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In this paper, we study local and global broadcast in the dual graph model, which describes 
communication in a radio network with both reliable and unreliable links. Existing work 
proved that efficient solutions to these problems are impossible in the dual graph model 
under standard assumptions. In real networks, however, simple back-off strategies tend 
to perform well for solving these basic communication tasks. We address this apparent 
paradox by introducing a new set of constraints to the dual graph model that better 
generalize the slow/fast fading behavior common in real networks. We prove that in the 
context of these new constraints, simple back-off strategies now provide efficient solutions 
to local and global broadcast in the dual graph model. We also precisely characterize how 
this efficiency degrades as the new constraints are reduced down to non-existent, and 
prove new lower bounds that establish this degradation as near optimal for a large class 
of natural algorithms. We conclude with an analysis of a more general model where we 
propose an enhanced back-off algorithm. These results provide theoretical foundations for 
the practical observation that simple back-off algorithms tend to work well even amid the 
complicated link dynamics of real radio networks.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study upper and lower bounds for efficient broadcast in the dual graph radio network model [4,15,16,
3,7,6,9,8,18,10], a dynamic network model that describes wireless communication over both reliable and unreliable links. As 
argued in previous studies of this setting, including unpredictable link behavior in theoretical wireless network models is 
important because in real world deployments radio links are often quite dynamic.

The back-off paradox. Existing papers [16,9,18] proved that it is impossible to solve standard broadcast problems effi-
ciently in the dual graph model without the addition of strong extra assumptions (see related work). In real radio networks, 
however, which suffer from the type of link dynamics abstracted by the dual graph model, simple back-off strategies tend 
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to perform quite well. These dueling realities seem to imply a dispiriting gap between theory and practice: basic communi-
cation tasks that are easily solved in real networks are impossible when studied in abstract models of these networks.

What explains this paradox? This paper tackles this fundamental question.
As detailed below, we focus our attention on the adversary entity that decides which unreliable links to include in the 

network topology in each round of an execution in the dual graph model. We introduce a new type of adversary with 
constraints that better generalize the dynamic behavior of real radio links. We then reexamine simple back-off strategies 
originally introduced in the standard radio network model [2] (which has only reliable links), and prove that for reasonable 
parameters, these simple strategies now do guarantee efficient communication in the dual graph model combined with our 
new, more realistic adversary.

We also detail how this performance degrades toward the existing dual graph lower bounds as the new constraints are 
reduced toward non-existent, and prove lower bounds that establish these bounds to be near tight for a large and natural 
class of back-off strategies. Finally, we perform investigations of even more general (and therefore more difficult) variations 
of this new style of adversary that continue to underscore the versatility of simple back-off strategies.

We argue that these results help resolve the back-off paradox described above. When unpredictable link behavior is 
modeled properly, predictable algorithms prove to work surprisingly well.

The dual graph model. The dual graph model describes a radio network topology with two graphs, G = (V , E) and 
G ′ = (V , E ′), where E ⊆ E ′ , V corresponds to the wireless devices, E corresponds to reliable (high quality) links, and E ′ \ E
corresponds to unreliable (quality varies over time) links. In each round, all edges from E are included in the network 
topology. Also included is an additional subset of edges from E ′ \ E , chosen by an adversary. This subset can change from 
round to round. Once the topology is set for the round, the model implements the standard communication rules from the 
classical radio network model: a node u receives a message broadcast by its neighbor v in the topology if and only if u
decides to receive and v is its only neighbor broadcasting in the round.

We emphasize that the abstract models used in the sizable literature studying distributed algorithms in wireless settings 
do not claim to provide high fidelity representations of real world radio signal communication. They instead each capture 
core dynamics of this setting, enabling the investigation of fundamental algorithmic questions. The well-studied radio net-
work model, for example, provides a simple but instructive abstraction of message loss due to collision. The dual graph 
model generalizes this abstraction to also include network topology dynamics. Studying the gaps between these two models 
provides insight into the hardness induced by the types of link quality changes common in real wireless networks.

The fading adversary. Existing studies of the dual graph model focused mainly on the information about the algorithm 
known to the model adversary when it makes its edge choices. In this paper, we place additional constraints on how these 
choices are generated.

In more detail, in each round, the adversary independently draws the set of edges from E ′ \ E to add to the topology 
from some probability distribution defined over this set. We do not constrain the properties of the distributions selected 
by the adversary. Indeed, it is perfectly valid for the adversary in a given round to use a point distribution that puts the 
full probability mass on a single subset, giving it full control over its selection for the round. We also assume the algorithm 
executing in the model has no advance knowledge of the distributions used by the adversary.

We do, however, constrain how often the adversary can change the distribution from which it selects these edge subsets. 
In more detail, we parameterize the model with a stability factor, τ ≥ 1, and restrict the adversary to changing the distri-
bution it uses at most once every τ rounds. For τ = 1, the adversary can change the distribution in every round, and is 
therefore effectively unconstrained and behaves the same as in the existing dual graph studies. On the other extreme, for 
τ = ∞, the adversary is now quite constrained in that it must draw edges independently from the same distribution for 
the entire execution. As detailed below, we find τ ≈ log �, for local neighborhood size �, to be a key threshold after which 
efficient communication becomes tractable.

Notice, these constraints do not prevent the adversary from inducing large amounts of changes to the network topology 
from round to round. For non-trivial τ values, however, they do require changes that are nearby in time to share some 
underlying stochastic structure. This property is inspired by the general way wireless network engineers think about unreli-
ability in radio links. In their analytical models of link behavior (used, for example, to analyze modulation or rate selection 
schemes, or to model signal propagation in simulation), engineers often assume that in the short term, changes to link 
quality come from sources like noise and multi-path effects, which can be approximated by independent draws from an 
underlying distribution. Traditional and well-known fading distributions include Rayleigh fading [21], Ricean fading [22], or 
the Nakagami distribution [19].

Long term changes, by contrast, can come from modifications to the network environment itself, such as devices moving, 
which do not necessarily have an obvious stochastic structure, but unfold at a slower rate than short term fluctuations.

In our model, the distribution used in a given round captures short term changes, while the adversary’s arbitrary (but 
rate-limited) changes to these distributions over time capture long term changes. Because these general types of changes 
are sometimes labeled short/fast fading in the systems literature (e.g., [23]), we call our new adversary a fading adversary.

Our results and related work. In this paper, we study both local and global broadcast. The local version of these problems
assumes some subset of devices in a dual graph network are provided broadcast messages. The problem is solved once each 
receiver that neighbors a broadcaster in E receives at least one message. The global version assumes a single broadcaster 
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Table 1
A summary of the upper and lower bounds proved in this paper, along with pointers to the corresponding theorems. In the following, n is the network 
size, � ≤ n is an upper bound on local neighborhood size, D is the (reliable link) network diameter, and τ is the stability factor constraining the adversary.

Problem Time Prob. Remarks Ref.

Local broadcast
O
(

�1/τ̄ ·τ̄ 2

log �
· log (n/ε)

)
1 − ε τ̄ = min{τ , log�} Theorem 6

�
(

�1/τ τ
log �

)
1
2 τ ∈ O (log�) Theorem 7

�
(

�1/τ τ 2

log �

)
1
2 τ ∈ O (log�/ log log �) Theorem 8

Global broadcast
O
(
(D + log(n/ε)) · �1/τ̄ τ̄ 2

log �

)
1 − ε τ̄ = min{τ , log�} Theorem 9

�
(

D · �1/τ τ
log �

)
1
2 τ ∈ O (log�) Theorem 10

�
(

D · �1/τ τ 2

log �

)
1
2 τ ∈ O (log�/ log log �) Theorem 10

starts with a message that it must disseminate to the entire network. Below we summarize the relevant related work on 
these problems, and the new bounds proved in this paper. We conclude with a discussion of the key ideas behind these 
new results.

Related Work. In the standard radio network model, which is equivalent to the dual graph model with E = E ′ , Bar-Yehuda 
et al. [2] demonstrate that a simple randomized back-off strategy called Decay solves local broadcast in O (log2 n) rounds 
and global broadcast in O (D log n + log2 n) rounds, where n = |V | is the network size and D is the diameter of G . Both 
results hold with high probability in n, and were subsequently proved to be optimal or near optimal1 [1,17,20].

In [15,16], it is proved that global broadcast (with constant diameter), and local broadcast require �(n) rounds to solve 
with reasonable probability in the dual graph model with an offline adaptive adversary controlling the unreliable edge 
selection, while [9] proves that �(n/ log n) rounds are necessary for both problems with an online adaptive adversary. As 
also proved in [9]: even with the weaker oblivious adversary, local broadcast requires �(

√
n/ log n) rounds, whereas global 

broadcast can be solved in an efficient O (D log (n/D)+ log2 n) rounds, but only if the broadcast message is sufficiently large 
to contain enough shared random bits for all nodes to use throughout the execution. In [18], an efficient algorithm for 
local broadcast with an oblivious adversary is provided given the assumption of geographic constraints on the dual graphs, 
enabling complicated clustering strategies that allow nearby devices to coordinate randomness.

New Results. In this paper, we turn our attention to local and global broadcast in the dual graph model with a fading 
adversary constrained by some stability factor τ (known to the algorithm). We start by considering upper bounds for a 
simple back-off style strategy inspired by the Decay routine from [2]. This routine has broadcasters simply cycle through 
a fixed sequence of broadcast probabilities in a synchronized manner (all broadcasters use the same probability in the 
same round). We prove that this strategy solves local broadcast with a single receiver with probability at least 1 − ε , 
in O  

(
�1/τ̄ ·τ̄ 2

log �
· log (1/ε)

)
rounds, where � is an upper bound on local neighborhood size, and τ̄ = min{τ , log�}. With 

multiple receivers the bound changes to O  
(

�1/τ̄ ·τ̄ 2

log �
· log (n/ε)

)
Notice, for a single receiver, for τ ≥ log � this bound simplifies to O (log � log (1/ε)), matching the optimal results from 

the standard radio network model.2 This performance, however, degrades toward the polynomial lower bounds from the 
existing dual graph literature as τ reduces from log � toward a minimum value of 1. We show this degradation to be 
near optimal by proving that any local broadcast algorithm that uses a fixed sequence of broadcast probabilities requires 
�(�1/τ̄ τ̄ / log �) rounds to solve the problem with probability 1/2 for a given τ . For τ ∈ O (log�/ log log �), we refine this 
bound further to �(�1/τ τ 2/ log�), matching our upper bound within constant factors.

We next turn our attention to global broadcast. We consider a straightforward global broadcast algorithm that uses our 
local broadcast strategy as a subroutine. We prove that this algorithm solves global broadcast with probability at least 1 − ε , 
in O ((D + log(n/ε)) · �1/τ̄ τ̄ 2/ log �) rounds, where D is the diameter of G , and τ̄ = min{τ , log�}. Notice, for τ ≥ log �

this bound reduces to O ((D + log(n/ε)) · log � log (1/ε)), matching the near optimal result from the standard radio network 
model. As with local broadcast, we also prove the degradation of this performance as τ shrinks to be near optimal. (See 
Table 1 for a summary of these results and pointers to where they are proved in this paper.)

Finally we consider the generalized model when we allow correlation between the distributions selected by the adversary 
within a given stable period of τ rounds. It turns out that in the case of arbitrary correlations any simple algorithm needs 
time �(

√
�/l2) if this algorithm cycles through a sequence of probabilities of length l. In particular, any of our previous 

algorithms would require time �(
√

�/ log2 �) in the model with arbitrary correlations. The adversary construction in this 
lower bound requires large changes in the degree of a node in successive steps. Such changes are unlikely in real networks. 
Thus we propose a restricted version of the adversary. We assume that the expected change in the degree of any node 

1 The broadcast algorithm from [2] requires O (D logn + log2 n) rounds, whereas the corresponding lower bound is �(D log (n/D) + log2 n). This gap was 
subsequently closed independently in [14,5] by a tighter analysis of a natural variation of the simple Decay strategy used in [2].

2 To make it match exactly, set � = n and ε = 1/n, as is often assumed in this prior work.
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can be at most �1/(τ̄ (1−o(1)) . With such restriction it is again possible to propose a simple, but slightly enhanced, back-off 
strategy (with a short cycle of probabilities) that works efficiently in time O  

(
�1/τ̄ · τ̄ · log (1/ε)

)
.

Technique Discussion. Simple back-off strategies can be understood as experimenting with different guesses at the amount 
of contention afflicting a given receiver. If the network topology is static, this contention is fixed, therefore so is the right
guess. A simple strategy cycling through a reasonable set of guesses will soon arrive at this right guess—giving the message 
a good chance of propagating.

The existing lower bounds in the dual graph setting deploy an adversary that changes the topology in each round 
to specifically thwart that round’s guess. In this way, the algorithm never has the right guess for the current round so its 
probability of progress is diminished. The fading adversary, by contrast, is prevented from adopting this degenerate behavior 
because it is required to stick with the same distribution for τ consecutive rounds. An important analysis at the core of our 
upper bounds reveals that any fixed distribution will be associated with a right guess defined with respect to the details of 
that distribution. If τ is sufficiently large, our algorithms are able to experiment with enough guesses to hit on this right 
guess before the adversary is able to change the distribution.

More generally speaking, the difficulty of broadcast in the previous dual graph studies was not due to the ability of the 
topology to change dramatically from round to round (which can happen in practice), but instead due to the model’s ability 
to precisely tune these changes to thwart the algorithm (a behavior that is hard to motivate). The dual graph model with 
the fading adversary preserves the former (realistic) behavior while minimizing the latter (unrealistic) behavior.

2. Model and problem

We study the dual graph model of unreliable radio networks. This model describes the network topology with two 
graphs G = (V , E) and G ′ = (V , E ′), where E ⊆ E ′ . The n = |V | vertices in V correspond to the wireless devices in the 
network, which we call nodes in the following. The edges in E describe reliable links (which maintain a consistently high 
quality), while the edges in E ′ \ E describe unreliable links (which have quality that can vary over time). For a given dual 
graph, we use � to describe the maximum degree in G ′ , and D to describe the diameter of G .

Time proceeds in synchronous rounds that we label 1, 2, 3... For each round r ≥ 1, the network topology is described 
by Gr = (V , Er), where Er contains all edges in E plus a subset of the edges in E ′ \ E . The subset of edges from E ′ \ E are 
selected by an adversary. The graph Gr can be interpreted as describing the high quality links during round r. That is, if 
{u, v} ∈ Er , this means the link between u and v is strong enough that u could deliver a message to v , or garble another 
message being sent to v at the same time.

With the topology Gr established for the round, behavior proceeds as in the standard radio network model. That is, 
each node u ∈ V can decide to transmit or receive. If u transmits, it learns nothing about other messages transmitted in 
the round (i.e., the radios are half-duplex). If u receives and exactly one neighbor v of u in Er transmits, then u receives 
v ’s message. If u receives and two or more neighbors in Er transmit, u receives nothing as the messages are lost due to 
collision. If u receives and no neighbor transmits, u also receives nothing. We assume u does not have collision detection, 
meaning it cannot distinguish between these last two cases.

The fading adversary. A key assumption in studying the dual graph model are the constraints placed on the adversary 
that selects the unreliable edges to include in the network topology in each round. In this paper, we study a new set of 
constraints inspired by real network behavior. In more detail, we parameterize the adversary with a stability factor that we 
represent with an integer τ ≥ 1. In each round, the adversary must draw the subset of edges (if any) from E ′ \ E to include 
in the topology from a distribution defined over these edges. The adversary selects which distributions it uses. Indeed, we 
assume it is adaptive in the sense that it can wait until the beginning of a given round before deciding the distribution it 
will use in that round, basing its decision on the history of the nodes’ transmit/receive behavior up to this point, including 
the previous messages they send, but not including knowledge of the nodes’ private random bits.

The adversary is constrained, however, in that it can change this distribution at most once every τ rounds. On one 
extreme, if τ = 1, it can change the distribution in every round and is effectively unconstrained in its choices. On the 
other extreme, if τ = ∞, it must stick with the same distribution for every round. Note that this does not mean that the 
communication graph is static but that the adversary cannot change the distribution over the unreliable edges. For most 
of this paper, we assume the draws from these distributions are independent in each round. Toward the end, however, we 
briefly discuss what happens when we generalize the model to allow more correlations.

As detailed in the introduction, because these constraints roughly approximate the fast/slow fading behavior common in 
the study of real wireless networks, we call a dual graph adversary constrained in this manner a fading adversary.

Problem. In this paper, we study both the local and global broadcast problems. The local broadcast problem assumes a 
set B ⊆ V of nodes are provided with a message to broadcast. Each node can receive a unique message. Let R ⊆ V be the 
set of nodes in V that neighbor at least one node in B in E . The problem is solved once every node in R has received at 
least one message from a node in B . We assume all nodes in B start the execution during round 1, but do not require that 
B and R are disjoint (i.e., broadcasters can also be receivers). The global broadcast problem, by contrast, assumes a single 
source node in V is provided a broadcast message during round 1. The problem is solved once all nodes have received this 
message. Notice, local broadcast solutions are often used as subroutines to help solve global broadcast.
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Uniform algorithms. The broadcast upper and lower bounds we study in this paper focus on uniform algorithms, which 
require nodes to make their probabilistic transmission decisions according to a predetermined sequence of broadcast prob-
abilities that we express as a repeating cycle, (p1, p2, ..., pk) of k probabilities in synchrony. In studying global broadcast, 
we assume that on first receiving a message, a node can wait to start making probabilistic transmission decisions until the 
cycle resets. We assume these probabilities can depend on n, � and τ (or worst-case bounds on these values).

In uniform algorithms in the model with fading adversary an important parameter of any node v is its effective degree in 
step t denoted by dt(v) and defined as the number of nodes w such that {v, w} ∈ Et and w has a message to transmit (i.e., 
will participate in step t).

As mentioned in the introduction, uniform algorithms, such as the decay strategy from [2], solve local and global broad-
cast with optimal efficiency in the standard radio network model. A major focus of this paper is to prove that they work 
well in the dual graph model as well, if we assume a fading adversary with a reasonable stability factor.

The fact that our lower bounds assume the algorithms are uniform technically weaken the results, as there might be non-
uniform strategies that work better. In the standard radio network model, however, this is not the case: uniform algorithms 
for local and global broadcast match lower bounds that hold for all algorithms (cf., discussion in [20]).

3. Local broadcast

We begin by studying upper and lower bounds for the local broadcast problem. Our upper bound performs efficiently 
once the stability factor τ reaches a threshold of log �. As τ decreases toward a minimum value of 1, this efficiency 
degrades rapidly. Our lower bounds capture that this degradation for small τ is unavoidable for uniform algorithms. In the 
following we use the notation τ̄ = min{τ , �log��}. By log n we will always denote logarithm at base 2 and by ln n the 
natural logarithm.

3.1. Upper bound

All uniform local broadcast algorithms behave in the same manner: the nodes in B repeatedly broadcast according 
to some fixed cycle of k broadcast probabilities. We formalize this strategy with algorithm RLB (Robust Local Broadcast) 
described below. (We break out Uniform into its own procedure as we later use it in our improved FRLB local broadcast 
algorithm as well):

1 Procedure: Uniform(p1, p2, . . . , pk)

2 for i = 1, 2, . . . , k do
3 if has message then
4 with probability pi Transmit otherwise Listen
5 else Listen // without a message always listen

1 Algorithm: RLB(r, τ̄ )

2 for i ← 1 to τ̄ do pi ← �−i/τ̄

3 repeat r times
4 Uniform (τ̄ , p1, p2, . . . , pτ̄ )

Before we prove the complexity of RLB we will show two useful properties of any uniform algorithm. Let R(v)
t denote 

the event that node v receives a message from some neighbor in step t .

Lemma 1. For any uniform algorithm and any node v and step t if dt(v) > 0 and the algorithm uses in step t probability p ≤ 1/2, 
then Pr

[
R(v)

t

]
≥ p·dt (v)

(2e)p·dt (v) .

Proof. For event R(v)
t to happen exactly one among dt(v) neighbors of v has to transmit and v must not transmit in step 

t . Node v does not transmit with probability 1 − p if it has the message and clearly with probability 1 if it does not have 
the message. Hence the probability that exactly one neighbor transmits equals pdt(v)(1 − p)dt (v)−1 and the probability that 
v does not transmit is at least 1 − p. Denote by α = p · dt(v). We have

Pr
[

R(v)
t

]
≥ pdt(v) · (1 − p)dt (v) = α ·

(
1 − α

dt(v)

)dt (v)

= α

((
1 − α

dt(v)

)dt (v)/α−1

· (1 − p)

)α

≥ α(e−1(1 − p))α ≥ α

(2e)α
. �

Lemma 2. For any uniform algorithm, node v and step t if dt(v) > 0:

Pr
[

R(v)
t | dt(v) ∈ [d1,d2]

]
≥ min

{
Pr
[

R(v)
t | dt(v) = d1

]
,Pr

[
R(v)

t | dt(v) = d2

]}
.
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Proof. If the algorithm uses probability p in step t then Pr
[

R(v)
t

]
≥ pdt(v)(1 − p)dt (v) . Function f (x) = px(1 − p)x for 

p ∈ [0, 1] has a single maximum for x = 1/(ln(1/(1 − p))). Hence if we restrict dt(v) to be within a certain interval, then 
value of the function is lower bounded by the minimum at the endpoints of the interval. �

Our upper bound analysis leverages the following useful lemma which can be shown by induction on n. (The left side is 
also known as the Weierstrass Product Inequality):

Lemma 3. For any x1, x2, . . . , xn such that 0 ≤ xi ≤ 1:

1 −
n∑

i=1

xi ≤
n∏

i=1

(1 − xi) ≤ 1 −
n∑

i=1

xi +
∑

1≤i< j≤n

xix j .

To begin our analysis, we focus on the behavior of our algorithm with respect to a single receiver when we use the 
transmit probability sequence p1, p2, ..., pτ̄ , where τ̄ = min{τ , �log��}, and pi = �−i/τ̄ .

Lemma 4. Fix any receiver u ∈ R and error bound ε > 0, RLB(2�ln(1/ε)� · �4e · �1/τ̄ �, τ̄ ) delivers a message to u with probability 
at least 1 − ε in time O (�1/τ̄ τ̄ log(1/ε)).

Proof. It is sufficient to prove the claim for τ ≤ log �. For τ > log � we use the algorithm for τ = log �. Note that any 
algorithm that is correct for some τ must also work for any larger τ because the adversary may not choose to change the 
distribution as frequently as it is permitted to. In the case where τ ≤ log� we get that �1/τ ≥ 2.

We want to show that if some of the neighbors of v belong to B and execute the procedure Uniform(τ , p1, . . . , pτ )

twice, then v receives some message with probability at least log �/(2e�1/τ τ ). Every time we execute Uniform twice, we 
have a total of 2τ consecutive time slots out of which, by the definition of our model, at least τ consecutive slots have the 
same distribution of the additional edges and moreover stations try all the probabilities p1, p2, . . . , pτ (not necessarily in 
this order). Let T denote the set of these τ time slots and for i = 1, 2, . . . , τ let ti ∈ T be the step in which probability pi is 
used. We define q1 = Pr

[
1 ≤ dt(v) ≤ �i/τ

]
, and for each i from 2 to τ we define qi = Pr

[
�(i−1)/τ < dt(v) ≤ �i/τ

]
, for any 

t ∈ T . Observe that the edge sets are chosen independently from the same distribution for t ∈ T hence probabilities qi do 
not depend on t during the considered τ rounds. Moreover since v ∈ R , then v is connected via a reliable edge to at least 
one node in B . This means that Pr[ dt(v) = 0 ] = 0, thus:

τ∑
i=1

qi = 1. (1)

We would like to bound from below the probability that v receives a message in step ti for i = 1, 2 . . . , τ :

Pr
[

R(u)
ti

]
≥ qi

2e�1/τ
. (2)

In ti -th slot the transmission probability is pi = �−i/τ and the transmission choices done by the stations are independent 
from the choice of edges Eti active in round ti . Let Q 1 denote the event that 1 ≤ dt1 (v) ≤ �1/τ and for i ≥ 2 let Q i denote 
the event that �(i−1)/τ < dti (v) ≤ �i/τ . We have pi ≤ 1/2 hence we can use Lemmas 1 and 2 to get for i > 1

Pr
[

R(u)
ti

]
≥ Pr

[
R(u)

ti
| Q i

]
· Pr[ Q i ]

≥ qi min
{

Pr
[

R(u)
ti

| dti (u) =
⌊
�(i−1)/τ

⌋
+ 1

]
,Pr

[
R(u)

ti
| dti (v) = �i/τ

]}
≥ qi min

{
Pr
[

R(u)
ti

| dti (u) = �(i−1)/τ
]
,Pr

[
R(u)

ti
| dti (v) = �i/τ

]}

≥ qi min

{
�−1/τ

(2e)�−1/τ
,

1

2e

}
≥ qi

2e�1/τ
.

For i = 1 we have:

Pr
[

R(u)
t1

]
≥ Pr

[
R(u)

t1
| Q 1

]
· Pr[ Q 1 ]

≥ q1 min
{

Pr
[

R(u)
t1

| dt1(u) = 1
]
,Pr

[
R(u)

ti
| dt1(v) = �1/τ

]}
≥ q1 min

{
1

�1/τ · (2e)�−1/τ
,

1

2e

}
≥ q1

2e�1/τ
.
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Since the edge sets are chosen independently in each step and the random choices of the stations whether to transmit 
or not are also independent from each other we have:

Pr

[
τ∧

i=1

(
¬R(u)

ti

)]
=

τ∏
i=1

Pr
[
¬R(u)

ti

]
≤

τ∏
i=1

(
1 − qi

2e�1/τ

)
by independence and Equation (2)

≤ 1 −
τ∑

i=1

qi

2e�1/τ
+

∑
1≤i< j≤τ

qiq j

4e2�2/τ
by Lemma 3

≤ 1 −
∑τ

i=1 qi

2e�1/τ
+
(∑τ

i=1 qi
)2

4e2�2/τ

≤ 1 − 1

2e�1/τ
+ 1

4e2�2/τ
≤ 1 − 1

4e�1/τ
by Equation (1).

Hence if we execute the procedure for 2τ�ln(1/ε)� · �4e ·�1/τ � time steps, we have at least �ln(1/ε)� · �4e ·�1/τ � sequences 
of τ consecutive time steps in which the distribution over the unreliable edges is the same and the algorithm tries all the 
probabilities {p1, p2, . . . , pτ }. Each of these procedures fails independently with probability at most 1 − 1/(4e�1/τ ) hence 

the probability that all the procedures fail is at most: 
(

1 − 1
4e�1/τ

)�ln(1/ε)�·�4e�1/τ � ≤ e−�ln(1/ε)� < ε �
On closer inspection of the analysis of Lemma 4, it becomes clear that if we tweak slightly the probabilities used in our 

algorithm, we require fewer iterations. In more detail, the probability of a successful transmission in the case where each 
of the x transmitters broadcasts independently with probability α/x is approximately α/(2e)α . In the previous algorithm 
we were transmitting in successive steps with probabilities �−1/τ , �−2/τ , . . . . Thus in the case where x = 1 (a single 
transmitter) we get in i-th step α = �−i/τ which implies that the sum of probabilities of success in τ consecutive steps 
equals approximately �−1/τ . This means that RLB needs �(τ�−1/τ ) steps. In order to improve the time complexity we 
need to find a way to get a higher success probability. The formula α/(2e)−α shows that the success probability depends 
on α linearly if α < 1 (“too small” probability) and depends exponentially on α if α > 1 (“too large” probability). In the 
previous theorem we intuitively only use the linear term. In the next one we would like to also use, to some extent, the 
exponential term. If we shift all the probabilities by multiplying them by a factor of β > 1, the total success probability 
would be approximately β�−1/τ if x = 1 and β(2e)−β if x = �. Thus by setting β = log2e �/τ we maximize both these 
values.

1 Algorithm: FRLB(r, τ̄ )

2 for i ← 1 to τ̄ do pi ← �−i/τ̄ · log2e �/τ̄
3 repeat r times
4 Uniform (τ̄ , p1, p2, . . . , pτ̄ )

The following lemma makes this above intuition precise and gains a log-factor in performance in algorithm FRLB (Fast 
Robust Local Broadcast) compared to RLB. As part of this analysis, we add a second statement to our lemma that will 
prove useful during our subsequent analysis of global broadcast. The correctness of this second lemma is a straightforward 
consequence of the analysis similar to the proof of Lemma 4. (Proof of Lemma 5 is deferred to Appendix.)

Lemma 5. Fix any receiver v ∈ R and error bound ε > 0. It follows:

1. FRLB(2�ln(1/ε)� ·�4e2�1/τ̄ τ̄ / log2e ��, τ̄ ) completes local broadcast with a single receiver in time O  
(

�1/τ̄ ·τ̄ 2

log �
· log (1/ε)

)
with 

probability at least 1 − ε , for any ε > 0,
2. FRLB(2, τ̄ ) completes local broadcast with a single receiver with probability at least log2e �

4e2�1/τ̄ τ̄
.

In Lemmas 4 and 5 we studied the fate of a single receiver in R during an execution of algorithms RLB and FRLB. 
Here we apply this result to bound the time for all nodes in R to receive a message, therefore solving the local broadcast 
problem. In particular, for a desired error bound ε , if we apply these lemmas with error bound ε ′ = ε/n, then we end up 
solving the single node problem with a failure probability upper bounded by ε/n. Applying a union bound, it follows that 
the probability that any node from R fails to receive a message is less than ε . Formally:

Theorem 6. Fix an error bound ε > 0. It follows that algorithm FRLB(2�ln(n/ε)� · �4�1/τ̄ τ̄ / log ��) solves local broadcast in 
O  
(

�1/τ̄ ·τ̄ 2

log2e �
· log (n/ε)

)
rounds, with probability at least 1 − ε .
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Fig. 1. A graph used in proofs of Theorems 7 and 8. Solid lines correspond to edges in E and dashed lines correspond to edges in E ′ \ E (unreliable edges).

3.2. Lower bound

Observe that for τ = �(log �), FRLB has a time complexity of O (log � log n) rounds for ε = 1/n, which matches the 
performance of the optimal algorithms for this problem in the standard radio model. This emphasizes the perhaps surprising 
result that even large amounts of topology changes do not impede simple uniform broadcast strategies, so long as there is 
independence between nearby changes.

Once τ drops below log �, however, a significant gap opens between our model and the standard radio network model. 
Here we prove that gap is fundamental for any uniform algorithm in our model.

In the local broadcast problem, a receiver from set R can have between 1 and � neighbors in set B . The neighbors 
should optimally use probabilities close to the inverse of their number. But since the number of neighbors is unknown, the 
algorithm has to check all the values. If we look at the logarithm of the inverse of the probabilities (call them log-estimates) 
used in Lemma 4 we get i log �/τ , for i = 1, 2, . . . , τ—which are spaced equidistantly on the interval [0, log �]. The goal 
of the algorithm is to minimize the maximum gap between two adjacent log-estimates placed on this interval since this 
maximizes the success probability in the worst case. With this in mind, in the proof of the following lower bound, we look 
at the dual problem. Given a predetermined sequence of probabilities used by an arbitrary uniform algorithm, we seek the 
largest gap between adjacent log-estimates, and then select edge distributions that take advantage of this weakness.

Theorem 7. Fix a maximum degree � ≥ 10, stability factor τ ≤ log(� − 1)/16, and uniform local broadcast algorithm A. Assume 
that A guarantees with probability at least 1/2 to solve local broadcast in f (�, τ ) rounds when executed in any dual graph network 
with maximum degree � and fading adversary with stability τ . It follows that f (�, τ ) ∈ �(�1/τ τ/ log �).

Proof. Consider the dual graph G = (V , E) and G ′ = (V , E ′), defined as follows: V = {v, u, v1, . . . , vn−2} and E = {{u, vi}, i ∈
{1, 2, . . . , � − 1}} ∪ {{v1, v}, {v, v�}} ∪ {{vi, vi+1}, i ∈ {�, . . . , n − 3}} and E ′ = E ∪ {{vi, v}, i ∈ {2, 3, . . . , � − 1}} (see Fig. 1). 
We will study local broadcast in this dual graph with B = {u, v1, v2, . . . , v�−1} and R = {v}. Observe that the maximum 
degree of any node is indeed � and the number of nodes is n. Nodes v�, v�+1, . . . , vn−2 do not belong to B ∪ R hence are 
not relevant in our analysis.

Using the sequence of probabilities p1, p2, . . . used by algorithm A we will define a sequence of distributions over the 
edges that will cause a long delay until node v will receive a message. The adversary we define is allowed to change the 
distribution every τ steps. Accordingly, we partition the rounds into phases of length τ , which we label 1, 2, 3, . . . . Phase 
k consists of time steps Ik = {1 + k · τ , 2 + k · τ , . . . , (k + 1) · τ }. For each phase k ≥ 1, the adversary will use a distribution 
Dk that’s defined with respect to the probabilities used by A during the rounds in phase k. In particular, let sequence 
Pk = {pi}i∈Ik be the τ probabilities used by A during phase k.

We use Pk to define the distribution Dk as follows. Define �̇ = � − 1 and let N represent �log �̇� urns labeled with 
numbers from 1 to �log �̇�. Into these urns we place balls with numbers �log(1/p j)� and �log(1/p j)� for all j ∈ Ik . Ball with 
number i is placed into the bin with the same number. Any probability lower than 1/�, we treat as equal to 1/�. Note that 
with this we never decrease the probability of success of algorithm A. With this procedure for each j, we place two balls in 
adjacent bins if �log(1/p j)� �= �log(1/p j)� and a single ball in the opposite case. We arrange the bins in a circular fashion 
i.e., bins �log �̇� and 1 are consecutive and we want to find the longest sequence of consecutive empty bins. Observe that 
since for each j we put either a single ball or two balls into adjacent bins we have at most τ sequences of consecutive 
empty bins. Moreover, since at most 2τ bins contain a ball then there exists a sequence of consecutive empty bins of length 
at least �log �̇�−2τ

τ . Knowing that τ is an integer and that τ ≤ log �̇/16 we can show that: �log �̇�−2τ
τ ≥

⌊
log �̇

τ

⌋
− 2. We 

define:

x = �log �̇/τ� − 3 − �log(�ln �̇/τ�)�,
y = �log (�ln �̇/τ�)� + 1.
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We observe that for τ ≤ log �̇/16 we have log (�ln �̇/τ�) ≥ 4 hence x and y are both positive integers and moreover 
x + y = �log �̇/τ� − 2. Hence we already showed that there exists a sequence of consecutive empty bins of length at least 
x + y. Now, we pick the label of (y +1)-st bin in this sequence (the order of bins is according to the circular arrangement i.e., 
1 comes after �log �̇�) and call it ak . Let Ak = {log(1/p j) : j ∈ Ik}. This set contains logarithms of all the estimates “tried” by 
the algorithm in k-th phase. Now we split Ak into elements that are larger and that are smaller than ak : Ak = A(≥)

k ∪ A(<)

k , 
A(≥)

k = {a ∈ Ak : a ≥ ak}, A(<)

k = {a ∈ Ak : a < ak}. We observe that if a ∈ A(<)

k then a ≤ ak − y because there are y empty bins 
between bin ak and the bin containing ball �a�. Symmetrically if a ∈ A(≥)

k then a ≥ ak + x − 1 because there are x − 1 empty 
bins between bin ak and the bin containing ball �a�.

In our distribution Dk in phase k, we include all edges from E , plus a subset of size 2ak − 1 selected uniformly from 
E ′ \ E . This is possible since the adversary can choose to activate any subset of links among the set {{vi, v}, i ∈ {2, . . . , �̇}}. 
With this choice, the degree of v is 2ak in phase k hence we can bound the probability that a successful transmission occurs 
in phase k.

Having chosen the distribution of the edges between v and {v1, v2, . . . , v�̇} we can now bound the probability of a 
successful transmission in any step t in the considered phase. Recall that the event of a successful reception of a message 
by v in step t is denoted by R(v)

t . For this event to happen exactly one of the 2ak nodes among {v1, v2, . . . , v�̇} that are 
connected to v need to transmit. We have:

Pr
[

R(v)
t

]
= 2ak pt · (1 − pt)

2ak −1.

Take any step t and the corresponding probability pt used by the algorithm. We know that ak is chosen so that ak ≥
log(1/pt) + y or ak ≤ log(1/pt) − x. We consider these cases separately:

Case 1: ak ≤ log(1/pt) − x + 1

Pr
[

R(v)
t

]
= 2ak · pt · (1 − pt)

2ak −1 ≤ 2ak−log(1/pt ) ≤ 2−x+1

= 2−�log �̇/τ�+4+�log(�ln �̇/τ�)� ≤ 2− log �̇/τ+log(�ln �̇/τ�)+5

≤ 32�ln �̇/τ�
�̇1/τ

≤ 32 ln �̇

�̇1/τ τ
.

Case 2: ak ≥ log(1/pt) + y

Pr
[

R(v)
t

]
= 2ak · pt · (1 − pt)

2ak −1 = 2ak pt

1 − pt
(1 − pt)

2ak ≤ 2ak pt

1 − pt
e−2ak pt .

We know that ak ≥ log(1/pt) + y and ak ≤ log �̇ thus pt ≤ 2y/�̇ hence since �̇ ≥ 9 we get 1/(1 − pt) ≤ 2. 
Moreover since 2ak pt ≥ 2y ≥ 4 we have e−2ai pt/2 < 1/(2ai pt) (because ex/2 > x for all x). Which gives in this case:

Pr
[

R(v)
t

]
< 2e−2ak pt/2 ≤ 2e−2y−1 ≤ 2e−�ln �̇/τ� ≤ 2�̇−1/τ ≤ 32 ln �̇

�̇1/τ τ
.

We have just shown that the probability that v receives a message in any step t of our fixed phase k is at most 32 ln �̇

�̇1/τ τ
. 

We can repeat this construction of distribution and get that in every step in every phase the success probability is at most 
32 ln �̇

�̇1/τ τ
. To conclude the proof, we apply a union bound to show that the probability that v receives a message in at least 

one of �̇1/τ τ/(64 ln �̇) − 1 steps, is strictly less than 1/2:

Pr

⎡
⎣ �̇1/τ τ/(64 ln �̇)−1⋃

t=1

R(v)
t

⎤
⎦≤

�̇1/τ τ/(64 ln �̇)−1∑
t=1

Pr
[

R(v)
t

]
<

1

2
. �

In our next theorem, we refine the argument used in Theorem 7 for the case where τ is a non-trivial amount smaller 
than the log � threshold. We will argue that for smaller τ , the complexity is �(�1/τ τ 2/ log �), which more exactly matches 
our best upper bound. We are able to trade this small amount of extra wiggle room in τ for a stronger lower bound because 
it simplifies certain probabilistic obstacles in our argument. Combined with our previous theorem, the below result shows 
our upper bound performance is asymptotically optimal for uniform algorithms for all but a narrow range of stability factors, 
for which it is near tight.

Theorem 8. Fix a maximum degree � ≥ 10, stability factor τ ≤ ln(� −1)/(12 log log(� −1)), and uniform local broadcast algorithm 
A. Assume that A guarantees with probability at least 1/2 to solve local broadcast in f (�, τ ) rounds when executed in any dual graph 
network with maximum degree � and fading adversary with stability τ . It follows that f (�, τ ) ∈ �(�1/τ τ 2/ log �).
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Proof. In this proof we will use the same graph as in Theorem 7. Let G = (V , E) and G ′ = (V , E ′). Let V =
{v, u, v1, . . . , vn−2} and let R = {u, v1, v2, . . . , v�−1} and E = {{u, vi}, i ∈ {1, 2, . . . , �}} ∪ {{v1, v}, {v, v�}} ∪ {{vi, vi+1}, i ∈
{�, . . . , n − 3}} and E ′ = E ∪ {{vi, v}, i ∈ {2, 3, . . . , �}} (see Fig. 1).

Let p1, p2, . . . be the fixed sequence of broadcast probabilities used by nodes in B running A. Using this sequence we 
will define a sequence of distributions over the edges that will cause a long time for this algorithm until node v will receive 
a message.

The adversary is allowed to change the distribution once every τ steps. Therefore we will define the k-th distribution 
Dk based on sequence Pk = (p(k−1)τ+1, p(k−1)τ+2, . . . , pkτ ) of probabilities and distribution Dk will be used in rounds 
(k − 1)τ + 1, (k − 1)τ + 2, . . . , kτ . Consider intervals of τ time steps (call such interval a phase) and the corresponding 
probabilities p j+i·τ ( j < τ ). Let us fix any phase k and consider values li = log(1/pi+(k−1)τ ), for i = 1, 2, . . . , τ . We denote 
�̇ = � − 1. As an adversary we are allowed to define an integer value l∗ ∈ [1, 2, . . . , �log �̇�] based on the l-values and 
define a distribution for phase k in which there are always 2l∗ active links between nodes v1, v2, . . . , vn and v . The success 
probability in i-th step of the considered phase is then

si+(k−1)τ = pi+(k−1)τ · 2l∗ · (1 − pi+(k−1)τ )2l∗−1.

Our goal as an adversary is to find in every phase k, such l∗ that minimizes 
∑τ

i=1 si+(k−1)τ . We will show that it is always 
possible to find such l∗ that 

∑τ
i=1 si+(k−1)τ = O (�̇−1/τ log �̇/τ ) = 	(�−1/τ log �/τ). This will give us that �(�̇1/τ τ/ log �̇)

phases of τ steps hence in total �(�1/τ τ 2/ log�) steps are needed to complete local broadcast with constant probability.
Consider the first phase (analysis of any subsequent phase is analogical). Assume by contradiction that there exists a 

choice of l1, l2, . . . , lτ such that for any choice of l∗ we have that 
∑τ

i=1 si ≥ c log �̇

�̇1/τ τ
, where c = 2409. We fix this choice of 

l-values l1, l2, . . . , lτ and we denote:

x = log �̇/τ + logτ − log ln �̇,

y = log(ln �̇/τ ),

x′ = log �̇/τ + 2 logτ − log ln �̇,

y′ = log(ln �̇/τ + 2 lnτ ).

First note that since τ ≤ ln(� − 1)/(12 log log(� − 1)), then:

x′ ≥ 12 log log �̇ − log ln �̇ ≥ 11 log log �̇ ≥ y′ (3)

Since τ < ln �̇/(12 log log �̇) we have that y ≥ 3. Observe that x + y = log �̇/τ and x′ + y′ ≤ log �̇/τ + 2 logτ − log ln �̇ +
log(ln �̇/τ + 2 lnτ ) = log �̇/τ + 2 logτ + log(1/τ + 2 lnτ/ ln �̇) ≤ log �̇/τ + 2 logτ + log 3. Let �∗ denote the number of 
active links between v and v1, v2, . . . , v�̇ in the considered phase and l∗ = log �∗ . In any step if �∗ is such that l∗ ≥ y′
then if we also have pi ≥ 2

3 then we get:

si = pi2
l∗(1 − pi)

2l∗−1 ≤ 2l∗

32l∗−1
≤ 3(ln �̇/τ + 2 lnτ )

eln �̇/τ+2 ln τ
≤ 9 ln �̇

�̇1/τ τ 2
, (4)

where the last inequality is true because τ ≥ 1 and lnτ ≤ ln �̇. This shows that the sum of all such si is at most 9 ln �̇

�̇1/τ τ
. 

Consider now only steps with pi < 2/3. Then:

si = 2l∗−li

(
1 − 1

2li

)2l∗−1

= 2l∗−li ·
(

1 − 1
2li

)2l∗

1 − pi
≤ 3 · 2l∗−li · e−2l∗−li

Recall that R(v)
i denotes the event that node v receives the message in i-th step of the considered phase (i.e., a single 

node out of v1, v2, . . . , v�−1 transmits in this round).

Pr
[

R(v)
i | li ≥ l∗ + x − 3

]
≤ 3 · 2−x+3 ≤ 24 ln �̇

�̇1/τ τ
(5)

Pr
[

R(v)
i | li ≥ l∗ + x′ − 1

]
≤ 3 · 2−x′+1 ≤ 6 ln �̇

�̇1/τ τ 2
(6)

Pr
[

R(v)
i | li ≤ l∗ − y

]
≤ 3 · 2y

e2y = 3 ln �̇

�̇1/τ τ
(7)

Pr
[

R(v)
i | li ≤ l∗ − y′ ]≤ 3 · 2y′

e2y′ = 3(ln �̇/τ + 2 logτ )

�̇1/τ τ 2
≤ 9 ln �̇

�̇1/τ τ 2
(8)
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Observe that for a fixed value of l∗ , for any i such that li /∈ [l∗ − y′, l∗ + x′ − 1] we have si ≤ 9 ln �̇

�̇1/τ τ 2 (by Equations (6), (8)). 

Hence the sum of all such values si is at most 9 ln �̇

�̇1/τ τ
. Hence we only need to find such l∗ that the sum of the values si for 

which the corresponding li ∈ [l∗ − y′, l∗ + x′] is less than (c−9) ln �̇

�̇1/τ τ
.

We denote the smallest and the largest l-values: lsm = mini∈{1,2,...,τ }{li} and llg = maxi∈{1,2,...,τ }{li}. We will prove two 
following claims about lsm and llg :

lsm ≤ x′ Observe that otherwise we can choose l∗ = 0 (�∗ is then equal to 1 which corresponds to exactly one active 
link between {v1, v2, . . . , v�̇} and v) and then by Equation (6) under this choice of l∗ all values si would satisfy 
si ≤ 6�̇−1/τ ln �̇

τ 2 (because if li ≥ x′ then pi < 2/3).

llg ≥ log �̇ − y′ If it is not the case, we choose l∗ = log �̇ and by Equation (8) we have that if pi < 2/3 then si ≤ 9 ln �̇

�̇1/τ τ 2

and by Equation (4) that if pi ≥ 2/3 then si ≤ 9 ln �̇

�̇1/τ τ 2 . And the sum of all values of si is at most 9 ln �̇

�̇1/τ τ
which 

contradicts our assumption.

Consider now interval 
1 = [lsm, llg]. Two previous claims showed that |
1| ≥ log �̇ − x′ − y′ . We can now consider the 
placement of values li on 
1 and analyze gaps between the adjacent values. Gap gi is the difference between the (i + 1)-st 
smallest and i-th smallest value out of all values l j . We want to show the following:

max
i

gi ≤ x′ + y′ (9)

Assume on the contrary that such a gap between li and l j exists. Then we pick l∗ = �li + y′� and observe that l∗ is an 
integer, and l∗ ≥ y′ hence for all i such that pi ≥ 2/3 by Equation (4) we have si ≤ 9 log �̇

�̇1/τ τ 2 . If pi < 2/3 then since l∗ is at 
least y′ larger than each smaller l-value and at least x′ − 1 smaller than each larger l-value, we have by Equations (6) (8)
that si ≤ 9 ln �̇

�̇1/τ τ 2 . Thus if any gap has value at least x′ + y′ then 
∑τ

i=0 si ≤ 9 ln �̇

�̇1/τ τ
which contradicts our assumption.

We know that there are at most τ − 1 gaps and that they cover area of at least log �̇ − x′ − y′ . Hence we can lower 
bound the average value of a gap:

d1 = log �̇ − x′ − y′

τ − 1
≥ log �̇ − log �̇/τ − 2 logτ − log 3

τ − 1

= log �̇(1 − 1/τ )

τ (1 − 1/τ )
− 2 logτ + log 3

τ
≥ log �̇

τ
− 2.

Thus there exists a gap with value at least d1. Knowing that y ≥ 3 we have d1 ≥ x + y −2 ≥ 1 and inside this gap we can find 
an integer value l∗1 that is at least y larger than the closest smaller l-value and at least x − 3 smaller than the closest larger 
l-value. Consider values of si with this choice of l∗ . By Equations (5) (7) if l∗ = l∗1, each si is at most 24�̇−1/τ ln �̇

τ . Consider 
now interval I1 = [l∗1 − y′, l∗1 + x′]. By Equations (6) and (8) for all i such that li /∈ I1 and pi < 2/3 we have si ≤ 9�̇−1/τ ln �̇

τ 2 . If 

pi ≥ 2/3 then also si ≤ 9�̇−1/τ ln �̇

τ 2 because l∗1 ≥ lsm ≥ x′ ≥ y′ . Thus the sum of all si for which li /∈ I1 or pi ≥ 2/3 is at most 
9�̇−1/τ ln �̇

τ . Since by the assumption, the sum of all si is at least c ln �̇

�̇1/τ τ
then the sum of all si for which li ∈ I1 and pi < 2/3

has to be at least 2400 ln �̇

�̇1/τ τ
. By the choice of l∗1, each si for which li ∈ I1 and pi ≥ 2/3 is at most 24 ln �̇

�̇1/τ τ
hence we must have 

at least 100 such l-values. We have shown that there are at least 100 l-values inside interval I1.
We find the smallest and the largest l-values inside I1.

l(1)
sm = min

i∈{1,2,...,τ }
{li : li ∈ I1}

l(1)

lg = max
i∈{1,2,...,τ }

{li : li ∈ I1}

We consider interval 
2 = 
1 \ (l(1)
sm , l(1)

lg ) (we remove the interior of the interval [l(1)
sm , l(1)

lg ] keeping the endpoints). We know 
that we removed at least 98 l-values. Since the l-values have to work for any l∗ we can now argue about the average value 
of a gap inside 
2 and locate a different value l∗2 in the remaining interval and identify 100 l-values close to l∗2. But we need 
to make sure that |l∗1 − l∗2| ≥ x′ + y′ since otherwise we would count the same l-values twice.

We extend the interval I1 to I ′1 = [l∗1 − (x′ + y′), l∗1 + (x′ + y′)] and we find the smallest l-value larger than any l-value 
inside I ′1 (call it l′ (1)

sm ) and the largest l-value smaller than any l-value inside I ′1 (call it l′ (1)

lg ). If both these values exist, 

we consider interval 
∗
2 = 
1 \ (l′ (1)

sm , l′ (1)

lg ) (we remove the interior of the interval [l′sm, l′lg] keeping the endpoints). If l′sm

does not exist (there is no such l-value), we define 
∗
2 = 
1 \ [lsm, l′ (1)

lg ) and symmetrically if l′ (1)

lg does not exist we set 


∗ = 
1 \ (l′ (1)
sm , llg].
2
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Now we want to show that 
∗
2 ≥ |
1| − 5(x′ + y′). It is because |I ′1| = 2(x′ + y′) and by Equation (9), value of any gap is 

at most x′ + y′ hence distance between l∗1 − (x′ + y′) and l′sm is at most x′ + y′ (similarly between l∗1 + (x′ + y′) and l′lg ). If 
l′sm or l′lg does not exist we remove additionally no more than x′ + y′ because the smallest l-value that is most x′ and the 
largest is at least log �̇ − y′ . This shows that we remove the total area of at most 5(x′ + y′).

Now we consider the average value of a gap in 
∗
2. We removed at least 98 l-values (because I∗1 contains I ′1) and area of 

at most 5(x′ + y′) ≤ 5 log �̇/τ + 10 logτ + 5 log 3. Hence the average value of a gap in 
∗
2 is:

d2 ≥ log �̇ − 6(x′ + y′)
τ − 98

≥ log �̇

τ
.

We pick a gap with value at least log �̇
τ and find an integer l∗2 at least y larger than the closest smaller l-value and at least 

x − 1 smaller than the closest larger l-value. Observe moreover that |l∗2 − l∗1| ≥ x′ + y′ because l∗2 does not belong to the 
interior of interval I ′1. We define I2 = [l∗2 − y′, l∗2 + x′]. Observe that I1 and I2 are disjoint (except possibly their endpoints). 
We can now argue that I2 also contains 100 l-values similarly as I1. And moreover at most one l-value can be shared 
between I1 and I2 (because the interiors of the intervals are disjoint). And now we extend I2 to I∗2, construct 
3 and 
∗

3
and repeat the whole procedure. In every iteration of this procedure we identify and remove at least 98 unique l-values 
hence it can last for at most τ/98 iterations. But we remove at most 5 log �̇/τ + 10 logτ + 5 log 3 area (out of the original 
at least log �̇ − x′ − y′) per iteration. Since we assumed τ ≤ ln �̇/ log log �̇, then 5 log �̇/τ + 10 logτ + 5 log 3 ≤ 10 log �̇/τ . 
This leads to contradiction since there are only τ l-values and in each iteration we find 98 unique ones.

Hence for any choice of l1, . . . , lτ there exists l∗ such that 
∑τ

i=1 si < c ln �̇

�̇1/τ τ
. Thus by the union bound the algorithm 

needs to run for at least �̇1/τ τ/(c ln �̇) phases to accumulate the total probability of success of 1/2. Knowing that each 
phase lasts for τ rounds the total number of steps needed is �(�1/τ τ 2/ ln �) �
4. Global broadcast

We now turn our attention to the global broadcast problem. Our upper bound will use the same broadcast probability 
sequence as our best local broadcast algorithm from before. As with local broadcast, for τ ≥ log�, our performance nearly 
matches the optimal performance in the standard radio network model, and then degrades as τ shrinks toward 1. Our lower 
bound will establish that this degradation is near optimal for uniform algorithms in this setting. In this section we also use 
the notation τ̄ = min{τ , �log��}.

4.1. Upper bound

A uniform global broadcast algorithm requires each node to cycle through a predetermined sequence of broadcast proba-
bilities once it becomes active (i.e., has received the broadcast message). The only slight twist in our algorithm’s presentation 
is that we assume that once a node becomes active, it waits until the start of the next probability cycle to start broadcasting. 
To implement this logic in pseudocode, we use the variable T ime to indicate the current global round count. We detail this 
algorithm below. (Notice, the FRLB(2) is the local broadcast algorithm analyzed in Lemma 5).

1 Algorithm: RGB(ε)

2 Wait until receiving the message
3 Wait until (T ime mod 2τ̄ ) = 0
4 repeat �ln (2n/ε)� · �4�1/τ̄ τ̄ / log �� times
5 FRLB(2)

Theorem 9. Fix an error bound ε > 0. It follows that algorithm RGB(ε) completes global broadcast in time O  
(
(D + log(n/ε)) · �1/τ̄ τ̄ 2

log �

)
, 

with probability at least 1 − ε .

Proof. Similarly to the analysis of the local broadcast algorithms, we consider only the case of τ ≤ log � since for any larger 
τ we use the algorithm for τ = log�. Take any station u and assume that some positive number of neighbors of u in E
execute in parallel procedure FRLB(2). Then by Lemma 5 station u receives a message from some neighbor with probability 
at least ln �

4�1/τ τ
. Note that the same number of neighbors of u have to execute both procedures Uniform of FRLB(2) and 

at least one of these neighbors has to be connected to u by a reliable link. This is true since after receiving the message, 
a station waits until a time slot that is a multiple of 2τ (Line 3 in the pseudocode). Hence we can treat each execution of 
FRLB(2) as a single phase.

Let o denote the originator of the message. Fix any tree T of shortest paths on graph G (e.g., BFS Tree) on edges from 
E (reliable) rooted at o. We would like to bound the progress of the message on tree T . For any station u we can denote 
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by p(u) the parent of u in tree T . For any station u we can define the earliest time step T (u) in which p(u) receives 
the message. We set T (u) = ∞ if the message does not reach p(u). If T (u) < ∞ we consider �ln(2n/ε)� · �4�1/τ τ/ log��
phases that follow step T (u). A phase is called successful if it succeeds in delivering the message to u and unsuccessful
otherwise. Note that (assuming that T (u) < ∞) the probability that all phases are unsuccessful for any fixed u is at most(

1 − ln�

4�1/τ τ

)�ln(2n/ε)�·�4�1/τ τ/ log ��
≤ e−�ln(2n/ε)� = ε

2n
. (10)

Let us denote by S the event that T (u) < ∞ for all stations u. And by Si we denote the event that T (u) < ∞ for all stations 
at distance at most i from the root in tree T . If di denotes the number of stations at distance i from the root in tree T we 
get:

Pr[ S ] = Pr[ S D ] ≥ Pr[ S D |S D−1 ] Pr[ S D−1 ]

≥ Pr[ S1 ]
D∏

i=2

Pr[ Si|Si−1 ]

≥
D∏

i=1

(
1 − εdi

2n

)
by (10) and union bound

≥ 1 −
D∑

i=1

εdi

2n
by Lemma 3

= 1 − ε

2
.

If event S takes place, the message reaches all the nodes of the network. Clearly it can reach node u not necessarily from 
its parent p(u) in tree T , but this would only help in our analysis (it will cause the message to arrive at u faster). Now 
we want to bound the number of phases it takes for the message to traverse a path in the tree. Fix any station u and let 
P = (o, v1, v2, . . . , v D ′−1, u) denote the path from o to u in tree T (note that D ′ ≤ D). We denote by Ri the round in which 
vi receives the message (R D ′ denotes the round in which u receives the message) and introduce random variables �i =
max{0, Ri − Ri−1}. Conditioning on event S , variables �i are stochastically dominated by independent geometric random 
variables with success probability ln �

4�1/τ τ
. We have D ′ such variables and the probability that sum T of them exceeds L =

4(D ′ + ln(2n/ε)) · 7�1/τ τ
log �

= E [ T ] ·4(1 + ln(2n/ε)/D ′) can be bounded using [13, Theorem 2.3]. Denote λ = 4(1 + ln(2n/ε)/D ′)
and observe that (λ − 1)/2 ≥ ln λ is true since λ > 4. We get:

Pr[ T ≥ L ] = Pr[ T ≥ E[ T ] · λ ]

≤ 1

λ
·
(

1 − ln�

4�1/τ τ

)(λ−1−ln λ)E[ T ]

≤ 1

λ

(
1 − ln�

4�1/τ τ

)E[ S ](λ−1)/2

≤ 1

λ
e− 3

2 D ′−2 ln(2n/ε) ≤ ε2

4n2
,

and by taking the union bound over all stations u, we get that with probability at least 1 − ε2/(4n) the message reaches all 
nodes within time 4(D + ln(2n/ε)) · 4�1/τ τ

log �
, conditioned on S . Since S takes place with probability at least 1 −ε/2 and since 

each phase takes 2τ time steps, this shows that the algorithm works within time 8(D + ln(2n/ε)) · 4�1/τ τ 2

log �
with probability 

at least (1 − ε/2)(1 − ε2/(4n)) ≥ 1 − ε . �
4.2. Lower bound

The global broadcast lower bound of �(D log(n/D)), proved by Kushilevitz and Mansour [17] for the standard radio 
network model, clearly still holds in our setting, as the radio network model is a special case of the dual graph model 
where E ′ = E . Similarly, the �(log n log �) lower bound proved by Alon et al. [1] also applies.3 It follows that for τ ≥ log�, 
we almost match the optimal bound for the standard radio network model, and do match the time of the seminal algorithm 
of Bar-Yehuda et al. [2].

3 This bound is actually stated as �(log2 n), but � = 	(n) in the lower bound network, so it can be expressed in terms of � as well for our purposes 
here.
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Fig. 2. A graph used in proof of Theorem 10.

For smaller τ , this performance degrades rapidly. Here we prove this degradation is near optimal for uniform global 
broadcast algorithms in our model. We apply the obvious approach of breaking the problem of global broadcast into multiple 
sequential instances of local broadcast (though there are some non-obvious obstacles that arise in implementing this idea). 
As with our local broadcast lower bounds, we separate out the case where τ is at least a 1/ log log � factor smaller than 
our log� threshold, as we can obtain a slightly stronger bound under this assumption.

Theorem 10. Fix a maximum degree � ≥ 10, stability factor τ , diameter D ≥ 24 and uniform global broadcast algorithm A. Assume 
that A solves global broadcast in expected time f (�, D, τ ) in all graphs with diameter D, maximum degree � and fading adversary 
with stability τ . It follows that:

1. if τ < ln(� − 1)/(12 log log(� − 1)) then f (�, D, τ ) ∈ �(D�1/τ τ 2/ log �),
2. if τ < ln(� − 1)/16 then f (�, D, τ ) ∈ �(D�1/τ τ/ log�).

Proof. We assume first that D is divisible by 3 (if it is not we can decrease D by one or two nodes to make it divisible 
by 3, without impacting the asymptotic bounds). We construct the dual graph G, G ′ by connecting together D/3 gadgets, 
G1, G2, . . . , GD/3, as shown in Fig. 2. In particular, each gadget Gi is the same graph structure used to prove our local 
broadcast lower bound. Formally, for each i = 1, 2, . . ., D/3, gadget Gi is a dual graph Gi = (V i, Ei), G ′

i = (V i, E ′
i) where Ei =

{{ui, v
(i)
j } : j = 1, 2, . . . , � − 1} ∪ {{v(i)

1 , vi}}, E ′
i = Ei ∪ {{v(i)

j , vi}, j = 2, 3, . . . , � − 1}. We denote the set of edges connecting 
the gadgets by Ec = {{vi, ui+1} : i = 1, 2, . . . , D/3 −1}. Finally we can define the total set of nodes and edges in the complete 
dual graph G = (V , E) and G ′ = (V , E ′) as follows: V =⋃D/3

i=1 V i , E = Ec ∪⋃D/3
i=1 Ei , E ′ =⋃D/3

i=1 E ′
i . We will show statement 1

by applying Theorem 8 to each gadget, statement 2 can be shown using the same proof by applying Theorem 7.
We bound the dissemination of a broadcast message in this graph originating at node u1 . We can view the progression 

of the message through the chain of gadgets G1, G2, . . . , GD/3 as a sequence of local broadcasts. When the message arrives 
at a node ui , it is propagated to nodes v(i)

1 , v(i)
2 , . . . , v(i)

�−1 and at this step delivering the message to vi is exactly the local 
broadcast problem considered in Theorem 8. In this theorem we constructed a sequence of distributions that yields a high 
running time. The distribution changes every exactly τ steps i.e., we have a distribution Dk for steps 1 + (k − 1)τ , 2 +
(k − 1)τ , . . . , kτ . We cannot immediately apply the result for local broadcast because the adversary might not be allowed 
to change the distribution immediately when the message arrives in a gadget. Moreover in the global broadcast problem, 
stations are allowed to delay the transmissions for some number of steps. We can easily solve this problem by keeping 
the “first” distribution D1 in each gadget until the message reaches the gadget, at which point the adversary can start the 
sequence of changes specified by the local broadcast lower bound.

More precisely, we denote sequence p1, p2, . . . of probabilities used by algorithm A and we denote subsequences Pk =
(p1+(k−1)τ , p2+(k−1)τ , . . . , pkτ ). We want to use distributions D1, D2, . . . from Theorem 8 in such a way that if i is the 
furthest gadget reached by the message and its nodes are in phase k (i.e., are using probabilities from sequence Pk) then 
distribution in gadget Gi is Dk . If the message has not reached the gadget yet, distribution in the gadget is D1. Finally if 
the message already reached node vi in gadget Gi for any i we do not change the distribution in this gadget any more. We 
need to show that with this construction we do not need to change the distribution more frequently than once per τ steps. 
This is true because we only change the distribution in the furthest gadget (call it Gi ) reached by the message and moreover 
we change it from Dk to Dk+1 only after the stations v(i)

1 , v(i)
2 , . . . , v(i)

�−1 have finished transmitting with probabilities Pk , 
which takes at least τ steps (it might take more because stations might delay transmitting with probabilities P1).

Let us define random variables Xi for i = 1, 2, . . . , D/3 as the number of time steps it takes for nodes v(i)
1 , v(i)

2 , . . . , v(i)
�−1

to deliver the message to vi . More precisely it is the number of steps between the first step when the stations 
v(i)

1 , v(i)
2 , . . . , v(i)

�−1 transmit with probability p1 and the step in which the first successful transmission delivers the message 
to vi (including the step of the successful transmission). Note that the steps during which the stations v(i)

1 , v(i)
2 , . . . , v(i)

�−1
delay transmitting until the beginning of the next probability cycle are not counted in variable Xi . The steps counted by 
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variable Xi can be seen as local broadcast. By Theorem 8 we have that Pr
[

Xi ≤ �̇1/τ τ 2/(c ln �̇)
] ≤ 1/2 for some constant 

c > 1. Moreover variables Xi are independent because choices of the stations in each gadget are independent. We can de-
fine binary variables Yi taking value 1 if Xi > �̇1/τ τ 2/(c ln �̇) and 0 otherwise. We can use Chernoff bound to lower bound 
Y =∑D/3

i=1 Yi . By the assumptions on D we have that E [ Y ] ≥ 4 (because E [ Yi ] ≥ 1/2), hence

Pr[ Y ≤ E[ Y ] /2 ] ≤ e−E[ Y ]/8 ≤ 2

3

Observe that Y · �̇1/τ τ 2/(c ln �̇) lower bounds the time of the global broadcast. This shows that the global broadcast needs 
�(D�1/τ τ 2/ ln �) steps with probability at least 1/3.

If D is not divisible by 3 we construct our graph with diameter 3�D/3� and attach a path of D − 3�D/3� (one or two) 
vertices to node v D1/3. This cannot decrease the time of broadcast hence we get the bound �((D − 2)�1/τ τ 2/ log �) =
�(D�1/τ τ 2/ log �). �
5. Correlations

Here we explore a promising direction for the study of broadcast in realistic radio network models. In particular, the 
fading adversary studied above assumes that the distribution draws are independent. As we will show, interesting results 
are still possible when considering the even more general case where the marginal distributions in each step are not 
necessarily independent in each round. More precisely, in this case, the adversary chooses a distribution over sequences of 
length at least τ of the sets of unreliable edges. A sequence from this distribution is used to determine which unreliable 
edges are active in successive steps. The adversary after a least τ steps can decide to change the distribution. In this model, 
we first show a simple lower bound that any uniform algorithm using a short list of probabilities of length l (our algorithms 
in previous sections always used list of length min{τ , log �}) needs time �(

√
n/l2) for some graphs. Our lower bound uses 

distributions over sequences of graphs in which the degrees of nodes change by a large number in successive steps. Such 
large changes in degree turn out to be crucial as we show that if in the sequence taken from the distribution chosen by 
the adversary, in every step in expectation only O (�1/(τ−o(τ ))) edges adjacent to each node can be changed then we can 
get an algorithm working in time O (�1/τ τ log(1/ε)) with probability at least 1 − ε and using list of probabilities of length 
O (min{τ , log�}).

5.1. A lower bound for correlated distributions

The following lower bound shows that any simple back-off algorithm, similar to the ones presented in Section 3, that 
uses at most log2 � probabilities requires time �(

√
�/ log2 �) if arbitrary correlations are permitted.

Proposition 1. Any uniform local broadcast algorithm that repeats a procedure consisting of l probabilities requires expected time 
�(

√
�/l2) in some graph with � = n − 2 even if τ = ∞.

Proof. Denote the procedure that is being used by the algorithm by P . Assume for simplicity that 
√

� is a natural number. 
We take as a graph a connected pair of stars (a similar graph was used in Theorem 7).

The first star has arms v1, v2, . . . , v� and center at u. In the first star, arms v1, v2, . . . , v� are connected to center u
by reliable edges. The second star has arms v1, v2, . . . , v� and center at v . In the second star, connection from v1 to v is 
reliable and all other connections are unreliable. Note that by such construction, graph G is connected. All nodes, except v , 
are initially holding a message.

The single distribution is defined in the following way. Let ei = min{1/pi, �} for i = 1, 2, . . . , l be the estimates used by 
procedure P . Let

ēi =
{

1 if ei ≥ √
�,

� if ei <
√

�.

Let s be a number chosen uniformly at random from {1, 2, . . . , l}. In our distribution, the degree of v in step t is dt = ē1+rt , 
where rt is the remainder of t + s modulo l. This means that depending on the probabilities used by the algorithm, either 
all the unreliable connections are active or none of them. Observe that before the algorithm starts, the distribution of the 
degree of node v in each step is simply a uniform number from multiset {ē1, ̄e2, . . . , ̄el}. But after step 1, the sequence of 
degrees of v becomes deterministic and depends only on the value s of the shift. The dependencies are designed in such a 
way that if s = l (which happens with probability 1/l) then in any step t of the algorithm, the probability pt used by the 
algorithm satisfies either pt · dt ≥ √

� or pt · dt < 1/
√

�. This means by Lemma 1 that the success probability is at most 
1/

√
� in each step and hence by the union bound the success probability in the whole procedure is at most l/

√
�. Thus 

with probability at least 1/l the algorithm has to repeat procedure P at least 
√

�/(2l) times to get a constant probability 
of success. Hence the expected time is �(

√
�/l2). �
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5.2. Locally limited changes

The previous section shows that under an adversary that is allowed to use arbitrary correlations then any simple proce-
dure need polynomial time in the worst case.

In this section we want to consider the adversary that can use correlations but cannot change the degree too much in 
successive steps. Of course once every at most τ steps the adversary is allowed to define a completely new distribution 
over the unreliable edges. We want to argue that it is possible to build a simple algorithm resistant to such an adversary. 
Intuitively the changes of the degree are problematic only if the changes are by a large (non-constant) factor. Note by 
Lemma 1 that if we perturb the effective degree by only a constant factor then the bound also changes only by a constant 
factor. Hence in order to design an algorithm that is immune to such changes we should add more “coverage” to the 
small-degree nodes. We do this by enhancing each phase of algorithm RLB with additional steps in which we assume 
that the effective degree of a node is small. The adversary may try to avoid the successful transmission in these steps 
by changing the degree (the adversary knows the probabilities used by the algorithm). But having the restriction on the 
distance the adversary can move the degree allows us to define overlapping “zones” such that in two consecutive steps we 
are sure to find the degree in one of the zones. We also have to make sure that the whole phase of the new algorithm fits 
into τ steps.

Now we present algorithm RLBC (Robust Local Broadcast with Correlations). We first show that the algorithm works 
under (l, τ )-deterministic adversary that can change at most l edges adjacent to each node per round and all the edges 
from E ′ \ E once every at most τ rounds. Our algorithm will be resistant to deterministic adversary that can change at most 
τ�1/(τ−o(τ )) edges adjacent to each node in every step.

Then we show that it also works under restricted fading adversary with parameters τ and l. Restricted fading adversary 
can change the distribution arbitrarily once every at most τ steps, if the distribution is not changed then the expected 
change of the degree of any node can be at most l. Under these restrictions, the adversary can design arbitrary correlations 
between successive steps. We show that RLBC works with restricted fading adversary with l of at most �1/(τ−o(τ )) .

1 Algorithm: RLBC(r, τ )

2 τ̄ = min{�log2e �/2�, τ }
3 a ← �τ̄ / log2e τ̄�
4 k ← ��1/(τ−2a)�
5 e1 ← k · a

6 e2 ← k2 · τ · a
7 repeat 2r times
8 RLB(1, τ̄ − 2a)
9 repeat a times

10 Uniform (1/e1)
11 Uniform (1/e2)

Theorem 11. If τ ≥ 1000 Algorithm RLBC(8e�ln(1/ε)�1/τ �, τ ) solves local broadcast in the presence of 
(⌊

�
1

τ−2�τ/ log2e τ�
⌋

τ/2, τ

)
-

deterministic adversary in time O (�1/τ τ log(1/ε)) with probability at least 1 − ε .

Proof. Assume that τ ≤ �log2e �/2� and note that in this case τ̄ = τ . In the opposite case we use the algorithm for τ =
�log2e �/2� which works also for any larger τ . Denote k = ��1/(τ−2a)�, l = kτ/2 and observe that for τ ≥ 1000 we have 
a > 200 and τ − 2a ≥ τ/2 and k ≥ 2. We divide the time into intervals of length τ , called cycles. In each interval algorithm 
RLBC repeats the same probabilities. In the first τ −2a steps of the cycle it uses probabilities pi = k−i for i = 1, 2, . . . , τ −2a, 
in the next 2a steps it uses probabilities 1/e1 and 1/e2. We take two consecutive cycles and note that in each such a pair 
of cycles we can find τ consecutive steps in which the distribution over the unreliable edges is the same (since global 
changes can happen at most once every τ steps) and moreover the algorithm uses all the probabilities from a cycle. Let 
us call a sequence of these steps T = [t, t + 1, . . . , t + τ − 1]. Note that in this sequence we have either one full procedure
RLB(1, τ − 2a) or parts of two procedures RLB(1, τ − 2a) (call them R1 and R2). In the second case sequence T contains 
some suffix of R1 and some prefix of R2. Connect these steps together into a procedure R , which contains all steps of 
procedure RLB(1, τ − 2a) executed in a possibly different order. Fix a receiver v and assume that at least one reliable 
neighbor of v tries to transmit a message to v . We want to show that in each such a pair of cycles v receives the message 
independently with probability at least ps = 1

8ek .
We know by the definition of the adversary that the effective degree cannot change by too much between steps in the 

same cycle: |dt+i(v) −dt+i+1(v)| ≤ l for any i = 0, 1, . . . , τ −2. We can consider two cases depending on the effective degree 
in the first considered step t1:
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Case 1: dt(v) ≥ 2l2

Here we want to show that procedure R is successful with probability at least ps . Observe that here since l ≥ τ we have 
dt(v) ≥ dt(v)/2 + l2 ≥ dt(v)/2 + lτ . Thus for any i ∈ {1, 2 . . . , τ − 1} we have dt+i(v) ≥ dt(v) − lτ ≥ dt(v)/2 and dt+i(v) ≤
dt(v) + lτ ≤ 2dt(v) thus the effective degree in the whole considered sequence of steps can change by a factor of at most 2. 
Recall from the definition of RLB that it uses probabilities pi = k−i . Consider the smallest i such that 1/pi ≥ 2dt(v) by the 
minimality of i we have that 1/(kpi) ≤ 2dt(v). Probability pi is used in some step of sequence T . Call this step t∗ . We have:

1/pi ≥ 2dt(v) ≥ dt∗(v) ≥ dt(v)/2 ≥ 1/(4kpi).

Thus by Lemmas 1 and 2:

Pr
[

R(v)
t∗
]

≥ min

{
(2e)−1,

(2e)−1/(4k)

4k

}
≥ 1

8ek
= ps.

Case 2: dt(v) < 2l2

Here we want to show that a successful transmission occurs with probability at least ps in one of the 2a additional steps 
(see lines 7 − 11 of the pseudocode).

Note that since dt(v) < 2l2 then for any i ∈ {1, . . . , τ − 1} we have dt+i(v) ≤ dt(v) + lτ ≤ 4l2. Pick two consecutive steps 
t + i, t +1 such that in step t + i the algorithm uses probability 1/e1 and in t + i +1 it uses 1/e2. Note that in the considered 
sequence we have at least a − 1 such pairs.

Case 2.1: dt+i(v) ≤ 2l Here the probability is 1/e1 and the degree is within interval [1, 2l] hence we have that:

τ

a
= 2l

e1
≥ dti

e1
≥ 1

e1
.

By Lemmas 1 2:

Pr
[

R(v)
t+i

]
≥ min

{
2l

e1
e−2l/e1 ,1/e1e−1/e1

}
≥ min

{
lnτ

τ
,

1

eka

}
≥ 1

eka
.

Case 2.2: 4l2 ≥ dt+i(v) > 2l Note that in this case dt+i+1(v) ∈ [l, 4l2] and the probability used in this step is 1/e2 hence:

τ

a
= 4l2

e2
≥ di+1(v)

e2
≥ 2l

e2
= 1

e1
,

and we can use Lemmas 1 and 2 exactly the same as in the previous case and obtain Pr
[

R(v)
t+i+1

]
≥ 1

eka .

In each pair the stations are making independent choices hence the probability of failure in all the pairs is by Lemma 3
at most:(

1 − 1

eka

)a−1

≤ 1 − a − 1

eka
+
(

a − 1

2

)
1

e2k2a2
≤ 1 − 1

2ek
,

where in the last inequality we used the fact that a > 20. Thus also in this case with probability at least 1/(2ek) ≥ ps node 
v receives a message during this cycle.

The two considered cases showed that any full two cycles deliver the message with probability at least ps . If we perform 
at least 2r = 2�ln(1/ε)/ps� = O (�1/τ ) cycles then the probability that v does not receive a message is at most (1 −
ps)

ln(1/ε)/ps ≤ ε . �
The case with deterministic adversary can be generalized to stochastic restricted adversary.

Theorem 12. If τ ≥ 1000 Algorithm RLBC(16e�ln(1/ε)�1/τ �, τ ) solves local broadcast in the presence of l-restricted fading adver-

sary using correlations with l =
⌊
�

1
τ (1−1/ log2e τ )

⌋
/4 in time O (�1/τ τ log(1/ε)) with probability at least 1 − ε .

Proof. Fix any receiver v . We know that RLBC(8e�ln(1/ε)�1/τ �, τ ) solves local broadcast in the presence of (lτ , τ )-deter-
ministic adversary. But in the case with arbitrary correlations we can still bound the probability that the degree of v does 
not change too much. Take any two consecutive steps t, t + 1. We have by Markov Inequality:

Pr[ |dt(v) − dt+1(v)| > 2τ l ] ≤ 1/(2τ )

If we pick τ steps like in the proof of Theorem 11 then by the union bound with probability at least 1/2 in each of these 
steps the degree changes by at most 2lτ . From now on we can use the same analysis as in Theorem 11 and we obtain only 
a constant slowdown compared to the case with deterministic adversary. Hence RLBC(16e�ln(1/ε)�1/τ �, τ ) solves local 
broadcast with restricted fading adversary with probability at least 1 − ε . �
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Appendix. Proof of Lemma 5

Proof. It is sufficient to prove the claim for τ ≤ log2e �. For τ > log2e � we use the algorithm for τ = log2e �. Note 
that any algorithm that is correct for some τ must also work for any larger τ because the adversary may not choose to 
change the distribution as frequently as it is permitted to. In the case where τ ≤ log2e � we get that �1/τ ≥ 2e. Moreover 
�−1/τ log2e �/τ = (2e)− log2e �/τ log2e �/τ ≤ 1/(2e) because log2e �/τ ≥ 1 hence pi ≤ 1/2.

We want to show that if some of the neighbors of v belong to B and execute the procedure Uniform(τ , p1, . . . , pτ )

twice, then v receives some message with probability at least log �/(4�1/τ τ ). Since we execute Uniform twice, we have 
a total of 2τ consecutive time slots out of which, by the definition of our model, at least τ consecutive slots have the 
same distribution of the edges in E ′ \ E and moreover stations try all the probabilities p1, p2, . . . , pτ . (not necessarily in 
this order).Let T denote the set of these τ time slots and for i = 1, 2, . . . , τ let ti ∈ T be the step in which probability pi is 
used. We define q1 = Pr

[
1 ≤ dt(v) ≤ �1/τ

]
, and for each i from 2 to τ we define qi = Pr

[
�(i−1)/τ < dt(v) ≤ �i/τ

]
, for any 

t ∈ T . Observe that the edge sets are chosen independently from the same distribution for t ∈ T hence probabilities qi do 
not depend on t during the considered τ rounds. Moreover since v ∈ R , then v is connected via a reliable edge to at least 
one node in B . This means that Pr[ dt(v) = 0 ] = 0, thus:

τ∑
i=1

qi = 1. (11)

We would like to lower bound the probability that v receives a message in step ti for i = 1, 2, . . . , τ :

Pr
[

R(v)
ti

]
≥ qi log2e �

2�1/τ τ
. (12)

In ti -th slot each station with a message transmits independently with probability is pi = �−i/τ · log2e �/τ and the trans-
mission choices done by the stations are independent from the choice of edges Eti active in round ti . Let Q i denote the 
event that �(i−1)/τ < dti (v) ≤ �i/τ . We have pi ≤ 1/2 hence we can use Lemmas 1 and 2 and get for i > 1:

Pr
[

R(v)
ti

]
≥ Pr

[
R(v)

ti
| Q i

]
· Pr[ Q i ]

≥ qi · min
{

Pr
[

R(v)
ti

| dti (v) =
⌊
�(i−1)/τ

⌋
+ 1

]
,Pr

[
R(v)

ti
| dti (v) = �−i/τ

]}
≥ qi · min

{
Pr
[

R(v)
ti

| dti (v) = �(i−1)/τ
]
,Pr

[
R(v)

ti
| dti (v) = �−i/τ

]}

≥ qi · min

{
�−1/τ log2e �/τ

(2e)�−1/τ log2e �/τ
,

log2e �/τ

(2e)log2e �/τ

}
.

Note that �−1/τ log2e �/τ ≤ 1 hence:

Pr
[

R(v)
ti

]
≥ qi log2e �

2e�1/τ τ
.

For i = 1 we get:

Pr
[

R(v)
t1

]
≥ Pr

[
R(v)

t1
| Q 1

]
· Pr[ Q 1 ]

≥ q1 · min

{
�−1/τ log2e �/τ

(2e)�−1/τ log2e �/τ
,

log2e �/τ

(2e)log2e �/τ

}
≥ q1 log2e �

2�1/τ τ
.

Since the edge sets are chosen independently in each step and the choices of the stations are also independent we have:



S. Gilbert et al. / Theoretical Computer Science 806 (2020) 489–508 507
Pr

[
τ∧

i=1

(
¬R(v)

ti

)]
=

τ∏
i=1

Pr
[
¬R(v)

ti

]
by independence

≤
τ∏

i=1

(
1 − qi log2e �

2e�1/τ τ

)
by Equation (12)

≤ 1 −
τ∑

i=1

qi log2e �

2e�1/τ τ
+

∑
1≤i< j≤n

qiq j log2
2e �

4e2�2/τ τ 2
by Lemma 3

≤ 1 − log2e �

2e�1/τ τ

τ∑
i=1

qi + log2
2e �

4e2�2/τ τ 2

(
n∑

i=1

qi

)2

= 1 − log2e �

2e�1/τ τ
+ log2

2e �

4e2�2/τ τ 2
, by Equation (11)

≤ 1 − log2e �

4e2�1/τ τ
,

where the last inequality is true since if we denote τ = (log2e �)/α (for α ≥ 1) then we have �1/τ τ = (2e)α log �/(2α) ≥
log� hence log2

2e �

4e2�2/τ τ 2 ≤ log2e �

4e2�1/τ τ
. This completes proof of 2. To prove 1 we observe that if we execute the procedure for 

2τ�ln(1/ε)� · �4e2 ·�1/τ τ/ log2e �� time steps we have at least �ln(1/ε)� · �4e2 ·�1/τ τ/ log2e �� sequences of τ consecutive 
time steps in which the distribution over the unreliable edges is the same and the algorithm tries all the probabilities 
{p1, p2, . . . , pτ }. Each of these procedures fails independently with probability at most 1 − log2e �/(4e2�1/τ τ ) hence the 
probability that all the procedures fail is at most:(

1 − τ log2e �

4e2 · �1/τ τ

)�ln(1/ε)�·�4e2·�1/τ τ/ log2e ��
≤ e−�ln(1/ε)� < ε �
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