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1. Introduction

In this paper, we study upper and lower bounds for efficient broadcast in the dual graph radio network model [4,15,16,
3,7,6,9,8,18,10], a dynamic network model that describes wireless communication over both reliable and unreliable links. As
argued in previous studies of this setting, including unpredictable link behavior in theoretical wireless network models is
important because in real world deployments radio links are often quite dynamic.

The back-off paradox. Existing papers [16,9,18] proved that it is impossible to solve standard broadcast problems effi-
ciently in the dual graph model without the addition of strong extra assumptions (see related work). In real radio networks,
however, which suffer from the type of link dynamics abstracted by the dual graph model, simple back-off strategies tend
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to perform quite well. These dueling realities seem to imply a dispiriting gap between theory and practice: basic communi-
cation tasks that are easily solved in real networks are impossible when studied in abstract models of these networks.

What explains this paradox? This paper tackles this fundamental question.

As detailed below, we focus our attention on the adversary entity that decides which unreliable links to include in the
network topology in each round of an execution in the dual graph model. We introduce a new type of adversary with
constraints that better generalize the dynamic behavior of real radio links. We then reexamine simple back-off strategies
originally introduced in the standard radio network model [2] (which has only reliable links), and prove that for reasonable
parameters, these simple strategies now do guarantee efficient communication in the dual graph model combined with our
new, more realistic adversary.

We also detail how this performance degrades toward the existing dual graph lower bounds as the new constraints are
reduced toward non-existent, and prove lower bounds that establish these bounds to be near tight for a large and natural
class of back-off strategies. Finally, we perform investigations of even more general (and therefore more difficult) variations
of this new style of adversary that continue to underscore the versatility of simple back-off strategies.

We argue that these results help resolve the back-off paradox described above. When unpredictable link behavior is
modeled properly, predictable algorithms prove to work surprisingly well.

The dual graph model. The dual graph model describes a radio network topology with two graphs, G = (V,E) and
G' = (V,E), where E C E’, V corresponds to the wireless devices, E corresponds to reliable (high quality) links, and E’ \ E
corresponds to unreliable (quality varies over time) links. In each round, all edges from E are included in the network
topology. Also included is an additional subset of edges from E’ \ E, chosen by an adversary. This subset can change from
round to round. Once the topology is set for the round, the model implements the standard communication rules from the
classical radio network model: a node u receives a message broadcast by its neighbor v in the topology if and only if u
decides to receive and v is its only neighbor broadcasting in the round.

We emphasize that the abstract models used in the sizable literature studying distributed algorithms in wireless settings
do not claim to provide high fidelity representations of real world radio signal communication. They instead each capture
core dynamics of this setting, enabling the investigation of fundamental algorithmic questions. The well-studied radio net-
work model, for example, provides a simple but instructive abstraction of message loss due to collision. The dual graph
model generalizes this abstraction to also include network topology dynamics. Studying the gaps between these two models
provides insight into the hardness induced by the types of link quality changes common in real wireless networks.

The fading adversary. Existing studies of the dual graph model focused mainly on the information about the algorithm
known to the model adversary when it makes its edge choices. In this paper, we place additional constraints on how these
choices are generated.

In more detail, in each round, the adversary independently draws the set of edges from E’\ E to add to the topology
from some probability distribution defined over this set. We do not constrain the properties of the distributions selected
by the adversary. Indeed, it is perfectly valid for the adversary in a given round to use a point distribution that puts the
full probability mass on a single subset, giving it full control over its selection for the round. We also assume the algorithm
executing in the model has no advance knowledge of the distributions used by the adversary.

We do, however, constrain how often the adversary can change the distribution from which it selects these edge subsets.
In more detail, we parameterize the model with a stability factor, T > 1, and restrict the adversary to changing the distri-
bution it uses at most once every T rounds. For T =1, the adversary can change the distribution in every round, and is
therefore effectively unconstrained and behaves the same as in the existing dual graph studies. On the other extreme, for
T = o0, the adversary is now quite constrained in that it must draw edges independently from the same distribution for
the entire execution. As detailed below, we find 7 = log A, for local neighborhood size A, to be a key threshold after which
efficient communication becomes tractable.

Notice, these constraints do not prevent the adversary from inducing large amounts of changes to the network topology
from round to round. For non-trivial T values, however, they do require changes that are nearby in time to share some
underlying stochastic structure. This property is inspired by the general way wireless network engineers think about unreli-
ability in radio links. In their analytical models of link behavior (used, for example, to analyze modulation or rate selection
schemes, or to model signal propagation in simulation), engineers often assume that in the short term, changes to link
quality come from sources like noise and multi-path effects, which can be approximated by independent draws from an
underlying distribution. Traditional and well-known fading distributions include Rayleigh fading [21], Ricean fading [22], or
the Nakagami distribution [19].

Long term changes, by contrast, can come from modifications to the network environment itself, such as devices moving,
which do not necessarily have an obvious stochastic structure, but unfold at a slower rate than short term fluctuations.

In our model, the distribution used in a given round captures short term changes, while the adversary’s arbitrary (but
rate-limited) changes to these distributions over time capture long term changes. Because these general types of changes
are sometimes labeled short/fast fading in the systems literature (e.g., [23]), we call our new adversary a fading adversary.

Our results and related work. In this paper, we study both local and global broadcast. The local version of these problems
assumes some subset of devices in a dual graph network are provided broadcast messages. The problem is solved once each
receiver that neighbors a broadcaster in E receives at least one message. The global version assumes a single broadcaster
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Table 1
A summary of the upper and lower bounds proved in this paper, along with pointers to the corresponding theorems. In the following, n is the network
size, A <n is an upper bound on local neighborhood size, D is the (reliable link) network diameter, and t is the stability factor constraining the adversary.

Problem Time Prob. Remarks Ref.
0 (Alygf‘gz -log (n/e)) 1—¢ £ =min{t, log A} Theorem 6
Local broadcast AT 1
Q( Tog A ) 3 T €0(logA) Theorem 7
Q (%) % T € 0(log A/loglog A) Theorem 8
0] ((D + log(n/e)) - Al;/gfzz) 1—¢€ T =min{t, log A} Theorem 9
Global broadcast AlVTE 1
Q (D *Toga ) 3 7€ 0(logA) Theorem 10
Q (D . Al;/grgz) . 7 € 0(logA/loglog A) Theorem 10

starts with a message that it must disseminate to the entire network. Below we summarize the relevant related work on
these problems, and the new bounds proved in this paper. We conclude with a discussion of the key ideas behind these
new results.

Related Work. In the standard radio network model, which is equivalent to the dual graph model with E = E’, Bar-Yehuda
et al. [2] demonstrate that a simple randomized back-off strategy called Decay solves local broadcast in O (log?n) rounds
and global broadcast in O(Dlogn + log?n) rounds, where n = |V| is the network size and D is the diameter of G. Both
results hold with high probability in n, and were subsequently proved to be optimal or near optimal! [1,17,20].

In [15,16], it is proved that global broadcast (with constant diameter), and local broadcast require Q(n) rounds to solve
with reasonable probability in the dual graph model with an offline adaptive adversary controlling the unreliable edge
selection, while [9] proves that ©(n/logn) rounds are necessary for both problems with an online adaptive adversary. As
also proved in [9]: even with the weaker oblivious adversary, local broadcast requires Q(/n/logn) rounds, whereas global
broadcast can be solved in an efficient O (D log (n/D) +log® n) rounds, but only if the broadcast message is sufficiently large
to contain enough shared random bits for all nodes to use throughout the execution. In [18], an efficient algorithm for
local broadcast with an oblivious adversary is provided given the assumption of geographic constraints on the dual graphs,
enabling complicated clustering strategies that allow nearby devices to coordinate randomness.

New Results. In this paper, we turn our attention to local and global broadcast in the dual graph model with a fading
adversary constrained by some stability factor T (known to the algorithm). We start by considering upper bounds for a
simple back-off style strategy inspired by the Decay routine from [2]. This routine has broadcasters simply cycle through
a fixed sequence of broadcast probabilities in a synchronized manner (all broadcasters use the same probability in the
same round). We prove that this strategy solves local broadcast with a single receiver with probability at least 1 — €,

in O (% -log(l/e)) rounds, where A is an upper bound on local neighborhood size, and 7 = min{t, log A}. With
multiple receivers the bound changes to O (Allo/; 'Af 2 -log (n/€)

Notice, for a single receiver, for 7 > log A this bound simplifies to O (log A log (1/€)), matching the optimal results from
the standard radio network model.? This performance, however, degrades toward the polynomial lower bounds from the
existing dual graph literature as t reduces from log A toward a minimum value of 1. We show this degradation to be
near optimal by proving that any local broadcast algorithm that uses a fixed sequence of broadcast probabilities requires
Q(AVT£/1og A) rounds to solve the problem with probability 1/2 for a given T. For T € 0 (log A/loglog A), we refine this
bound further to (A1/77%/log A), matching our upper bound within constant factors.

We next turn our attention to global broadcast. We consider a straightforward global broadcast algorithm that uses our
local broadcast strategy as a subroutine. We prove that this algorithm solves global broadcast with probability at least 1 —€,
in O((D + log(n/€)) - AYT72/log A) rounds, where D is the diameter of G, and 7T = min{t, log A}. Notice, for T > log A
this bound reduces to O((D + log(n/¢)) - log Alog (1/€)), matching the near optimal result from the standard radio network
model. As with local broadcast, we also prove the degradation of this performance as 7 shrinks to be near optimal. (See
Table 1 for a summary of these results and pointers to where they are proved in this paper.)

Finally we consider the generalized model when we allow correlation between the distributions selected by the adversary
within a given stable period of T rounds. It turns out that in the case of arbitrary correlations any simple algorithm needs
time Q(v/A/I2) if this algorithm cycles through a sequence of probabilities of length I. In particular, any of our previous
algorithms would require time Q(+~/A/ log? A) in the model with arbitrary correlations. The adversary construction in this
lower bound requires large changes in the degree of a node in successive steps. Such changes are unlikely in real networks.
Thus we propose a restricted version of the adversary. We assume that the expected change in the degree of any node

1 The broadcast algorithm from [2] requires O (D logn + log2 n) rounds, whereas the corresponding lower bound is Q(D log (n/D) + log2 n). This gap was
subsequently closed independently in [14,5] by a tighter analysis of a natural variation of the simple Decay strategy used in [2].
2 To make it match exactly, set A =n and € = 1/n, as is often assumed in this prior work.
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can be at most A/@(1-0) with such restriction it is again possible to propose a simple, but slightly enhanced, back-off
strategy (with a short cycle of probabilities) that works efficiently in time O (Al/f T ~log(1/e)).

Technique Discussion. Simple back-off strategies can be understood as experimenting with different guesses at the amount
of contention afflicting a given receiver. If the network topology is static, this contention is fixed, therefore so is the right
guess. A simple strategy cycling through a reasonable set of guesses will soon arrive at this right guess—giving the message
a good chance of propagating.

The existing lower bounds in the dual graph setting deploy an adversary that changes the topology in each round
to specifically thwart that round’s guess. In this way, the algorithm never has the right guess for the current round so its
probability of progress is diminished. The fading adversary, by contrast, is prevented from adopting this degenerate behavior
because it is required to stick with the same distribution for T consecutive rounds. An important analysis at the core of our
upper bounds reveals that any fixed distribution will be associated with a right guess defined with respect to the details of
that distribution. If 7 is sufficiently large, our algorithms are able to experiment with enough guesses to hit on this right
guess before the adversary is able to change the distribution.

More generally speaking, the difficulty of broadcast in the previous dual graph studies was not due to the ability of the
topology to change dramatically from round to round (which can happen in practice), but instead due to the model’s ability
to precisely tune these changes to thwart the algorithm (a behavior that is hard to motivate). The dual graph model with
the fading adversary preserves the former (realistic) behavior while minimizing the latter (unrealistic) behavior.

2. Model and problem

We study the dual graph model of unreliable radio networks. This model describes the network topology with two
graphs G = (V,E) and G’ = (V,E’), where E C E’. The n=|V| vertices in V correspond to the wireless devices in the
network, which we call nodes in the following. The edges in E describe reliable links (which maintain a consistently high
quality), while the edges in E’\ E describe unreliable links (which have quality that can vary over time). For a given dual
graph, we use A to describe the maximum degree in G’, and D to describe the diameter of G.

Time proceeds in synchronous rounds that we label 1,2, 3... For each round r > 1, the network topology is described
by G, = (V, E;), where E, contains all edges in E plus a subset of the edges in E’ \ E. The subset of edges from E’\ E are
selected by an adversary. The graph G, can be interpreted as describing the high quality links during round r. That is, if
{u, v} € E;, this means the link between u and v is strong enough that u could deliver a message to v, or garble another
message being sent to v at the same time.

With the topology G, established for the round, behavior proceeds as in the standard radio network model. That is,
each node u € V can decide to transmit or receive. If u transmits, it learns nothing about other messages transmitted in
the round (i.e., the radios are half-duplex). If u receives and exactly one neighbor v of u in E; transmits, then u receives
v's message. If u receives and two or more neighbors in E, transmit, u receives nothing as the messages are lost due to
collision. If u receives and no neighbor transmits, u also receives nothing. We assume u does not have collision detection,
meaning it cannot distinguish between these last two cases.

The fading adversary. A key assumption in studying the dual graph model are the constraints placed on the adversary
that selects the unreliable edges to include in the network topology in each round. In this paper, we study a new set of
constraints inspired by real network behavior. In more detail, we parameterize the adversary with a stability factor that we
represent with an integer T > 1. In each round, the adversary must draw the subset of edges (if any) from E’\ E to include
in the topology from a distribution defined over these edges. The adversary selects which distributions it uses. Indeed, we
assume it is adaptive in the sense that it can wait until the beginning of a given round before deciding the distribution it
will use in that round, basing its decision on the history of the nodes’ transmit/receive behavior up to this point, including
the previous messages they send, but not including knowledge of the nodes’ private random bits.

The adversary is constrained, however, in that it can change this distribution at most once every t rounds. On one
extreme, if T =1, it can change the distribution in every round and is effectively unconstrained in its choices. On the
other extreme, if 7 = oo, it must stick with the same distribution for every round. Note that this does not mean that the
communication graph is static but that the adversary cannot change the distribution over the unreliable edges. For most
of this paper, we assume the draws from these distributions are independent in each round. Toward the end, however, we
briefly discuss what happens when we generalize the model to allow more correlations.

As detailed in the introduction, because these constraints roughly approximate the fast/slow fading behavior common in
the study of real wireless networks, we call a dual graph adversary constrained in this manner a fading adversary.

Problem. In this paper, we study both the local and global broadcast problems. The local broadcast problem assumes a
set B C V of nodes are provided with a message to broadcast. Each node can receive a unique message. Let R C V be the
set of nodes in V that neighbor at least one node in B in E. The problem is solved once every node in R has received at
least one message from a node in B. We assume all nodes in B start the execution during round 1, but do not require that
B and R are disjoint (i.e., broadcasters can also be receivers). The global broadcast problem, by contrast, assumes a single
source node in V is provided a broadcast message during round 1. The problem is solved once all nodes have received this
message. Notice, local broadcast solutions are often used as subroutines to help solve global broadcast.
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Uniform algorithms. The broadcast upper and lower bounds we study in this paper focus on uniform algorithms, which
require nodes to make their probabilistic transmission decisions according to a predetermined sequence of broadcast prob-
abilities that we express as a repeating cycle, (p1, p2, ..., px) of k probabilities in synchrony. In studying global broadcast,
we assume that on first receiving a message, a node can wait to start making probabilistic transmission decisions until the
cycle resets. We assume these probabilities can depend on n, A and t (or worst-case bounds on these values).

In uniform algorithms in the model with fading adversary an important parameter of any node v is its effective degree in
step t denoted by d;(v) and defined as the number of nodes w such that {v, w} € E; and w has a message to transmit (i.e.,
will participate in step t).

As mentioned in the introduction, uniform algorithms, such as the decay strategy from [2], solve local and global broad-
cast with optimal efficiency in the standard radio network model. A major focus of this paper is to prove that they work
well in the dual graph model as well, if we assume a fading adversary with a reasonable stability factor.

The fact that our lower bounds assume the algorithms are uniform technically weaken the results, as there might be non-
uniform strategies that work better. In the standard radio network model, however, this is not the case: uniform algorithms
for local and global broadcast match lower bounds that hold for all algorithms (cf., discussion in [20]).

3. Local broadcast

We begin by studying upper and lower bounds for the local broadcast problem. Our upper bound performs efficiently
once the stability factor t reaches a threshold of log A. As 7 decreases toward a minimum value of 1, this efficiency
degrades rapidly. Our lower bounds capture that this degradation for small t is unavoidable for uniform algorithms. In the
following we use the notation T = min{z, [logAl}. By logn we will always denote logarithm at base 2 and by Inn the
natural logarithm.

3.1. Upper bound

All uniform local broadcast algorithms behave in the same manner: the nodes in B repeatedly broadcast according
to some fixed cycle of k broadcast probabilities. We formalize this strategy with algorithm RLB (Robust Local Broadcast)
described below. (We break out Uniform into its own procedure as we later use it in our improved FRLB local broadcast
algorithm as well):

1 Procedure: Uniform(py, p2,..., Pk)

2fori=1,2,...,k do

3 if has message then

4 | with probability p; Transmit otherwise Listen

5 else Listen // without a message always listen

1 Algorithm: RLB(r, T)

2fori< 1tot do p; < A~I/7T
3 repeat r times
4 L Uniform (7, p1,p2,..., Pz)

Before we prove the complexity of RL.B we will show two useful properties of any uniform algorithm. Let REV) denote
the event that node v receives a message from some neighbor in step t.

Lemma 1. For any uniform algorithm and any node v and step t if d;(v) > 0 and the algorithm uses in step t probability p < 1/2,

(v) d
then Pr[ R ] > (2Z)pt-fi‘;()v)'

Proof. For event Rg") to happen exactly one among d;(v) neighbors of v has to transmit and v must not transmit in step
t. Node v does not transmit with probability 1 — p if it has the message and clearly with probability 1 if it does not have
the message. Hence the probability that exactly one neighbor transmits equals pd;(v)(1 — p)%()=1 and the probability that
v does not transmit is at least 1 — p. Denote by a = p - d;(v). We have

de(v)
o
Pr[ Rgv)] > pdi(v)- (1= )V = . (l — dt(v)>

o

o de(v)/a—1 . w
=« (1—dt(v)> -(I-p)] zae (1-p) Z(Ze)a'

Lemma 2. For any uniform algorithm, node v and step t if d¢(v) > 0:

Pr[ RY) | de(v) € [d1, dz]] > min {Pr[R§V> | de(v) = dy ] , Pr[ RY) | de(v) = da ]} .
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Proof. If the algorithm uses probability p in step t then Pr[Rgv)] > pd:(v)(1 — p)& ™. Function f(x) = px(1 — p)* for

p €[0, 1] has a single maximum for x = 1/(In(1/(1 — p))). Hence if we restrict d;(v) to be within a certain interval, then
value of the function is lower bounded by the minimum at the endpoints of the interval. O

Our upper bound analysis leverages the following useful lemma which can be shown by induction on n. (The left side is
also known as the Weierstrass Product Inequality):

Lemma 3. For any x1,X2, ..., X, such that0 < x; < 1:
n n n
1—in§1_[(1—x,-)§l—2xi+ Z XiX;j.
i=1 i=1 i=1 1<i<j<n

To begin our analysis, we focus on the behavior of our algorithm with respect to a single receiver when we use the
transmit probability sequence p1, pa, ..., pz, where T = min{t, [log A}, and p; = A~V/F,

Lemma 4. Fix any receiver u € R and error bound € > 0, RLB(2[In(1/¢€)] - [4e - AYT7, T) delivers a message to u with probability
at least 1 — € in time 0 (AVTT log(1/€)).

Proof. It is sufficient to prove the claim for T <logA. For t > log A we use the algorithm for T =log A. Note that any
algorithm that is correct for some t must also work for any larger 7 because the adversary may not choose to change the
distribution as frequently as it is permitted to. In the case where T <log A we get that A1/T > 2.

We want to show that if some of the neighbors of v belong to B and execute the procedure Uniform(z, p1,...,Dr)
twice, then v receives some message with probability at least log A/(2e A'/T 7). Every time we execute Uniform twice, we
have a total of 2t consecutive time slots out of which, by the definition of our model, at least T consecutive slots have the
same distribution of the additional edges and moreover stations try all the probabilities pq, p2, ..., pr (not necessarily in
this order). Let T denote the set of these 7 time slots and for i =1,2,..., 7 let t; € T be the step in which probability p; is
used. We define g1 =Pr[1 <d;(v) < A/ ], and for each i from 2 to 7 we define g; = Pr[ AT=D/T <d(v) < AV7 ], for any
t € T. Observe that the edge sets are chosen independently from the same distribution for t € T hence probabilities g; do
not depend on ¢t during the considered T rounds. Moreover since v € R, then v is connected via a reliable edge to at least
one node in B. This means that Pr[d;(v) =0] =0, thus:

T
> ai=1. (1)
i=1
We would like to bound from below the probability that v receives a message in step t; fori=1,2...,1:

(u) qi
Pr[Rff ] N @)

In t;-th slot the transmission probability is p; = A~/ and the transmission choices done by the stations are independent
from the choice of edges E;, active in round t;. Let Qq denote the event that 1 <d; (v) < AV and for i > 2 let Q; denote
the event that AGD/T <d, (v) < A/T. We have p; < 1/2 hence we can use Lemmas 1 and 2 to get for i > 1

Pr[Rg‘)] > Pr[Rg” | Qi] Pr[ Qi]
> gimin [Pr[ RE [ dg () = | A0/ 1] e[ RE 1 dy(v) = 477 ]}
> ¢; min [Pl‘[ Rg,-u) | dp, (u) = AUTD/T ] , Pr[REi”) | dy, (v) = AT ]]

ATVT } qi

>gimin} ————, — > ———.
= qi {(Ze)Aq/T 2e [ = 2eAl/T

For i =1 we have:
Pr[Rij”] > Pr[jo” | Q1] Pr{ Q]

> g1 min {Pr[Rﬁj” lde, (u) =1 ] , Pr[Rg‘) | de, (v) = A”f]]

. 1 1 Q1
>qming ————— -, — > — .
AVT . (2e)A7 2e | T 2eAV/T
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Since the edge sets are chosen independently in each step and the random choices of the stations whether to transmit
or not are also independent from each other we have:

Pr|:/\ (—-Rg‘)) j| = ll!Pr[ —-Rgi”) ] ﬁ ( 2eA1/T ) by independence and Equation (2)
i=

i=1

T

qi qiqj
S]—ZZEA—UT-F Z m byLemma3

i=1 1<i<j<t

CThia, (Eha)
- 2eAl/T 4e2 A2/
<1-— 1 + 1 <1-— 1 by Equation (1)
- 2eAV/T  4e2A2/T 4eAl/T '
Hence if we execute the procedure for 27 [In(1/€)] - [4e- A1/T] time steps, we have at least [In(1/€)]- [4e- A1/T] sequences
of T consecutive time steps in which the distribution over the unreliable edges is the same and the algorithm tries all the
probabilities {p1, p2,..., pr}. Each of these procedures fails independently Wig'l probability at most 1 — 1/(4eA'/T) hence
)Hn(l/f)T-HeA i

1

1 —[In(1/€)]
TAT <e /9l <e O

the probability that all the procedures fail is at most: (1 —

On closer inspection of the analysis of Lemma 4, it becomes clear that if we tweak slightly the probabilities used in our
algorithm, we require fewer iterations. In more detail, the probability of a successful transmission in the case where each
of the x transmitters broadcasts independently with probability «/x is approximately «/(2e)“. In the previous algorithm
we were transmitting in successive steps with probabilities A=1/T A=2/T ... Thus in the case where x =1 (a single
transmitter) we get in i-th step « = A~/T which implies that the sum of probabilities of success in T consecutive steps
equals approximately A~!/7. This means that RLB needs $2(t A~'/7) steps. In order to improve the time complexity we
need to find a way to get a higher success probability. The formula «/(2e)™* shows that the success probability depends
on « linearly if & <1 (“too small” probability) and depends exponentially on « if @ > 1 (“too large” probability). In the
previous theorem we intuitively only use the linear term. In the next one we would like to also use, to some extent, the
exponential term. If we shift all the probabilities by multiplying them by a factor of 8 > 1, the total success probability
would be approximately SA~1/T if x=1 and B(2e)~# if x= A. Thus by setting 8 = log,, A/T we maximize both these
values.

1 Algorithm: FRLB(r, T)

2fori< 1toTdop; « A~ /T . logy, A/T
3 repeat r times
4 LUniform(f,p],pz,...,pf)

The following lemma makes this above intuition precise and gains a log-factor in performance in algorithm FRLB (Fast
Robust Local Broadcast) compared to RLB. As part of this analysis, we add a second statement to our lemma that will
prove useful during our subsequent analysis of global broadcast. The correctness of this second lemma is a straightforward
consequence of the analysis similar to the proof of Lemma 4. (Proof of Lemma 5 is deferred to Appendix.)

Lemma 5. Fix any receiver v € R and error bound € > 0. It follows:

1. FRLB(2[In(1/€)]-[4e2 AVt log,. AT, T) completes local broadcast with a single receiver in time O (Allo/gf'zz -log (1 /e)) with
probability at least 1 — €, for any € > 0,

2. FRLB(2, T) completes local broadcast with a single receiver with probability at least 0gz A

4e2AVTT "

In Lemmas 4 and 5 we studied the fate of a single receiver in R during an execution of algorithms RL.B and FRLB.
Here we apply this result to bound the time for all nodes in R to receive a message, therefore solving the local broadcast
problem. In particular, for a desired error bound e, if we apply these lemmas with error bound €’ = €/n, then we end up
solving the single node problem with a failure probability upper bounded by €/n. Applying a union bound, it follows that
the probability that any node from R fails to receive a message is less than €. Formally:

Theorem 6. Fix an error bound € > 0. It follows that algorithm FRLB(2[In(n/€)] - [AAYTT/log A1) solves local broadcast in

0 (% -log (n/e)) rounds, with probability at least 1 — €.
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Fig. 1. A graph used in proofs of Theorems 7 and 8. Solid lines correspond to edges in E and dashed lines correspond to edges in E’\ E (unreliable edges).

3.2. Lower bound

Observe that for T = Q(log A), FRLB has a time complexity of O(log Alogn) rounds for € = 1/n, which matches the
performance of the optimal algorithms for this problem in the standard radio model. This emphasizes the perhaps surprising
result that even large amounts of topology changes do not impede simple uniform broadcast strategies, so long as there is
independence between nearby changes.

Once t drops below log A, however, a significant gap opens between our model and the standard radio network model.
Here we prove that gap is fundamental for any uniform algorithm in our model.

In the local broadcast problem, a receiver from set R can have between 1 and A neighbors in set B. The neighbors
should optimally use probabilities close to the inverse of their number. But since the number of neighbors is unknown, the
algorithm has to check all the values. If we look at the logarithm of the inverse of the probabilities (call them log-estimates)
used in Lemma 4 we get ilog A/t, for i =1,2,..., t—which are spaced equidistantly on the interval [0, log A]. The goal
of the algorithm is to minimize the maximum gap between two adjacent log-estimates placed on this interval since this
maximizes the success probability in the worst case. With this in mind, in the proof of the following lower bound, we look
at the dual problem. Given a predetermined sequence of probabilities used by an arbitrary uniform algorithm, we seek the
largest gap between adjacent log-estimates, and then select edge distributions that take advantage of this weakness.

Theorem 7. Fix a maximum degree A > 10, stability factor T < log(A — 1)/16, and uniform local broadcast algorithm A. Assume
that A guarantees with probability at least 1/2 to solve local broadcast in f(A, T) rounds when executed in any dual graph network
with maximum degree A and fading adversary with stability T. It follows that f(A, T) € (ATt /log A).

Proof. Consider the dual graph G = (V, E) and G’ = (V, E’), defined as follows: V = {v,u, vy,...,vp—2} and E = {{u, v;},i €
(1,2, ..., A =13} U {{vy, v}, {v,vab U {{vi, visa}ie{A,...,n—3}} and E' = EU {{v;,v},i € {2,3,..., A —1}} (see Fig. 1).
We will study local broadcast in this dual graph with B = {u, v{,v3,...,va—1} and R = {v}. Observe that the maximum
degree of any node is indeed A and the number of nodes is n. Nodes va, Vay1,-.., Vp—2 do not belong to BU R hence are
not relevant in our analysis.

Using the sequence of probabilities p1, p2,... used by algorithm .4 we will define a sequence of distributions over the
edges that will cause a long delay until node v will receive a message. The adversary we define is allowed to change the
distribution every 7 steps. Accordingly, we partition the rounds into phases of length 7, which we label 1,2, 3,.... Phase
k consists of time steps I, ={1+k-t,2+k-7,...,(k+1)-7}. For each phase k > 1, the adversary will use a distribution
Dy that's defined with respect to the probabilities used by A during the rounds in phase k. In particular, let sequence
Py = {pi}ier, be the T probabilities used by A during phase k.

We use Py to define the distribution Dy as follows. Define A = A —1 and let N represent |logA| urns labeled with
numbers from 1 to [log A]. Into these urns we place balls with numbers Mog(1/p;)1 and [log(1/p;)] for all j e Ii. Ball with
number i is placed into the bin with the same number. Any probability lower than 1/A, we treat as equal to 1/A. Note that
with this we never decrease the probability of success of algorithm .A. With this procedure for each j, we place two balls in
adjacent bins if [log(1/p;)] # [log(1/p;)] and a single ball in the opposite case. We arrange the bins in a circular fashion
i.e, bins |logA] and 1 are consecutive and we want to find the longest sequence of consecutive empty bins. Observe that
since for each j we put either a single ball or two balls into adjacent bins we have at most T sequences of consecutive
empty bins. Moreover, since at most 2t bins contain a ball then there exists a sequence of consecutive empty bins of length

t w. Knowing that T is an integer and that T <log A/16 we can show that: UogA# > [M%AJ — 2. We

at leas
define:

x=logA/t| -3~ log(lInA/T])],
y=log(llnA/z])]+1.
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We observe that for v <logA/16 we have log([InA/T]) > 4 hence x and y are both positive integers and moreover
x+y=|logA/T| — 2. Hence we already showed that there exists a sequence of consecutive empty bins of length at least
x+y. Now, we pick the label of (y+1)-st bin in this sequence (the order of bins is according to the circular arrangement i.e.,
1 comes after |log A|) and call it ;. Let Ay = {log(1/pj) : j € I}. This set contains logarithms of all the estimates “tried” by
the algorithm in k-th phase. Now we split Ay into elements that are larger and that are smaller than ai: Ay = A,(f) u A,(f).
A,(f) ={aeAy:a>a}, A,(f) ={a € Ay :a < ai}. We observe that if a € A,(f) then a < ay — y because there are y empty bins
between bin a; and the bin containing ball [a]. Symmetrically if a € A,(f) then a > a; + x — 1 because there are x — 1 empty
bins between bin a, and the bin containing ball |a].

In our distribution Dy in phase k, we include all edges from E, plus a subset of size 2% — 1 selected uniformly from
E’\ E. This is possible since the adversary can choose to activate any subset of links among the set {{v;, v},i € {2,..., A}}.
With this choice, the degree of v is 2% in phase k hence we can bound the probability that a successful transmission occurs
in phase k.

Having chosen the distribution of the edges between v and {vq,v,...,vi} we can now bound the probability of a
successful transmission in any step t in the considered phase. Recall that the event of a successful reception of a message
by v in step t is denoted by RE"). For this event to happen exactly one of the 2% nodes among {vi, v2,..., v} that are
connected to v need to transmit. We have:

Pr[ R | =2%p, - (1 - po™* .
Take any step t and the corresponding probability p; used by the algorithm. We know that a; is chosen so that a; >

log(1/p¢) +y or a; <log(1/p:) — x. We consider these cases separately:
Case1:a, <log(1/ps) —x+1

Pl'[Rfv)] — 2%y (1 — p)2 T < 20los(1/p0) < 9=t
— o—llog A/T]+4+log(lln A/t )]  5—log A/T+log(lIn A/t [)+5

_ 32(in A/t
- Al/T
32InA
< .
T AlTT
Case 2: a; > log(1/py) +y
a 2ak a zak a
Pr[R(" | =2% pi- (1 - po?* = TR (- p? < S B
1—pt 1—p:
We know that a; > log(1/p;) +y and a; < logA thus p; <2Y/A hence since A >9 we get 1/(1 — p;) < 2.
Moreover since 2%p; > 2¥ > 4 we have e~2"Pt/2 < 1/(2% p,) (because e*/? > x for all x). Which gives in this case:

32InA
INGES

Pr[REV)] <27 2%Pt/2 < 2p=2 7! < gp—lINA/T] J 9 A-1/T <

We have just shown that the probability that v receives a message in any step t of our fixed phase k is at most 3;'};?.

We can repeat this construction of distribution and get that in every step in every phase the success probability is at most
35112?. To conclude the proof, we apply a union bound to show that the probability that v receives a message in at least

one of ATt /(64InA) — 1 steps, is strictly less than 1/2:

AVTr/(641n A)—1 AVTT/(64In A)—1

1
Pr U &< X Pr[R§V)]<5. 0

t=1 t=1

In our next theorem, we refine the argument used in Theorem 7 for the case where 7 is a non-trivial amount smaller
than the log A threshold. We will argue that for smaller 7, the complexity is 2(A1/772/log A), which more exactly matches
our best upper bound. We are able to trade this small amount of extra wiggle room in t for a stronger lower bound because
it simplifies certain probabilistic obstacles in our argument. Combined with our previous theorem, the below result shows
our upper bound performance is asymptotically optimal for uniform algorithms for all but a narrow range of stability factors,
for which it is near tight.

Theorem 8. Fix a maximum degree A > 10, stability factor T < In(A —1)/(12loglog(A — 1)), and uniform local broadcast algorithm
A. Assume that A guarantees with probability at least 1/2 to solve local broadcast in f (A, T) rounds when executed in any dual graph
network with maximum degree A and fading adversary with stability t. It follows that f(A, ) € Q(AYT1%/log A).
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Proof. In this proof we will use the same graph as in Theorem 7. Let G = (V,E) and G' = (V,E’). Let V =

{v,u,vi,...,vp—2} and let R ={u,vq,va,...,va—1} and E={{u, vi},i e {1,2,..., A} U {{vy, v}, {v,va}} U {{vi, vis1},i €
{A,...,n=3}}and E'=EU{{v;,v},i€{2,3,..., A}} (see Fig. 1).
Let p1, p2,... be the fixed sequence of broadcast probabilities used by nodes in B running .A. Using this sequence we

will define a sequence of distributions over the edges that will cause a long time for this algorithm until node v will receive
a message.

The adversary is allowed to change the distribution once every 7 steps. Therefore we will define the k-th distribution
Dy based on sequence Pg = (P(k—1)r+1s P(k—1)t+2- - --» Pke) Of probabilities and distribution Dy will be used in rounds
(k—1Dt+1,(k—1)T +2,...,kt. Consider intervals of T time steps (call such interval a phase) and the corresponding
probabilities pjy; (j < 7). Let us fix any phase k and consider values I; =log(1/piyk-1)c), for i=1,2,..., 7. We denote
A = A —1. As an adversary we are allowed to define an integer value I* € [1,2,..., |[log A]] based on the [-values and
define a distribution for phase k in which there are always 2! active links between nodes v, vs, ..., v, and v. The success
probability in i-th step of the considered phase is then

Sit(k—1)7 = Pitk—1)t 2 a—- pi+(k71)r)21 -1
Our goal as an adversary is to find in every phase k, such I* that minimizes Zf:] Si+(k—1)r- We will show that it is always
possible to find such I* that 3°7_; sitk—1)r = O(A~"7log A/7) = ©(A~/"log A/7). This will give us that Q(A"77/logA)
phases of 7 steps hence in total Q(A!/7t%/log A) steps are needed to complete local broadcast with constant probability.
Consider the first phase (analysis of any subsequent phase is analogical). Assume by contradiction that there exists a
choice of 11,1, ...,l; such that for any choice of I* we have that Zle Si > ciolg/rAT, where ¢ = 2409. We fix this choice of
[-values Iy, I, ...,l; and we denote:

x=log A/t +logT —logln A,
y =log(inA/7),
X =log A/T +2logT —logln A,
y =log(InA/T +2InT).
First note that since 7 <In(A —1)/(12loglog(A — 1)), then:

X' >12loglog A —login A > 11loglog A >y’ (3)

Since T <InA/(12loglog A) we have that y > 3. Observe that x+y =log A/t and X' +y’ <log A/t + 2logt —logln A +
log(ln A/t 4+ 2Int) =log A/T + 2logT + log(1/7 + 2Int/InA) <log A/T + 2logT + log3. Let A* denote the number of
active links between v and vq,vy,..., v, in the considered phase and [* =log A*. In any step if A* is such that [* > y’
then if we also have p; > % then we get:

2 3nA/T +2Int)  9lnA
< <

si=pi2" (1-p? ' < (4)
i=Ppi pi — 321~ GnA/t+2lnt T Al/tg2’
where the last inequality is true because T > 1 and In7 <InA. This shows that the sum of all such s; is at most zﬁ'}fr.

Consider now only steps with p; < 2/3. Then:

2

* 1 21 * (1 - i1) * *—I;

si=2 (1 = —olh N2 3 gl 2
2k 1-p;i ~

Recall that ngv) denotes the event that node v receives the message in i-th step of the considered phase (i.e., a single
node out of vq, vy, ..., va_1 transmits in this round).

Pr[Rl(")|li2!*+x—3]§3-2_"+3§% ©)
pr[R,?” PR _1] 3.0%H 2 A61l/nff2 (6)
Pr[R;V) <= y,] g 3ejy _ 3(n Ag:tzzlogr) - Agllzfz (8)
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Observe that for a fixed value of I*, for any i such that [; ¢ [I* — y',[* + x’ — 1] we have s; < QInA_ (by Equations (6), (8)).

; Al/r 2
Hence the sum of all such values s; is at most zﬁr}rAT. Hence we only need to find such I* that the sum of the values s; for
which the corresponding [; € [I* — y/, I* + X'] is less than %

We denote the smallest and the largest I-values: lgy = minjeq12,... ¢){li} and ljg = max;e(1,2,... 1) {li}. We will prove two
following claims about Iy and Ijg:

Ism <X’ Observe that otherwise we can choose I* =0 (A* is then equal to 1 which corresponds to exactly one active
link between {vy,v2,...,v;} and v) and then by Equation (6) under this choice of I* all values s; would satisfy

si < GNIT/%“A (because if I; > x' then p; < 2/3).

Lig > logA — y' If it is not the case, we choose I* = log A and by Equation (8) we have that if p; < 2/3 then s; < %
and by Equation (4) that if p; > 2/3 then s; < fll/“rfz. And the sum of all values of s; is at most zzr}é which

contradicts our assumption.

Consider now interval I'y = [Ism, lig]. Two previous claims showed that |I'1| > logA —x' — y'. We can now consider the
placement of values [; on I'y and analyze gaps between the adjacent values. Gap g; is the difference between the (i + 1)-st
smallest and i-th smallest value out of all values ;. We want to show the following:

max gi < X+y 9)

Assume on the contrary that such a gap between [; and [; exists. Then we pick I* = [I; + y'] and observe that [* is an

integer, and I* > y’ hence for all i such that p; > 2/3 by Equation (4) we have s; < 21‘/’5% If pi <2/3 then since [* is at

least y’ larger than each smaller I-value and at least X' — 1 smaller than each larger l-value, we have by Equations (6) (8)
that s; < A911/nrA2 Thus if any gap has value at least X' + y’ then Zl 0Si < Zi‘/‘TA which conFradlcts our assumption.

We know that there are at most T — 1 gaps and that they cover area of at least log A — X' — y’. Hence we can lower
bound the average value of a gap:

g = logA —x —y . logA —log A/t —2logT —log3
T-1 - T—-1
_logA(1—1/7) 2logT +log3 . log A .
T(1-1/7) T B 4

Thus there exists a gap with value at least di. Knowing that y > 3 we have d; > x+y—2 > 1 and inside this gap we can find
an integer value [j that is at least y larger than the closest smaller [-value and at least x — 3 smaller than the closest larger

[-value. Consider values of s; with this choice of I*. By Equations (5) (7) if I* =1}, each s; is at most M. Consider

now interval Iy =[If — y’, If +x']. By Equations (6) and (8) for all i such that [; ¢ I and p; <2/3 we have s; < QAAI/%“A. If

pi > 2/3 then also s; < M%M because I§ > Igy > X" > y’. Thus the sum of all s; for which I; ¢ I or p; > 2/3 is at most

AT A o . . ;
w Since by the assumption, the sum of all s; is at least ler/‘f

has to be at least 2420124 IT"A By the choice of I, each s; for which [; € I and p; > 2/3 is at most
at least 100 such [- values We have shown that there are at least 100 I-values inside interval I.

We find the smallest and the largest [-values inside 4.
18]

= min {lj:ljel
sm ie(1.2..... r}{l i 1}

then the sum of all s; for which l; € I1 and p; <2/3

24lnA

i/r, hence we must have

= max {lj:ljelq}
ic(1,2.....7}

,,,,,,

We consider interval I'; =T \ (lg,l,z, ll(;)) (we remove the interior of the interval [15,12, ll(g])] keeping the endpoints). We know

that we removed at least 98 [-values. Since the I[-values have to work for any [* we can now argue about the average value
of a gap inside I'; and locate a different value [; in the remaining interval and identify 100 [-values close to [5. But we need
to make sure that |Ij —I3| > x' + y’ since otherwise we would count the same [-values twice.

We extend the interval Iy to I{ =[If — (X' +¥),I§ + (X + )] and we find the smallest I-value larger than any I-value

inside I} (call it l'“)) and the largest I-value smaller than any I-value inside I} (call it l’ (1)) If both these values exist,

/(1) l/(l)) (

we consider interval I'5 =T'1 \ (g, we remove the interior of the interval [lsm,l’ ] keeping the endpoints). If I},

7 (1)

does not exist (there is no such I-value), we define I'; =TI"; \[Ism, ) and symmetrically if l does not exist we set

T =T1\ (o, lig-
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Now we want to show that I'; > |T'y| — 5(x' 4 y’). It is because |I1| =2(x' + y’) and by Equation (9), value of any gap is
at most ¥’ + y" hence distance between If — (x' +y’) and [, is at most x' + y’ (similarly between I + (' + y’) and ll’g). If
Iy, or lfg does not exist we remove additionally no more than x’ + y’ because the smallest [-value that is most X’ and the

largest is at least log A — y’. This shows that we remove the total area of at most 5(x' + y’).
Now we consider the average value of a gap in I'}. We removed at least 98 I-values (because I3 contains I}) and area of
at most 5(x' 4+ y’) <5log A/t +10log T + 5log 3. Hence the average value of a gap in I’} is:

/ !
iy > logA —6(xX'+y) . logA.
T —98 T

We pick a gap with value at least 1964 3nd find an integer I3 at least y larger than the closest smaller [-value and at least
x — 1 smaller than the closest larger I-value. Observe moreover that |5 —I5| > X' + y’ because I does not belong to the
interior of interval I{. We define I = [I5 — y’, 5 + X]. Observe that I; and I are disjoint (except possibly their endpoints).
We can now argue that I, also contains 100 [-values similarly as I1. And moreover at most one [-value can be shared
between Iy and I, (because the interiors of the intervals are disjoint). And now we extend I to I3, construct I's and I'j
and repeat the whole procedure. In every iteration of this procedure we identify and remove at least 98 unique I-values
hence it can last for at most 7/98 iterations. But we remove at most 5log A/T + 10log T + 5log3 area (out of the original
at least log A — x' — y’) per iteration. Since we assumed 7 <InA/loglog A, then 5log A/t +10logT + 5log3 < 10log A/7.
This leads to contradiction since there are only t [-values and in each iteration we find 98 unique ones.

Hence for any choice of Iy, ...,l; there exists I* such that Zirzl Si < CAI?/fT. Thus by the union bound the algorithm

needs to run for at least A7t /(cInA) phases to accumulate the total probability of success of 1/2. Knowing that each
phase lasts for T rounds the total number of steps needed is Q(A/T72/InA) O

4. Global broadcast

We now turn our attention to the global broadcast problem. Our upper bound will use the same broadcast probability
sequence as our best local broadcast algorithm from before. As with local broadcast, for t > log A, our performance nearly
matches the optimal performance in the standard radio network model, and then degrades as 7 shrinks toward 1. Our lower
bound will establish that this degradation is near optimal for uniform algorithms in this setting. In this section we also use
the notation T = min{t, [log A1}.

4.1. Upper bound

A uniform global broadcast algorithm requires each node to cycle through a predetermined sequence of broadcast proba-
bilities once it becomes active (i.e., has received the broadcast message). The only slight twist in our algorithm’s presentation
is that we assume that once a node becomes active, it waits until the start of the next probability cycle to start broadcasting.
To implement this logic in pseudocode, we use the variable Time to indicate the current global round count. We detail this
algorithm below. (Notice, the FRLB(2) is the local broadcast algorithm analyzed in Lemma 5).

1 Algorithm: RGB(¢€)

2 Wait until receiving the message

3 Wait until (Time mod 27) =0

4 repeat [In (2n/€)] - [4A1V/T 7 /log A] times
5 | FRLB(2)

Theorem 9. Fix an error bound € > 0. It follows that algorithm RGB(e) completes global broadcast in time O ((D + log(n/e)) - Alre? )

log A
with probability at least 1 — €.

Proof. Similarly to the analysis of the local broadcast algorithms, we consider only the case of T <log A since for any larger
T we use the algorithm for 7 =log A. Take any station u and assume that some positive number of neighbors of u in E
execute in parallel procedure FRLB(2). Then by Lemma 5 station u receives a message from some neighbor with probability
at least ; IA“UATT. Note that the same number of neighbors of u have to execute both procedures Uniform of FRLB(2) and
at least one of these neighbors has to be connected to u by a reliable link. This is true since after receiving the message,
a station waits until a time slot that is a multiple of 2t (Line 3 in the pseudocode). Hence we can treat each execution of
FRLB(2) as a single phase.

Let o denote the originator of the message. Fix any tree 7 of shortest paths on graph G (e.g., BFS Tree) on edges from

E (reliable) rooted at 0. We would like to bound the progress of the message on tree 7. For any station u we can denote
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by p(u) the parent of u in tree T. For any station u we can define the earliest time step T(u) in which p(u) receives
the message. We set T(u) = oo if the message does not reach p(u). If T(u) < oo we consider [In(2n/€)] - [4AYT1/log A]
phases that follow step T(u). A phase is called successful if it succeeds in delivering the message to u and unsuccessful
otherwise. Note that (assuming that T (u) < oo) the probability that all phases are unsuccessful for any fixed u is at most
In(2 -T4AYTT/log A
- InA O\ M@n/onr 7/log AT in@njen €
—_— <e =—. (10)
4AVTT 2n
Let us denote by S the event that T (u) < oo for all stations u. And by S; we denote the event that T (u) < oo for all stations
at distance at most i from the root in tree 7. If d; denotes the number of stations at distance i from the root in tree 7 we
get:

Pr[S|=Pr[Sp|=Pr[Sp|Sp—1]Pr[Sp—1]

D
zPr[SﬂHPl‘[SiISH]
i=2
= €d;
- 14 by (10) and union bound
_E( Zn) y (10) and union boun
D
d;
>1- €di by Lemma 3
2n
i=1
€
:1__.
2

If event S takes place, the message reaches all the nodes of the network. Clearly it can reach node u not necessarily from
its parent p(u) in tree 7, but this would only help in our analysis (it will cause the message to arrive at u faster). Now
we want to bound the number of phases it takes for the message to traverse a path in the tree. Fix any station u and let
P =(o,V1,V2,...,Vp_1,u) denote the path from o to u in tree T (note that D’ < D). We denote by R; the round in which
v; receives the message (Rps denotes the round in which u receives the message) and introduce random variables A; =
max{0, R; — Rj_1}. Conditioning on event S, variables A; are stochastically dominated by independent geometric random
variables with success probability 4'A“1/A,T. We have D’ such variables and the probability that sum T of them exceeds L =

4(D'+1In(2n/¢€)) - 7@;; =E[T]-4(1+In(2n/€)/D’) can be bounded using [13, Theorem 2.3]. Denote A = 4(1+In(2n/€)/D")

and observe that (A —1)/2 >InA is true since A > 4. We get:

Pr[T>L]=Pr[T>ET] 1]

1 InA \G-1-InDET]
<-|l1-—
A 4A/TT
1 InA \ESIa-D/2
<1 —
A 4NVt
2
< lefgn’lenan/e) < 6_’
A ~ 4n?
and by taking the union bound over all stations u, we get that with probability at least 1 — €2/(4n) the message reaches all
nodes within time 4(D 4 In(2n/¢€)) - 4]%;/;, conditioned on S. Since S takes place with probability at least 1 —¢€/2 and since
each phase takes 27 time steps, this shows that the algorithm works within time 8(D + In(2n/¢)) - 4%22’2 with probability

at least (1 —€/2)(1—€2/(4n))>1—€. O
4.2. Lower bound

The global broadcast lower bound of Q(Dlog(n/D)), proved by Kushilevitz and Mansour [17] for the standard radio
network model, clearly still holds in our setting, as the radio network model is a special case of the dual graph model
where E’ = E. Similarly, the ©(lognlog A) lower bound proved by Alon et al. [1] also applies.® It follows that for T > log A,
we almost match the optimal bound for the standard radio network model, and do match the time of the seminal algorithm
of Bar-Yehuda et al. [2].

3 This bound is actually stated as $2(log?n), but A = ®(n) in the lower bound network, so it can be expressed in terms of A as well for our purposes
here.
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Fig. 2. A graph used in proof of Theorem 10.

For smaller 7, this performance degrades rapidly. Here we prove this degradation is near optimal for uniform global
broadcast algorithms in our model. We apply the obvious approach of breaking the problem of global broadcast into multiple
sequential instances of local broadcast (though there are some non-obvious obstacles that arise in implementing this idea).
As with our local broadcast lower bounds, we separate out the case where 7 is at least a 1/loglog A factor smaller than
our log A threshold, as we can obtain a slightly stronger bound under this assumption.

Theorem 10. Fix a maximum degree A > 10, stability factor T, diameter D > 24 and uniform global broadcast algorithm A. Assume
that A solves global broadcast in expected time f(A, D, t) in all graphs with diameter D, maximum degree A and fading adversary
with stability t. It follows that:

1. if T <In(A —1)/(12loglog(A — 1)) then f(A, D, 1) € Q(DAVT72/log A),
2. if T <In(A —1)/16 then f(A, D, t) € Q(DAYTT/log A).

Proof. We assume first that D is divisible by 3 (if it is not we can decrease D by one or two nodes to make it divisible
by 3, without impacting the asymptotic bounds). We construct the dual graph G, G’ by connecting together D/3 gadgets,
G1.G2,...,Gp3, as shown in Fig. 2. In particular, each gadget G; is the same graph structure used to prove our local
broadcast lower bound. Formally, for each i =1,2,..., D/3, gadget G; is a dual graph G; = (V;, E;), G} = (V;, E}) where E; =

{{u;, v;i)} j=1,2,...,A—1}U {{vgi), vi}}, Ef=E; U {{v}i), vi},j=2,3,..., A —1}. We denote the set of edges connecting
the gadgets by E. = {{v;, ujy1}:i=1,2,..., D/3 —1}. Finally we can define the total set of nodes and edges in the complete
dual graph G = (V,E) and G’ = (V, E’) as follows: V = UD/3 Vi, E=E;U UD:/13 Ei, E' = UD:/13 E}. We will show statement 1

by applying Theorem 8 to each gadget, statement 2 can ble slhown using thelsame proof b)ll applying Theorem 7.

We bound the dissemination of a broadcast message in this graph originating at node ui. We can view the progression
of the message through the chain of gadgets G, G, ...,Gp,3 as a sequence of local broadcasts. When the message arrives
at a node uj, it is propagated to nodes vgl), vg), e v(A”_1 and at this step delivering the message to v; is exactly the local
broadcast problem considered in Theorem 8. In this theorem we constructed a sequence of distributions that yields a high
running time. The distribution changes every exactly t steps i.e., we have a distribution Dy for steps 1+ (k — 1)7,2 +
(k — 17, ..., kt. We cannot immediately apply the result for local broadcast because the adversary might not be allowed
to change the distribution immediately when the message arrives in a gadget. Moreover in the global broadcast problem,
stations are allowed to delay the transmissions for some number of steps. We can easily solve this problem by keeping
the “first” distribution D; in each gadget until the message reaches the gadget, at which point the adversary can start the
sequence of changes specified by the local broadcast lower bound.

More precisely, we denote sequence p1, p2,... of probabilities used by algorithm .4 and we denote subsequences P, =
(P1+(k=1)7> P24+(k=1)7» - - - » Pkr)- We want to use distributions D1, D, ... from Theorem 8 in such a way that if i is the
furthest gadget reached by the message and its nodes are in phase k (i.e., are using probabilities from sequence Py) then
distribution in gadget G; is Dy. If the message has not reached the gadget yet, distribution in the gadget is D;. Finally if
the message already reached node v; in gadget G; for any i we do not change the distribution in this gadget any more. We
need to show that with this construction we do not need to change the distribution more frequently than once per 7 steps.
This is true because we only change the distribution in the furthest gadget (call it G;) reached by the message and moreover
we change it from D) to Dy,q only after the stations v?), vg) e, v(All] have finished transmitting with probabilities Py,
which takes at least 7 steps (it might take more because stations might delay transmitting with probabilities Py). .

Let us define random variables X; for i =1, 2, ..., D/3 as the number of time steps it takes for nodes vg'), vg), el V(All]
to deliver the message to v;. More precisely it is the number of steps between the first step when the stations
v(ll), vg), e, v(A'll transmit with probability p; and the step in which the first successful transmission delivers the message
to v; (including the step of the successful transmission). Note that the steps during which the stations vgl), vg), e V(All]
delay transmitting until the beginning of the next probability cycle are not counted in variable X;. The steps counted by
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variable X; can be seen as local broadcast. By Theorem 8 we have that Pr[Xi < A”Trz/(c In A)] < 1/2 for some constant
¢ > 1. Moreover variables X; are independent because choices of the stations in each gadget are independent. We can de-
fine binary variables Y; taking value 1 if X; > AY/772/(cIn A) and 0 otherwise. We can use Chernoff bound to lower bound
Y= le:/f Y;. By the assumptions on D we have that E[ Y ] > 4 (because E[Y;] > 1/2), hence

PrlY <E[Y]/2] se MYV <2
Observe that Y - A1/772/(cIn A) lower bounds the time of the global broadcast. This shows that the global broadcast needs
Q(DAYTT2/1nA) steps with probability at least 1/3.

If D is not divisible by 3 we construct our graph with diameter 3|D/3] and attach a path of D —3|D/3] (one or two)
vertices to node vp,,3. This cannot decrease the time of broadcast hence we get the bound Q((D — DAYTT2/logA) =
Q(DAYTT2/logA). O

5. Correlations

Here we explore a promising direction for the study of broadcast in realistic radio network models. In particular, the
fading adversary studied above assumes that the distribution draws are independent. As we will show, interesting results
are still possible when considering the even more general case where the marginal distributions in each step are not
necessarily independent in each round. More precisely, in this case, the adversary chooses a distribution over sequences of
length at least T of the sets of unreliable edges. A sequence from this distribution is used to determine which unreliable
edges are active in successive steps. The adversary after a least T steps can decide to change the distribution. In this model,
we first show a simple lower bound that any uniform algorithm using a short list of probabilities of length | (our algorithms
in previous sections always used list of length min{t, log A}) needs time Q(./n/I?) for some graphs. Our lower bound uses
distributions over sequences of graphs in which the degrees of nodes change by a large number in successive steps. Such
large changes in degree turn out to be crucial as we show that if in the sequence taken from the distribution chosen by
the adversary, in every step in expectation only O(A!/(T—2(")) edges adjacent to each node can be changed then we can
get an algorithm working in time O(A!'/Ttlog(1/€)) with probability at least 1 — € and using list of probabilities of length
O (min{t, log A}).

5.1. A lower bound for correlated distributions

The following lower bound shows that any simple back-off algorithm, similar to the ones presented in Section 3, that
uses at most log2 A probabilities requires time Q(v/A/ log2 A) if arbitrary correlations are permitted.

Proposition 1. Any uniform local broadcast algorithm that repeats a procedure consisting of | probabilities requires expected time
Q(/A/12) in some graph with A =n — 2 even if T = oc.

Proof. Denote the procedure that is being used by the algorithm by . Assume for simplicity that +/A is a natural number.
We take as a graph a connected pair of stars (a similar graph was used in Theorem 7).

The first star has arms vq, va,...,va and center at u. In the first star, arms vq, vy,..., va are connected to center u
by reliable edges. The second star has arms vq, va,..., v and center at v. In the second star, connection from v; to v is
reliable and all other connections are unreliable. Note that by such construction, graph G is connected. All nodes, except v,
are initially holding a message.

The single distribution is defined in the following way. Let e; = min{1/p;, A} for i =1, 2,...,] be the estimates used by
procedure P. Let

s _ |1 ifei= VA,
T A ife; < VA.
Let s be a number chosen uniformly at random from {1, 2, ...,I}. In our distribution, the degree of v in step t is d; = €14,

where r; is the remainder of t + s modulo [. This means that depending on the probabilities used by the algorithm, either
all the unreliable connections are active or none of them. Observe that before the algorithm starts, the distribution of the
degree of node v in each step is simply a uniform number from multiset {eq, ey, ..., ;}. But after step 1, the sequence of
degrees of v becomes deterministic and depends only on the value s of the shift. The dependencies are designed in such a
way that if s =1 (which happens with probability 1/I) then in any step t of the algorithm, the probability p; used by the
algorithm satisfies either p; -d; > +/A or p;-d; < 1/«/Z. This means by Lemma 1 that the success probability is at most
1/+/A in each step and hence by the union bound the success probability in the whole procedure is at most I/v/A. Thus
with probability at least 1/I the algorithm has to repeat procedure P at least +/A/(2l) times to get a constant probability
of success. Hence the expected time is Q(v/A/I?). O
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5.2. Locally limited changes

The previous section shows that under an adversary that is allowed to use arbitrary correlations then any simple proce-
dure need polynomial time in the worst case.

In this section we want to consider the adversary that can use correlations but cannot change the degree too much in
successive steps. Of course once every at most t steps the adversary is allowed to define a completely new distribution
over the unreliable edges. We want to argue that it is possible to build a simple algorithm resistant to such an adversary.
Intuitively the changes of the degree are problematic only if the changes are by a large (non-constant) factor. Note by
Lemma 1 that if we perturb the effective degree by only a constant factor then the bound also changes only by a constant
factor. Hence in order to design an algorithm that is immune to such changes we should add more “coverage” to the
small-degree nodes. We do this by enhancing each phase of algorithm RLB with additional steps in which we assume
that the effective degree of a node is small. The adversary may try to avoid the successful transmission in these steps
by changing the degree (the adversary knows the probabilities used by the algorithm). But having the restriction on the
distance the adversary can move the degree allows us to define overlapping “zones” such that in two consecutive steps we
are sure to find the degree in one of the zones. We also have to make sure that the whole phase of the new algorithm fits
into T steps.

Now we present algorithm RLBC (Robust Local Broadcast with Correlations). We first show that the algorithm works
under (I, T)-deterministic adversary that can change at most | edges adjacent to each node per round and all the edges
from E’\ E once every at most T rounds. Our algorithm will be resistant to deterministic adversary that can change at most
T AV/(T=0(T) edges adjacent to each node in every step.

Then we show that it also works under restricted fading adversary with parameters 7 and . Restricted fading adversary
can change the distribution arbitrarily once every at most t steps, if the distribution is not changed then the expected
change of the degree of any node can be at most . Under these restrictions, the adversary can design arbitrary correlations
between successive steps. We show that RLBC works with restricted fading adversary with [ of at most A1/(T—0(),

1 Algorithm: RLBC(r, T)
2 T =min{[logy, A/27, T}
3a<« [T/logyeT]

4 k< [Al/(T=20)
5e1<k-a

6 6y <« k2.7-a

7 repeat 2r times

8 RLB(1,T — 2a)

9 repeat a times

10 Uniform(1/eq)
11 L Uniform(1/ep)

1
Theorem 11. If T > 1000 Algorithm RLBC(8e[In(1/€) A1/ 77, T) solves local broadcast in the presence Of(LA T-2[7/10g2¢ 71 J T/2, r)—

deterministic adversary in time O (ATt log(1/€)) with probability at least 1 — €.

Proof. Assume that 7 < [log,, A/2] and note that in this case T = 7. In the opposite case we use the algorithm for 7 =
Mog,. A/2] which works also for any larger . Denote k = [A/("=2®| | =kt /2 and observe that for 7 > 1000 we have
a> 200 and T —2a > 1/2 and k > 2. We divide the time into intervals of length t, called cycles. In each interval algorithm
RLBC repeats the same probabilities. In the first T —2a steps of the cycle it uses probabilities p; =k~ fori=1,2,...,7—2a,
in the next 2a steps it uses probabilities 1/e; and 1/e,. We take two consecutive cycles and note that in each such a pair
of cycles we can find t consecutive steps in which the distribution over the unreliable edges is the same (since global
changes can happen at most once every 7 steps) and moreover the algorithm uses all the probabilities from a cycle. Let
us call a sequence of these steps T =[t,t +1,...,t + 7 — 1]. Note that in this sequence we have either one full procedure
RLB(1, T — 2a) or parts of two procedures RLB(1, T — 2a) (call them R; and R;). In the second case sequence T contains
some suffix of Ry and some prefix of R,. Connect these steps together into a procedure R, which contains all steps of
procedure RLB(1, T — 2a) executed in a possibly different order. Fix a receiver v and assume that at least one reliable
neighbor of v tries to transmit a message to v. We want to show that in each such a pair of cycles v receives the message
independently with probability at least ps = .

We know by the definition of the adversary that the effective degree cannot change by too much between steps in the
same cycle: |d¢4;(v) —di+it1(v)| <l foranyi=0,1,..., 7 —2. We can consider two cases depending on the effective degree
in the first considered step t:
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Case 1: d;(v) > 2/

Here we want to show that procedure R is successful with probability at least ps. Observe that here since [ > T we have
di(v) > de(v)/2 + 1?2 > d;(v)/2 +It. Thus for any i € {1,2...,7 — 1} we have d;1;(v) > d;(v) — It > d;(v)/2 and d;4;(v) <
di(v) +1t < 2d;(v) thus the effective degree in the whole considered sequence of steps can change by a factor of at most 2.
Recall from the definition of RLB that it uses probabilities p; = k=i. Consider the smallest i such that 1/p; > 2d;(v) by the
minimality of i we have that 1/(kp;) < 2d;(v). Probability p; is used in some step of sequence T. Call this step t*. We have:

1/pi > 2di(v) > dp=(v) > di(v)/2 > 1/(4kp)).
Thus by Lemmas 1 and 2:

W) - _1 eV 1 _
Pr[ R ] > min {(26) , s > ek — Ds-
Case 2: d;(v) < 22
Here we want to show that a successful transmission occurs with probability at least ps in one of the 2a additional steps
(see lines 7 — 11 of the pseudocode).
Note that since d¢(v) < 2I? then for any i € {1,...,7 — 1} we have d;,;(v) <d;(v) + It < 4I%. Pick two consecutive steps
t+i,t+1 such that in step t+i the algorithm uses probability 1/e; and in t+i+1 it uses 1/e;. Note that in the considered

sequence we have at least a — 1 such pairs.

Case 2.1: d;i(v) <2l Here the probability is 1/e1 and the degree is within interval [1, 2I] hence we have that:
T 21 dt,‘ 1

= —> — > —

a e e e
By Lemmas 1 2:

21 Int 1 1
Pr[ Rﬁv),] >min{ =e /€1 1/e;e €1} >min{ —, — > —.
+ eq T ' eka eka

Case 2.2: 41> > d,;(v) > 2I Note that in this case d;i;1(v) € [I, 4] and the probability used in this step is 1/e; hence:
2 )
T ﬂz di+1(v) > 21 1

a e e e ep
(v) 1
Rt+i+l] = eka*
In each pair the stations are making independent choices hence the probability of failure in all the pairs is by Lemma 3
at most:

. ‘H<1 a-1 (a=1y_ 1 _ 1
eka - eka 2 ) e%k?a? — 2ek’

where in the last inequality we used the fact that a > 20. Thus also in this case with probability at least 1/(2ek) > ps node
v receives a message during this cycle.

The two considered cases showed that any full two cycles deliver the message with probability at least ps. If we perform
at least 2r = 2[In(1/€)/ps]1 = 0(A'/T) cycles then the probability that v does not receive a message is at most (1 —
ps)ln(l/e)/ps <e. O

and we can use Lemmas 1 and 2 exactly the same as in the previous case and obtain Pr

The case with deterministic adversary can be generalized to stochastic restricted adversary.

Theorem 12. If T > 1000 Algorithm RLBC(16e[In(1/€)A/T], T) solves local broadcast in the presence of I-restricted fading adver-
1
sary using correlations with | = {A t(1=1/logze T J /4 in time O (ATt log(1/€)) with probability at least 1 — €.

Proof. Fix any receiver v. We know that RLBC(8e[In(1/€)A/7, T) solves local broadcast in the presence of (It, T)-deter-
ministic adversary. But in the case with arbitrary correlations we can still bound the probability that the degree of v does
not change too much. Take any two consecutive steps t,t + 1. We have by Markov Inequality:

Pr[|d;(v) —di11(v)| > 271] <1/Q27)

If we pick t steps like in the proof of Theorem 11 then by the union bound with probability at least 1/2 in each of these
steps the degree changes by at most 2It. From now on we can use the same analysis as in Theorem 11 and we obtain only
a constant slowdown compared to the case with deterministic adversary. Hence RLBC(16e[In(1/€)A/7, T) solves local
broadcast with restricted fading adversary with probability at least 1 —€. O
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Appendix. Proof of Lemma 5

Proof. It is sufficient to prove the claim for 7 <log,, A. For T > log,, A we use the algorithm for v = log,, A. Note
that any algorithm that is correct for some t must also work for any larger t because the adversary may not choose to
change the distribution as frequently as it is permitted to. In the case where T < log,, A we get that A'/T > 2e. Moreover
A~V log,, AJT = (2e) 0%2¢ /T og,, A/T < 1/(2e) because log,, A/T >1 hence p; <1/2.

We want to show that if some of the neighbors of v belong to B and execute the procedure Uniform(z, p1,...,Dr)
twice, then v receives some message with probability at least log A/(4A1/T 7). Since we execute Uniform twice, we have
a total of 27 consecutive time slots out of which, by the definition of our model, at least T consecutive slots have the
same distribution of the edges in E’\ E and moreover stations try all the probabilities p1, pa,..., pr. (not necessarily in
this order).Let T denote the set of these 7 time slots and for i =1,2,..., 7 let t; € T be the step in which probability p; is
used. We define q; =Pr[1 <d;(v) < A/7], and for each i from 2 to t we define g; = Pr[ AU=D/T < d(v) < AV/7], for any
t € T. Observe that the edge sets are chosen independently from the same distribution for t € T hence probabilities g; do
not depend on t during the considered T rounds. Moreover since v € R, then v is connected via a reliable edge to at least
one node in B. This means that Pr[d;(v) =0] =0, thus:

doai=1. (1)
i=1

We would like to lower bound the probability that v receives a message in step t; fori=1,2,...,t:

v) gilogye A
PR = Sare =

In t;-th slot each station with a message transmits independently with probability is p; = A~"/7 -log,, A/T and the trans-
mission choices done by the stations are independent from the choice of edges E; active in round t;. Let Q; denote the
event that AU=D/T < d; (v) < A¥/T. We have p; < 1/2 hence we can use Lemmas 1 and 2 and get for i > 1:

pr[ R | = Pe[ R Qi | PriQi]
<m0 = | 1 00 50

> g; - min {Pr[ R | dey(v) = AD/T ] ,Pr[RgV) dy, (v) = A7/ ]}

A"V log,, AT logy, AJT }

> i - min { (2e)A7]/T l0ge A/T ’ (ze)logze A/t

Note that A~1/ log,, A/T <1 hence:

Pr R(v) >Qi10g26A
i ]= 2eal/tr’

For i =1 we get:

Pr[Rg’)] Zl’l‘[RS/) | Ql] -Pr{ Q1]

A~V logye AJT  logye A/T } I logye A

=1 -min i (ze)Afl/r logye A/T’ (2e)10g2e AJT AT

Since the edge sets are chosen independently in each step and the choices of the stations are also independent we have:
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T T
o /\<_|R£"V)) :HPr[_'RLV)] by independence
i=1 i=1
u gilog,, A
! 2e )
= E (1 B m> by Equation (12)
~ diloge A qiq; 103, A
_\yitTeze 1) F62e =
=1 £ 2eAV/TT + Z 402 N2/T 72 by Lemma 3
i=1 1<i<j=<n

log2e A z lOgZe
=1- 2eAl/TT ;q Y ae2p2is2 4e2 N2/t 72 iZq'

logye A log3, A _
=1- 2eAl/Tt + 402 A2/T 2’ by Equation (11)
<1— _logpe A
- 4e2 AVt g’
where the last inequality is true since if we denote T = (logy, A)/a (for a > 1) then we have A/T7 = (2e)* log A/(2ct) >

2
log A hence 4:fi22"/i2 < 4};% /fr. This completes proof of 2. To prove 1 we observe that if we execute the procedure for

2t7In(1/€)] - [4e? - AV Tt /log,, A] time steps we have at least [In(1/€)] - [4e%- A'/T1/log,, A] sequences of T consecutive
time steps in which the distribution over the unreliable edges is the same and the algorithm tries all the probabilities
{p1. P2, ..., pc}. Each of these procedures fails independently with probability at most 1 — log,, A/(4e>A/T1) hence the
probability that all the procedures fail is at most:

<e-MO/ _¢ 4

T logy, A Mn(1/€)1-[4e2- AT 1/ logye Al
< _4e2.A1/fr)
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