosupplies Australia

LM15 XXXG motif of xyloglucan Marcus et al. 2008/J. P. Knox PlantProbes University of Leeds, 
UK

LM21 Mannan/ β-(1,4)-manno-oligosaccharide Marcus et al. 2010/J. P. Knox PlantProbes, University of Leeds, 
UK

LM25 Galactoxylated xyloglucans Pedersen et al. 2012/J. P. Knox PlantProbes, University of Leeds, 
UK

LM28 Glucuronoxylan Cornuault et al., 2015/ J. P. Knox PlantProbes, University of 
Leeds, UK

LM19 Homogalacturonan/ Un-esteriied Verhertbruggen et al. 2009a/J. P. Knox PlantProbes, University of 
Leeds, UK

LM20 Homogalacturonan/ Methyl-esteriied Verhertbruggen et al. 2009a/J. P. Knox PlantProbes, University of 
Leeds, UK

JIM5 Homogalacturonan/ Un-esteriied Knox et al. 1990/J. P. Knox PlantProbes, University of Leeds, UK

JIM7 Homogalacturonan/ Methyl-esteriied Willats et al. 2000/M. Hahn, Complex Carbohydrate Research 
Center, University of Georgia, USA

LM5 Galactan, rhamnogalacturonan-I/ (1–4)-β-D-galactan Jones et al. 1997/J. P. Knox PlantProbes, University of Leeds, UK

LM6 Arabinan, rhamnogalacturonan-I/ (1–5)-α-L-arabinan (also 
labels AGP)

Willats et al. 1998; Verhertbruggen et al. 2009b/J. P. Knox Plant-
Probes, University of Leeds, UK

LM13 Arabinan, rhamnogalacturonan-I/ (1–5)-α-L-arabinan (linear) Moller et al. 2007/J. P. Knox PlantProbes, University of Leeds, 
UK

JIM12 Extensin Smallwood et al. 1994/J. P. Knox PlantProbes, University of 
Leeds, UK

LM2 Arabinogalactan protein (AGP)/ β-D-GlcA (glucuronic acid) Smallwood et al. 1996/J. P. Knox PlantProbes, University of 
Leeds, UK

JIM8 Arabinogalactan protein (AGP)/ unknown Pennell et al. 1991/J. P. Knox PlantProbes, University of Leeds, 
UK

JIM13 Arabinogalactan protein (AGP)/
β-D-GlcA-(1,3)-α-D-GalpA-(1,2)-L-Rha
(glucuronic acid-galacturonic acid-rhamnose)

Yates et al. 1996/J. P. Knox PlantProbes, University of Leeds, UK
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were assigned a single plus ( +), and two pluses (+ +) were 

assigned to averages between 5 and 9 labels. Any averages 

that were greater than 10 labels per frame received a triple 

plus (+ + +). Antibodies with average label density between 

0 and 1 and were assigned a plus/ minus ( ±).

Results

The sporophyte of M. polymorpha is composed of a capsule, 

short seta and anchor-shaped foot that is embedded on the 

underside of the elongated archegoniophore (Fig. 1a). The 

placenta consists of gametophyte and sporophyte transfer 

cells that are intermingled (Fig. 1b). A narrow irregular 

space separates the generations (Fig. 1b, c). The labyrinth 

apparatus is remarkably larger in sporophyte than gameto-

phyte transfer cells (Fig. 1c). In both generations, the wall 

labyrinth lies above a thin cell wall, henceforth referred to 

as the basal wall (Fig. 1d). As expected, Calcoluor White 

staining showed that cellulose is a constituent of all cell 

walls, including the labyrinth apparatus of gametophyte 

transfer cells and the underlying cell wall; interestingly, 

however, no Calcoluor White staining was observed in the 

labyrinth apparatus of sporophyte transfer cells (Fig. 1e), 

denoting a signiicant reduction in the cellulose content rela-

tive to the other cell walls in the same tissue complex.

Table  2 summarizes the location and relative abun-

dance of the 16 MAbs used to probe cell wall constituents. 

Homogalacturonan pectins (MAbs JIM7, JIM5, LM20 and 

LM19) occur in cell walls on both sides of the placenta of M. 

polymorpha, but no RG-I pectins (MAbs LM5, LM6, and 

LM13) are present (Table 2, Fig. 2). The JIM7 epitope is 

moderately detected in the wall ingrowths of both genera-

tions, with labels more concentrated in the electron dense 

regions of gametophyte wall ingrowth (Fig. 2a, b). The JIM5 

MAb labels both generations, and this epitope is abundant 

in primary walls and in older portions of wall ingrowths 

near the primary wall with scattered labels throughout older 

ingrowth regions (Fig. 2c, d). Labeling with the LM20 MAb 

is aggregated in the electron dense cores of the cell wall 

ingrowths in both generations with fewer labels in the spo-

rophyte (Fig. 2e, f). Sparse and scattered labeling with the 

LM19 MAb is seen in both generations and is most notable 

in the electron dense regions of the basal wall layer (Fig. 2g, 

h).

Four MAbs (LM15, LM25, LM21, LM28) were used to 

target hemicellulose epitopes (Fig. 3). LM15, LM25, and 

LM28 identify xyloglucans. LM15 abundantly labels the 

intergenerational zone while wall ingrowths lightly label in 

the electron dense regions (Fig. 3a). Labels with the LM25 

MAb are abundant throughout sporophytic wall ingrowths 

and are scattered along electron dense regions in wall 

ingrowths of the gametophyte (Fig. 3b). The LM21 MAb 

that binds to mannan epitopes sparsely labels throughout 

wall ingrowths in both generations (Figs. 3c, d), with some 

concentration in outer regions. LM28 MAb (glucuronic 

xylans) is not detected in any cell walls (not shown).

Considerable diversity in AGP localizations (MAbs 

JIM13, LM2, JIM8, LM6) exists between placental cell 

walls in the two generations (Fig. 4). Heavy labeling with 

JIM13 occurs throughout sporophyte placental cells, espe-

cially wall ingrowths, while gametophyte cells are sparsely 

labeled, mostly near the plasma membrane along wall 

ingrowths (Fig.  4a). LM2 epitopes are concentrated in 

the electron dense areas in the original wall layer of the 

sporophyte generation, with fewer labels visible in the 

wall ingrowths (Fig. 4b). JIM8 AGP epitopes show similar 

distribution in both generations in M. polymorpha, occurring 

along the outside of wall ingrowths (shown in the sporophyte 

only) (Fig. 4c). The LM6 MAb does not label the placental 

cells of either generation (not shown).

No detection of the extensin epitope was seen with JIM12 

localization. Callose, as visualized with the anti-callose 

MAb, is also lacking.

Parenchyma cell walls adjacent to transfer cells show a 

similar diference between generations with LM25, LM2 

and JIM13 but labeling is much less abundant than in wall 

ingrowths (Fig. S1).

Discussion

All four major types of cell wall constituents, i.e., cellulose, 

pectins, hemicellulose and arabinogalactan proteins (AGPs), 

are present in the transfer cell walls in M. polymorpha. As 

such, these cell walls are comparable to the primary cell 

walls of bryophytes (Mansouri 2012; Roberts et al. 2012) 

and tracheophytes in composition, but with notable varia-

tions in the abundance and speciicity of each polymer type 

across generations. As evidenced by Calcolour White luo-

rescence, cellulose is the structural foundation of primary 

Fig. 1    Marchantia polymorpha sporophyte and placenta. a Light 
micrograph longitudinal section of a sporophyte composed of a 
capsule (c), short seta (st), and anchor-shaped foot (f) embedded in 
gametophyte tissue (g) on the underside of the archegoniophore. b 
Higher magniication light micrograph of the placental region show-
ing the arrangement of sporophyte (s) and gametophyte (g) cells 
and intergenerational space (*). Cell wall ingrowths are particularly 
prominent in sporophyte cells. c Light microscope showing the exten-
sive wall ingrowths in sporophyte cells (s) (large arrow) adjacent to 
intergenerational space (*) and gametophyte cells with less prominent 
wall ingrowths (g) (small arrow).  d TEM showing gametophyte (g) 
and adjacent sporophyte (s) transfer cells with robust wall ingrowths. 
e Calcoluor White luorescence identiies the presence of cellulose in 
the primary walls and in wall ingrowths in gametophyte cells (small 
arrow) but is visible only in wall ingrowths near the primary walls in 
sporophyte (s) cells (large arrow) (cf., 1b, c). Scale bars: 10 µm for a; 
0.5 µm for d; 5.0 µm for b, c, e 
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cell walls, but is less prominent in wall ingrowths on the spo-

rophyte side. Homogalacturonan (HG) pectins are abundant 

in all cell walls while rhamnogalacturonan (RG-I) pectins 

are undetected (Table 2). Xyloglucans are plentiful in the 

matrix between generations, in sporophytic wall ingrowths, 

and primary cell walls but are scattered around the periphery 

of gametophyte wall ingrowths. AGP epitopes are abundant 

in sporophyte wall ingrowths in M. polymorpha with little 

detection of these epitopes in the gametophyte.

Pectins account for 30% of polysaccharides found in 

the primary cell walls of dicots, gymnosperms, and non-

Poales monocots (10% in Poales) (Carpita 1996; O’Neill 

and York 2018; Ridley et al. 2001). The content of spe-

ciic pectic domains and their arrangement within the cell 

wall play signiicant roles in the cell wall properties and 

hence their function (Cafall and Mohnen 2009) (Table 3). 

Homogalacturonan pectins (HG) are laid down in an esteri-

ied form (Clausen et al. 2003), and de-esteriication hap-

pens in muro. Methyl-esteriied HGs are stretchable, inlu-

ence the porosity of cell walls and have a lower apoplastic 

pH, all of which would support nutrient uptake and move-

ment (Clausen et al. 2003). These properties explain the 

high levels of methyl-esteriied HG pectins and their rela-

tively even distribution across generations in the placental 

of M. polymorpha. Methyl-esteriied HGs also occur in the 

wall ingrowths in transfer cells of the fern Ceratopteris 

richardii (Johnson 2008), epidermal transfer cells of Vicia 

faba (Vaughn et al. 2007), and in meristematic cells of the 

developing gametophore of Physcomitrium (Physcomitrella) 

patens (Berry et al. 2016; Mansouri 2012), supporting simi-

lar roles in wall extension and porosity across plant tissues 

and groups. Interestingly, HG pectins were not detected in 

the wall ingrowths of Elodea canadensis leaf transfer cells 

but were present in their outer wall layers (Ligrone et al. 

2011).

De-esteriied HG pectic domains localize in the placental 

cells of both the sporophyte and gametophyte generations of 

M. polymorpha and are more abundant in older portions of 

wall ingrowths, a inding that is consistent with the concept 

that a de-esteriied pectin layer provides a rigid platform 

upon which additional walls are constructed (Liners et al. 

1989; Xia 2018) (Table 3). De-esteriied pectins play a simi-

lar structural role in undiferentiated cells and protonemata 

in P. patens (Berry et al. 2016; Lee et al. 2005; Mansouri 

2012).

In general, RG-I pectins are not major polymers in the 

primary cell walls of bryophytes and ferns as detected by 

comprehensive microarray polymer profiling (CoMPP) 

(Möller et al. 2007), and glycan microarrays analysis (Eeck-

hout et al. 2014). RG-I pectins are absent from the exten-

sive wall ingrowths in placental cells of M. polymorpha, as 

they are in the fern C. richardii (Johnson 2008). They are 

sparse in epidermal transfer cells in Vicia faba (Vaughn et al. 

2007), Pisum sativum (Dahiya and Brewin 2000) and Elo-

dea canadensis (Ligrone et al. 2011). In some mosses, RG-I 

pectins are abundant in water conducting cells but they are 

less abundant and non-speciic in liverworts (Ligrone et al. 

2002; Mansouri 2012).

Although hemicelluloses associate with both cellulose 

networks and acidic pectins across land plants, they occur 

at much lower concentrations in bryophyte primary walls 

than in seed plants (Cornuault et al. 2018; Popper and Fry 

2003; Sarkar et al. 2009). In spite of the report that xylo-

glucans in liverworts and mosses have diferent motifs and 

structures than those of hornworts and tracheophytes (Peña 

et al. 2008), the angiosperm MAbs used in this study (LM15, 

and LM25) reveal the abundance of these polymers in the 

M. polymorpha placenta. Hemicelluloses targeted with 

polyclonal antibodies also show high levels of labeling in 

epidermal transfer cells of V. faba (Vaughn et al. 2007). The 

location of xyloglucans in the sporophyte wall ingrowths and 

intergenerational zone of M. polymorpha, the latter location 

is consistent with the muco-adhesive nature of these hemi-

celluloses (Madgulkar et al. 2016) (Table 3). The diferential 

pattern of labeling of xyloglucans difers from gametophyte 

and sporophyte vegetative cell walls that evenly label with 

the LM15 MAb (Fig. S1a). Mannans occurs in both gen-

erations of the placenta in small amounts and because they 

occur in protonemata and rhizoids in P. patens these poly-

mers have been speculated to facilitate nutrient uptake, water 

Table 2  Relative intensity of immunogold labeling of placental cells 
in Marchantia polymorpha with the following monoclonal antibod-
ies: JIM7, JIM5, LM19, LM20, LM13, LM5, LM15, LM21, LM25, 
LM28, JIM8, JIM13, LM2, and anti-callose

Notes: +  +  + , strong; +  + , moderate; + , weak; ± , present; −, absent
a Intergenerational zone
b LM6 binds to arabinan residues in RG-I pectins and AGPs

Primary antibody Marchantia 
sporophyte

Marchantia 
gametophyte

JIM7 partially methyl-esteriied HG
LM20 methyl-esteriied

 + 
 + 

 +  + 
 +  + 

JIM5 partially de-esteriied HG  +  +  +  + 

LM19 de-esteriied HG
LM5 RG-I galactan
LM6bRG-I arabinan
LM13 RG-I arabinan

 + 
_
−
−

 + 
_
−
−

LM15 xyloglucan  + a  + a

LM21mannan  +  + 

LM25 galactoxyloglucan  +  +  +  + 

LM28 glucoxyloglucans − −

JIM8 AGP  ±  ± 

JIM13 AGP  +  +  +  ± 

JIM12 extensin − −

Callose − −
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sensing and cell wall reinforcement (Dehors et al. 2019; 

Moore 2009; Plancot et al. 2019) (Table 3).

Arabinogalactan proteins (AGPs) are suspected to be 

involved in several vital processes in plants, such as diferen-

tiation, cell to cell recognition, embryogenesis, programmed 

cell death, and tip-growth (Gaspar et al. 2001; Majewska-

Sawka and Nothnagel 2000; Nguema-Ona et  al. 2012) 

(Table 3). AGPs are also speculated to function as pectin 

plasticizers in cell walls. When AGPs separate from their 

GPI anchors in the plasmalemma and are released into the 

Fig. 2  TEM immunogold labeling with monoclonal antibodies to 
pectin epitopes. S = sporophyte transfer cell and G = gametophyte 
transfer cell. a JIM7 labels throughout the wall ingrowths (wi) and 
less so in the basal wall (bw) of sporophyte cells. b JIM7 labels the 
electron dense regions of the wall ingrowths (wi) in gametophyte 
cells. c JIM5 labels the basal wall (bw)  and wall ingrowths (wi) in 
sporophyte cells. d In gametophyte placental cells, JIM5 labels the 
electron dense regions of the basal wall (bw) and wall ingrowths (wi) 

with decreased labeling away from the original wall. e LM20 labeling 
occurs in gametophyte transfer cell throughout wall ingrowths (wi). 
f LM20 labeling is sparse in the sporophyte basal wall (bw) and in 
sporophyte (s) cell walls and wall ingrowths (wi). g LM19 sparsely 
labels the electron dense material of the basal wall (bw) in gameto-
phyte cells with fewer labels in wall ingrowth (wi). h LM19 labels 
the basal wall (bw), wall ingrowths (wi), and middle lamella (ml) of 
sporophyte cells. scale bars: 0.5 µm for (a–h)
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cell wall, they increase porosity and keep HG domains from 

crosslinking (Lamport et al. 2006). AGPs are also involved 

in pH-dependent signaling by releasing  Ca2+ as a secondary 

messenger that regulates development (Lamport and Várnai 

2013; Lamport et al. 2014). As evidenced by immunolabe-

ling with MAbs, AGPs are common in the placenta of M. 

polymorpha but are variable across generations (Table 2). 

Sporophyte transfer cell walls abundantly contain both 

JIM13 and LM2 epitopes, while these epitopes are sparse 

to absent in gametophyte transfer cells. Johnson (2008) 

documented intense labeling for AGPs in the placental cells 

of C. richardii; the outer regions of wall ingrowths in the 

gametophyte label and the electron-lucent regions of wall 

ingrowths label in both generations. Small amounts of AGP 

epitopes are detected in wall ingrowths of transfer cells of 

the cotyledon epidermis in V. faba, and cells treated with the 

AGP inhibitor ß-D-glucosyl Yariv, showed roughly a 50% 

reduction in the density of wall ingrowths, which points to 

structural and developmental roles in these walls (Vaughn 

et al. 2007).

The structure, location, and role of AGPs in bryophytes 

are slowly emerging (Happ and Classen 2019). Locations 

of these proteoglycans include water conducting cells 

in both mosses and liverworts (Ligrone et al. 2002) and 

Fig. 3  TEM immunogold labeling with monoclonal antibodies to 
hemicellulose epitopes. a LM15 is abundant in the intergenerational 
zone (iz) and scattered in the basal wall (bw) and wall ingrowths 
(wi) of both sporophyte (s) and the gametophyte (g) cells. b LM25 
is abundant in the basal wall (bw) in both the gametophyte (g) and 
sporophyte (s) and in the electron dense regions of wall ingrowths 

(wi) in sporophyte cells. Sparse labeling occurs in gametophyte 
wall ingrowths. c LM21 lightly labels the basal wall (bw) and wall 
ingrowths (wi) of sporophyte (s) cells. d LM21 lightly labels the 
basal wall (bw) and wall ingrowths (wi) of gametophyte (g) cells. 
Scale bars: 0.5 µm for (a–d)
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hyaline cell walls in Sphagnum novo-zelandicum (Kremer 

et al. 2004). In M. polymorpha, AGPs have been impli-

cated in protonemata diferentiation (Shibaya et al. 2005), 

cell wall regeneration of cultured protoplasts (Shibaya and 

Sugawara 2007) and cell plate formation (Shibaya and 

Sugawara 2009). They are involved with tip cell extension 

of protonemata and water balance in P. patens (Kobayashi 

et al. 2011; Lee et al. 2005). AGPs are also abundant dur-

ing spermatogenesis and oogenesis in C. richardii (Lopez 

and Renzaglia 2014, 2016) and spermatogenesis in the 

moss Aulacomnium palustre (Lopez-Swalls 2016).

Extensins were not detected in the placenta of M. 

polymorpha in sharp contrast with wall ingrowths of the 

transfer cells in root nodules of Pisum sativum, where 

abundant labeling with extensin antibodies suggests that 

these hydroxyproline-rich glycoproteins are involved in 

nodule development (Dihaya and Brewin 2000). Because 

extensins are highly diverse, probing with additional anti-

bodies to other epitopes may well identify this constituent 

in the transfer cell walls of bryophytes. The absence of cal-

lose in M. polymorpha placental cells also contrasts with 

studies on transfer cells in tracheophytes. In V. faba, cal-

lose is a prominent constituent of the translucent outer 

layer of transfer cell wall ingrowths, suggesting this poly-

mer is involved in a "spreading" process similar to that in 

cell plate formation (Samuels et al. 1995; Vaughn et al. 

1996). Callose was also detected in “channel-like” struc-

tures found in transfer cell wall ingrowths that form next 

to plasmodesmata in P. sativum root nodules (Dihaya and 

Brewin 2000).

A key inding in this study is the diferential localization 

of cell wall polymers in the transfer cells on either side of the 

placenta in M. polymorpha. Although similar in ultrastruc-

ture, cell walls on the sporophyte side are cellulose poor and 

enriched with xyloglucans (LM25) and diverse AGPs not 

found or absent on the gametophyte side. Both xyloglucans 

and AGPs would impart strength while maintaining lex-

ibility in the absence of cellulose. These wall constituents 

play a similar role in male gamete maturation in both mosses 

and ferns (Lopez and Renzaglia 2014; Lopez-Swalls 2016). 

AGPs are likely involved in signaling through calcium bind-

ing and release in M. polymorpha sporophyte placental cells 

as has been speculated in sperm cell diferentiation. This 

is consistent with directional signaling from gametophyte 

through the apoplast into foot cells.

Fig. 4  TEM immunogold labeling with monoclonal antibodies 
to AGPs.  a JIM13 strongly labels sporophyte (s) cells through-
out the basal wall (bw) and wall ingrowths (wi) while labels are 
sparse (arrows) around the dark ibrillar region of gametophyte (g) 
ingrowths (wi).b LM2 labels are restricted to the basal wall (bw) and 
wall ingrowths (wi) in the sporophyte (s). c Few JIM8 labels occur 
(arrows) along the outer edges of the wall ingrowth (wi) in sporo-
phyte transfer cells (s). Scale bars: 0.5 µm for (a–d)
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Characterization of the carbohydrate and protein constitu-

ents of cell walls is the irst step in understanding the inter-

actions and speciic functions of wall polymers in bryophyte 

cell walls. As evidenced in this study of the labyrinth cell 

walls of placental transfer cells, similarities in architecture 

are not necessarily relective of common wall composition 

and organization. Clearly, additional studies of cell walls 

across tissue types and across the diversity of bryophytes 

are now required to assess variability and changes in cell 

wall architecture through evolution. With this fundamen-

tal information, targeted genetic studies can be conducted 

to identify the function of individual genes involved in the 

Table 3  Cell wall polymers and their associated properties in the wall

Cell wall polymer Associated wall properties References

Esteriied HG Porosity
Expansibility
Elasticity

Braybrook and Jönsson (2016); Cornuault et al. (2017); Verhertbruggen 
(2009)

De-esteriied HG Ca2+ binding increases rigidity
Resistance to mechanical stress
Cell adhesion

Cornuault et al. (2017); Verhertbruggen et al. (2013); Verhertbruggen 
(2009)

RG-I Pectin Arabinan Spatially bufer HG
Flexibility/elasticity
Expansibility
Porosity
Water holding capacity
Signaling

Cornuault et al. (2017); McCartney et al. (2003); Jones et al. (2003); 
Verhertbruggen et al. (2013)

Galactan Rigidity
Tip growth in some cells

McCartney et al. (2003); Cornuault et al. (2017)

Hemicellulose Xyloglucan Expansibility
Cell to cell adhesion
Cross-linkage/ tethering
Regulating yield threshold
Nutrient supply

Braybrook and Jönsson (2016); Whitney et al. (2006); Chanliaud et al. 
(2002); Ordaz-Ortiz et al. (2009); Bunterngsook et al. (2015)

Mannan Anchorage to substrate
Interaction with soil particles and/or 

microorganisms
Nutrient uptake
Water sensing
Strengthening
Hydrated/de-hydrated cycles
Cross-link with cellulose
Nutrient supply

Marcus et al. (2010); Scheller and Ulvskov (2010); Dehors et al. 
(2019); Plancot et al. (2019)

AGPs Developmental processes
Cell identity
Structural integrity
Galactan turnover
Ca2+ regulation/signal transduction
Plasticity – unidirectional deformation
Desiccation tolerance
Membrane integrity
Tip growth
Sexual reproduction

Torode et al. (2018); McCartney et al. (2003); Lamport et al. (2014); 
Lamport et al. (2018); Lee et al. (2005); Lopez et al. (2014)

Extensins Cell wall assembly and growth
Tip growth in pollen tubes/root hairs
Cell wall/cytoplasm communication

Diet et al. 2006; Ringli 2010; Velasquez et al. 2012; Bascom et al. 2018

Callose Stress response
Sieve plate/ sieve areas
Cell plate formation
Plasmodesmata
Developmental processes
Tip growth/ Pollen tube
Spore wall development
Sperm cell diferentiation
Desiccation tolerance

Samuels et al. 1995; Vaughn et al. 1996; Renzaglia et al. 2000; Lopez 
et al. 2017;

Schuette et al. 2009; Cao et al. 2014; Moller et al. 2007; Tang 2007; 
Berry et al. 2016; Bopp et al. 1991; Renzaglia et al. 2015; Renzaglia 
and Garbary 2001; Radford 1998
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manufacturing of cell wall polymers and their efects on 

wall properties. Because of their abundance and diferential 

expression, AGP genes are of particular interest in the pla-

centa of Marchantia polymorpha. In particular, the GT31 

gene subfamilies hyp-galactosyltransferases (Hyp-GALTs 

and HPGTs) that are involved in AGP glycosylation (Show-

alter and Basu 2016) are widespread across land plants (Har-

holt et al. 2012; Ogawa‐Ohnishi and Matsubayashi 2015) 

and are good candidates for studying the role AGPs play in 

multiple tissues and processes. Such work would not only 

advance understanding of the genetic mechanisms involved 

in the construction and function of special cell walls such as 

those in transfer cells but also primary cell walls in general.
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