Distributed Minimum Degree Spanning Trees

Michael Dinitz
Johns Hopkins University
Baltimore, Maryland
mdinitz@cs.jhu.edu

Taisuke Izumi
Nagoya Institute of Technology
Nagoya, Japan
t-izumi@nitech.ac.jp

ABSTRACT

The minimum degree spanning tree (MDST) problem requires the
construction of a spanning tree T for graph G, such that the max-
imum degree of T is the smallest among all spanning trees of G.
Let d be this MDST degree for a given graph. In this paper, we
present a randomized distributed approximation algorithm for the
MDST problem that constructs a spanning tree with maximum
degree in O(d + log n). With high probability in n, the algorithm
runs in O((D + v/n)log* n) rounds, in the broadcast-CONGEST
model, where D is the graph diameter and n is the graph size. We
then show how to derandomize this algorithm, obtaining the same
asymptotic guarantees on degree and time complexity, but now
requiring the standard CONGEST model. Although efficient approx-
imation algorithms for the MDST problem have been known in
the sequential setting since the 1990’s (finding an exact solution is
NP-hard), our algorithms are the first efficient distributed solutions.
We conclude by proving a lower bound that establishes that any
randomized MDST algorithm that guarantees a maximum degree
in Q(d) requires Q(n!/?) rounds, and any deterministic solution
requires Q(n'/2) rounds. These bounds proves our deterministic al-
gorithm to be asymptotically optimal, and eliminates the possibility
of significantly more efficient randomized solutions.

CCS CONCEPTS

» Theory of computation — Distributed algorithms; Graph
algorithms analysis.

KEYWORDS
CONGEST, spanning tree, minimum degree
ACM Reference Format:

Michael Dinitz, Magnus M. Halldérsson, Taisuke Izumi, and Calvin New-
port. 2019. Distributed Minimum Degree Spanning Trees. In 2019 ACM

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PODC °19, July 29-August 2, 2019, Toronto, ON, Canada

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6217-7/19/07...$15.00
https://doi.org/10.1145/3293611.3331604

Magnus M. Halldérsson
Reykjavik University
Reykjavik, Iceland
mmh@ru.is

Calvin Newport
Georgetown University
Washington, D.C.
cnewport@cs.georgetown.edu

Symposium on Principles of Distributed Computing (PODC ’19), July 29-
August 2, 2019, Toronto, ON, Canada. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3293611.3331604

1 INTRODUCTION

We present a distributed approximation algorithms for the mini-
mum degree spanning tree (MDST) problem. In this problem, we are
given a graph G = (V, E), and are asked to construct a spanning tree
T of V such that the maximum degree of T is the smallest among
all spanning trees of G.

As argued in [14, 15], in addition to their theoretical interest,
these trees are particularly useful in network communication sce-
narios in which low-degree backbones reduce overhead. In de-
signing optical networks, for example, high-degree switches are
expensive, prioritizing the identification of low-degree spanning
structures. These trees can also be used to maximize throughput
in network settings in which devices can only transmit or receive
messages along a single link at a time, such as when aggregating
data in a sensor network, or flooding information in peer-to-peer
scenarios where devices connect in a pairwise manner.

In the centralized setting, the problem is easily shown to be NP-
hard by reduction from the Hamiltonian path problem. The best
known approximation is due to Fiirer and Raghavachari [15], who
provide a polynomial-time algorithm that constructs a spanning
tree with maximum degree d + 1, where d is the minimum maxi-
mum degree over all spanning trees in the graph. As we elaborate
below, to the best of our knowledge, there exists no efficient dis-
tributed approximation algorithm for the MDST problem, despite
its importance to network communication. This paper addresses
this gap.

1.1 Results

We assume the CONGEST model of distributed computation. In
this model, the network is described as an n-node graph G = (V, E),
with a computational process assigned to each node, and the edges
representing communication channels. Time proceeds in synchro-
nous rounds. In each round, each node can send a O(log n)-bit
message to each of its neighbors in the graph. Many of our re-
sults (including our main algorithm) hold in the harder broadcast
variation of the CONGEST model (broadcast-CONGEST) in which
nodes must broadcast the same message to all of their neighbors
in a given round, whereas our lower bounds hold for the easier
standard CONGEST model.

https://doi.org/10.1145/3293611.3331604
https://doi.org/10.1145/3293611.3331604

In the statement of our results, we let d denote the degree of an
MDST (i.e., OPT) and let D denote the graph diameter. Throughout
this paper we omit some details due to space constraints, but all
missing details can be found in the full version [9].

Main Algorithm. Our main result is the following.

THEOREM 1.1. There exists a (randomized) distributed algorithm
in the broadcast-CONGEST model that constructs a spanning tree of
degree O(d + log n), running in time O((D + /n) Iog4 n) (in expecta-
tion).

A nice property of this solution is that it is an iterative improve-
ment algorithm, meaning that it strictly improves the degree of
the current spanning tree with each phase until terminating with a
degree at most O(d + log n). This means the process can be stopped
once the degree is sufficiently small for a given application, poten-
tially saving time for applications with looser degree requirements.

The basic idea of this new algorithm is to parallelize a large num-
ber of the improvement steps used in one of the original sequential
solutions [14]. This alone, however, is not enough, as the number
of such improvements is bounded by O(n?) [14, 22], meaning that
a straightforward parallel approach might still be too slow. Our
method instead enables many nodes to simultaneously make large
improvements to their degrees in a short period of time, progres-
sively lowering the threshold for a viable improvement size.

Derandomization. We also show that it is possible to derandom-
ize this algorithm, at the cost of working in the CONGEST model
(rather than broadcast-CONGEST) and a slightly worse logarith-
mic factor. The main idea is to generalize the derandomization
techniques of Fischer [11] from ordinary matchings to the more
complicated versions of matchings that we use in our randomized
algorithm. This allows us to prove the following theorem:

THEOREM 1.2. There is a deterministic distributed algorithm in the
CONGEST model that finds a spanning tree of degree O(d + log n),
running in time O((D + v/n) log® n).

Lower Bound. We show that the polynomial term in the time
complexity is necessary. Specifically, there exists a family of in-
stances of diameter O(log n) which incurs Q(n'/3) rounds for any
(randomized) MDST algorithm achieving a polylogarithmic multi-
plicative approximation. That lower bound is improved to Q(n1/?)
rounds for any deterministic algorithm, and even the randomized
bound can be made arbitrarily close to the bound of Q(nl/ 2) rounds
if we consider instances of larger diameters. We prove the following
theorem:

THEOREM 1.3. For any e < 1/6, there exists a family of instances
of diameter D = ©(n'/273€ 4+ logn) where any MDST algorithm
with a polylogarithmic multiplicative approximation factor needs
Q(n'/2=€ + D) rounds. There also exists a family of the instances
of diameter D = O(log n) where any deterministic MDST algorithm
with a polylogarithmic multiplicative approximation factor needs
Q(n!/?) rounds.

Note that a more precise version of the lower-bound theorem
(Theorem 5.1) also includes the tradeoffs betweeen time and ap-
proximation factors.

1.2 Background & Related Work.

The construction of spanning trees with useful properties is a pri-
mary topic in distributed graph algorithms. The most well-studied
problem in this area is the minimum spanning tree (MST) problem,
which requires the construction of a spanning tree that minimizes
the sum of edge weights. Gallager, Humblet, and Spira [17] helped
instigate this area with a distributed algorithm that constructs an
MST in O(nlog n) rounds (similar ideas appeared in a 1926 paper
by Boruvka [23] that was not translated into English until more
recently). A series of follow up papers [2, 8, 16] improved this com-
plexity to O(n) rounds, which is worst-case optimal in the sense that
Q(n) rounds are required in certain graphs with diameter D = O(n).

Garay, Kutten and Peleg [18] isolated the graph diameter D as
a distinct parameter, enabling further progress. They described
a distributed MST algorithm that solves the problem in O(D +
n®-%1) rounds, which is sub-linear for graphs with sub-linear diam-
eters. This result was subsequently improved to O(D + v/nlog" n)
rounds [21]. A series of lower bound results [10, 24, 25] estab-
lished that any non-trivial approximation of an MST requires Q(D+
y/n/logn) rounds, even in graphs with small diameters.

Turning our attention from MST to MDST, we note that prior to
this paper the MDST problem has been primarily studied in the con-
text of sequential algorithms. In 1990, Fiirer and Raghavachari [13]
gave an NC algorithm (and thus a polynomial-time sequential al-
gorithm) that constructs a tree with a maximum degree O(d log n)
(recall that d is the maximum degree of the optimal tree). Agrawal,
Klein and Ravi [1] subsequently generalized this result by provid-
ing a sequential polynomial time algorithm for the Steiner tree
variation of the MDST problem. Fiirer and Raghavachari improved
both results by presenting sequential algorithms that guarantee a
maximum degree of d + 1 for both the standard [14] and Steiner
tree [15] versions of the problem. Given that finding a spanning tree
with maximum degree exactly d is NP-hard, these approximations
are likely the best possible that can be achieved in polynomial time.

The (d + 1)-approximation algorithm of [14] operates by per-
forming repeated improvements on an arbitrary initial tree. Each
improvement involves a recursive application, making any parallel
or distributed implementation highly challenging, if not impossible.
We refer to these recursive improvements as semi-local. In the same
paper, Firer and Raghavachari [14] also gave a simpler algorithm
involving local improvements. They showed that this algorithm ter-
minates with a tree of maximum degree 2d + log n. They proved an
upper bound of O(n?) on the number of improvement steps, which
implies polynomial time complexity. Our algorithm leverages these
local improvements, but chooses them more selectively to enable
more parallelism and to significantly reduce the total number of
improvements needed. It remains a key open question whether
an efficient distributed solution exists that can provide a tree with
degree in O(d). Given the difficulty of parallelizing the semi-local
improvements of [14], resolving this question would likely require
novel techniques.

To the best of our knowledge, the first discussion of the MDST
problem in the distributed context was by Blin and Butelle [3, 4],
who observed that the search for improvements in [14] can be
implemented in distributed models using global broadcast and ag-
gregations. The time complexity of their solution, however, is in

Q(n?), leaving open the problem of identifying efficient distributed
approximation algorithms for the problem.

Followup work along these lines [5, 6] focus on self-stabilization
and/or space complexity, which is important but orthogonal to time
complexity considerations. Indeed, the time complexity claimed
for these self-stabilizing MDST algorithms is O(mn? log n) [6] and
polynomial [5]. Another direction is the more general problem
of finding a minimum spanning tree whose maximum degree is
minimized. Lavault and Valencia-Pabon [22] give an algorithm
with time complexity O(An®+1/nby that outputs a tree of degree
bd + logy, n, for any b > 1. In summary, none of this existing
work provides a distributed MDST algorithm running in time less
than n? (which is the complexity boundary beyond which it is
possible to simply gather the entire graph topology at each node and
run a centralized algorithm locally), supporting our claim that our
O(D + /n)-time algorithm is the first efficient distributed solution
for this problem.

2 ITERATIVE IMPROVEMENT ALGORITHM

We give an iterative improvement algorithm in broadcast-CONGEST
(see Section 1 for model definitions) that produces a spanning tree
of degree at most 4(1 + €)d + O(log n). Recall that d is the degree of
an optimal MDST.

Overview. A natural approach for finding low-degree spanning
trees is to incrementally reduce the number of high degree nodes in
an arbitrary initial spanning tree T. Adding a graph edge e = (u, v)
to T introduces a cycle C, and removing any edge in C results again
in a spanning tree. If C contains a degree-k vertex w while the
degrees of both u and v are at most k — 2, then replacing one of the
incident edges on w with e reduces the number of nodes of degree
k (or more) in the tree.

The first step towards a distributed algorithm is to parallelize
the search for improvements. We then seek a set M of graph edges
so that there is a subset M’ of tree edges for which (T — M) UM
is again a tree. This can be a tricky process in full generality, both
in identifying the edges M’ to replace and in maximizing |M|, the
number of parallel improvements. We tackle this by restricting the
set of improvements that can be identified, without reducing sig-
nificantly the extent of the improvements. In particular, we restrict
the improvement set so that each improving edge in M has an easily
identifiable corresponding replaced edge in T.

The other major issue is to find sufficiently significant improve-
ments in each parallel phase. The O(n®) bound on the number of
improvement steps derived by Fiirer and Raghavachari [14] sug-
gests that the basic improvements alone form an insufficient basis
for a distributed algorithm. Instead, we want to replace edges to
high degree nodes by edges between nodes of quite low degree.
We also want to allow high degree nodes to shed multiple edges
in a single parallel phase. As part of this, we develop a strategy
of progressive improvements, where nodes initially reduce their
degree rapidly, while in later stages the degrees decrease more
slowly. By defining a sequence of potential functions, we can prove
a polylogarithmic bound on the number of phases.

In the next subsection, we give a matching-based algorithm
to find parallel improvements, and show that under appropriate

assumptions, there will be many improvements. We apply this algo-
rithm systematically in Section 2.2 to gradually apply all significant
improvements in a polylogarithmic number of calls. Distributed
and parallel implementations are given in Section 2.4, but the main
technical difficulty, of finding “constrained” matchings, is deferred
to Section 3.

2.1 Parallel Improvements

We argue in this subsection that many improvements can be made
in parallel, under the right conditions. Let y and q be numbers, and
let yo = y — 2q. We aim to reduce the number of vertices of degree
y or more, but only by increasing the degrees of nodes of degree
less than yy. As mentioned, we need to be careful about how we
define and find the possible parallel improvements.

Definitions. Let T be the current spanning tree and let dr(v)
denote the degree of node v in T. Let X; denote the set of nodes of
degree at least ¢, for integer t. Removing the nodes in X, from T
results in a collection of subtrees that we call branches. A branch
is a leaf branch if only one edge in T has a single endpoint in the
branch (i.e., the other endpoint has degree y or more). The head of
a leaf branch is the node in the branch that is incident on the edge
from T that was removed. The parent of a leaf branch is the unique
node outside the branch that is adjacent to its head. Leaf branches
with the same parent are collectively called a bundle.

An edge in G\ T is good if its endpoints are: of degree less than
Yo, in different branches, and with at least one in a leaf branch.

Definition 2.1. The imp graph H = Hf,y 4 is a structured bipar-
tite graph H = (U, U, Q, E’) with sides U and Q, where U is the set
of leaf branches, Q consists of the low-degree nodes, and U is the
partition of U into bundles. There is an edge uq in E’, for g € Q,
if the leaf branch u € U contains a node w such that wq is a good
edge (in G). If both endpoints of a good edge are in leaf branches,
then the edge contributes two edges to H.

Consider Figure 1 for illustration on a single bundle (with f as
parent). There are four leaf branches given by U = {c, e, g, h}, while
node i is in a non-leaf branch. All the nodes except f are of low
degree (defined here as less than 4). The corresponding imp graph
on the right has U on the left, and the low degree nodes (excluding
the zero-degree nodes a, ¢) on the right. The edge hi is the only
good edge that appears only once in H; for instance, the good edge
gd in G leads to the edges gd and eg in H.

Notice that we overload notation by speaking of edges of G being
contained in H; formally speaking, of course, they have a natural
correspondence to edges in H.

Definition 2.2. A constrained q-matching M is a subgraph of H
such that each bundle in U is incident on at most g edges in M.
Namely, M satisfies: a) Each node in U is incident on at most one
edge in M, b) Each node of Q is incident on at most q edges in M,
and c) Each bundle U; € U is incident on at most g edges in M.

The corresponding optimization problem is to maximize the
number of edges in the constrained matching found. In Section 3,
we describe and analyze a distributed algorithm that efficiently
approximates a constrained g-matching. This algorithm is a key
subroutine in the MDST algorithm described and analyzed here.
Formally, in Section 3 we prove:

Figure 1: On left, a graph fragment with two parallel improvements is identified, formatted such that: tree edges are solid,
replaced edges are bold, improvement edges are dashed, and other non-tree graph edges are dotted. The heads of the four
leaf branches (within rectangle) are emphasized with a black border. On right, the corresponding imp graph, with zero-degree
nodes (a, c) omitted. The dashed edge form a maximal 1-constrained matching.

THEOREM 2.3. There exists a distributed algorithm that finds a
c-approximate constrained q-matching in expected O((D + +/n) log n)
rounds in the broadcast-CONGEST mode, for some ¢ < 128.

We now continue with describing and analyzing the MDST algo-
rithm that leverages the above theorem. We begin with some useful
definitions and observations.

We say that an edge e departs a leaf branch B if the node in U
corresponding to B is incident on e, and an edge enters a branch B
if some node in Q contained in the branch B is incident on e. Our
MDST algorithm transforms constrained matchings into those with
the following useful property:

Definition 2.4. An improvement subgraph is a constrained g-
matching with additional property that no leaf branch has both
departing and entering edges.

Given an improvement subgraph M, we can readily identify the
edges Ry that it replaces. For improving edge e in M, let B be
the leaf branch that e departs from and let e(B.) denote the edge
between the head and the parent of B, separating B, from the rest
of the tree (T — Be). Then, the replaced edges of T are given by
Ry = {e(Be) : e € M}.

OBSERVATION 1. If M is an improvement subgraph (of T), then
Tyr = (T \ Ry) UM is a (spanning) tree.

PROOF. Let T =T - U eci1Be be the subtree obtained by remov-
ing all the vertices and incident edges of all leaf branches B, from
which an edge e € M departs. Observe that each e € M enters (a
branch in) T, since no branch has edges both entering and depart-
ing. To restate, each edge e € M has one endpoint in a distinct leaf
branch B, and the other in T. Each edge e(B.) € Ry also has one
endpoint in B, and the other in T. O

The resulting degrees in Ty; should also be “better” than before,
but not too much better (in order for our analysis to work), and the
nodes which are worse are not too much worse.

OBSERVATION 2. For each edge e of an improvement subgraph M
it holds that: a) the endpoints of e = (u, v) are not too much worse off:
dr,, (), dr,, (V) < yo+q, and b) the parent p of e(B) is not improved
too much: dr,, (p) >y — q.

Intuitively, decreasing the degree of a higher degree vertex
should be more valuable than the increase in the degree of two
lower degree nodes.

2.1.1 Improvement Algorithm. We encode our observations in an
algorithm IMPROVE with parameters y and g, which takes the tree
T, finds an improvement subgraph M, and produces a modified tree
Ty =(T\RM)UM.

The algorithm first computes an approximate constrained gq-
matching M in the imp graph H with the procedure CONSTRAINED-
MATCHING presented and analyzed in Section 3. The algorithm
then identifies an improvement subgraph M C M of size at least
M > M/8 using the following randomized selection procedure:
Independently flip an unbiased coin for each leaf branch B to either
mark its departing edge or its entering edges. If the set M of un-
marked edges contains fewer than |M|/8 edges, redo the random
marking step until |M| > |M|/S.

Analysis. We first argue that every maximal constrained g-matching
must have many edges. We first need an accounting of the adjacen-
cies of nodes in Xy that do not contribute to that count.

LEMMA 2.5. 2(|Xy| — 1) adjacencies of nodes in X, are to non-
leaf branches or to other nodes in Xy . More formally, for each vertex
v € Xy, letd’(v) denote the number of neighbors of v in T (or G) that
are either in Xy, or in a non-leaf branch of T. Then, Zvexy d'(v) =
2(1Xy | = D).

ProoF. Form a tree T’ on the nodes of X, as follows. Starting
with T, remove all leaf branches and incident edges and contract
every non-leaf branch into one of its adjacent nodes in X, . The
adjacencies of nodes in Xy, other than those to leaf branches, are
unchanged. Since the tree T” has X; — 1 edges, it has 2(X, — 1)
adjacencies. O

LEMMA 2.6. H contains a constrained q-matching with at least
Ty = 21Xy | = dIXy,|) edges.

Proor. We restrict our attention to a certain subgraph of H.
From each bundle with s leaf branches, retain an arbitrary set of
min(s, y) leaf branches, and let L denote the resulting combined set
of leaf branches. As each leaf branch has exactly one adjacent node

in X, the set contributes exactly L to the adjacencies of nodes in
Xy .By Lemma 2.5, then, |L| > Zvexy min(d7(v), y)—2(1Xy[-1) =
(v - 21Xy | +2.

Let T* be a spanning tree of maximum degree d. T* must connect
the branches of L to the rest of the graph. Root T* at some vertex
in a non-leaf branch and direct the edges towards the root. Select
an arbitrary edge entering each leaf branch in L, to form a set R of
edges. Note that R corresponds to a subgraph of H with one edge
incident on each node of U N L. At most d|X,| edges in R have
one or more endpoints in Xy, since T* has maximum degree d. Let
R’ C R be the subset of good edges, i.e., those with both endpoints
of degree less than yg in T. Then,

IR'] > [R] = d|Xy,| > (v = 2)IXy | - d|Xy,] .

Now form the bipartite graph H’ = (U, Q, R’) on the edge set R’
but with nodes on one side now representing the bundles (rather
than the leaf branches). Observe that the maximum degree of H' is
at most y (since we constrained L to involve at most y leaf branches
from each bundle), each leaf branch is incident on at most one edge
in R, and each node in Q is of degree less than y in G. Since H’
is bipartite, its edges can be colored with y colors [20]. Let M be
the union of the g largest color classes, whose size is then at least
q|R’|/y. We claim that M is a g-constrained matching of H. Namely,
by design, each bundle and each node of Q is incident on at most
one edge of each color, and thus at most g edges of M; and since
M C R, each node in U is incident on at most one edge in M. O

The following is key to finding large parallel improvements. It is
conditional on the parameter y being large enough (roughly > 4d)
and that there are not too many more intermediate degree nodes
(between yo and y) than high degree nodes (> y). Let ¢ be the
approximation factor of the CONSTRAINED-MATCHING algorithm.

THEOREM 2.7. Letd > 0,7 = 2/(1=6),h = hs = (dr?+2)/(1-6),
andIl =11, o 5 = 891Xy |/(8c). Supposey > h and |Xy,| < 2. Xy |.
Then, IMPROVE (y, q) finds an improvement subgraph with at least T
edges.

Proor. By Lemma 2.6, the hypothesis, and the assumed lower
bound on y, we have that H contains a constrained g-matching M*

. 2
with at least q((1 - 2/y)IXy | — dIXy,|/y) = qlXy] (1 - %) >

8q)Xy | edges. Thus, the improvement subgraph M output satisfies
[M| = |M*|/(8¢c) = 6q|Xy|/(8¢c) = II. m|

2.2 Progressive Improvements

Theorem 2.7 allows us to find large improvements under certain
assumptions (that [Xy, | < 2. |Xy | and the lower bound on y). We
now want to show how to repeatedly find improvements in a smart
way, so as to make significant progress on decreasing the degrees
in the tree.

Notation. Our algorithm Prog takes a parameter g that specifies
the “extent” of the improvements found, i.e., the required sepa-
ration between the degrees of nodes that have their degrees in-
creased/decreased. Recall also the parameter § > 0.

Let k = A(T) be the maximum degree spanning tree T at the start
of ProG. Recall the notation 7 = 2/(1-8), h = hs = (dr?+2)/(1-6),

Xy, =11, 4.5 = 0qIXy|/(8¢c). Let bj = k+1—j-q, for j > 0; these

will play the role of the parameter y. Let Cj = X}, denote the set
of nodes of degree at least bj, for j > 0, and note that Cy = 0. We
refer to each non-empty set C; \ Cj—1 as a block.

The algorithms also maintain a persistent variable h (which we
later shows satisfies A < h). Let t be the smallest value such that
bi—1 > h at the start of ProG. The analysis of this subsection will
be in terms of the parameters ﬁ, t, 7, which will be instantiated in
the following subsection.

We say that a call to IMPROVE (bj, q) fails if the size of the im-
provement subgraph found is less than ITj,, 4 s.

Algorithm 1 Proc (q)

1: Let t be the smallest number s.t. b;_1 > h
2: repeat

3 ji= argmaxéz1 |Cs |75

4 IMPROVE (b}, q).

5. if the call to IMPROVE failed then

6 h= max(fl, bj)

7 until b; < h

We argue the termination of the algorithm using a potential
function ®. Define the potential ®(v) of a node v € C; \ Cj-1, for
j=1las

t
®(©) = (dr@) ~bj)r 7 + > (bs-1 = bo)r™*

s=j+1

¢
= (dr(v) - bj)r ™ +¢q Z 5.
s=j+1

Each adjacency of v contributes a term to the potential, with the
terms increasing by a factor of 7 as we move past each threshold
bs. Observe that if nodes v and v’ are in C; \ Cj41, then ®(v) =
0(d(v")) = ©(qr’) = ©(g Zizo 7%). The potential of the whole tree
Tis &(T) = Xpev ().

LEMMA 2.8. Each call by PROG to IMPROVE, except the last one,
reduces the potential of the tree by an Q(1/(zt))-factor.

Proor. Since the call was not the last one, it neither failed nor
was j > t.

We first claim that each edge e = (u, u’) of the subgraph M con-
tributes a drop of Q(z/) in the total potential. Namely, it decreased
the degree of a node in Cj, but its degree did not drop below bj1.
Thus, it decreased the potential by at least 1/7/*1, while the nodes u
and u’ that increased in degree experienced a potential increase of
at most 2/7/*2. The net decrease is then 1/#/71 — 2/77+2 = §/7/+1.
Since M contained at least IT edges, the total decrease in potential,
®(T) — ®(Tyy), is then at least Q(IT/7/*1) = Q(q|Cjlz771).

Observe that

t
®(T) =y ®©) = 0| Y (ICxl = ICj1)) g Y 7~°
v J s=j

=o| Y lcyl-qr

m

J

Since j maximized |Cj'|/rj', it follows that ®(T) < ¢t - (|Cj|q1'_j),
Thus, the call to IMPROVE decreases the potential by ®(T)—®(Ty;) =
Q(O(T)/(rt)). m]

This now lets us bound the number of improvements required.

LEMMA 2.9. ProG runs in O(zt(logn + t log 7)) phases (or calls to
IMPROVE).

Proor. Consider here only phases (or calls to IMPROVE) that
exclude the last one. The initial potential of each vertex (when run-
ning ProG) is at most q), o 7~° = O(q). Thus, the initial potential
of the tree is O(qn) = O(n?). Since C; # 0 (before the last phase),
the potential of the tree is at least 7. Each phase reduces the
potential by a fraction Q(1/(rt)), by Lemma 2.8. Hence, there are
at most O(zt log(n?r?)) = O(rt(log n + tlog 7)) phases. O

We bound the degree of the tree in terms of our variable h.

LEMMA 2.10. When PROG terminates, the degree k of the resulting
tree is less than h + q(1 + |log, n]).

PRrOOF. When PROG terminates, i > b ;. Since the initial degree
of the tree was bo — 1, it follows that k < by = bj + jg < fH—jq. The
claim then follows when j < 7’ := 1 + |log, n].

Suppose then that j > 7’. Since j maximized |Cs|/7%, we have
that |Cj|/t/ > |Cj—r'|/T/"" orn > |Cj| 2 |Cj—r/|z7 > |Cjer|n.
Namely, |Cj—+| < 1, and hence it cannot contain any node. Thus,
the largest degree in the current tree is less than bj_» = bj + 7'q <
h+1'q. m|

2.3 Main algorithm

Our top-level algorithm calls the Prog algorithm with progressively
finer block-sizes.

Algorithm 2 Mps

o = 2llgal-2

=1

i:=0

while g; > 1 do
Proa(q;)
i=i+1
qi = qi-1/2

S
. h

I A A

The variable f is a proper lower bound on A, so indirectly on the
optimum degree, d.

LEMMa 2.11. The invariant h < hgs is maintained.

Proor. The claim holds initially, since d > 1. Consider a call
to PrRoG where £ is increased. Then the call to IMPROVE (bj,q)
failed to find an improvement subgraph with at least IT,, , s edges.
Since j was maximized over |Cs|/77%, it follows that |Xb].| =1Cj| 2
|Cj+2|/T2 = |ij+2 |/72. The contrapositive of Theorem 2.7 (where
Yy = bj and yo = bjy2) then implies that b; < hgs. Since h was
increased, it was assigned the value b;. Thus, h < bj < hs, main-
taining the invariant. O

We are led to our main result.

THEOREM 2.12. For any given € > 0, MDs outputs a spanning tree
of degree 4d(1+€)+O(log n). The number of phases is O(log A log? n).

Proor. In the final iteration of Mps, ¢; = 1. By Lemma 2.10,
Xp, = 0 for bj > log, n+1 > lgn+ 1. Setting 7 = 2/(1 - §), we
have by Lemmas 2.10 and 2.11 that the degree of the spanning tree
T is at most h + lg,n < h+lgn=4d/(1-8)*+2/(1-6)+]1gn.
Choosing § =1—-1/(1+ e)l/3 yields the degree bound.

It follows by induction and Lemma 2.10 that the number of non-
empty blocks is bounded by ¢ < 2log, n. The bound on the number
of phases then follows from Lemma 2.9. O

If we want a purely multiplicative guarantee, we can obtain a
bound that is slightly stronger than the O(log n) which is immediate
from the previous theorem. However, note that for d > loglogn,
our mixed approximation gives a stronger bound.

THEOREM 2.13. There is a § such that MDs outputs a spanning
tree of degree O(d - log n/loglog n).

PROOF. Set § = 1 — l/(logn)l/4 so 7 = (logn)l/4 and h =
O((log n)3/4d). Then, by Lemmas 2.11 and 2.10, the maximum de-
gree of the resulting tree is at most i + log, n = O((logn)*/*d +
log n/loglogn) = O(d log n/loglog n). O

2.4 Distributed Implementation

Up to this point, the Mps algorithm (and its constituent subrou-
tines) has largely been described and analyzed as a centralized
graph algorithm, with the exception being the construction of con-
strained matchings, for which we assumed from the beginning a
distributed solution exists (see Section 3.1). Here we obtain a final
time complexity by accounting for the time required to implement
the centralized operations previously discussed in a distributed
manner in the broadcast-CONGEST model.

There are three different types of standard distributed coordina-
tion strategies required for this implementation. The first type of
strategies require a given value to be aggregated and/or dissemi-
nated globally in the network. For example, when ProcG aggregates
the total count of edges in the improvement subgraph produced by
the preceding call to IMPROVE. These global operations are easily
implemented in O(D) rounds using a global BFS tree initialized at
the beginning of the algorithm execution.

The second type of strategies require the aggregation and/or
dissemination of information within well-defined connected com-
ponents (that is, components in which all nodes in the same compo-
nent share the same component id). For example, when the nodes in
IMPROVE agree on a random coin flip for their component, and then
count the total number of remaining unmarked edges. It is straight-
forward to implement these internal component aggregations and
dissemination in O(D + v/n) rounds (see [9] for details).!

IThe standard trick here, which we summarize for the sake of completeness, and
which we elaborate in [9], is to treat small components (less than v/ nodes) and large
components (at least v/7 nodes) differently. Communication within small components
can be implemented with BFS trees in order of the component diameter time, which is
no more than /7. Because there are at most /7 total large components, the aggrega-
tion/dissemination values for all components can be pipelined through a global BFS
tree in O(D + 4/n) rounds.

The third type of distributed coordination strategies require
nodes to discover the name of the component in which they now
belong after edges are removed from a spanning tree. In our al-
gorithm, this occurs at the beginning of IMPROVE where in order
to construct the improvement graph needed by the constrained
matching, nodes first remove high degree nodes from T, creating a
forest T’, and then agree upon names for the components in T".

Consider the following strategy to accomplish this goal. First,
each node marks itself with probability log n/+/n. Marked nodes
initiate a flood of their id within T” up to distance a+/n, for a suffi-
ciently large constant a. A node only accepts and passes on such a
token if it has not accepted and broadcast an id token previously.

With high probability, there are O(y/nlog n) marked nodes and
their floods cover all n nodes in the graph. In this case, consider the
component graph that results where we treat for each marked node
u, the set of nodes that accepted u’s token as a component that we
call u’s flood component. It is not hard to show that the component
graph defined over these flood components contains O(y/n log n)
total edges.? We can therefore broadcast the full topology of this
component graph to the whole network in O(D + v/nlog 1) rounds
by pipelining these edges through the global BFS tree.

At this point, every node v knows its flood component and the
full flood component graph. This allows v to determine the set of
flood components that cover its tree in forest T’. Each such flood
component is described by its marked node’s id, so v can choose
the largest such id as the name for its T” tree. All nodes in this same
tree will choose the same name.

We now combine these distributed coordination strategies with
our preceding results on the number of calls to the Mps subrou-
tines to obtain the following bound. We defer the proof to the full
version [9].

THEOREM 2.14. There exists a distributed implementation of MDs
that outputs a spanning tree of degree O(d+log n) in O((D++/n) log* n)
rounds, in expectation, in the broadcast-CONGEST model.

3 ALGORITHM FOR CONSTRAINED
MATCHINGS

We now prove Theorem 2.3 by designing a randomized distributed
algorithm (in the broadcast-CONGEST model) for finding near-
maximum constrained g-matchings, which runs in O((D++/n) log n)
rounds. The algorithm, which we call CONSTRAINED-MATCHING, is
based on finding approximate flow in a shallow network.

What distinguishes constrained matchings from other variations
of bipartite matching is the constraint on the bundles, which is a
constraint on sets of vertices rather than just on individual vertices.
It appears to preclude a simple reduction to a standard matching
computation. To overcome this extra difficulty, we extend in the
obvious way the standard relationships between bipartite match-
ings and flows on 4-layer graphs (a source s, the two layers of the
bipartite graph, and the sink ¢) to add in a fifth layer which will
constrain the bundles appropriately. We then find maximal flows
2For the sake of analysis, orient all edges in T toward a common root before removing
high degree nodes to create T". In the resulting directed forest, each flood component
has at most one outgoing edge from a node in the flood component to a parent outside
the flood component. Each edge in the flood component graph is an outgoing edge for

some component, so if there are O(y/72 log n) total components there are O(+/n log n)
total edges.

in this graph in O(log n) phases, and show that these flows give an
O(1)-approximation to the maximum constrained g-matching. At
a high level, CONSTRAINED-MATCHING computes a maximal frac-
tional solution and then rounds this fractional solution (all in a
distributed fashion).

There is one additional difficulty, which is that one side of the
bipartite graph we are working in (the imp graph H) consists of leaf
branches, not just nodes. Fortunately, by using the communication
primitives discussed in Section 2.4, each phase of the algorithm can
be executed in O(D + +/n) distributed rounds, thus giving a total
running time of O((D + v/n) log n).

3.1 Algorithm

Constrained matchings correspond to flows in a related flow graph
F. The vertices of the flow graph F consist of the set B of bundles,
the extreme nodes s and ¢, as well as the sets U and Q from the
graph H. There is a directed edge from s to each bundle node in B,
from each bundle to its constituent leaf branches in U, from leaf
branches to the nodes in Q they are adjacent to in H, and finally
from each node in Q to ¢. Edges from s to bundles, and those from
Q to t, are of capacity g, while the rest are of unit capacity.

Observe that there is a one-one correspondence between con-
strained g-matchings in H and integral flows in F. Moreover, each
edge in H has a unique flow path in F and vice versa. Thus we may
specify a flow in F by giving only the flow on edges in H.

For a flow f, let f(e) denote the flow through edge e, f(v) de-
note the flow going out of v, and v(f) = f(s) be the value of the
flow. The size of a constrained g-matching equals the value of the
corresponding flow. We say that a node is full if it has incoming
flow at least 1/8-th of its capacity (where the capacity of a vertex is
the maximum of its total incoming and total outgoing capacities).

The algorithm initially assigns each flow path a flow of 1/m,
where m is the number of edges. In each phase, every non-full node
in Q doubles the flow on its incident paths from non-full nodes in
U (through its parents in B) by sending a “double the flow" message
to its neighbors (full neighbors will ignore this message). It takes
one round to send these “double” messages, and then in each leaf
bundle we can use our intra-component aggregation primitive (the
second type of strategy in Section 2.4) to make sure that in each leaf
bundle C, every node knows how much flow goes through the node
representing C in F before this doubling (so in particular knows if
C is full already, and so should ignore the message) and after the
doubling. After this knowledge has been disseminated, each node in
aleaf bundle that is adjacent to at least one node in Q sends the new
flow value to its neighbors in Q, which will then know which of
its incident edges did actually double the flow. After at most logm
doubling phases there will be no way of sending more flow using
only non-full nodes (as we show in the next subsection), so we
move to the next part of the algorithm, where we use randomized
rounding to find a large constrained g-matching.

In particular, we would like to do the following (from a central-
ized perspective). First add each edge e in H to a set S independently
with probability f(e). Then any leaf branch in U with more than
one incident edge in S removes all such edges from S, any bundle
with more than g incident edges in S removes all such edges from S,
and any node in Q with more than g incident edges in S removes all

such edges from S. This would (by definition) result in a constrained
g-matching, which we call §’.

In order to implement this in broadcast-CONGEST, we first have
every vertex v in each leaf branch C in U make the appropriate
randomized decisions for the edges from H that are incident on
v, S0 every vertex v in each leaf branch known which edges of S
are incident on it. Note that this results in the same S as in the
centralized algorithm. Now if v added more than one incident edge
to S, then it removes all of these edges from S and uses our intra-
component communication primitive to send a message to all other
nodes in C about this fact, which will then cause all other nodes
in C to remove all of their incident edges from S (if there were
any). Otherwise, if v added exactly one edge to S, it broadcasts
the identity of this edge to all of its neighbors (and in particular
the other endpoint of the added edge) as well as using our intra-
component primitives to send the identity of the edge to the rest of
the nodes in C. It is easy to see that if multiple such messages are
being sent in some leaf branch, then we can detect that fact and
send a “failure” message to all nodes in the branch so that they all
remove their incident edges from S.

Now each leaf branch has either 0 or 1 incident edge in S, and
all nodes in the branch know the identity of this edge (if it exists).
The root of each leaf branch sends to its parent the identity of this
edge. So now the root of each leaf bundle knows the edges incident
on the bundle which are in S. If there are more than q such edges,
then this bundle root removes them all by sending a message to all
of the nodes in all of the leaf branches in the bundle (again using
our primitives from Section 2.4). Similarly, each node in Q knows
all of its incident edges that are in S, and if there are more than g of
them then it removes all of them from S by broadcasting a failure
message to its neighbors. The edges which survive this process are
S’, and it is easy to see that it is precisely the same set as would
have been computed in the centralized version.

3.2 Analysis
We omit the proof of the following claim.

LEMMA 3.1. CONSTRAINED-MATCHING requires O((D + y/n) log n)
rounds in broadcast-CONGEST.

The flow f that the algorithm computed has the property that
there is no way to send more flow using only non-full nodes (or
else the algorithm would send more flow). Thus the value of f is at
least 1/8 of some maximal flow, which is where every s — ¢ path
has some node that is saturated, i.e., whose flow is at full capacity.
We now claim that any maximal flow is close to a maximum flow.
The depth of a flow network is the length of the longest s — t path,
so in our flow network the depth is 4.

LEMMA 3.2. The value of a maximal flow in a depth-d flow network
is at least 1/d-fraction of the value of the maximum flow.

ProoF. The depth constraint implies that v(f) - d > Y.< f(e),
for any flow f. Namely, since each flow path is of length at most d,
each unit of flow is counted at most d times in the sum. Maximality
means that there is an s — t cut (Z,V — Z) such that all edges in
F that go from Z to V — Z are at full capacity (in f). This implies
that ez f(v) = cap(Z,V — Z), where cap(Z,V — Z) is the sum
of the edge capacities across the cut. Observe that), ,c7 f(v) <

Yoev\{r} f(©) = Xeer f(e). The capacity constraints imply that
cap(Z,V — Z) > u(f*), where f* is a maximum flow. Combined,

we have that v(f) > v(f*)/d. O

COROLLARY 3.3. Let f be the flow computed by our algorithm.
Then, v(f) > 3l2 |M| for every constrained q-matching M of H.

PRrOOF. Since in f every s — t path contains at least one full
node, v(f) is at least 1/8 of the value of any maximal flow, and so
by Lemma 3.2 we know that v(f) is at least 1/32 of the value of
the maximum flow (which will be integral since alll capacities are
integral). As discussed, there is a bijection between the integral
flows in F and constrained g-matchings in H, so this implies that
u(f) is at least 1/32 times the size of the maximum constrained
g-matching in F. O

By construction S’ is a feasible constrained g-matching, so we
just need to show that it has large value.

LEMMA 3.4. Let f be the (fractional) flow and S’ be the edge set
computed by our algorithm. Then E[|S’|] > v(f)/4.

Proor. Consider an edge e = (u,v) in H (i.e., from U to Q). Let
Ae be the event that some other edge incident on u is added to
S. Let B, be the event that g or more edges are added that have
endpoints in the same bundle as e but not u. Finally, let C. be the
event that g or more other edges incident on v were added to S.
Observe that if e was added to S, then it will remain in S’ if none
of the three events (A¢, Be and C,) take place. Using that the flow
is at most one-fourth of capacity,

Pla=1- [] (-flen=<) fe)<1/4.
e’su,e’ e e’su
Let Y be the number of edges in S incident on the same bundle as
e. Then, E[Y] < ¢/4. So, by Markov’s inequality, P[B.] < P[Y >
4E[Y]] < 1/4. Similarly, P[C.] < 1/4. By the union bound, the
probability of a bad event is at most P[A, U B, U C,] < 3/4. Thus,
the event X, that edge e is contained in §’ has probability

P[Xe] 2 f(e) - (1 -P[Ae UB. UCe]) = fle)/4,

since the event of e being chosen in S is independent from the three
bad events. Thus, by linearity of expectation,

BIsT= Y PXz; > f@=uf)fs. o

ecE(H) ecE(H)

We can now combine these pieces to prove our main result
regarding this algorithm (presented in Theorem 2.3):

ProOF oF THEOREM 2.3. The running time is direct from Lemma
3.1. Lemma 3.4 and Corollary 3.3 imply that E[|S’|] > v(f)/4 >
M* /128, where M* is the size of an optimal g-constrained matching.
So the algorithm returns a 128-approximation. O

4 DERANDOMIZATION

We sketch here how the algorithm can be derandomized in the
CONGEST model.

The main effort is on constrained matching, for which adapt a
method of Fischer [11] for deterministic matchings. We initially
compute fractional matching deterministically with repeated dou-
bling, and then round the flow values down to the nearest power

of 2. The O(log A) weight classes are then eliminated in sequence,
starting with the lowest value. Each node has an number of incident
edges with the lowest value and by arbitrarily coloring them, we
obtain a partition into degree-2 subgraphs, i.e., paths and cycles.
The idea is to shift the weight from even numbered edges on each
path/cycle to the odd numbered edges, which obeys the capacity
constraints while eliminating the lowest weight class.

The algorithm cannot be applied directly to the case of matching
branches, since the communication paths involved may now induce
heavy loads. We show that we can actually maintain unit load
on the edges by leveraging the flexibility available in pairing the
incident edges to a node, i.e., the edges that should belong to the
same path/cycle. We still need to process the outgoing edges from
each node in parallel, which limits the application to the the full
CONGEST model. We refer to the full version for the complete
details [9].

The other randomized step is in ensuring that a component does
not both have an incoming and outgoing edges in improvement
subgraph. This can be replaced by the following simple determinis-
tic rule: A component with two or more incoming edges removes
its outgoing edge. Then components with a single incoming and
outgoing edges induce a degree-2 graph on which we compute a
maximal matching.

5 LOWER BOUNDS

Our main lower bound is the following:

THEOREM 5.1. Foranyn € N, a > 4, and h > 1, there exist
two families gia}zi and Q,Il)’eé of ©(n)-node graphs, which have di-
ameters O(h + log n) and O(log n) respectively and give the follow-
ing lower bounds for the computation of (a — 4)-additive or a/4-

multiplicative approximate MDSTs. 1) For graphs in Qsa}‘l‘i such that

h/a = o(y/nlog? n) holds, any randomized CONGEST algorithm with
success probability at least 2/3 requires Q((nh/a)Y?) rounds in the
worst case. 2) For graphs in gr?e}f o+ any deterministic CONGEST

algorithm requires Q(+y/n/a) rounds in the worst case.

Note that this theorem applies not only to broadcast-CONGEST
but also to the standard CONGEST model.

Before discussing the proof of Theorem 5.1, we explain how
this theorem matches our upper bound. Consider the randomized
lower bound first. Let h = ©(n!/273€) for an arbitrarily small pos-
itive constant € < 1/6, and @ = polylog(n). Then the diameter
D of the instances from Qs’a}z‘i{ is ©(n!/273¢), and Theorem 5.1

yields a lower bound of Q(nl/2-¢/ polylog(n)) rounds. Since D =
o(nl/z’s/polylog(n)) holds, it implies a Q(n!/27€ + D)-round lower
bound for any polylog(n)-multiplicative approximation algorithms.
That is, our algorithm is round-optimal up to subpolynomial (i.e.,
O(no(l))) factors. The f)(nl/ 3)-round lower bound for the logarith-
mic diameter case is derived from choosing A = O(log n). In the
deterministic case, we have D = O(log n). Then any O(yn + D)-
round algorithm with polylog(n)-multiplicative approximation is
round-optimal up to polylogarithmic factors. The deterministic
lower bound also implies that there is no efficient deterministic
algorithm with multiplicative dependency on D. That is, if there
exists an algorithm running in O(n'/3D) rounds (the randomized

lower bound does not exclude the possibility of such an algorithm),
it must be randomized.

The proof of Theorem 5.1 follows the seminal framework by
Das Sarma et al. [25] of reducing from two-party communication
complexity. Due to space constraints, some details are deferred to
the full version [9]. A key idea is to utilize the gap-k disjointness
function gdisjy 4 [7, 12], which is a generalized version of the
standard set-disjointness. In this problem, Alice has some vector
x € {0,1}" and Bob has some vector y € {0, 1}V and their goal is
to determine whether x -y > k or x - y = 0, where - is the (bitwise)
inner product of two vectors. Clearly the case of k = 1 corresponds
to the standard set-disjointness. We will use the following lower
bound:

LEmMMA 5.2 ([7, 12]). The randomized communication complexity
of gdisj x with error probability at most 1/3 is Q(N k), and the de-
terministic communication complexity of gdisjy x fork < N/4log N
is Q(N).

The construction of the two families Q}faﬁi and Q,]?,e& follows the
reduction technique by Izumi [19] on top of the framework by Das
Sarma et al. [25]. We first introduce a graph Iy u1, (a, b) associated
with two parameters N and M, and a pair of two N-bit bianary
vectors (a, b). Each family is defined as the sets of Iy ps n(a, b) over
all (a, b) with an appropriate choice of N and M. For simplicity,
we assume that N, M, and M/h are all integer values. The graph
I'n. m,n(a, b) is constructed as follows:

(1) We first create 4N + 1 paths of length M, each of which is
denoted by P; (0 < i < 4N).The nodes constituting P; are
identified by v(; o), V(i 1) - - - » V(i, M—1) from left to right.

(2) We then create a complete binary tree T with M leaves
ug, U1, . . . upr—1. For every i € [0, M/h], the node u;, is con-
nected with all the nodes vy, ; for j € [0,4N —1].

(3) For every i € [0,N — 1], we add two edges
(V4i+1,0, Vaiv2vafil,o) and (Vgi13-qfi],00 Vair+1),0)- Sim-
ilarly, for every i € [0,N — 1], we add two edges
(Vai, M—1, Vais14b[i, M—1) a0d (Vgiyo_p[i], M—1> Vai+3, M—1)-

It is not difficult to check that ' ar, (@, b) has diameter O(h +
log n). Let T, 5, be the minimum-degree spanning tree of [y ur, (a, b),
and A(U) be the maximum degree of a spanning tree U. The key
property of Iy a1, n(a, b) is the following lemma:

LEmma 53. A(T, p) = 1+ (a- b+ 1h/M for every (a,b) €
({0, 1}N)2. In addition, ifa-b=0thend,) <3.

ProoF. Let Z; be the subgraph of Ty us 1, (a, b) induced by {v; ; |
k € [4i,4i +3],0 < j < M — 1} U {vy(j11),0}, and Z = (U;Z;) U
Pyn. The graph Z; forms a simple path Q; from v4;,0 to vy(;11),0
if a[i] - b[i] # 1. Otherwise, it forms a simple path Q; from v4; o
to v4(;+1),0 and a cycle C; disconnected in Z. The simple paths
Q; for all i € [0,N — 1] and P4n are concatenated into a long
simple path, and the number of disconnected cycles is equal to
a - b. Consequently, Z consists of @ - b + 1 connected components,
which must be connected in T, j, using the edges incident to leaves
of T. Since at most M/h nodes has those edges, at least one node
must have a degree (a - b + 1)h/M or more. If a- b = 0, Z forms a
single path, and thus adding an edge (ug,vg,0) to T U Z results in a
spanning tree of the maximum degree three. O

The reduction utilizes the simulation theorem by Das Sarma
et al., which allows Alice and Bob to simulate any o(M)-round
CONGEST algorithm running on I'y, s, »(a, b) with relatively few
communication bits.

THEOREM 5.4 (DAS SARMA ET AL. [25]). Assume that Alice and
Bob respectively knows two N-bit strings a and b. Let X be any CON-
GEST algorithm running in Ty 1 p(@, b) within r(n) = o(M) rounds.
Then there exists a two-party protocol which uses O(r(n)log? n)-bit
communication and provides the outputs (i.e. the internal states at
the beginning of round r(n) + 1) of X at the nodes vo o and vy, p1—1
respectively to Alice and Bob.

Now we are ready to prove Theorem 5.1.

Proor. We mainly consider the case of randomized algorithms.
The deterministic case can be proved similarly with a different set-
ting of N and M. We set N = (%"g%)l/3 and M = (h—”z)IB.

alog®n
We have already shown that Gy a5 is the set of graphs of ©(n)
nodes and diameter O(h + log n). Suppose for contradiction a CON-
GEST algorithm X computing an a-approximate min-degree span-

nh
alog®n
instance I'y 1. p(a,b) € Gy . o Without loss of generality, this
algorithm informs all the nodes of the value A(U) for the con-
structed spanning tree U, which takes extra O(h + log n) rounds
for the execution of X but does not affect the asymptotic time
complexity of X. (recall that Q(D) = Q(h + logn) is the trivial
lower bound). Let k = % _ (#zg,;n)l/? By Lemma 5.3, if
a-b >k AT,}p)is at least kh/M > « and thus A(U) 2> « holds.
If a- b = 0 holds, A(T{a,b}) is at most three, and thus A(U) is
at most 3 + (@ —4) < a — 1 in the additive approximation case,
and is 3 - /4 < « in the multiplicative approximation case. In any
case, the value of gdistjy i (a,b) can be correctly decided from the
output value of X. By Theorem 5.4, it yields a two-party protocol for
the N-bit gap-k disjointness problem, which consumes o(M log? n)-

4
bit communication. Since N /k = (hnls#) =M log2 n holds, the

1/3
ning tree, which runs in o(M) = o() rounds for any

communication complexity of that protocol is o(M log2 n) = o(N/k)
bits. It contradicts Theorem 5.2. For the proof of the determinis-

l/Z’M _ (nz)I/Z’h -1

alog®n

and k = aM. Then, the same argument results in a deterministic
two-party protocol for gdisjy j consuming o(M log? n)-bit com-
munication. Since k satisfies k < N/4log N for sufficiently large
n, the deterministic lower bound is Q(N) bits by Lemma 5.2, but
Mlog? N = N holds and thus we have a contradiction. O

tic case, we set N = (om log? n)

ACKNOWLEDGMENTS

This work was supported in part by NSF Awards #7773087 and
#1535887, JST SICORP, KAKENHI No.16H02878 and 19K11824, and
Icelandic Research Fund grant 174484.

REFERENCES

[1] A. Agrawal, P. Klein, and R. Ravi. 1991. How tough is the minimum-degree Steiner
tree? A new approximate Min-Max equality. Technical Report CS-91-94. Brown
University.

[2]

—_
A

G

[7]

[8

[

[10

[11

[12

(13

[14

[15

=
&

[17

(18

[19

[20

[
—

[22

[23

[24

[25]

B. Awerbuch. 1987. Optimal distributed algorithms for minimum-weight span-
ning tree, counting, leader election and related problems. In Proceedings of the
Symposium on Theory of Computing. 230-240.

Lélia Blin and Franck Butelle. 2003. The first approximated distributed algorithm
for the minimum degree spanning tree problem on general graphs. In Proceedings
of the International Parallel and Distributed Processing Symposium.

Lélia Blin and Franck Butelle. 2004. The First Approximated Distributed Algo-
rithm For The Minimum Degree Spanning Tree Problem On General Graphs. Int.
J Found. Comput. Sci. 15, 3 (2004), 507-516.

Lélia Blin and Pierre Fraigniaud. 2015. Space-Optimal Time-Efficient Silent
Self-Stabilizing Constructions of Constrained Spanning Trees. In 35th IEEE Inter-
national Conference on Distributed Computing Systems, ICDCS 2015, Columbus,
OH, USA, June 29 - July 2, 2015. 589-598.

Lélia Blin, Maria Gradinariu Potop-Butucaru, and Stephane Rovedakis. 2011. Self-
stabilizing minimum degree spanning tree within one from the optimal degree.
J. Parallel Distrib. Comput. 71, 3 (2011), 438—449.

Keren Censor-Hillel and Michal Dory. 2018. Distributed Spanner Approximation.
In Proc. of the 2018 ACM Symposium on Principles of Distributed Computing (PODC).
139-148.

F. Chin and H.F. Ting. 1985. An almost linear time and O(n log n + E) message
distributed algorithm for minimum-weight spanning trees. In Proceedings of the
Symposium on Foundations of Computer Science. 257-266.

Michael Dinitz, Magntis M Halldorsson, Taisuke Izumi, and Calvin Newport. 2018.
Distributed Algorithms for Minimum Degree Spanning Trees. arXiv preprint
arXiv:1806.03365 (2018).

M. Elkin. 2004. Unconditional lower bounds on the time-approximation trade-
offs for the distributed minimum spanning tree problem. In Proceedings of the
Symposium on Theory of Computing. 331-340.

Manuela Fischer. 2018. Improved deterministic distributed matching via rounding.
Distributed Computing (2018).

Orr Fischer, Tzlil Gonen, and Rotem Oshman. 2017. Distributed Property Testing
for Subgraph-Freeness Revisited. CoRR abs/1705.04033 (2017).

Martin Fiirer and Balaji Raghavachari. 1990. An NC approximation for the
minimum degree spanning tree problem. In Proceedings of the Annual Allerton
Conference on Communication, Control and Computing. 274-281.

Martin Firer and Balaji Raghavachari. 1992. Approximating the minimum de-
gree spanning tree to within one from the optimal degree. In Proceedings of the
Symposium on Discrete Algorithms. 317-324.

Martin Fiirer and Balaji Raghavachari. 1994. Approximating the Minimum-
Degree Steiner Tree to within One of Optimal. Journal of Algorithms 17, 3 (1994),
409 - 423.

E. Gafni. 1985. Improvements in the time complexity of two message-optimal elec-
tion algorithms. In Proceedings of the Symposium on the Principles of Distributed
Computation. 175-185.

R. G. Gallager, P. A. Humblet, and P. M. Spira. 1983. A distributed algorithm for
minimum-weight spanning trees. ACM Transactions on Programming Languages
and Systems 5, 1 (1983), 66-77.

J. Garay, S. Kutten, and D. Peleg. 1998. A sub-linear time distributed algorithm for
minimum-weight spanning trees. SIAM Journal of Computing 27 (1998), 302-316.

Taisuke Izumi. 2014. Randomized Lower Bound for Distributed Spanning-Tree
Verification. In Proc. of the 21st International Colloquium on Structural Information
and Communication Complexity (SIROCCO). 137-148.

Dénes Kénig. 1916. Uber graphen und ihre anwendung auf determinantentheorie
und mengenlehre. Math. Ann. 77, 4 (1916), 453-465.

S. Kutten and D. Peleg. 1995. Fast distributed construction of k-dominating sets
and applications. In Proceedings of the Symposium on the Principles of Distributed
Computation. 238-251.

Christian Lavault and Mario Valencia-Pabon. 2008. A distributed approximation
algorithm for the minimum degree minimum weight spanning trees. J. Parallel
and Distrib. Comput. 68, 2 (2008), 200-208.

J. Nesettil, E. Milkova, and H. NeSetfilova. 2001. Otakar Boruvka on minimum
spanning tree problem. Translation of both the 1926 papers, comments, history.
Discrete Mathematics 233, 1 (2001), 3-36.

D. Peleg and V. Rubinovich. 2001. A near-tight lower bound on the time com-
plexity of distributed MST construction. SIAM Journal of Computing 30, 5 (2001),
1427-1442.

A. Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pandurangan, D. Peleg,
and R. Wattenhofer. 2012. Distributed Verification and Hardness of Distributed
Approximation. SIAM J. Comput. 41, 5 (2012), 1235-1265.

	Abstract
	1 Introduction
	1.1 Results
	1.2 Background & Related Work.

	2 Iterative Improvement Algorithm
	2.1 Parallel Improvements
	2.2 Progressive Improvements
	2.3 Main algorithm
	2.4 Distributed Implementation

	3 Algorithm for Constrained Matchings
	3.1 Algorithm
	3.2 Analysis

	4 Derandomization
	5 Lower Bounds
	References

