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The dynamics of systemswith higher-order dispersion are rapidly advancing to the center ofmodern hydrodynamics
research. From natural shallow water waves and nonlinear optics, to manufactured microcavity resonators, these
systems offer many surprises that motivate both fundamental insights as well as new device paradigms. An
extreme regime of hydrodynamics is the formation of shock waves, where nonlinearities of the system further
enhance the phenomenology. Higher-order dispersion can lead to novel dispersive shocks structures whose
precise modeling is challenging current mathematical concepts. Here we present a seminal study demonstrating,
experimentally and numerically, the dynamics in an interacting superfluid with higher-order dispersion. Raman
dressing, a technique which over recent years has emerged as a flexible tool to modify the dispersion, is used to
induce spin-orbit coupling that features a region of negative effective mass. Intriguingly, the breaking of Galilean
invariance by the spin-orbit coupling allows two different types of shock structures to emerge simultaneously in a
single system. Furthermore, we describe an interplay between vortices and shock fronts leading to a surprising
stability of one shock, which we attribute to reduced turbulence in regions of higher-order dispersion. Our work
suggests that spin-orbit coupling can be used as a powerful means to tune the effective viscosity in cold-atom
experiments serving as quantum simulators of turbulent hydrodynamics, with implications for quantum metrology,
quantum information, photonic applications, and quantum simulations of neutron stars.

Higher-order dispersions beyond the familiar parabolic form
bring surprising and peculiar effects to hydrodynamic systems at
the forefront of modern hydrodynamics research. These effects
have many applications, including to shallow water waves,
optical media, microcavity resonators, and photonic devices [1–
6]. Nonlinearities can further enrich the phenomenology,
leading to the formation of new shock structures that are
only beginning to be explored [7]. Due to the complexity of
the dynamics, these systems challenge existing mathematical
models and pose many open questions for fundamental and
applied studies.
Dilute-gas Bose-Einstein condensates (becs) provide a pow-

erful platform for studying these types of complex dynamics.
By immersing a dilute-gas bec into an appropriately tuned
laser field, spin-orbit coupling (soc) can be induced in the
bec [8–10]. This modifies the single-particle dispersion from
a parabolic form, 𝐸 (𝑝) = 𝑝2/2𝑚, to a double-well structure
with higher-order terms, similar in form to band structures
found in condensed matter systems. Features of the dispersion
can be tailored in experiments; by changing the intensity and
relative detuning of the Raman beams, one can finely tune and
manipulate the curvature of the dispersion.
A bec with soc constitutes an exotic medium through which

topological defects, phonons, and shock waves can propagate.
These features have characteristics that are strongly correlated
with the properties of the underlying medium. For instance, in a
conventional bec, small-amplitude phonons propagate near the
speed of sound in the medium at long wavelengths [11, 12], and
as the wavelength decreases, the propagation speed increases
slightly [13]. However, in a bec with soc, the dispersion
can be modified so that short wavelength modes travel more
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Figure 1. The development of dsws in a soc bec. At 𝑡wait ≤ 0ms,
this 1D numerical simulation shows an initial density perturbation
formed by an attractive Gaussian potential at the center of the system.
The potential is suddenly switched off at 𝑡wait = 0ms and the initial
density perturbation spreads outwards (𝑡wait = 1ms), forming two
traveling peaks (𝑡wait = 2ms) and developing into dsws moving in
opposite directions (𝑡wait = 3 and 4ms). The structure of a dsw is
highly dependent on the background dispersion. In a soc bec, the
breaking of Galilean invariance induces two distinct dsw structures
in a single system: To the right, the solitary wavetrain lags behind
the solitary wave edge (shock front), whereas to the left, the solitary
wavetrain travels faster than the large amplitude shock front.

slowly in specific directions. This has a profound impact on
the shape of dispersive shock waves (dsws) that develop from
non-linear interactions in the system. A prototypical example
of this is demonstrated in Fig. 1 showing the results of a 1D
numerical simulation using realistic soc parameters which give
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rise to the dispersion shown in Fig. 2. Although a bec with
parabolic dispersion only supports shock structures akin to
the left traveling one [14–16], qualitatively different structures,
such as the right traveling one in Fig. 1, arise in the presence
of a higher-order dispersion, which in this case lowers the
phonon dispersion with positive momenta, slowing the speed
of high-frequency components which now lag behind the shock
front.
Directly imaging these features in-situ in a realistic exper-

iment is extremely challenging due to their sub-micron size.
Here, we present alternative evidence, visible in current ex-
periments, that robustly detects the asymmetry introduced
by the soc, looking at the macroscopic behavior of induced
shock waves. The final narrative describes a subtle connec-
tion between the macroscopic hydrodynamic behavior and the
microscopic dynamics of vortices.
Shock waves generated in a superfluid medium are typically

considered to be dispersive (see [17] for a review): instead
of becoming infinitely steep, the shock front is smoothed by
gradients in the kinetic energy (dispersion), and the energy in
the shock wave is conserved. In direct contrast to this, classical
shock waves are smoothed by dissipative effects such as viscos-
ity, which removes energy from the shock wave. Depending
on the amplitude of the excitations and the geometry of the
system, shock waves in a superfluid can decay into a variety
of intricate structures determined by the dimensionality of the
system [18], in-part due to the presence of snaking instabili-
ties along transverse directions [19–22]. In one-dimensional
systems, effectively realized in elongated trap geometries with
tight radial confinement, superfluid shock waves remain disper-
sive [13, 23, 24]. As the dynamics probe additional dimensions,
however, shock waves can appear to be dissipative, despite a
lack of dissipation in the superfluid systems [25, 26]. This
effective viscosity arises from the generation of quantized su-
perfluid vortices through snaking instabilities, resulting in a
turbulent fluid that can bemodelled by one-dimensional viscous
shock wave (vsw) theory. We note that viscosity can appear
in superfluids due to interactions with the normal component
(mutual friction) and as intrinsic shear viscosity, but these
effects are much smaller than those discussed here which can
be reproduced with purely conservative simulations.
Here, we present a seminal study extending the realm of

existing hydrodynamic experiments into the regime of excitation
dynamics in the presence of higher-order dispersion. Our key
results include: the description of a new shock structure that
has not been observed in becs experiments before and presents
many open questions for nonlinear science; the observation
that – based on the breaking of Galilean symmetry – two
different shock structures co-exist in one and the same system;
the surprising observation of a shock feature with soliton-like
stability that forms in the region of higher-order dispersion;
matching numerical simulations showing the source of this
unlikely stability; and a study of excitation dynamics in the
presence of quantum turbulence in a dilute-gas becs, describing
the intricate interplay between vortices and propagating shock
structures. Our results reveal that soc offers a flexible way
to tune the effective viscosity of macroscopic hydrodynamics
realized in turbulent quantum fluids, providing unmatched

Figure 2. Experimental setup. a An elongated bec in a vertical
magnetic field is prepared with spin-orbit coupling using two counter
propagating Raman beams (green). An additional attractive optical
potential (red) is applied at the center of the soc bec. b Raman beams
couple the |↑⟩ and |↓⟩ pseudo-spin states in the |𝐹 = 1⟩ manifold
of 87Rb. c The two-component excitation spectrum (black solid)
and the single particle dispersion (blue dashed) for our experimental
parameters: Ω = 1.5𝐸R and 𝛿 = 0.54𝐸R. The phonon dispersion
has been shifted in the plot along the quasimomentum axis to line up
with the single particle dispersion minimum for convenience. The
bulk speed of sound is ≈

√︁
𝑔𝑛/𝑚 with small corrections from the soc

dispersion and mixing. To either side of the minima near 𝑞 = −1,
however, these corrections are small given the experimental parameters.
The blue-shaded area indicates quasimomenta with negative effective
mass.

experimental control of turbulent hydrodynamics in cold atom
quantum simulators.

I. RESULTS

A. Experimental Setup

To investigate the excitation dynamics, we employ an elon-
gated bec of 87Rb atoms, confined in an optical dipole trap
[See appendix A for detailed experimental parameters]. The
bec is cigar shaped with an aspect ratio of approximately 100:1,
and the long axis of the bec is oriented horizontally as shown
in Fig. 2a. A uniform bias field in the 𝑧-direction splits the
𝐹 = 1 hyperfine ground state according to the Zeeman shift
(Fig. 2b).
Spin-orbit coupling, with its associated double-well disper-

sion, is induced by applying two counter-propagating Raman
beams that couple the |𝐹, 𝑚𝐹 ⟩ = |1,−1⟩ and |1, 0⟩ state, which
we designate as two spin orientations |↑⟩ and |↓⟩ of a pseudo-
spin 1/2 system, respectively [see Fig. 2b and appendix A].
The height of the central hump in the single-particle dispersion
(near quasimomentum 𝑞 = 0 [see Fig. 2c]) depends on the
Raman coupling strength Ω, which can be adjusted in the
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experiment by the intensity of the Raman beams 𝐼R. The ener-
getic offset of the two local minima of the dispersion depends
on the detuning 𝛿 of the Raman coupling, which can be set
by the frequency difference between the two Raman beams.
The experimentally realized single particle dispersion and the
associated two-component phonon dispersion are shown in
Fig. 2c by the dashed blue and solid black lines, respectively.
See appendix C for more information. Energies and momenta
are measured in units of the recoil energy, 𝐸R = ℏ2𝑘2R/2𝑚,
and recoil momentum, 𝑘R = 2𝜋/𝜆R, where 𝜆R is the Raman
laser wavelength. The bec is prepared with soc such that
the majority amplitude of atoms are in the |↑⟩ spin state and
the direction of the soc positive quasimomentum +𝑞 is in the
+𝑥-direction, as indicated in Fig. 2a. Preparing the bec with
soc causes heating in the system, reducing the the number of
condensed atoms in the majority component to approximately
2 × 105 atoms. The atoms in the minority component |↓⟩ are
indiscernible in the experimental images.
An additional dipole sheet aligned perpendicular to the long

axis of the bec creates an attractive Gaussian potential for the
atoms at the center of the bec. This vertical dipole sheet is
pulsed on for 10ms after the system has been preparedwith soc,
resulting in excitations that propagate outwards along the along
axis towards the edges of the bec. The depth of this dipole
potential 𝑈b can be varied to generate large or small initial
excitations in the bec. In this section, 𝑈b is on the order of
the chemical potential of the majority component state (|↑⟩) in
the soc bec, 𝜇 =95 nK. To analyze the dynamics, absorption
imaging is performed after a 10.1ms time-of-flight expansion.
A Stern-Gerlach technique is used to vertically separate the spin
states during the imaging procedure. Representative images
obtained this way are presented in Fig. 3, where the |↓⟩ state
is not shown due to low population of atoms in the minority
component.

Figure 3. Excitation dynamics with and without soc. Absorption
images acquired after a 10.1ms time-of-flight expansion show the
dynamics of outward moving excitations in a bec prepared a without
and b with soc at times 𝑡 = 0, 5, 10, 25 and 40ms (top to bottom)
after a 𝑈b = −110 nK ≈ −1.2𝜇 attractive potential has been applied
to the center of the bec for 10ms. A Stern-Gerlach technique is used
during time-of-flight to vertically separate the spin states in b, where
only the majority component is shown. The arrow in the last panel of
b indicates a highly reproducible soliton-like peak propagating to the
right, discussed in the main text.

B. Experimental Results

We have performed a systematic study of the dynamics
following the sudden switch-off of the dipole sheet as a function
of a subsequent in-trap evolution time 𝑡wait and of the initial
potential strength𝑈b. To better match the experimental results
with numerics, we have introduced a wide cross-dipole beam
to anchor the position of the soc bec in place during the
experiment. This beam increases the axial trapping frequency
to 2𝜋 × 3.49Hz, leaving the radial trap frequencies unaltered,
but changing the aspect ratio of the trap to approximately
80:1 and the chemical potential to 𝜇 =55 nK. A synopsis
is presented in Fig. 4 and reveals the following features, the
interpretation of which is confirmed by our matching numerical
simulations: In the absence of soc, the left-travelling and right-
travelling excitations qualitatively behave in the same way as
they propagate to the edges of the bec, forming vortex rings and
dark solitons. When strong soc is applied to the system, parity
is broken and an asymmetric behavior is observed between the
two directions. This asymmetric behavior is highly dependent
on the depth of the initial potential with respect to 𝜇 and on
the coupling strength of the soc. For a system where the soc
coupling strength Ω and detuning 𝛿 are fixed, the following
behavior is found:

1. When𝑈b < 𝜇, excitationsmoving outwards from the cen-
ter of the bec display no discernible difference between
the cases with and without soc.

2. When 𝑈b ≳ 𝜇, the excitation propagating to the right
consistently forms a well-defined peak that becomes
particularly pronounced during the expansion dynamics
and travels outward from the center towards the right
edge of the cloud at a relatively constant velocity. For
clarity, this peak is indicated with a white arrow in the
lower right image of Fig. 3. Quantitative analysis of the
right-travelling excitation yield experimental speeds of
1.63 ± 0.04 mm/s for 𝑈b =−30 nK, 1.64 ± 0.05 mm/s
for𝑈b =−60 nK, and 1.68 ± 0.06 mm/s for𝑈b =−90 nK.
This excitation is highly reproducible and observed to
have a lifetime comparable to small-amplitude excita-
tions in past phonon excitation experiments [12, 13, 24].
In addition, soliton-like excitations are seen in the ex-
perimental images, and numerical simulations of the
gpe identify the generation of a collection of defects,
including solitons, solitonic vortices, and vortex rings,
during the 10ms pulse of the attractive potential. The
positions of these features depend subtly on small details,
such as a tiny tilt in the dipole sheet or variations in the
position of the potential, which are expected to vary in
the experiment from shot to shot.

C. Numerical Results

To understand the experimental results, numerical simula-
tions of a coupled set of Gross-Pitaevskii equations (gpes) are
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Figure 4. Experimental results and numerical simulations. Analysis and integrated cross sections of an expanded bec prepared in an
elongated crossed-dipole trap with soc after an attractive potential with a𝑈b = −30 nK, b𝑈b = −60 nK, or c𝑈b = −90 nK has been pulsed on
at the center of the cloud for 10ms. The chemical potential in the trap used here is 𝜇 =55 nK. After the potential is switched off, the system is
allowed to evolve for a time 𝑡wait in the presence of soc prior to 10.1ms time-of-flight expansion. The top row shows the position of the right
moving excitation over time for gpe simulations (shaded region) and experiment (data points) for each potential depth, measured using a Gaussian
fit function. The error bars and bands for both experiment and numerical results show the 2𝜎 waist of the fitted Gaussian to the measured
excitation. The experimental Gaussian waist presented here is comparable to the variation of the position of the shock feature shot-to-shot for
similar experimental parameters. Quantitative results for the experiment are stated in the main text. In the lower panels, integrated cross sections
for both gpe simulation (blue) and experiment (orange) are provided for each potential depth after 𝑡wait = 2, 8, 14, 20 and 26ms, where the
shaded regions reflect the data presented in the top row. The gpe simulations presented here are performed using axial symmetry, which forces
topological defects to align along the imaging axis. This results in some imaging defects from the numerical simulations, such as the slitting of
the shock peak in the bottom two panels of the second column and corresponding kink in the top panel. For more information, see appendix C.
The simulations have been modified to reflect the optical resolution of the experiment (∼ 2 µm) using a Gaussian convolution method.

performed:
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where 𝑝̂ = −iℏ∇⃗ is the momentum operator, 𝜇 is the chemical
potential in the soc system, 𝑔𝑎𝑏 = 4𝜋ℏ2𝑎𝑎𝑏/𝑚, and 𝑎𝑎𝑏 are
the 𝑠-wave scattering lengths (with a, b = ↑ or ↓). For 87Rb,
𝑎↑↑ = 100.40𝑎0, 𝑎↓↓ = 100.86𝑎0, and 𝑎↑↓ = 100.41𝑎0 where
𝑎0 is the Bohr radius. The system is prepared in the ground state
with a Thomas-Fermi (tf) cloud radius of 𝑥TF = 150 µm along
the long axis, corresponding to 𝑁↑ = 206 000 and 𝑁↓ = 6000
atoms in the condensate. The soc parameters are Ω = 1.5𝐸R
and 𝛿 = 0.54𝐸R. To reduce computational costs, cylindrical
symmetry is employed about the long axis of the trap. The
system is evolved in real time following the experimental
protocol including the imaging procedure, which we implement
in an expanding coordinates system as discussed in [27]. See
appendix D for details. This introduces some significant
artifacts by restricting vortices to be vortex rings, but allows
us to fully simulate the experimental procedure including the

expansion and imaging. Limited full 3d simulations of the
in-situ dynamics confirming the behavior discussed here are
shown in Fig. 5.

D. Interpretation of Results

As demonstrated in the experimental absorption images
Fig. 3, a striking effect of the modified dispersion is the apparent
stabilization of the right-moving shock wave, leading to a
highly reproducible peak seen in the expansion images that
is traveling to the right. The average Gaussian width of this
shock feature is 𝑤s = 1.74 ± 0.35 𝜇m when averaged over
times {2, 4, 6, ..., 46} ms for all potential depths. This feature
is reproduced by our numerical simulations, allowing us to
probe the microscopic mechanism for this stabilization. Our
numerics are summarized in Fig. 5. Details and animations
can be found in appendix E.
The numerics show the following progression of events.

Shortly after turning on the attractive potential, fluid is drawn
into the central region of the trap where the potential is located
(Fig. 5a). The subsequent flow induces a snaking instability [19–
22] seen in Fig. 5b, forming vortex rings on either side of the
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Figure 5. Numerical simulations with and without spatial tilt of attractive potential. Simulated in situ images (prior to the expansion)
of the four distinct stages of evolution from a simulation of the experiment with a −60 nK attractive potential. Here we compare axially
symmetric simulations to 3D simulations with a small 1% y-tilted Gaussian dipole beam 𝑉𝐷𝐵 ∝ exp

(︁
(𝑥 + 0.01𝑦)2/2𝜎

)︁
. Upper frames are

the integrated line-density 𝑛1𝐷 (𝑥) =
∫
d𝑦d𝑧 𝑛(𝑥, 𝑦, 𝑧), with axially symmetric data (blue), and 3d tilted data (orange). Middle frames are

slices 𝑛3𝐷 (𝑥, 𝑦) = 𝑛(𝑥, 𝑦, 0) for axially symmetric simulations with streamlines of the current density 𝑛↑𝑣⃗↑ + 𝑛↓𝑣⃗↓. Bottom frames are slices
𝑛3𝐷 (𝑥, 𝑦) = 𝑛(𝑥, 𝑦, 0) from the 3D tilted simulations. a Initial flow of the bec into the region of the attractive potential. b Formation of several
vortex rings due to snaking instabilities induced by this flow. The pattern of rings here is quite symmetric, even in the tilted case. Vortex rings
appear as reduced density in the 1D plots with mild dependence on the ring radius. c Formation of outgoing dsws after the attractive potential is
removed at 𝑡 = 10ms. In this frame, the dsws are just starting to interacting with the first seeded vortex ring: Without the seeding rings, the
structure of these dsws is similar to that shown in Fig. 1. In the tilted case, the vortex rings rapidly decay into vortices that break the axial
symmetry and average to significantly smoother integrated line-density. d Results of dsws interacting with initial vortex rings. Note that many
fully-formed and stable vortices exist on the left, whereas fewer vortices survive on the right. This is attributed to an increased number of vortex
annihilation events to the right, evident by the manifestation of short wavelength oscillations in the integrated cross sections. Some features are
sensitive to the tilt, such as the vortices near 𝑥 = 0 whose location shifts by several microns in the integrated 1D density. Others remain robust,
such as the right-moving shock wave and corresponding peak at 20 µm to 25 µm.

growing central excitation, or bulge. During the initial stages
of evolution, vortex rings form quite symmetrically on both
sides. Most have their central flow oriented towards the center
of the cloud, however, with increasing potential strength some
vortex rings form with central flow facing outward.
After the attractive potential is turned off, the central bulge

expands along the axis of the trap, as shown in Fig. 5c. This can
be described by decomposing the bulge as a superposition of
left- and right-moving bulges (phonons), which move outward
at approximately the local speed of sound once the attractive
potential is suddenly switched off. Due to the non-linear inter-
action, these left- and right-moving bulges quickly form dsws,
the orientation and polarization [17] of which are sensitive to
the curvature of the dispersion as shown in Fig. 1. In particular,
the left-moving dsw forms a leading soliton train as short-
wavelength components travel faster than the solitary wave edge
of the bulge. On the right, a small-wavelength soliton train trails
behind the bulge. This has an intuitive explanation in terms of
the modified dispersion. On the right, the phonon dispersion
has negative curvature, and both group and phase velocities
of the short-wavelength modes are slower [7, 17]. Discerning
these features in an experiment would require high-resolution
in-situ imaging as they are on the order of the healing length
and they do not survive the expansion imaging procedure.

As these outward traveling shock waves overtake the initially
seeded vortex rings, intriguing dynamics ensue and a complex
interaction develops between the rings and the shock front, as
shown in Fig. 5d. In particular, the vortices absorb energy and
momentum from the shock front, causing the shock to dissipate
as if it were a viscous shock wave (vsw) even though the total
energy is conserved by the system. To verify this, we have
performed related simulations and experimentswhere the dipole
beam is slowly turned on so as not to seed vortices: in this case,
both shock waves persist, allowing us to conclude that the decay
of the left-moving shock wave is, indeed, related to the presence
of microscopic vorticity. This is consistent with previous
observations of vsws in superfluids as a result of dimensional
reduction [25, 26] where a dissipationless superfluid in 3d is
described by viscous hydrodynamics in 1d after integrating
over the transverse directions. The modified dispersion plays an
important role here, significantly suppressing these dissipative
effects. In Fig. 5d one can see a large number of vortex rings
on the left side of the cloud, while very few remain on the
right. Examining the detailed dynamics (see the appendix E),
we see that vortex-vortex and vortex-shock front interactions
are more likely to trigger vortex annihilation on the right side
of the cloud than on the left. As a result, fewer vortices remain
on the right and less energy is dissipated from the shock front,
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leading to less effective viscosity and to the stabilization effect
we observe in experiments with modified dispersion.
One might wonder if the asymmetry is due to the initial

asymmetric form of the dsws shown in Fig. 1, in particular
noting that the strong leading soliton train on the left might
trigger the formation of more vortices. While this likely plays
a role, it appears that the vortices seeded in Fig. 5b are crucial
to the observed dynamics, at least at these potential strengths.
Both numerics and experiment reveal that using a shallower
potential, such as 𝑈b = −30 nK (see Fig. 4a), decreases the
number of defects generated initially in the system, thus greatly
reducing the effective viscosity, and shocks propagate in both
directions without significant dissipation.
Explaining the exact microscopic mechanism for the en-

hanced likelihood of vortex annihilation with modified dis-
persion requires further investigation, but we anticipate that
this is largely due to the presence of a dynamical instability
in the region of negative effective mass (shaded region in
Fig. 2c) [28]. As the shock front passes through a vortex ring,
it can induce portions of its flow to enter this region where
dynamical instabilities can manifest. Our numerics reveal that
this often triggers the vortex ring to rapidly collapse or expand
out of the system, effectively decaying to many high-frequency
phonons seen as rapid, near-stationery oscillations on top of
the simulations in Fig. 5d. In contrast, vortex interactions with
the shock front moving to the left change the diameter of the
vortex rings, triggering fewer annihilation events, and leaving
them free to absorb the energy from the passing shock wave.
Annihilations from the dynamical instability occur primarily in
the center of vortex rings when the relative flow from the pass-
ing shock front increases the quasimomentum into the negative
mass region. Notably, the rapid oscillations from the dynamical
instability are also seen developing on the cusp of the outward
traveling right side dsw in the raw𝑈𝑏 = −30, −60 and −90 nK
numerical data sets.

E. Expansion Dynamics

Structures induced by soc and topological defects formed
during dsw decay have length scales on the order of a healing
length. These length scales are below the imaging resolution
in our experimental setup. Therefore, time-of-flight imaging
with 10.1ms expansion time is used. During this expansion,
features like solitons and vorticeswiden and thus can be resolved
by the imaging system [29]. We have performed numerical
simulations of the expansion dynamics which reveal that this
process is nontrivial and the structures of the excitations change
considerably during this time. We find that the expansion
process significantly enhances the peak of the dsws, allowing
it to be clearly imaged after the experiment: After the bec is
released from the trap, the gas expands rapidly in the radial
direction, reducing the density by more than a factor of 10 in
2ms, and rendering the gas essentially non-interacting. In the
remaining time of expansion, the various frequency components
determined from the bare particle dispersion separate with
velocity 𝑣 = ℏ𝑘/𝑚, where 𝑘 is the wave vector of the frequency
component. What remains is a highly enhanced peak moving

with the characteristic momentum of the shock wave. See
appendix F for more information and animations.

II. DISCUSSION

Using an attractive dipole sheet to generate large amplitude
excitations on the background of a soc bec, we are able to
probe the effects of higher-order dispersion on the non-linear
dynamics in an ultracold atomic system. The experimental
results show a clear asymmetry in the non-linear dynamics in the
presence of soc, surprisingly manifesting an enhanced stability
of shock fronts propagating into the direction of higher-order
dispersion, in agreement with gpe simulations. Within the
numerical simulations, one is able to resolve the microscopic
origin of this stability: the soc significantly modifies the
dynamics and stability of vortices in the region of modified
dispersion, reducing their ability to dissipate energy from the
shock wave. While it has been shown that the presence of soc
significantly alters the structure of vortices [30], no comparable
study of the effect on their dynamics has been performed.
The left-moving shock front decays rapidly, leaving behind

a wake of vortices, whereas the right-moving shock front
remains quite stable. We interpret the observed asymmetry as
a manifestation of quantum turbulence: Viewed in terms of
1d vsw theory, the vorticity induced in the system provides a
mechanism to absorb energy, resulting in an effective viscosity
in the 1d theory, similar to that seen in previous superfluid
experiments [25, 26]. This effect is qualitatively consistent
with our results, but further analysis is required to quantify the
effective viscosity.
In this language, the modified dispersion here significantly

alters the vortex dynamics in comparison to previous cited
works, reducing the effective viscosity for the right-moving
shock front. Thus, soc provides an effective tool for modifying
the underlying dynamics of vortices, and thereby tuning the
effective viscosity of the long-range hydrodynamic effective the-
ory. Such control is essential for using cold-atoms as effective
quantum simulators for turbulent fluid dynamics with wide-
ranging applications, including quantum metrology, quantum
information, photonic applications, and quantum simulations
of neutron stars. For example, quantum simulation using ultra-
cold atoms is one of the most promising strategies for studying
the hydrodynamics in neutron stars that result from quantum
turbulence [31, 32]. The neutrons, protons, and possibly even
quarks in neutron stars form superfluids whose dynamics are
thought to be responsible for observable phenomena such as
pulsar glitches – rapid sudden increases in the rotation rate of
pulsars despite a stead loss of angular momentum. Being able
to simulate neutron stars with terrestrial cold atom experiments
may provide the key needed to understand these glitches, whose
microscopic origin remains a mystery, despite almost half a
century of intensive study [33, 34] (see [35] for a review).
This application represents an exciting convergence of practical
quantum simulation and improving astrophysical observations
(see, for example [36], where the structure of a glitch was
observed for the first time).
Our results here show that spin-orbit coupling provides
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another tool to adjust the microscopic properties of quantum
turbulence. Through proper calibration and bench-marking,
such microscopic controls greatly expand the flexibility of cold-
atom platforms, allowing them to simulate other hydrodynamics
systems with greater fidelity.
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Appendix A: Experimental Methods and Parameters

Our experiments are conducted with elongated becs of 87Rb
atoms. The atoms are confined in an optical dipole trap with
trap frequencies {𝜔𝑥 , 𝜔𝑦, 𝜔𝑧} = 2𝜋 × {3.07, 278, 278} Hz,
where the weakly confining direction is oriented horizontally.
For data presented in Figure 4, an additional wide cross-dipole
beam anchors the bec in place and increases the axial frequency
from 2𝜋 × 3.07 Hz to 2𝜋 × 3.49 Hz, while keeping the radial
confinement the same. A 10G uniform bias field leads to
a Zeeman splitting of the hyperfine states. The |1,−1⟩ and
|1, 0⟩ state are coupled through a two-photon Raman transition,
whereas the |1, +1⟩ state is essentially uncoupled due to the
quadratic Zeeman effect. After loading into soc, there are
approximately 2 × 105 atoms in the majority (|↑⟩) component
of the condensate. During the experiment, the Rabi coupling
strength is Ω = 1.5𝐸R. The detuning of the Raman drive is
set to 𝛿 = 0.54(1)𝐸R ≡ 2000(50) Hz, where the uncertainty is
given by the stability of the external bias field.
During the preparation and course of the experiment, heat-

ing caused by the Raman beams will decrease the condensate
fraction, reducing the 1d longitudinal speed of sound and the
equivalent non-soc chemical potential in the majority compo-
nent spin state from their initial values of 𝑐𝑠0 ≈ 2.2mm/s and
𝜇0 ≈ 100 nK to 𝑐𝑠 ≈ 1.6mm/s and 𝜇 ≈ 55 nK, respectively.
An additional vertical dipole sheet, with 𝜆b = 850 nm and

Gaussian waists {𝑤𝑥 , 𝑤𝑦} = {4.8, 27.2} µm, is focused onto
the center of the bec. The extent of the Gaussian profile in the
y-direction is larger than the size of the bec in-situ. The beam
is pulsed on for 10ms to create excitations at the center of the
cloud.
Imaging is performed after 10.1ms time-of-flight expansion

during which all laser beams are off, and a Stern-Gerlach
technique is used to vertically separate the spin states during
the imaging procedure.

Appendix B: GPE Simulations

To model the experiment, we adjust the chemical potential 𝜇 so
that the density of the gas vanishes at 𝑥TF = 150 µm in the tf
approximation. These parameters correspond to a grid spacing
of d𝑥 ≈ 0.06 µm which is sufficiently small compared with the
healing length 𝜉 ≈ 0.22 µm in the center of the cloud.
We start from the ground state in a harmonic trap with

frequencies {𝜔𝑥 , 𝜔𝑦, 𝜔𝑧} = 2𝜋 × {3.49, 278, 278} Hz. We
then evolve in real time using a 5th-order Adams-Bashforth-
Milne (abm) predictor-corrector integration scheme [37] with
step size d𝑡 = 6.3 𝜇s. Wemodel the dipole sheet with a gaussian
potential centered on 𝑥0 with a width of 𝜎 = 4.8 µm. This
potential is turned on and off smoothly using a𝐶∞ step function
over 𝑡step = 0.1ms. We note that it is important for the accuracy
of the abm method that the time-dependent parameters vary
smoothly.
To simulate the cloud expansion, we use the scaling procedure

described in [27] to scale the radial coordinate without needing
to add more lattice points to our simulation. Since the trapping
potential along the long axis of the cloud is weak, there is
very little expansion in this direction, so we do not scale the
coordinate in this direction – our box is sufficiently large to
accommodate this expansion.
Although the dynamics are three-dimensional, the two radial

trapping frequencies are approximately equal, and the full 3d
dynamics are well approximated by an axially symmetric geom-
etry. Axially symmetric simulations can reproduce turbulent
features generated by a quantum-mechanical piston in a chan-
nel geometry, like that found in Ref. [26]. Similar agreement
between axially symmetric simulations [38] that can reproduce
3d shock phenomena in channel geometries [25] has also been
observed in fermionic superfluids.
There are two differences of note between the experiment

and gpe simulations. First, the numerical simulations enforce
an axial symmetry, which restricts solitonic excitations, such as
vortex rings, to be axially symmetric. While this is consistent
with the experimental geometry, it is well known that small
perturbations will destabilize vortex rings, which can evolve
relatively quickly into solitonic vortices [21, 22, 39–45]. We
have verified by performing unrestricted 3d simulations (see
the appendix F) that perturbations as small as 1% in alignment
of the dipole beam (see the third panel of Fig. 5) rapidly induce
these instabilities, resulting in much smother average densities
on the left consistent with the experimental images, but per-
forming full high-resolution simulations for direct comparison
is prohibitive for this initial study. We therefore expect that
where the simulations produce vortex rings, we can expect to
observe solitonic vortices in the experiment. Despite these ra-
dial instabilities, we have verified that using axially symmetric
simulations still quantitatively reproduces the bulk dynamics
in these elongated systems.
Second, while preparing the soc bec in the experiment, a

thermal cloud is generated by the Raman beams in the initial
state. This is observed in 1d cross sections of the data. While in
principle one can include the effects of the thermal cloud using
the stochastic projected Gross-Pitaevskii Equation (spgpe) [46–
49] or Zaremba-Nikuni-Griffin (zng) [50, 51] formalisms, the
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agreement between our simulations and experiment show that
these effects are small.

Appendix C: SOC Phonon Dispersion

Figure 6. Phonon dispersions with soc. Phonon dispersion
for the full theory (solid black curve) compared with the single-
band approximation Eq. (C1) (solid orange (light gray) curve) and
single-particle dispersion (thick blue (light gray) dashed curve) for
experimental parameters Ω = 1.5𝐸R and 𝛿 = 0.54𝐸R. The shaded
area indicates quasimomenta with negative effective mass. The
phonon dispersion has been shifted to line up with the single particle
dispersion minimum for convenience. While qualitatively similar, the
single-band model has some quantitative differences. For this reason,
we simulate the full two-component model in all of our results.

In a previous work, Khamehchi et al. used a single-particle
dispersion to describe the expansion of a soc bec into a
vacuum, notably matching the speed and dsw shape during
expansion [28]. In contrast, here the dsw is expanding through
a non-zero background density. From this perspective, dsws
are large amplitude phonons described by a phonon dispersion
constructed from Bogoliubov-de Gennes (bdg) theory.
The single-particle dispersion for excitations about the vac-

uum, used in [28], is found by solving

iℏ
𝜕

𝜕𝑡
|𝜓⟩ = [𝐸± ( 𝑝̂) + 𝑔𝑛 +𝑉ext (𝑥)] |𝜓⟩, (C1)

where 𝐸± ( 𝑝̂) are the dispersion of the upper and lower band of
the single particle obtained by diagonalizing equation (1) for
homogeneous states. We assume that the coupling constants
are equal 𝑔↑↑ = 𝑔↓↓ = 𝑔↑↓ = 𝑔. |𝜓⟩ is the wavefunction
corresponding to the eigenstate of equation (1) describing
the lowest band, and is a linear combination of the two bare
hyperfine states, and 𝑛 = 𝑛↓ + 𝑛↑ is the total density. For
inhomogeneous densities this picture is locally valid for slowly
varying densities, similar to the Thomas-Fermi approximation,
and remains valid as long as the system is gently excited

compared to the band separation, which is proportional to the
Raman coupling strength Ω. The two branches 𝐸± (𝑝) mix the
hyperfine states due to the soc interaction:

ℏ𝐸± (ℏ𝑘𝑘𝑅)
2𝐸𝑅

=
𝑘2 + 1
2

±
√︃
(𝑘 − 𝑑)2 + 𝑤2, (C2)

where we have defined the dimensionless parameters 𝑘 =

𝑝/ℏ𝑘𝑅, 𝑑 = 𝛿/4𝐸𝑅, and 𝑤 = Ω/4𝐸𝑅 to incorporate Ω and the
detuning of the Raman coupling 𝛿. The form of the lower band
defined here is shown as the dashed blue curve in Fig. 6.
With our given parameters, the single-band model exhibits

qualitatively similar results to themulti-band description, where
many aspects of the experiment are reproduced, but quantitative
differences are observed. The approximate equality of the
coupling constants allows one to define a spin-quasimomentum
mapping that relates the two-component spin populations 𝑛↑
and 𝑛↓ to the quasimomentum 𝑞 of the single-component state:

𝑛↓ − 𝑛↑
𝑛↓ + 𝑛↑

=
𝑘 − 𝑑√︃

(𝑘 − 𝑑)2 + 𝑤2
, (C3)

This simplified model captures the interesting phenomena
observed in the experiment, but is not quantitatively accurate.
Within this single-band model, the phonon dispersion ob-

tained from bdg theory has a fairly simple form (thin solid
orange curve in Fig. 6):

𝜔(𝑞) = 𝐸1 (𝑞) +

√︄
𝐸2 (𝑞)
2

(︃
𝐸2 (𝑞)
2

+ 2𝑔𝑛0
)︃
, (C4a)

𝐸1 (𝑞) =
𝐸− (𝑞0 + 𝑞) − 𝐸− (𝑞0 − 𝑞)

2
, (C4b)

𝐸2 (𝑞) = 𝐸− (𝑞0 + 𝑞) + 𝐸− (𝑞0 − 𝑞) − 2𝐸− (𝑞0) (C4c)

where 𝑛0 is the background density upon which the phonons
propagate, 𝑞0 is the momentum of the background state, and
𝑞 is the momentum of the phonon. Form these formulas the
speed of sound follows from the slope of the dispersion at small
momentum values. (For phonons about the ground state, one
should take 𝑞0 to be the minimum of the lowest band where
𝐸 ′
− (𝑞0) = 0 Eq. (C1).)
For our experimental parameters, this single-band theory

predicts a linear dispersion for small phonon momenta and a
roton-like branch at large positive phonon momenta. These
qualitative features persist in the two-component model, but
to capture the full physics in the regions of negative mass, a
two-component model is required. In particular, the phonon
dispersion in the full two-component model shifts to a lower
energy in the negative mass region, resulting in slower dsw
propagation in the +𝑞-direction, which gives rise to the asym-
metry seen in Fig. 1.
The full phonon dispersion in the two-component model

(black curve in Fig. 6) can be found by solving the following
bdg equations:
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⎛⎜⎜⎜⎝
𝐾↑(𝑞0 + 𝑞) + 𝑔↑↑𝑛↑ 𝑔↑↑𝑛↑

Ω
2 + 𝑔↑↓

√
𝑛↑𝑛↓ 𝑔↑↓

√
𝑛↑𝑛↓

𝑔↑↑𝑛↑ 𝐾↑(𝑞0 − 𝑞) + 𝑔↑↑𝑛↑ 𝑔↑↓
√
𝑛↑𝑛↓

Ω
2 + 𝑔↑↓

√
𝑛↑𝑛↓

Ω
2 + 𝑔↑↓

√
𝑛↑𝑛↓ 𝑔↑↓

√
𝑛↑𝑛↓ 𝐾↓(𝑞0 + 𝑞) + 𝑔↓↓𝑛↓ 𝑔↓↓𝑛↓

𝑔↑↓
√
𝑛↑𝑛↓

Ω
2 + 𝑔↑↓

√
𝑛↑𝑛↓ 𝑔↓↓𝑛↓ 𝐾↓(𝑞0 − 𝑞) + 𝑔↓↓𝑛↓

⎞⎟⎟⎟⎠ (C5a)

𝐾↑(𝑞) =
(𝑞 + 𝑘𝑅)2
2𝑚

− 𝜇 − 𝛿

2
+ 𝑔↑↑𝑛↑ + 𝑔↑↓𝑛↓, 𝐾↓(𝑞) =

(𝑞 − 𝑘𝑅)2
2𝑚

− 𝜇 + 𝛿
2
+ 𝑔↑↓𝑛↑ + 𝑔↓↓𝑛↓. (C5b)

Appendix D: Axially Symmetric GP Simulations

In Fig. 4 of the main text, experimental results are directly
compared to a Gaussian convolution (to mimic the optical
resolution of the experiment) of axially symmetric numerical
gpe simulations. In this figure, the simulations show signif-
icant peaks moving to the left that are not observed in the
experiments. This is due to the enforced axial symmetry in
the simulations, forcing all defects to be aligned along the
imaging axis. Symmetry unrestricted simulations (described
in the following section) show that small perturbations cause
these defects to align quasi-randomly, averaging out and only
the shock fronts remains, but are computationally expensive
to perform for the full system, and while they are able to show
an accurate picture of the experimentally observed dynamics,
axially symmetric numerical simulations are able to reproduce
some of the key macroscopic features observed in experiments.
In this section, we describe detail of these axially symmetric
simulations with which we can simulate the full experiment,
including expansion dynamics.
The simulations in Fig. 4weremade using the axially symmet-

ric GPEwith a 𝑁𝑥×𝑁𝑟 = 8000×50 grid. The initial conditions
use a cloud with a Thomas Fermi radius of 𝑥𝑇 𝐹 = 150 µm
which models the condensate, but not the extended thermal
cloud. As has been noticed in many experiments with bec
dynamics, we find again here that appropriately modeling the
condensate without the thermal cloud provides an excellent
approximation of the observed experimental dynamics. The
three columns in Fig. 4 represent different potential depths
−30 nK, −60 nK, and −90 nK, respectively.
Movies of these simulations are provided in the Supplemental

Material [52] and include:

Axial30nK.mp4 [53]: Axially symmetric simulations without
time-of-flight (tof) expansion,𝑈b = −30 nK.

Axial60nK.mp4 [54]: Axially symmetric simulations without
tof expansion,𝑈b = −60 nK.

Axial90nK.mp4 [55]: Axially symmetric simulations without
tof expansion,𝑈b = −90 nK.

SW.mp4 [56]: Shock waves from a 60 nK attractive potential
interacting with vortex-antivortex line pairs of varying
separation.

3D_90nK.mp4 [57]: A comparison between the Axial, “tube”,
3D, and 3D 1%-tilt numerical simulations with an attrac-
tive potential depth of −90 nK.

Axial90nK_ToF.mp4 [58]: Axial simulation of 10.1ms time-
of-flight (tof) expansion starting after 26ms in trap
evolution.

The simulated data in Axial30nK.mp4 [53],
Axial60nK.mp4 [54], and Axial90nK.mp4 [55] show
detailed dynamics of the system in three time regimes: First,
from 𝑡wait = −10ms to 0ms, showing the dynamic generation
of turbulent features; second, from 𝑡wait = 0ms to 6ms,
showing the interaction between the dsw and the turbulent
features stabilizing the right-hand side shock wave; third, from
𝑡wait = 6ms onward, showing the motion of the turbulent
features once the density peak has passed.
The attractive potential is turned on at 𝑡wait = −10ms and the

superfluid floods into the potential well, forming a large peak
in the center. Within 2ms, areas of modulated density form
grey solitons at the edges of potential. For shallow potentials
(−30 nK) these solitons are stable. However, for larger potential
depths (−60 nK and −90 nK) a snaking instability sets in,
nucleating vortex rings. The vortex rings form mostly with
their central flow oriented away from the center of the cloud.
This is clearly seen in the −30 nK simulation where all the
vortex ring have a net outward flow and move in that direction.
For larger potential heights, a few vortex rings of opposite
orientation also form.
The vortex rings move according to the Magnus relation

𝑣⃗ ∝ 𝑘 × 𝐹⃗, where 𝑣⃗ is the velocity of the vortex relative to the
backgrund flow, 𝑘 is the circulation of the vortex, and 𝐹⃗ is a
force acting on the vortex. If a vortex ring experiences a force
in the same direction as its central flow, it will expand, while
a vortex ring experiencing a force in the opposite direction
to its central flow will shrink. In the present setting, the
vortex rings see a background flow towards the attractive
potential (altering 𝑣⃗) and a density gradient from the density
peak (𝐹⃗ = −∇𝑔𝑛). The later density gradient moves outward
as the shock features expand, causing vortex rings orientated
away from density peak to expand, while shrinking vortex
rings that are orientated towards it. For larger potential heights,
non-equilibrium dynamics, including vortex ring collisions and
annihilations, distort these features.
The attractive potential is turned off in 0.1ms and at 𝑡wait =

0ms is completely off as the central density peak expands
outward, pushing past the turbulent features. The density
gradient widens (shrinks) vortex rings of same (opposite)
central flow. If a ring becomes too small, it will annihilate
through a Jones-Robert soliton [59–62]. Vortex rings with
central flow oriented towards the soc have a larger phase

https://youtu.be/DmYjGtJcRKQ
https://youtu.be/q0ItfdDurec
https://youtu.be/ApzQK4d8dtg
https://youtu.be/LKNRC6A3aRk
https://youtu.be/UcXwBZ7liJE
https://youtu.be/YO6fEDD-9zI
https://youtu.be/DmYjGtJcRKQ
https://youtu.be/q0ItfdDurec
https://youtu.be/ApzQK4d8dtg
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space to annihilate, leading to less vorticity, less effective
viscosity, and less dissipation on the right hand side. These
vortex-shock interplay dynamics are explored in a systematic
theoretical study captured in the video SW.mp4 [56]. Here, the
vortex-antivortex separation and flow orientation are varied to
represent a simplified view of the initial seeding of vorticity
from jumping on the attractive potential. This simulation has
been used to investigate the behavior of vortex line pairs as
a shock structure passes through them with standard phonon
dispersion (to the left) and higher-order phonon dispersion (to
the right).
A closer look at the individual components around a vortex

ring shows that areas with flow in the direction of the soc
have higher densities of |↓⟩. As the density peaks pass through
the vortex rings, the bump moving in the direction of the soc
converts particles from |↑⟩ to |↓⟩, while the bump traveling in
the opposite direction converts particles from |↓⟩ to |↑⟩. For
wait times longer than 𝑡wait = 8ms, the density bumps have
developed dsw structures and the remaining vortex rings move
according to the Magnus relation expected from their flow.
A deficiency of these axially symmetric simulations is that,

in them, the vortex rings align perfectly with the imaging axis.
This produces sharp features in the final images that would
be averaged out by the line-of-sight imaging in experiments
where perfect axial symmetry cannot be maintained. A clear
example is seen in Fig. 4b in the 𝑡wait = 20 and 26 ms frames.
As can be seen from the movies, at these times, the large shock
excitation moves through a vortex ring. The ring alters the
integrated density, causing the shock image to split into two
peaks separated by a density depletion from the vortex core.
The peak-tracking algorithm finds the higher of these two peaks,
which lags behind the center of the shock structure. Once the
shock passes the ring, the right peak becomes larger, resulting
in a kink in the top panel of Fig. 4b in the numerical (blue
shaded) results. Without this artifact of the axial symmetry,
we expect that the shock peak would follow the experimentally
seen peak even more accurately.

Appendix E: Axial vs 3D Numerics

In addition to the full axial simulations described above, we have
also performed 3D calculations. Full resolution 3d calculations
are expensive, so for the unconstrained 3d analysis, we simulate
only a central portion of the 3d bec in a smaller box, with
𝐿x = 120 µm, 𝑁𝑥𝑦𝑧 = (1200, 64, 64), and a periodic trapping
potential. This reduces the memory costs by a factor of 4, and
is accurate for short times and dynamics in the center of the
cloud as we ensure by comparing 3d simulation with symmetric
initial condition to the full axial simulations described above.
In some cases, a quasi-1d simulation using techniques like
the non-polynomial Schrödinger equation (npse) [44, 63–65]
and dynamically reduced gpe [66] (which we refer to as “tube”
simulations) can quantitatively reproduce the 3d dynamics.

However, these are insufficient once features like vortices
appear, as shown in [67].
Comparing 3d to axially-symmetric simulations in
3D_90nK.mp4 [57], we see almost exact agreement during
the 10ms long attractive potential pulse. This includes the
formation of solitons, vortices pulled in from the boundary, and
the snaking creation of vortex rings. The simulations differ as
the density peak splits and pushes past the central vortices: the
3d simulations allow for more vortices to remain. However,
there is agreement between the shape and speed of the shocks,
and the speed of solitonic and vortex features.
To test the stability of vortex rings against small changes

of the experimental parameters, we simulated the attrac-
tive dipole beam with a 1% tilt in the y-direction, 𝑉𝐷𝐵 ∝
exp ((𝑥 + 0.01𝑦)2/2𝜎). In this data (Fig. 5 third panel) and
supplementary animations, we see that main features like the
dsw maintain their structure. However, many of the vortex
rings decay into vortex lines that terminate at the cloud edge.
We find that the exact pattern of vortex generation depends very
sensitively on the degree of this tilt, indicating that the underly-
ing dynamics may be chaotic. This sensitivity is one hallmark
of turbulent flow, supporting our interpretation of the observed
macroscopic dynamics in terms of quantum turbulence.

Appendix F: Time-of-Flight dynamics

The technique used to numerically simulate the expansion of the
system during the 10.1ms time-of-flight corresponds to setting
𝜆1 (𝑡) = 1 and 𝜆2 (𝑡) = 𝜆3 (𝑡) = 𝜆⊥ (𝑡) in Eqs. (11) and (15) of
Ref. [27]. The evolution of dynamics during time-of-flight is
shown in Axial90nK_ToF.mp4 [58].
When the Raman lasers inducing the soc are switched off,

the system is projected into the undressed basis of states |↑⟩ and
|↓⟩. Without soc to dress their momenta, the |↑⟩ component
moves slowly to the right while the |↓⟩ component moves
rapidly to the left, making it difficult to locate the center of
the cloud. This can be understood in terms of the background
ground state which is a linear combination of mostly |↑⟩ (with
density 𝑛↑) having momentum 𝑘↑ = 𝑘0 + 𝑘𝑅 and some |↓⟩
(with density 𝑛↓) having momentum 𝑘↓ = 𝑘0 − 𝑘𝑅. The spin-
quasimomentum map ensures that the background has zero net
momentum: 𝑛↑𝑘↑ + 𝑛↓𝑘↓ = (𝑛↑ + 𝑛↓)𝑘0 + (𝑛↑ − 𝑛↓)𝑘𝑅 = 0.
With our detuning, 𝑛↑ > 𝑛↓ and 𝑘0 ≈ −0.945𝑘𝑅. Thus, during
expansion, the two components move in opposite horizontal
directions in addition to the vertical separation from the Stern-
Gerlach technique. Within the first 2ms of expansion the cloud
expands rapidly, dropping the density by a factor of 10. The
most notable features after expansion come from low density
objects such as solitons, vortex rings, and dsw where areas
with these features deepen and widen, pushing density to either
side. The density pile-up of nearby vortex rings will often
constructively interfere, resulting in some of the largest peaks
during expansion dynamics.
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