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Abstract
In this paper, we study upper and lower bounds for contention resolution on a single hop fading channel; i.e., a channel
where receive behavior is determined by a signal to interference and noise ratio equation. The best known previous solution
solves the problem in this setting in O(log2 n/ log log n) rounds, with high probability in the system size n. We describe and
analyze an algorithm that solves the problem in O(log n+ log R) rounds, where R is the ratio between the longest and shortest
link, and is a value upper bounded by a polynomial in n for most feasible deployments. We complement this result with an
Ω(log n) lower bound that proves the bound tight for reasonable R. We note that in the classical radio network model (which
does not include signal fading), high probability contention resolution requires Ω(log2 n) rounds. Our algorithm, therefore,
affirms the conjecture that the spectrum reuse enabled by fading should allow distributed algorithms to achieve a significant
improvement on this log2 n speed limit. In addition, we argue that the new techniques required to prove our upper and lower
bounds are of general use for analyzing other distributed algorithms in this increasingly well-studied fading channel setting.

Keywords Contention resolution · Leader election · Wireless channel · Wireless algorithms · SINR model

1 Introduction

Contention resolution is one of the oldest and most impor-
tant problems in distributed computing. In its basic form,
an unknown set of nodes are activated and connected to a
shared multiple-access channel (MAC). The protocol com-
pletes when any active node transmits alone on the channel.
This problem (also, in some contexts, called wake-up or
leader election) was introduced in the seminal 1970 paper
on the ALOHA radio network [1]. In the decades that fol-
lowed, researchers have studied it under a wide variety of
assumptions concerning the MACmodel and algorithm con-
straints; e.g., [2,5,7,9,10,15,17,18,20,21,23]. This interest in
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contention resolution is well-deserved. From a theoretical
perspective, the problem reduces to most non-trivial tasks
in MAC models, and therefore lower bounds provide fun-
damental speed limits for distributed computation in these
settings. And from a practical perspective, algorithms for
contention resolution have been integrated into link-layer
implementations for numerous real world systems, includ-
ing Ethernet, fiber optic, packet-switch radio, and satellite
networks.

1.1 Our results

Westudy contention resolution in a fadingMACmodel—i.e.,
a model in which radio signal reception is determined by a
signal to interference and noise ratio (SINR) equation [19]
(see Sect. 2). Signal fading is a characteristic behavior of
radio communication. Therefore, by studying contention res-
olution on a fading MAC, we can probe the possibility of
leveraging this property to speed-up distributed computation
in the increasingly important radio network setting.

We study randomized algorithms using a fixed transmis-
sion power. We develop an algorithm that solves the problem
in O(log n+ log R) rounds, where n is the number of partic-
ipating nodes, and R describes the ratio between the longest
and shortest link in the network. (Here a “link” refers to
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two nodes that may choose to communicate.) In most fea-
sible deployments, R is upper bounded by a polynomial in
n,1 yielding performance in O(log n). Our algorithm solves
the problem with high probability in n, and does not require
any advance knowledge of n. By contrast, the best exist-
ing bound requires just under log2 n rounds [specifically,
O(log2 n/ log log n) rounds], and assumes advance knowl-
edge of n [16] (see the related work below).

We then match this upper bound with an Ω(log n)

lower bound that establishes our result’s optimality in most
networks. Our lower bound reduces a basic two-player
symmetry breaking problem to contention resolution in a
carefully constructed large fading network. This technique is
potentially applicable to other lower bounds for distributed
computation in fading models and is therefore of standalone
interest.

Finally, we note that in the standard non-fading radio net-
work model [2,3], the lower bound for contention resolution
—and therefore for many problems—is Ω(log2 n) rounds.
Our result improves this time by a square root, and therefore
resolves the long-standing conjecture that the ability to lever-
age spatial reuse in fading models should allow distributed
algorithms to significantly improve on this Ω(log2 n) speed
limit.

1.2 Our algorithm

A surprising attribute of our result is the simplicity of the
algorithm from which it derives:

Each participating node starts in an active state; at the
beginning of each round, each node that is still active
broadcasts with a constant probability p (that we fix in
our analysis); if an active node receives a message, it
becomes inactive.

Arguably, this algorithm represents the simplest possible
strategy for reducing contention, and yet it nonetheless
implicitly leverages spectrum reuse to provide a time bound
that is optimal in a fading model and beats the lower bounds
for non-fading models. This outcome was unexpected when
we began this investigation, and it is something we find to be
pleasingly elegant.

1 It is, of course, mathematically possible for R to be super-polynomial
in n—say, exponential in n—which would cause the log2 n bound to
dominate. In practice, however, once n grows beyond relatively small
numbers, to maintain such a large gap between link distances becomes
increasingly infeasible. Even a network size of only 20 nodes, for exam-
ple, would require that the longest link be on the order of a million times
longer than the shortest link.

1.3 Our techniques

The simplicity of our algorithm is counterbalanced by the
complexity of its analysis. The bulk of this paper is ded-
icated to showing that it terminates in O(log n + log R)

rounds. In more detail, a standard approach for analyzing
algorithms in a fading model is to divide nodes into link
classesbasedon thedistance to their nearest neighbors. Exist-
ing techniques based on packing arguments prove that nodes
in the smallest non-empty link class have limited contention.
Our algorithm should then “knock out" a constant fraction
of these nodes. These observations yield an O(log n log R)

bound, i.e., in the worst-case, we spend log n rounds empty-
ing each of the ≤ log R link classes, in order of smallest to
largest.

To break past the log n log R threshold, however, we must
show that many link classes can concurrently experience
limited contention. To show this fact requires two analyt-
ical innovations that we argue are of general use for the
study of distributed algorithms on fading channels. First,
we prove that a larger (in terms of link length) link class
can have many (though not all) nodes enjoying low con-
tention if there are not too many nodes in smaller link classes.
We show this in Sect. 3.2, fully exploiting the geometry of
the fading model. Among other tactics, when studying the
interference at a receiver from the same (and larger) link
classes, we take advantage of the small—but non-trivial—
gap between the quadratic growth of interfering nodes as
we move away from the receiver, and the super-quadratic
fading of signals, as captured by the standard assumption
that the fading exponent α is greater than 2. In the space
created by this gap, we are able, in some sense, to fit the
interference from the bounded number of smaller link class
nodes.

Second, we introduce a fitting strategy for bounding the
fluctuations in link class sizes as the execution proceeds.
As described in Sect. 3.3, we define a sequence of vec-
tors, q1, q2, . . ., where each qt is an upper bound on the
link class sizes. These vectors describe, roughly speaking,
how these link class sizes would decrease in an ideal exe-
cution. We then show that every execution eventually obeys
this steady progression. We note that the process of bound-
ing the link class sizes is complicated by two factors in
particular: (1) nodes can move between link classes during
an execution as their nearest neighbors are deactivated, so
progress is not monotonic; and (2) as link class sizes get
small [i.e., o(log n)], we can no longer make high probability
arguments about their sizes continuing to reduce. We over-
come these issues by carefully defining the q vectors, and a
careful treatment of probabilities in which we show that the
higher error probabilities of small link classes are balancedby
the geometrically decreasing error probabilities of the larger
classes.
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1.4 Related work

The study of contention resolution began with the random
access method introduced in the ALOHA paper in 1970 [1],
and continued in the 1980’s [9,10,17,18,21,23] (see [6] for
a good survey of early work). Over the next decade, there
was an increasing interest in the so-called radio network
model [2,3], which assumes concurrent transmissions are lost
at all receivers due to collision and—in a break from earlier
work—transmitters do not learn the fate of their transmis-
sions. (Once in this model, the contention resolution problem
is now also sometimes called wake-up [7].) In this model,
high probability contention resolution requires Θ(log2 n)

rounds—a bound that improves to Θ(log n) if you assume
receivers can detect collisions [20]. Given an upper bound N
on the network size n, the strategy of [2] can be adapted to
yield a solution that solves the problem in O(log N ) expected
rounds. (Our algorithm, by contrast, workswithout any infor-
mation about n, and with high probability.)

Early in the new millennium came a renewed interest in
algorithms for fading models of radio networks (sometimes
called the SINR or physical model) which claim to better
capture the real behavior of radio communication. The bulk
of these initial efforts focused on centralized approxima-
tion algorithms for core problems such as link scheduling
and capacity maximization. Early on, Moscibroda and Wat-
tenhofer [19] proved that algorithms for fading models
can achieve better performance than for the radio network
model for certain centralized scheduling problems due to
spatial reuse of the spectrum (a capability enabled by super-
quadratic signal fading). This result implies that a similar
advantage should hold for distributed algorithms as well.
As detailed below, although others have studied distributed
algorithms in the fading model, our paper is one of the first
to validate this conjecture by demonstrating a solution to a
fundamental distributed problem that significantly outper-
forms the relevant radio network model lower bound. (A key
caveat to this claim is that we restrict our attention to the
standardmodel for the distributed settingwhere the transmis-
sion power is fixed and provided. Under the assumption of
power control, it is sometimes possible to do better; e.g., [11].
Similarly, under the assumption of tunable carrier sensing,
a generalization of receiver collision detection, it it is also
possible to do better than the radio network model without
collision detection; e.g., [22].)

Jurdziński and Kowalski [13] describe how to create a
low-contention backbone in O(Δpolylog(n)) rounds, for
local density bound Δ, Daum et al. [4] show how to solve
global broadcast in O(D log n · polylog(R)) rounds, for
network diameter D, while Jurdziński et al. [14] provide
a O(D log2 n) round broadcast solution, which is more
efficient for sufficiently large R. Turning to local commu-
nication, Goussevskaia et al. [8] show how to solve local

broadcast in O(Δ log3 n) nodes, which Halldorsson and
Mitra [12] later improved to O(Δ log n+ log2 n) rounds. All
of these results can be used to solve contention resolution in a
single-hop fading MAC. None, however, perform better than
Ω(log2 n) rounds in this context. Moreover, we also note
that each of these distributed algorithms at best matches the
best known result for their problem in the non-fading radio
network model. It follows that none of these previous results
demonstrate the potential to beat these bounds in a fading
setting—a key contribution of our result.

In a recent breakthrough, Jurdziński and Stachowiak [16]
confirmed the permeability of the log2 n barrier by show-
ing how to solve contention resolution on a fading MAC
in O(log2 n/ log log n) rounds. Their algorithm speeds up a
standard O(log2 n) strategy from the radio network model to
now progress a factor of log log n times faster. To compen-
sate for this speed-up, they also add a dampening strategy
that takes advantage of the spatial reuse possible on a fad-
ing channel to slow down the algorithm just enough at the
right phase to allow it to succeed with the needed probability.
Unlike our algorithm, their solution requires advance knowl-
edge of a (polynomial) upper bound on the network size. On
the other hand, their solution is insensitive to R, whereas our
algorithm slows as R increases. To the best of our knowl-
edge, our algorithm remains the first to achieve a significant
improvement on the log2 n bound for the contention resolu-
tion problem on a fading channel.

2 Model and problem

2.1 Basic model

We model randomized algorithms in a synchronous sin-
gle hop radio network with fading signals. Let V be a set
of nodes (representing wireless devices) deployed in the
two-dimensional Euclidean plane. Time is divided into syn-
chronous rounds, labeled 1, 2, 3, . . .. In each round, each
node can either (i) transmit at a fixed power P , or (ii) listen.
The standard signal to interference and noise ratio (SINR)
equation governs which messages are received by listening
nodes. That is, node v ∈ V receives amessage transmitted by
a node u ∈ V , in a round where the nodes in I ⊆ V \ {u, v}
also transmit, if and only if v is listening and:

SINR(u, v, I ) =
P

d(u,v)α

N + ∑
w∈I P

d(w,v)α

≥ β, (1)

where P is the fixed transmission power, d(x, y) is the dis-
tance between x and y, α > 2 is the path-loss exponent, and
N ≥ 0 is the noise. We refer to P

d(w,v)α
as the interference

caused by w at v.
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Let R be the ratio of the longest to shortest link in the
network. (Here a “link” refers to two nodes that may choose
to communicate.) To simplify, we assume that link lengths
are normalized so that the shortest is 1 and the longest is R.
We assume that log R is a whole number.

We assume a single hop network. In the context of fading
models, this means that all node pairs are sufficiently close
to communicate in the absence of interference. Formally, the
power P must be sufficiently large so that, for every pair
u, v ∈ V : P > c · β · N · d(u, v)α , for some constant c > 1
(for the purposes herein, it is sufficient to assume c ≥ 4). This
assumption that node pairs have a signal strength at least a
constant factor larger than β is standard in defining “single
hop" in the SINR context. (Allowing node pairs to be placed
at distances too near the communication threshold trivially
eliminates the possibility of spatial reuse.)

2.2 Relationship among parameters

The model depends on several key parameters: α, β, N , P ,
and R. For the purpose of designing an algorithm, we treat
these parameters as fixed, determined by the system. Obvi-
ously the system designer may have reason to choose certain
values, and in practice, there may be dependencies among
these parameters, e.g., different values of P may results in
different numbers of link classes R, etc. In practice, the
system designer can decide to choose P so as to have a
single-hop network. And almost all real networks have R
upper-bounded by a polynomial in n.

Our goal here, however, is to present an algorithm that
works for any given values of the parameters (regardless of
their interdependencies), as long as certain basic conditions
are met, notably that P is sufficiently large (as a function of
β, N , and α) to ensure a single-hop network.

2.3 Problem

The contention resolution problemassumes an unknown sub-
set of nodes in V are activated. The problem is solved in
the first round in which a participating node transmits alone
among all participating nodes. (We emphasize that these
nodes receive no a priori information about the number or
identity of the other active nodes.) We study probabilistic
solutions that work with high probability, i.e., at least 1− 1

n .

3 Upper bound analysis

We now analyze the performance of the simple contention
resolution algorithm described in the introduction. Our goal
is to prove that the algorithm solves the problem in O(log n+
log R) rounds. After defining some useful notation and
assumptions in Sect. 3.1, we split the analysis into two parts.

The first part (Sect. 3.2) leverages the geometric properties of
the model to analyze conditions under which nodes experi-
ence bounded contention. The second part (Sect. 3.3) makes
use of this result to bound the number of rounds required for
our algorithm to resolve contention.

3.1 Preliminaries

For this analysis, we assume R is upper bounded by a poly-
nomial in n—as this is the interesting case for which our
O(log n + log R) bound beats existing O(log2 n) strategies.
(For the case where R is larger, one can default to exist-
ing results. If R is unknown, then our algorithm can be
interleaved with an existing algorithm.) Accordingly, we use
O(log n) and O(log R) interchangeably in the following.

For a given round, we partition the active nodes into at
most log R link classes, d0, d1, . . . , dlog R−1, where di con-
tains all nodes whose nearest active neighbor is at a distance
in the range [2i , 2i+1). For a given link class di , we define Vi
to be the set of nodes in link class di that are active, and ni to
indicate |Vi |. We can replace subscript i with < i , ≤ i , > i ,
and ≥ i , in defining V and n, as needed. When there is only
one node left, it has no closest active neighbor, and there-
fore it is not in any link class. Once we have emptied all link
classes the problem is solved: the broadcast that deactivates
the final remaining nodes is a solo broadcast.

3.2 Interference analysis

Fix a single round of an execution of our contention reso-
lution algorithm. All definitions and claims in this section
are defined with respect to this fixed round. In the following,
for a fixed distance d, let B(u, d) be the set of active nodes
within distance d of u. For two natural numbers i and t , and
node u ∈ V , let the exponential annulus Ai

t (u) be the set of
active nodes B(u, 2(t+1)2i ) \ B(u, 2t2i ).

3.2.1 Good nodes

We use the definition of an exponential annulus to define the
notion of a good node. Intuitively, a good node is one for
which each annulus centered on the node does not contain
too many other nodes, for a definition of “too many” that
grows with distance as a function of α (defined in Eq. 1).
Formally:

Definition 1 Fix a node u ∈ Vi (i.e., it is active and in link
class di ). We say u is good if for every t ∈ {0, . . . , log R},
|Ai

t (u)| ≤ 96 · 2t(α−ε), for ε = α/2 − 1.

We want to show that a large fraction of the good nodes
have a good probability of receiving amessage and becoming
inactive—an event we refer to as being “knocked out.” To do
so, we first identify a subset of the good nodes that are (at the
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risk of overusing this word) good candidates to be knocked
out. In more detail, for a given link class Vi and constant
s > 0 (that is fixed in Lemma 3), we define Si ⊆ Vi to
be the largest subset of good nodes in Vi such that for every
u, v ∈ Si , the distance d(u, v) > (s+2)2i . That is, every pair
of nodes in Si is sufficiently far apart. Applying a standard
circle-packing argument, we note that Si contains at least a
constant fraction of the good nodes in Vi :

Lemma 1 If link class di contains k good nodes, then |Si | =
Θ(k).

Proof We can greedily construct a feasible S′ ⊆ Vi as fol-
lows: for each node u in Vi , if u is good, add u to our set S′ and
delete all remaining nodes in Vi within distance (s + 2)2i of
u. Since every pair of nodes in Vi is distance at least 2i apart,
we know (from standard circle packing arguments) that there
are at most O(s2) nodes deleted from Vi for each u added
to S′. It follows S′ = Ω(k/s2). To complete the claim, we
note that s is a constant, and because Si is the largest feasible
subset, |Si | ≥ |S′|. ��

Now we bound the expected interference at the nodes in Si
during our fixed round. (It is in this lemma that the prob-
ability of broadcast p is fixed.) We begin by bounding the
interference from nodes not in Si . For a given node u ∈ Si ,
let its partner be the closest active node v to u (breaking ties
arbitrarily). We use Ti to be the set of partner nodes of the
nodes in Si . For the purpose of the below lemma, we define
outside interference for u to be the sumof the signal strengths
of all transmitting nodes that are not in Si ∪ Ti .

Lemma 2 For any constant c > 0, there exists a choice of
constant broadcast probability p > 0 and a constant c′
(depending only on c and α) such that the following holds:
let di be a non-empty link class. Then with probability at
least 1 − e−c′|Si |, for at least |Si |/2 nodes in Si , the outside
interference at each of these nodes is ≤ cP/2iα .

Proof The proof proceeds in several steps. We first observe
that the collective interference on nodes in Si is bounded by
cmax |Si |P/2iα , for some constant cmax that depends only on
α; similarly, the maximum interference that any single node
outside Si can generate on nodes in Si is cmax |Si |P/2iα , even
if they all broadcast at once. (See Claims 1, 2).

We then use a Chernoff bound to show that the total
interference caused by all the nodes outside Si , since they
broadcast with probability p, is at most c|Si |P/2iα+1 with
probability at least 1 − e−c′|Si |, for some constant c′ that
depends only on c and cmax (i.e., it depends on α). (See
Claim 3.) This then immediately implies the lemma. ��

Claim 1 The total interference experienced by the nodes in Si
is at most Pmax = cmax |Si |P/2iα , for some constant cmax .

Proof (of Claim 1) Fix a node u ∈ Si . We now bound the
maximum interference at u. In more detail, to sum the inter-
ference at u, we sum the possible outside interference from
the nodes in every (potentially) non-empty annulus defined
with respect to u and di ; e.g., Ai

0(u), Ai
1(u), . . . , Ai

log R(u).

Noting that a node in Ai
t (u) is of distance at least 2i2t from

u, we bound the maximum interference by:

log R∑

t=0

|Ai
t (u)| P

(2i2t )α
= P

2iα

log R∑

t=0

|Ai
t (u)|
2tα

≤ P

2iα

log R∑

t=0

96 · 2t(α−ε)

2tα

= 96 · P
2iα

log R∑

t=0

1

2tε

ε>0
<

96 · P
2iα

(
1

1 − 1/2ε

)

The final simplification is taken from a geometric series,
observing that 2ε is a constant strictly greater than 1 (because
ε = α/2 − 1 > 0 for α > 2).

Setting cmax = 96(1/(1−1/2ε),we conclude that the total
interference at u is at most cmax P/2iα , and hence the total
interference experienced by all the nodes in Si , collectively,
is at most cmax |Si |P/2iα . ��

Notice that if c ≥ cmax , thenwe are already done, sincewe
have shown in the proof of Claim 1 that the total interference
at each node u ∈ Si is at most cmax P/2iα . For the remainder
of the proof, we assume that c < cmax .

Next, we focus on the nodes broadcasting. For each node
u not in Si , let int(u) be the sum total possible interfer-
ence generated by node u at nodes in Si , i.e., int(u) =
∑

v∈Si P/d(u, v)α .

Claim 2 For all u /∈ Si , int(u) ≤ cmax P/2iα , for constant
cmax .

Proof (ofClaim2)Notice that this is actually almost identical
to Claim 1, except the symmetric opposite: we are quantify-
ing the interference caused by u instead of the interference
caused at u. This claim again follows by summing the pos-
sible interference by u in each of the exponential annuli, as
before.

However, we cannot depend on node u being good.
Instead, we conclude that there cannot be too many nodes
in Si in an annulus because the nodes in Si are at least dis-
tance 2i apart.

More specifically, for each node in Si , we can draw a circle
of radius 2i−1 around it such that no twocircles intersect. That
is, each point occupies an area of π22(i−1). For node u, the
annulus Ai

t (u) has outer radius 2t+12i and inner radius 2t2i .
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Some of the circles drawn around points in Si may be near the
edge of the annulus, and hence we increase its outer radius
and decrease its inner radius by 2i−1 to account for this. Thus,
for node u, all the points in Si in Ai

t (u) are contained in area:

π(2t+12i +2i−1)2−π(2t2i −2i−1)2 ≤ π(2t+12i + 2i−1)2

≤ π(2t+12i+1)2

≤ π22(t+i+2)

(Note that this is a loose approximation that ignores the inner
part that is subtracted off, but it is sufficient.) Since each point
occupies π22(i−1) space, we conclude that there are at most
22(t+3) points in Si in the annulus Ai

t (u).
We can then bound the total interference caused by u on

nodes in Si :

log R∑

t=0

|Ai
t (u) ∩ Si | P

(2i2t )α
= P

2iα

log R∑

t=0

|Ai
t (u) ∩ Si |
2tα

≤ P

2iα

log R∑

t=0

22t+6

2tα

= 64P

2iα

log R∑

t=0

1

2t(α−2)

α−2>0
<

64 · P
2iα

(
1

1 − 1/2α−2

)

Since (α − 2) ≥ (α/2 − 1) = ε (and 64 < 96), we con-
clude that the maximum interference by any node not in Si
is bounded by cmax P/2iα . ��

We now proceed to show that, with high probability (with
respect to |Si |), the total interference when nodes broadcast
with some probability p is not too large, i.e., is no greater
than c|Si |P/2iα+1.

Claim 3 The total interference caused by outside nodes is
c|Si |P/2iα+1 with probability at least 1 − e−c′|Si |, for some
constant c′ that depends only on c and cmax .

Proof (of Claim 3) First, if the total interference, even if
all the outside nodes broadcast, is already no more than
c|Si |P/2iα+1, then we are done. For the remainder of the
proof, we assume the maximum total interference created by
outside nodes is at least c|Si |P/2iα+1; i.e.:

∑

u /∈Si∪Ti
int(u) ≥ c|Si |P/2iα+1.

We have shown in Claim 2 that for all u /∈ Si , int(u) ≤
cmax P/2iα . We define the random variable xu that equals
int(u)2iα/(cmax P) when u broadcasts with probability p,
and 0 otherwise. Notice that xu ∈ [0, 1].

We now fix the probability p that a node broadcasts:
choose p = c/(4cmax ) (where the constant c is that given
in the statement of Lemma 2). Recall that c < cmax (or we
would have been done after Claim 1), and so we know that
p ∈ [0, 1/4].

Recall, from Claim 1, we know that:

∑

u /∈Si∪Ti
int(u) ≤ cmax |Si |P/2iα.

Hence, we can bound the expected value of the sum of xu as
follows:

E

⎡

⎣
∑

u /∈Si∪Ti
xu

⎤

⎦ =
∑

u /∈Si
p · int(u)2iα/(cmax P)

= p
∑

u /∈Si∪Ti
int(u)2iα/(cmax P)

≤ p · (cmax |Si |P/2iα)(2iα)/(cmax P)

≤ p|Si |
≤ c|Si |/(4cmax ) .

By the same logic, since we have assumed that

∑

u /∈Si
int(u) ≥ c|Si |P/2iα+1,

we can lower bound the expected value of the sum of xu as
follows:

E

⎡

⎣
∑

u /∈Si∪Ti
xu

⎤

⎦ =
∑

u /∈Si
p · int(u)2iα/(cmax P)

= p
∑

u /∈Si∪Ti
int(u)2iα/(cmax P)

≥ p · (c|Si |P/2iα+1)(2iα)/(cmax P)

≥ p(c/2cmax )|Si |
≥ (c2/8c2max )|Si | .

We now rely on the standard Chernoff bound which states
that for any set of independent random variables x1, . . . , xn
where xi ∈ [0, 1],weknow that Pr(

∑n
i=1 xi ≥ 2μ) ≤ e−μ/3,

where μ = E
[∑n

i=1 xi
]
.

Let μ = E

[∑
u /∈Si∪Ti (xu)

]
. Then we conclude that:

Pr

⎛

⎝
∑

u /∈Si
xu ≥ 2μ

⎞

⎠ ≤ e−μ/3

≤ e
−

(
c2

24c2max

)

|Si |
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Here, we set c′ =
(

c2

24c2max

)
, and conclude that the proba-

bility of failure is at most e−c′|Si |, for some constant c′ that
depends only on c and cmax , as stipulated by the claim.

Finally, we observe that when this failure does not occur,
i.e.,

∑
u /∈Si∪Ti xu < 2μ, this implies that the total interference

caused by nodes not in Si can be bounded by:

∑

u /∈Si∪Ti
xu · cmax P/2iα ≤ (cmax P/2iα) · (2c|Si |/(4cmax ))

≤ c|Si |P/2iα+1

This concludes the proof of the claim. ��
From Claim 3, we immediately derive the desired conclu-

sion for Lemma 2: it cannot be the case that there are |Si |/2
nodes in Si that are subject to more than cP/2iα interference
each fromoutside nodes, since that requires total interference
from outside nodes of more than c|Si |P/2iα+1. ��
We next consider the interference caused by nodes in the set
Si ∪Ti and show that it too is bounded. By leveraging the fact
that nodes in Si are not too close to each other (by definition),
we can prove the strong bound that even if all nodes in Si ∪Ti
transmit, the interference this causes at each node in the set
is low.

Lemma 3 For any constant c > 0, there exists a choice of
constant s > 0 such that the following holds: let u ∈ Si be a
good node in Si , and let v ∈ Ti be u’s partner. Then the sum
of interference at u from nodes in Si ∪ Ti \ {v} is no more
than cP/2iα .

Proof Let Sit (u) = (Si ∪Ti \ {v})∩ Ai
t (u) be the set of nodes

in Si in the annulus Ai
t (u).We calculate the interference from

the nodes in Si ∪ Ti \ {v} by summing over each annulus.
Every node in Si is at distance at least (s + 2)2i away from
u, by the way in which Si was defined. Hence every node in
Si ∪ Ti is at distance at least s2i away from u, since they are
in link class di . Thus the smallest non-empty annulus At

i (u)

is t = log s. Note that nodes in annulus Ai
t (u) are at distance

at least 2i2t away from u, we rely on the notion of “good” to
bound the interference from Si ∪ Ti \ {v}:
log R∑

t=log s

|Ai
t (u)| P

(2i2t )α
96 · P
2iα

(
1/sε

1 − 1/2ε

)

Setting s =
(

96
c(1−1/2ε )

)1/ε
we get our needed total interfer-

ence of cP/2iα . ��
At this point, we have proved that for each link class di , the
set Si (consisting of well-spaced good nodes) contains many
nodes that expect low total interference (both internal and
external). We now leverage this property to prove the key

corollary: with high probability in |Si |, a constant fraction of
the nodes in Si are knocked out.

Corollary 1 Let di be a non-empty link class. There exists
a constant broadcast probability p > 0 and constant c >

0, such that with probability at least 1 − e−c|Si |: at least a
constant fraction of the nodes in Si become inactive.

Proof By Lemmas 2 and 3, for any constant c′, with proba-
bility at least 1− e−|Si |/c′′

(for some c′′), there exists a subset
of nodes S ⊆ Si such that: S contains at least |Si |/2 nodes
and for each node u ∈ S with partner node v ∈ Ti , even if all
nodes in Si ∪ Ti \ {u, v} broadcast, the interference at node
u is upper bounded by ≤ 2c′P/2iα . For now, assume these
two properties hold for S.

Next, consider a node u ∈ S, and let v be its partner. The
interference bounds derived in Lemmas 2 and 3 are inde-
pendent of whether u and v broadcast. Hence, conditioned
on S satisfying the above two properties, with probability
p(1 − p), node v transmits and node u listens.

If this event (v transmits and u listens) occurs, we argue
that node u receives this message and becomes inactive: the
strength of the signal from v at u is at least P/2α(i+1), and
the total interference at u is at most 2c′P/2iα , for an arbitrary
choice of c′. Thus the condition for u to receive the message
from v is:

P/2α(i+1)

2c′P/2iα + N
> β .

We see that the condition is satisfied as long as: (i) c′ ≤
1/(2α+2β) (as determined in Lemma 2 by choice of the
constant), and (ii) P > 4BNd(u, v)α ≥ 2βN2α(i+1) (as
required by the assumption in Sect. 2 that the network is
connected).

Let S′ ⊆ S be the subset of S that is knocked out. Each
node in S succeeds independently with probability p(1− p)
(since no two nodes share the same partner and since S is
disjoint from Ti , by the definition of Si and the fact that
nodes are in link class di ), and hence the expected number
of successes is p(1− p)|S|. A standard Chernoff bound then
implies that:

P
[|S′| < p(1 − p)|S|/2] ≤ e−p(1−p)|S|/8 .

Thus, with probability at least 1 − e−|Si |/c′′
, our above two

properties on S hold, and with an additional probability
1− e−p(1−p)|S|/8 we know that S′ is at least a constant frac-
tion of S (and therefore is a constant fraction of Si ). The
corollary follows from a union bound of these two error
probabilities. ��
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3.2.2 Bounding the number of good nodes

So far, we have shown that a constant fraction of the good
nodes in a given link class will be knocked out with high
probability (w.r.t. the number of such nodes in the class). We
now prove that we expect there to be enough good nodes, in
general, that these knock outs can add up to something sig-
nificant. The remainder of this section is dedicated to proving
a single lemma that takes on this challenge. In particular, it
argues that if some link class di has more nodes than all
smaller link classes combined (by some constant factor),
then at least a constant fraction of the nodes in di are good.
Combining this lemma with Corollary 1 implies that big link
classes shrink quickly (see Corollary 2 below). This obser-
vation is the club that Sect. 3.3 will later wield to subdue our
algorithm’s time complexity.

Lemma 4 There exists a constant fraction δ, 0 < δ < 1, such
that for every link class di , if n<i ≤ δ · ni , then at least half
the nodes in Vi are good.

Proof There are two types of nodes found in the annuli of
a node in di those in link classes di or larger, and those
from smaller link classes. We deal with each case separately.
Before doing so, we introduce an extra definition. We define
a node u to be extra good with respect to V≥i (or V<i ), if the
number of these nodes that fall within each Ai

t (u) is at least
a factor of 2 smaller than required simply to be good (i.e.,
replace the 96 with a 48 in the earlier definition). If a node is
extra good with respect to both V<i and V≥i simultaneously,
then the node is good as per the original definition. We will
show: (1) every node in Vi is extra good with respect to V≥i ,
and (2) at least half the nodes are extra good with respect to
V<i .

Step #1 Nodes in V≥i . Fix any node u ∈ di and any annulus
Ai
t (u). We will show that the number of nodes from larger

link classes V≥i falling within this annulus satisfies the def-
inition of extra good. By the definition of the link class, no
disk of radius 2i/4 can contain more than one such node.
A straightforward packing argument bounds the number of
such disks that fit in the annulus, showing that there are at
most 48 · 22t ≤ 48 · 2t(α−ε) node from link classes V≥i in
Ai
t (u).

Step #2 Nodes in V<i . We now consider the more difficult
case. Fix an annulus distance t . We will sum |Ai

t (u) ∩ V<i |
over every u ∈ Vi . To do so, we leverage the first key
technical insight in this argument:

∑
u∈Vi |Ai

t (u) ∩ V<i | =
∑

v∈V<i
|Ai

t (v)∩Vi | (i.e., just switch the endpoint fromwhich
we consider each relevant link). This insight is important
because the latter sum is counting nodes from Vi , which
allows us to deploy the same style of density bound that
proved useful in the large link class case. In more detail, let
Γ i
t indicate the above sum. We bound this parameter as:

Γ i
t =

∑

u∈Vi
|Ai

t (u) ∩ V<i | =
∑

v∈V<i

|Ai
t (v) ∩ Vi |

≤ n<i · 48 · 22t ≤ ni · δ · 48 · 22t .

This derivation uses the following properties: (1) |Ai
t (v) ∩

Vi | ≤ 48 · 22t , as we established in our argument above for
larger link classes; and (2) n<i ≤ δ · ni , as assumed by the
lemma statement.

The second key technical insight in this argument is to
note that the average number of nodes in Ai

t (u) ∩ V<i for a
node u ∈ Vi is O(22t ). This amount is asymptotically less
than the number of nodes allowed in this annulus for the
definition of extra good. [Recall, a good node can tolerate up
to O(2t(α−ε)) nodes in this annulus, and because ε = α/2−1
and α > 2, this simplifies to 2t(α/2+1) = ω(22t )]. It follows
the number of nodes in Vi that violate the definition of (extra)
good for this annulus distance must be less than a constant
fraction. To be more precise, suppose that ni · γ · 1

2t(α−ε−2)

nodes violate the extra good definition for this annulus, for
a constant fraction γ , 0 < γ < 1, which we will fix later. At
a minimum, these nodes contribute more than the following
number of nodes to Γ i

t :

ni · γ · 1

2t(α−ε−2)
· 48 · 2t(α−ε) = ni · γ · 48 · 2t(α−ε)

2t(α−ε−2)

= ni · γ · 48 · 22t .

If we fix δ < γ , then this sum is already larger than Γ i
t .

It follows, therefore, that the fraction of nodes that are not
extra good in this annulus must be less than γ · 1

2t(α−ε−2) .
We now sum up the total number of nodes that might

violate the definition of extra good over all log R annulus
distances. We note that:

log R∑

t=0

ni · γ
1

2t(α−ε−2)
=

log R∑

t=0

ni · γ
1

2tε
= ni · γ

log R∑

t=0

1

ct
,

for constant c = 2ε > 1.2 The fact that c > 1 is important
as this casts the sum as a converging geometric series. In
particular, we know that:

∑log R
t=0

1
ct <

∑∞
t=0

1
ct ≤ 1

1−(1/c) .
To achieve our final lemma, however, we need our sum

over all annuli to be upper bounded by ni/2. Unfortunately,
1/(1 − 1/c) may be much larger than 1/2, i.e., if c is close
to 1. Fixing γ = (1 − 1/c)/2, we recast our above upper
bound sum of the number of not extra good nodes overall
as:

2 To establish that c > 1, note that 2ε = 2α/2−1. Because α > 2, c is
defined as 2 raised to some small value greater than 0, which implies
c > 1.
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log R∑

t=0

ni · γ
1

2εt
≤ ni · γ · 1

1 − 1/c
= ni/2,

as needed. Having fixed γ , we set δ = γ /2. ��

Combining the main result of both parts of this analysis sec-
tion we conclude with the final corollary:

Corollary 2 There exists a constant broadcast probability
p > 0, constant δ, 0 < δ < 1, and constant c > 0 such that
for every link class di , if Vi is non-empty, and n<i ≤ δ · ni ,
then with probability at least 1 − e−c|Vi |, at least a constant
fraction of the active nodes in Vi become inactive.

Proof If we fix δ as required by Lemma 4, we know by this
same lemma that (at least) half the nodes in Vi are good. By
Lemma1,weknow that Si contains at least a constant fraction
of the good nodes in Vi . By Corollary 1, we know that there
exists a broadcast probability p such that with probability at
least 1 − e−c′|Si |, for a constant c′ > 0, a constant fraction
of the nodes in Si , and therefore a (smaller) constant fraction
of Vi , receive a message and become inactive. The constant
factor c in the probability in our corollary statement is simply
the constant needed to satisfy the equality c′|Si | = c|Vi |. ��

3.3 Round complexity analysis

Wenow leverage the analysis of interference in a single round
from Sect. 3.2 to bound the behavior of our algorithm over
multiple rounds. We will conclude with our main result: our
algorithm solves contention resolution in O(log n + log R)

rounds, with high probability. Our strategy is to first define
a series of variables that capture the evolution of link class
sizes in an ideal execution. We will then prove that these size
bounds provide an upper bound (of sorts) on these sizes in
all executions.

Definitions We begin by extracting key constants from
Corollary 2. In the following, assume the algorithm uses a
broadcast probability no larger than the necessary probabil-
ity identified by this corollary. Let γ be the constant fraction,
also provided by the corollary, that describes an upper bound
on the fraction of nodes in a link class di that will remain
(i.e., not be knocked out), with high probability in the link
class size |Vi | = ni , given that the size of smaller link classes
sum to something sufficiently small; i.e., n<i ≤ δ · ni .

Building on these values, let γslow, where γ < γslow <

1, be a constant fraction larger than γ that we will define
later. Let ρ < 1 be another positive constant that we will
define later, and let � = �logγslow

ρ
. In the following, let
m = log R. Recall, we assumed for simplicity that m is a
whole number.

3.3.1 Class bounds vectors

We now define a series of m-vectors, q0, q1, q2, . . ., that we
call class bound vectors. These vectors will later be used to
provide a sequence of upper bounds on the sizes of the link
classes. To define these vectors, we first define a start step
si for each i ∈ [m] as si = i · �. That is, s0 = 0, s1 = �,
s2 = 2�, and so on. Prior to round si , we do not require any
progress to be made in link class di . For each i ∈ [m], we
define the corresponding position in our class bound vector
as follows:

∀t ≥ 0 : qt (i) =
{
n if t ≤ si ,

�qt−1(i) · γslow� if t > si

In other words, the size of each link class reduces by
a factor of γslow in each phase. The smallest link class,
i = 0, begins this reduction immediately. For each i > 0,
the reduction begins an additional � rounds later. Viewed
differently, because link class i − 1 has undergone � more
reductions in size than class i whenever t ≥ si , we have
qt (i − 1) = γ �

slowqt (i) ≤ ρqt (i). That is, ρ can be inter-
preted as (approximately) the constant ratio in size between
two consecutive link classes. Given that γslow and � are both
constants, it is straightforward to bound the smallest t for
which all positions in the vector qt are 0:

Observation 1 Let T be the smallest phase number where
∀i ∈ [m], qT (i) = 0. Then T = Θ(log n + log R). ��

3.3.2 Link class size behavior

To establish progress, we want to identify a time when a
given link class bound is achieved. That is, for each position
t (equiv., step t) in our sequence of class bound vectors,
we want to find an execution round such that in this round,
for every link class di : ni ≤ qt (i). This task, however, is
complicated by the observation that a link class can both
shrink and grow (i.e., when a node u’s nearest neighbor is
knocked out, u’s next nearest neighbor might upgrade it to
a larger link class). Therefore, we refine our goal, seeking
a round such that for that round, and all following rounds,
the link class sizes are bounded by qt . With this in mind,
we define an auxiliary class bound vector that captures an
important threshold of link size that implies performance.
Specifically, for each step t and class di we define:

q̂t+1(i) = qt (i)γslow − qt (i)ρ/(1 − ρ).

In otherwords, q̂t+1(i) is amore aggressive bound on qt+1(i)
that subtracts an additional factor of qt (i)ρ/(1−ρ) from the
number of nodes allowed in a class. Intuitively, this bound
implies permanence. To make this argument more precise,
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we need the following claim about the original class bound
vector definitions, which follows from the fact that qt (i)
decreases geometrically in t :

Lemma 5 If qt+1(i) < n for some step t and link class i ,

then qt (< i) = ∑i−1
j=0 qt ( j) ≤ qt (i)

(
ρ

1−ρ

)
.

Proof Let qt (< i) = ∑i−1
j=0 qt ( j) be the sum of the node

bounds for classes smaller than i . Notice, by the assumption
that qt+1(i) < n, it follows that t ≥ si > s j for all j < i .
Similarly, recall that qt (i − 1) ≤ ρqt (i), for the constant
0 < ρ < 1 used in the vector definitions. Combined, we get:

qt (< i) =
i−1∑

j=0

qt ( j)

≤
i−1∑

j=0

qt (i)ρ
i− j

< qt (i)
∞∑

�=1

ρ�

= qt (i)

(
ρ

1 − ρ

)

,

where the last step follows because ρ < 1. ��
Now assume that in round r , for link class di and step t ,

two things are true: (1) for all j < i , n j ≤ qt ( j); and (2)

ni ≤ q̂t+1(i). Then ni will remain less than qt+1(i) for all
future rounds. To see why, observe that even if all the at most
qt (< i) nodes in smaller link classes jumped to link class
di , by the definition of q̂t+1(i), the size of di would still be
bounded by qt+1(i). (And no node can join a smaller link
class.)

With our auxiliary definitions in place, we can continue
our effort to bound the evolution of link class sizes with
respect to our class bound vectors. To this end, we define
event r(t), for step t , to be the earliest point in the execution
where, for every size class di , ni ≤ qt (i), and this bound
holds for the remainder of the execution. That is, r(t) is the
point where the link class sizes permanently fall below qt .

To analyze these events, we divide the execution into seg-
ments each consisting of a constant number of rounds (we
will fix the constant in the proof). Conditioned on the fact
that event r(t) occurred by the end of segment k − 1, we
calculate the probability that event r(t + 1) happens by the
end of segment k. We will show that this probability is con-
stant. To do so, we emphasize that success in each round (and
therefore also each multi-round segment) is independent, as
they consist of nodes making independent random choices.

Lemma 6 Consider a segment and assume that by the begin-
ning of the segment, event r(t) has occurred, for some step

t ≥ 0. Then event r(t + 1) occurs by the end of this segment,
with probability at least 1/2.

Proof By assumption, at the beginning of the segment, the
vector qt bounds all size classes. We examine each round
in the segment and calculate the probability that by the end
of the round, qt+1 is a permanent upper bound on all link
classes. To do so, we will show the stronger property that
the link classes sizes drop below the q̂t+1 sizes. We begin by
fixing class di and focus on a single round r in the segment.

One round analysis: There are three cases for this class in
this round.

The first case is that qt (i) = 0. By the definition of q,
it follows that qt ( j) = 0 for all j < i , as well. Because
we assume that the actual link class sizes are bounded by
the sizes in qt at the beginning of round r , it follows that in
round r , there are no nodes in any class index j ≤ i . Because
a node can never move from a larger link class to a smaller
link class, then class di must remain at size 0, and therefore
trivially satisfy qt+1(i) = 0 in every round of the remaining
execution (with probability 1).

The second case is that qt+1(i) = n. Link class di trivially
satisfies that upper bound in every round as there can never
be more than n nodes in any class (as there are at most n
nodes in the network).

The third case is that qt+1(i) < n. First we fix γslow and
ρ. Specifically, we choose: γslow = γ + ρ/(1 − ρ), and we
choose ρ sufficiently small that ρ

1−ρ
< γ δ, where δ is the

constant derived in Corollary 2.
We now focus on round r in the current segment, and cal-

culate the probability that ni falls below q̂t+1(i). Assume
that prior to round r , ni ≥ q̂t+1(i). (Otherwise, we are
already done.) In order to apply Corollary 2, our main tool
for reducing link class sizes, we need that n<i ≤ δni .
By assumption n<i ≤ qt (< i), and by Lemma 5, qt (<
i) ≤ qt (i) (ρ/(1 − ρ)). We also assumed: ni > q̂t+1(i) =
qt (i)γslow−qt (i)ρ/(1−ρ). Therefore, solving forqt (i) in the
q̂t+1(i) definition and substituting into our qt (< i) equation,

we get n<i ≤
(

ρ
1−ρ

)
ni

γslow−ρ/(1−ρ)
. To bound n<i , therefore,

we need to show the following inequality:

n<i ≤
(

ρ

1 − ρ

)
ni

γslow − ρ/(1 − ρ)
< δni .

By the manner in which we fixed γslow and ρ, this inequality
is true.

We can now apply Corollary 2 to class i and obtain the
following result: with probability at least 1−e−cni , a constant
fraction of nodes in ni are knocked out, i.e., after round r , the
number of remaining active nodes (not counting new nodes
that migrate to di from smaller link classes) is at most

γ ni ≤ (γslow − ρ/(1 − ρ))qt (i) = q̂t+1(i) .
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That is, with probability at least 1− e−cni , link class di falls
below q̂t+1(i), and by our above arguments, will therefore
remain bounded byqt+1(i)permanently, regardless ofmigra-
tions from smaller link classes.

Concluding:To this point, we have shown that in every round
in our fixed segment, with probability at least 1 − e−cni , the
size of link class di drops permanently below the threshold
qt+1(i) (i.e., as indicated by dropping below q̂t+1(i)). Until
we meet this threshold, this is true independently in each
round, regardless of what happened in previous rounds, as
each round’s outcome is based on the independent broadcast
choices made during the round. In particular, fix the segment
length to be max{(2τ)/(c(1 − γslow)), 2τ } rounds, which is
in Θ(1), where τ > 1 is the constant that satisfies qt+1(i) =
τ q̂t+1(i). Notice that

τ ≤ qt+1(i)/
(
qt (i)

[
γslow − ρ/(1 − ρ)

]) ≤ γslow/γ.

The probability of class di not dropping below the threshold
is therefore at most:

e−2τni /(1−γslow) ≤ (1 − γslow)/(2τni )

≤ (1 − γslow)/(2τ q̂t+1(i))

= (1 − γslow)/(2qt+1(i)).

Since ni has not yet dropped below our target threshold, we
can substitute ni with the value q̂t+1(i).

We then take a union bound over all the link classes d j

where qt ( j) > 0 and qt+1( j) < n, calculating the probabil-
ity that even one of them does not drop permanently below
the threshold qt+1(·):

∑
(1 − γslow)/(2n j ) ≤ (1 − γslow)

2

j=∞∑

j=0

γ
j
slow ≤ 1

2

This follows from the geometrically decreasing values of
qt (·), which bounds the n j . We conclude that, with prob-
ability ≥ 1/2, by the end of the segment, every link class
irrevocably crosses the threshold of qt+1. ��
We can now conclude the analysis with our main result:

Theorem 1 Our algorithm solves contention resolution in
O

(
log n + log R

)
rounds, with high probability.

Proof We begin by defining a sequence of indicator random
variables, each of which indicates whether a segment was
successful or unsuccessful.

For a segment j , let x j be the indicator random variable
defined as follows: let t be the largest integer ≤ T where
event r(t) has occurred prior to the beginning of segment j .
If t = T , then set x j = 0. If r(t + 1) is satisfied by the end

of segment j , then set x j = 1, i.e., the segment is successful.
Otherwise, set x j = 0, i.e., the segment is a failure. (Recall
that T is defined as the smallest phase number all the link
classes are supposed to be empty.)

Lemma 6 shows that for each x j ,

Pr
[
x j = 1|x1, . . . , x j−1

] ≥ 1/2,

as long as event r(T ) has not occurred prior to the beginning
of segment j . That is, the probability that a segment is suc-
cessful is at least 1/2. Notice that this is true for any given
preceding execution up to that point.

Our goal is to show that, if event r(T ) has not occurred
by the end of segment O(T ), then with high probability

O(T )∑

j=1

x j ≥ T .

Of course, in that case, it implies that at least T of the first
O(T ) segments are successful, in which case we conclude
that in fact event r(T ) does occur by the end of the first
O(T ) segments. This implies that by the end of the first O(T )

segments, all the link classes are empty.
And if all the link classes are empty, there must remain

exactly 1 active node: if there were more than one active
node then there would be a non-empty link class; and there
can never be 0 active nodes left in our knock out algorithm,
as a node cannot be knocked out in the same round that it
knocks out another node. Call this lone active node u. Let
r be the last round that there was more than one node left
in the system. By definition of our algorithm, u must have
broadcast a message in r that was received by all remaining
nodes. It follows that u was the only broadcaster in r , solving
contention resolution in this round, i.e., no later than time
O(T ) = O(log n + log R) (by Observation 1).

It thus remains only to prove that, if event r(T ) has not
occurred by the end of segment O(T ), then with high prob-
ability

O(T )∑

j=1

x j ≥ T .

Assume that event r(T ) has not occurred by the end of seg-
ment O(T ).

Notice that the x j are not necessarily independent, since
they may jointly depend on events earlier in the execution.
However, by a standard coupling argument, we can observe
the following: let y j be an independent indicator random
variable that is 1 with probability 1/2 and 0 otherwise;
then
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Pr

⎡

⎣
O(T )∑

j=1

x j < T

⎤

⎦ ≤ Pr

⎡

⎣
O(T )∑

j=1

y j < T

⎤

⎦

The coupling is constructed as follows. For each segment j ,
given the execution up through the end of segment j − 1, let
p j be the probability that x j is 0. If x j = 0, then set y j = 0;
otherwise, with probability 1/2− p j , set y j = 0; otherwise,
set y j = 1. We can do this since we know that p j ≤ 1/2.

Notice that x j ≥ y j always, since if y j = 1, then x j = 1
by construction. The inequality above (i.e., stochastic domi-
nation) follows immediately from this fact.

Also notice that y j = 0 with probability exactly 1/2
and is independent of all other y j . Specifically, recall that
we have already shown in Lemma 6 that p j = Pr[x j =
0 | x1, x2, . . . , x j−1] ≤ 1/2. Thus:

Pr
[
y j = 0 | x1, x2, . . . , x j−1

] = p j + (1/2 − p j ) = 1/2 .

We therefore also conclude that

Pr
[
y j = 1 | x1, x2, . . . , x j−1

] = 1/2 .

Since each y j is independent of all the preceding x j ′ for
j ′ < j , it is also independent of the preceding y j ′ for j ′ < j
that are derived from the x j ′ (along with additional random
coin flips).

Finally, we can bound Pr
[∑O(T )

j=1 y j < T
]
using a stan-

dard Chernoff Bound, as the y j are independent indicator
random variables with probability 1/2. Specifically, for any
constant c > 1:

Pr

⎡

⎣
16cT∑

j=1

y j < T

⎤

⎦ ≤ Pr

⎡

⎣
16cT∑

j=1

y j < (1 − 1/2)(8cT )

⎤

⎦

≤ e−cT

Since T = Θ(log n + log R) > log n (by Observation 1),
and by the coupling defined above, this establishes that

Pr

⎡

⎣
16cT∑

j=1

x j < T

⎤

⎦ ≤ 1/nc .

That is, with high probability, by the end of the first O(T )

segments, there have been at least T successful segments and
hence all the link classes are empty. ��

4 Lower bound

By leveraging spatial reuse, the algorithm described above
can solve high probability contention resolution in O(log n)

rounds in networks of sizenwithO(log n) link classes.3 Here
we prove this bound near tight by establishing a Ω(log n)

lower bound for the contention resolution problem under
these assumptions:

Theorem 2 Let A be an algorithm that guarantees to solve
contention resolution in f (n) rounds, with probability at
least 1 − 1

n , when run in a network of size n with O(log n)

link classes. It follows that f (n) ∈ Ω(log n).

We emphasize that our lower bound places no restrictions
on the behavior of the algorithms we lower bound; e.g., as
compared to many lower bounds in the MAC setting that
require the assumption that the algorithm can be described
as a fixed sequence of broadcast probabilities (see [20] for
more discussion). The algorithmswebound, for example, can
correlate behavior in one round with the outcome of random
choices in a previous round, or have nodes that have suc-
cessfully communicated correlate their behavior. As noted in
the introduction, there are not many non-trivial lower bounds
known for distributed computing in fadingmodels, rendering
this general strategy—which connects fading to combinato-
rial hitting games—of standalone interest.
We now continue with the proof details.

4.1 Restricted k-hitting

We begin by introducing an abstract hitting game that was
defined and bounded in [20]. We will use this existing result
below to generate our bound for the related problem of two-
player symmetry breaking. In more detail, the restricted k-
hitting game is defined for an integer k > 1. It is played
between a player and a referee. At the beginning of the game,
the referee chooses a target set T ⊆ {1, 2, . . . , k} such that
|T | = 2. The game proceeds in rounds. In each round, the
player proposes a set P ⊆ {1, 2, . . . , k}. If |P ∩ T | = 1, the
player wins. Otherwise, it moves to the next round, learning
no information except that its proposal did not win. We can
lower bound solutions to this game as follows:

Lemma 7 (from [20]) Fix some player P that guarantees,
for all k > 1, to solve the restricted k-hitting game in f (k)
rounds, with probability at least 1− 1

k . It follows that f (k) ∈
Ω(log k).

4.2 Two-player contention resolution

Consider a two-player variant of the contention resolution
problem that we parameterize with an integer k > 1, and
that requires the players to break symmetry with probability

3 When we say a network has � link classes, we mean there are � link
classes that contain at least one of the

(n
2

)
possible links in the network.

It is straightforward to show that the algorithm analyzed in this paper
solves contention resolution in O(log n + �) rounds.
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at least 1− 1
k . Notice, with two players, the fading behavior of

the channel does notmatter as with only two nodes there is no
opportunity for spatial reuse. The game is won the first time
one player transmits while the other listens: in all previous
rounds, no messages are received.
We now lower bound this problem by reducing k-hitting to
it and then applying Lemma 7.

Lemma 8 LetA be an algorithm that solves two-player con-
tention resolution in f (k) rounds with probability 1− 1

k , for
every parameter k > 1. It follows that f (k) ∈ Ω(log k).

Proof Fix some algorithm A that solves two-player con-
tention resolution in f (k) rounds with probability 1 − 1

k ,
for every parameter k. We use A to construct a player
PA for the restricted k-hitting game that works in this
same time with this same probability. It will then follow,
by the direct application of Lemma 7, that f (k) ∈ Ω

(log k).
In more detail, our player simulates A on k nodes with

unique ids from {1, 2, . . . , k}. Each simulated round corre-
sponds to a round of the restricted hitting game as follows:
first, the player proposes the set containing the id of every
node that broadcast in the current simulated round; then sec-
ond, the player completes its simulation of the round by
simulating all k nodes receiving nothing.

Let T = {i, j} be the target set (unknown to the player)
chosen for this instance of the restricted hitting game.
Although the player is simulating k processes, we only care
about its simulation of the processes with ids i and j . Notice,
in each round of its simulation, these processes (like all oth-
ers in the simulation) receive nothing. We want to argue that
this behavior is consistent with an execution where only two
nodes, with ids i and j , are present in the network. To see
why this is true, notice that there are two relevant cases for
what happens in a given round. The first case is that exactly
one of the pair broadcasts. Here, it would be incorrect to sub-
sequently simulate both receiving nothing (as in an execution
with just i and j , the silent node would hear from the broad-
caster). In this case, however, the player’s proposal would
win the restricted hitting game before the player is required
to simulate the receive behavior for the current simulated
round. The second case is that both nodes are silent or both
broadcast. Here, the player is correct to simulate them receiv-
ing nothing, as this is consistent with what would happen in
an execution with just i and j present, during a round where
both did the same behavior.

Because the states of simulated nodes i and j are con-
sistent with an execution in which only nodes i and j
are present, it follows that A must solve two-player con-
tention resolution with respect to these two nodes in f (k)
rounds, with probability at least 1 − 1

k . It follows, there-
fore, that our player solves the restricted hitting game in this

same time with this same probability—as required by our
argument. ��

4.3 Reducing two-player to general contention
resolution

To prove Theorem 2, we will prove that an algorithm that
solves contention resolution in f (n) rounds, with probability
1 − 1

n , when executed in a network of size n (for any n >

1), can be used to solve two-player contention resolution
in f (k) rounds, for any parameter k. The high-level idea
is to have the two players—whom we will call Alice and
Bob in this argument—each simulate the general contention
resolution algorithm on half the nodes in a network of size k.
In each round, if any of Alice’s (resp. Bob’s) simulated nodes
transmit, then Alice (resp. Bob) transmits. Assuming Alice
andBob keep their local simulations valid, eventually exactly
one node in the full simulated network transmits, meaning
exactly one of the two simulators transmits—winning the
two-player version of the problem.

The tricky part of this argument is defining the network
simulated by Alice and Bob in such a way that they can keep
their local simulations valid, even though they do not always
know the behavior of the nodes simulated by the other player.
Thus the bulk of the proof lies in constructing a network, e.g.,
identifying node positions and valid model parameter values,
that is legal and that allows for the simulation to proceed.
There are three basic requirements we need from the network
(described in more detail below):

– The network is single hop, i.e., for every pair of nodes
(a, b), SI N R(a, b,∅) ≥ c · β, for some fixed constant
c ≥ 1).

– There are only O(log n) link classes in the network.
(Recall, our theorem statement only makes assumptions
about the algorithm’s behavior when the link class count
is bounded, therefore the network we use in our simula-
tion must bound the link classes.)

– As part of the construction, we allocate some of the nodes
to Alice to simulate, and some of the nodes to Bob. We
must ensure that interference from Bob cannot change
the outcome of messages sent/received among Alice’s
nodes, and vice versa. Since Alice, when performing the
simulation, does not know whether Bob’s nodes broad-
cast or not (and does not know what Bob’s nodes may or
may not have broadcast), we must ensure that the actions
at Bob’s nodes do not effect Alice’s simulation—up until
the point where exactly one of Bob’s nodes broadcasts
by itself.

We proceed by describing this construction strategy, ana-
lyzing the properties of the constructed network, and then
leveraging these results to prove Theorem 2.
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4.3.1 Network construction step #1: preliminaries

Fix any valid constant values for the power P and path loss
exponent α (see Sect. 2). Fix any even n ≥ 6. Alice and
Bob will simulate a network defined by these parameters
containing a set V of n nodes. (Notice, it is important that we
fix constant parameters P and α before the network size n.
This prevents lower bound constructions in which the power
or pass loss exponent depend on n, which would limit the
generality of the result. We will prove that for any valid P
andα, our lower bound holdswith respect to these parameters
for every network size n ≥ 6.)

We partition V into VA = {a1, a2, . . . , an/2} and VB =
{b1, b2, . . . , bn/2}, to be simulated by Alice and Bob, respec-
tively. To define the distance function we will position the
nodes on the two-dimensional Euclidean plane. For every
u ∈ V , we use u.x and u.y to describe u’s coordinates.
Recall that our definition of single hop requires that for all
u, v ∈ V , SI N R(u, v,∅) ≥ cβ, for some constant c ≥ 1
(our algorithm, for example, requires c ≥ 4). Fix any valid
constant value for c. (In other words, our network construc-
tion procedure works for any valid values of P , α, and c.) To
simplify calculations, we will fix N = 0. The procedure that
follows will fix node positions and calculate a useful value
for β within the constant range (1, 2α−1] for which our net-
work will exhibit the needed non-interference properties (it
is important that β has a constant maximum value that does
not grow with n, as this is what we assume in our model
definition).

Inmore detail, the networkwill consist of two aligned par-
allel lines arranged along the y axis of the plane. The first line
consisting of the nodes in VA, arranged as a1, a2, . . . , an/2,
and the second line consisting of the nodes in VB , arranged
as b1, b2, . . . , bn/2. We align the lines so that ai .y = bi .y
for all i ∈ [n/2], and ai .x = a j .x and bi .x = b j .x for all
i, j ∈ [n/2]. For every pair ai and ai+1 and bi and bi+1,
we set the spacing on the y-axis to be a uniform constant
δ (i.e., ai .y − ai+1.y = bi .y − bi+1.y = δ), and the dis-
tance between the two lines on the x-axis is set toΔ. We will
determine specific values for δ and Δ in the next step.

4.3.2 Network construction step #2: fix initial positions

We define δ and Δ using an iterative refinement process. To
begin the process, initialize δ andΔ to any positive values that
ensure SI N R(a1, bn/2,∅) ≥ c · 2α , which, in turn, ensures
SI N R(a1, an/2,∅) ≥ c · 2α

Because we will eventually fix a β value that is upper
bounded by 2α , these values for δ and Δ ensure our network
satisfies the definition of single hop (i.e., the two most dis-
tance points are still sufficiently close). Let Imax = (n/2) P

Δα .
Notice, Imax is a strict upper bound on the maximum inter-

ference nodes from one line can induce at a node from the
other. A crucial observation is that Imax remains a strict upper
bound nomatter howwe subsequentlymodify δ (it relies only
on the definition of Δ). Also notice that shrinking δ cannot
violate the single hop property of the network as this only
shrinks the longest distance.

4.3.3 Network construction step #3

Fix β. Consider the nodes in Alice’s line. We now define the
set RA to contain every unique signal-to-noise ratio possible
for nodes in this line. To do so, let Ii, j = {ah ∈ VA | |h−i | >

| j − i |}. Using this helper definition, we formalize RA as
follows:

RA = {SI N R(ai , a j , I ) | ai , a j ∈ VA, i �= j, I ⊆ Ii, j }.

Next, set L to be the smallest value in RA that is greater
than 1.We can loosely upper bound L ≤ 2α by noting that RA

includes SI N R(a2, a3, {a1}) = (P/δα)/(P/(2δ)α) = 2α

(we use here our assumption that n ≥ 6 which implies each
line has at least 3 nodes). The fact that L is upper bounded by
a constant is important because our model requires β to be a
constant. To continue with our network construction, we set
β = (L + 1)/2 ∈ (1, 2α].

4.3.4 Network construction step #4

Shrinkδ. Our overall goal for this construction process is to
define a network such that Alice can determine the receive
behavior generated by the transmission decisions of its local
nodes, ignoring Bob’s simulated nodes, confident that no pat-
tern of transmission from Bob’s nodes would change these
outcomes. (If this holds for Alice, of course, it follows from
symmetry that it will also hold for Bob).

Notice, we have no reason to believe that for the val-
ues we have fixed so far in our network construction that
this property holds. Consider the transmission pattern among
Alice’s nodes that generates an SINR of L at some receiver
a j , sender ai , and interferers I . By our current definition that
β = (L+1)/2, a j would receive ai ’s message. It is possible,
however, that if enough nodes from Bob’s line concurrently
transmit, the interference would cause the SINR value at a j

to fall below β—changing the receive behavior.
In this step, we will adjust values in our network until

we can prove such occurrences are impossible. In particular,
we will shrink the value of δ. There are two key properties
about this process. First, as established earlier, nomatter how
much we shrink δ, Imax remains a strict upper bound on the
maximum interference from transmitters in one line induced
at a receiver in the other. Second, we note that due to the
uniformity of the lines, shrinking δ does not change the values
in RA.
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In more detail, fix any ai , a j , I ⊆ Ii, j , I �= ∅. Assume
we shrink δ to δ · k, for some positive fraction k ≤ 1. It
is straightforward to confirm that SI N R(ai , a j , I ) does not
change when we replace δ with the scaled δ · k:

P
d(ai ,a j )

α

∑
ah∈I

P
d(ah ,a j )

α

=
P

(| j−i |kδ)α
∑

ah∈I
P

(|h− j |kδ)α

= (1/kα) P
(| j−i |δ)α

(1/kα)
∑

ah∈I
P

(|h− j |δ)α

=
P

(| j−i |δ)α
∑

ah∈I
P

(|h− j |δ)α

Our next observation is that as we shrink δ, the impact of
the worst-case interference, Imax , from the other line, has a
smaller and smaller impact on the relevant SINR ratios, as
these ratios are defined for smaller and smaller distance val-
ues between the communicating pair (leading to stronger and
stronger signal strength), whereas Imax remains constant. In
particular, fix some ai , a j , and I ⊆ Ii, j . Let I ′ be transmitters
from the other line. We observe that SI N R(ai , a j , I ∪ I ′) is
greater than:

P
d(ai ,a j )

α

∑
ah∈I

P
d(ah ,a j )

α + Imax
= a

b + Imax
,

for a = P
d(ai ,a j )

α and b = ∑
ah∈I

P
d(ah ,a j )

α . If we decrease δ

to δ/γ , for some γ ≥ 1, it is straightforward to see that both
a and b increase by a γ α factor.

First, consider the case where I = ∅, i.e., b = 0. Initially,
if a ≥ L , then we can choose a γ such that γ αa/Imax > β =
(L + 1)/2. This ensures that ai and a j can communicate,
regardless of the behavior of nodes in Bob’s line. Let γ0 be
the minimum such value of γ .

Next, consider the case where I �= ∅. As we increase
γ (equiv. shrink δ), therefore, γ αa

γ αb+Imax
approaches a

b from
below. For a sufficiently large γ , it will hold that for all values
in RA that are of size at least L , the addition of Imax outside
interference reduces the ratio by a sufficiently small amount
that it remains at least β (which, as you will recall, is set to
the midway point between 1 and L). Let γ1 be the smallest
factor for which this property is true.

Finally, we consider the case where I = ∅. In our original
network, the strength of the weakest possible signal between
nodes in the same line is defined as SI N R(a1, an/2,∅),
and the strongest possible signal between nodes in two dif-
ferent lines is SI N R(a1, b1,∅). If the latter is larger than
the former then we can keep increasing γ (equiv. shrink-
ing δ) until it is no longer true. This holds, because as we
shrink δ, SI N R(a1, an/2,∅) increases, but SI N R(a1, b1,∅)

does not. Let γ2 be the smallest scaling factor for which

SI N R(a1, an/2,∅) is the larger of the values. Finally, let
γ ∗ = max{γ0, γ1, γ2}. With this definition in mind, we con-
clude the network construction by fixing δ = δ̂/γ ∗, where δ̂

was the initial value of δ.

4.3.5 Network properties

We now emphasize several key properties about the network
constructed in the previous steps:

– The network is single hop: we initialized δ and Δ so
that the longest distance [i.e., d(a1, bn/2)] was suffi-
ciently small to satisfy our definition of single hop. Aswe
decreased δ toward to 1/γ ∗ this distance only decreases,
and therefore it continues to satisfy our definition.

– The network has O(log n) link classes: the network
consists of two uniform-spaced lines of size n/2, each
covered, therefore, by at most log n link classes. Because
the distance between these two lines is longer than the
maximum distance between nodes within the same line,
links between nodes in the two lines can be covered by
at most another constant number of link classes.

– The nodes in VA and VB are non-interfering: consider
the receive behavior among nodes in VA for any arbi-
trary non-empty set of transmitters from VA. We defined
our network such that interference from nodes in VB

cannot change this receive behavior. This follows from
two observations. First, we fixed δ to ensure that signals
between nodes in the same line are always stronger than
signals from one line to another, so adding VB trans-
mitters cannot cause a node in VA to receive a different
message than the case where no VB nodes transmit. Put
another way: VB transmissions can only increase inter-
ference.We also carefully fixed δ, however, to ensure that
even the maximum amount of interference from VB can-
not push the received signal strength of a VA node from
above β to below β.

4.3.6 Concluding the Proof

We are now ready to conclude the proof of Theorem 2. Our
argument below has Alice and Bob simulates VA and VB ,
respectively, in the network constructed in the above steps.

Proof (of Theorem 2) LetA be an algorithm that guarantees
to solve contention resolution in f (n) rounds, with proba-
bility at least 1 − 1

n , when run in a network of size n with
O(log n) link classes. We will use A to construct an algo-
rithm B that solves two-player contention resolution in f (k)
rounds, with probability 1− 1

k , when run with any parameter
k. It will then follow from Lemma 8 that f (n) ∈ Ω(log n).

To construct B, let us call the two players Alice and Bob
(the players, of course, do not know their names, as thiswould
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allow them to immediately solve the problem). Alice and
Bob will cooperate to simulateA running on the network we
fixed in the steps described above, with the size initialized to
n = k.4 In particular, Alice will simulate the nodes in VA and
Bob will simulate the nodes in VB (these tasks are of course
symmetric). In more detail, Alice and Bob will simulate one
round of A for each round of B as follows:

– Alice (resp. Bob) simulates its nodes up until the point
that the nodes make their decisions about whether or not
to transmit a message in the given round.

– If any of Alice’s (resp. Bob’s) nodes decide to transmit
in the simulation, then Alice (resp. Bob) transmits a mes-
sage.

– IfAlice (resp. Bob) does not transmit and does not receive
a transmission, then Alice (resp. Bob) can simulate all its
nodes receiving nothing, as it is clear that no node in the
simulated network transmitted in this round.

– If Alice (resp. Bob) sends a message, but the game is not
won, then both must have sent a message. In this case,
Alice (resp. Bob) locally simulates the receive behav-
ior among the nodes in VA (resp. VB) by applying the
SINR function with the appropriate network parameters,
and assuming no interference from Bob’s (resp. Alice’s)
nodes.

In the case where both Alice and Bob are silent, it is clear
that their simulation behavior is correct for that round. In
the case where only one of the two players transmits, the
problem is solved, so we do not care about the simulation
remaining correct. The interesting case, therefore, is when
both Alice and Bob have simulated players transmitting. In
this case, they both ignore the other line when simulating
receive behavior among their half of the nodes. The non-
interfering property of the network described above tells us
that this the resulting receive behavior at each linewill remain
correct no matter what transmission behavior actually does
occur at the other line. It follows that Alice and Bob’s sim-
ulation of A on n = k nodes is correct until the two-player
game is won. After f (n) = f (k) rounds, however, the simu-
lation ofA should isolate a single node in the whole network,
with probability 1−1/n = 1−1/k—winning the two-player
game if it has not been won already. ��

4 A technicality is that our lower bound network requires n ≥ 6. There-
fore, for smaller values of k, our two-player algorithm B will have to
resort to some default strategy, like flipping coins and broadcasting if
the coin comes up heads. For these small constant values of k, it is
clear that this strategy will solve the problem with high probability in k
(which is a constant) in Ω(log k) = Ω(1) rounds. Another technicality
is that we assume n is even. It is straightforward to adjust our network
construction to accommodate an extra node in the case of odd n.
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