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The prion hypothesis states that misfolded proteins can act as infectious
agents that template the misfolding and aggregation of healthy proteins to
transmit a disease. Increasing evidence suggests that pathological proteins
in neurodegenerative diseases adopt prion-like mechanisms and spread
across the brain along anatomically connected networks. Local kinetic
models of protein misfolding and global network models of protein spread-
ing provide valuable insight into several aspects of prion-like diseases. Yet,
to date, these models have not been combined to simulate how pathological
proteins multiply and spread across the human brain. Here, we create an
efficient and robust tool to simulate the spreading of misfolded protein
using three classes of kinetic models, the Fisher–Kolmogorov model, the
Heterodimer model and the Smoluchowski model. We discretize their gov-
erning equations using a human brain network model, which we represent
as a weighted Laplacian graph generated from 418 brains from the Human
Connectome Project. Its nodes represent the anatomic regions of interest and
its edges are weighted by the mean fibre number divided by the mean fibre
length between any two regions. We demonstrate that our brain network
model can predict the histopathological patterns of Alzheimer’s disease
and capture the key characteristic features of finite-element brain models
at a fraction of their computational cost: simulating the spatio-temporal evol-
ution of aggregate size distributions across the human brain throughout a
period of 40 years takes less than 7 s on a standard laptop computer. Our
model has the potential to predict biomarker curves, aggregate size distri-
butions, infection times, and the effects of therapeutic strategies including
reduced production and increased clearance of misfolded protein.
1. Motivation
A major advance in our understanding of the human brain has been the
realization that the our brain is organized as a network, both at the physical
and at the functional levels [1]. This quiet revolution has been made possible
by the parallel development of network theory and medical imaging, in par-
ticular by the concept of small-world networks [2]. Methods originating from
graph theory are now routinely used to study many aspects of brain function
and the prevalent dogma is that the brain operates as an efficiently structured,
modular, dynamic network with strongly connected hubs [3]. This network is
optimized to rapidly transmit information, but, unfortunately, the concept of
fast transport also applies to misfolded proteins that highjack the network to
rapidly spread across the brain [4]. Previous work has shown that the eigen-
modes of the brain network’s graph Laplacian are correlated to brain atrophy
in Alzheimer’s disease [5], and probablistic epidemiological models have
been proposed to study transference mechanisms within the network [6].
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Figure 1. Typical pattern of tau protein misfolding in Alzheimer’s disease. (a) Clinical observation [15], (b) continuum model [16] and (c) network spreading model
display characteristic pattern with misfolded tau occurring first in the locus coeruleus and transentorhinal layer from where they spread to the transentorhinal region
and the proper entorhinal cortex and ultimately affect all interconnected neocortical brain regions. (Online version in colour.)
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The current prevalent theory for neurodegenerative
diseases is based on the prion-like paradigm [7] in which
neurodegeneration is caused by the systematic invasion
and conformational autocatalytic conversion of misfolded
proteins [8]. In Alzheimer’s disease, Amyloid beta and tau
proteins are believed to act in a prion-like manner and
misfold [9]. This misfolded form of the protein acts as a
template on which healthy proteins misfold and grow into
increasingly larger aggregates [10]. Amyloid beta is an extra-
cellular protein that mainly spreads across the extracellular
matrix [11], whereas tau is an intracellular protein that
primarily propagates within the network of axonal pathways
[12]. Here, we focus on tau, which spreads across the brain
in a highly predictable pattern [13]: misfolded tau proteins
occur first in the locus coeruleus and the transentorhinal
layer from where they spread to the transentorhinal region
and the proper entorhinal cortex and ultimately affect all
interconnected neocortical brain regions [14]. Figure 1a illus-
trates the typical spatio-temporal pattern of misfolded tau
protein in Alzheimer’s disease inferred from histopathological
observations of hundreds of human brains [15].

Understanding the progression of Alzheimer’s disease is
a matter of understanding the physical processes of misfold-
ing and transport. From a modelling perspective, three
approaches have been proposed to simulate the physics of
neurodegeneration: (i) kinetic growth and fragmentation
models to study the local interaction of aggregates of different
sizes using a set of ordinary differential equations [17];
(ii) network diffusion models to study the global prion-like
spreading of misfolded proteins using graph theory [5]; and
(iii) reaction–diffusion-based continuum models to study
the spatio-temporal evolution of patheogenic proteins using
partial differential equations [18].

Figure 1b shows that continuum models with nonlinear
reaction and anisotropic diffusion can accurately predict the
typical pattern of tau protein misfolding in Alzheimer’s dis-
ease [16]. This simulation used a Fisher–Kolmogorov model
[19,20], discretized with 400 000 tetrahedral finite elements
and 80 000 d.f. The continuum model displays an excellent
agreement with clinical observations. However, it is computa-
tionally expensive and impractical to systematically explore a
wide variety of disease and treatment scenarios. In addition,
there is currently no technology to validate its predicted
spreading patterns at a high enough resolution that would
truly warrant a finite-element simulation with thousands of
degrees of freedom. The objective of this study is therefore
to create an efficient and robust simulation tool that captures
the key characteristic features of pathogenic proteins in
Alzheimer’s disease by combining kinetic growth and fragmen-
tation with network diffusion through a connectivity-weighted
graph from the Human Connectome Project. Figure 1c suggests
that—even with three orders of magnitude fewer degrees of
freedom than the continuum models–our dynamic network
model accurately predicts the typical spatio-temporal pattern
of tau protein misfolding.
2. Kinetic models
To study the kinetics of protein misfolding, we consider three
popular models with different levels of complexity, the
simple one-concentration Fisher–Kolmogorov model [19],
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Figure 2. Kinetics of the Fisher–Kolmogorov model. The Fisher–Kolmogorov
model has a single unknown, the misfolded protein concentration c. The
model converts healthy to misfolded protein at a rate α. For the smallest
perturbation from the healthy state, c > 0, all proteins will convert from
the healthy to the misfolded state, c = 1. (Online version in colour.)
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Figure 3. Kinetics of the Heterodimer model. The Heterodimer model has
two unknowns, the healthy concentration p and the misfolded concentration
~p. The model produces healthy protein at a rate k0, clears healthy and mis-
folded protein at rates k1 and ~k1, and converts healthy to misfolded protein
at a rate k12, which collectively represents the processes of recruitment k110,
misfolding k1020 and fragmentation k202. (Online version in colour.)
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the two-concentration Heterodimer model [21] and the
n-concentration Smoluchowski model [22].
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2.1. The Fisher–Kolmogorov model
The simplest model to characterize protein misfolding is the
Fisher–Kolmogorov model [19,20]. Initially proposed to
model the spreading of a favoured gene in population
dynamics, the Fisher–Kolmogorov model is now widely
used to describe travelling wave solutions in ecology,
physiology, combustion, crystallization, plasma physics,
phase transition and biology [23]. It is based on a simple
nonlinear reaction–diffusion equation for a single unknown,
the misfolded protein concentration c,

dc
dt

¼ r � (D � rc)þ a c [1� c], (2:1)

where D is the diffusion tensor that characterizes global
protein spreading and α characterizes the local conversion
rate from the healthy to the misfolded state as illustrated in
figure 2.

The Fisher–Kolmogorov equation (2.1) has two steady-
state solutions, an unstable steady state at c = 0 and a stable
steady state at c = 1. This implies that once misfolded protein
is present anywhere in the brain, c > 0, the concentration will
always be repelled from the benign state, c = 0, and attracted
to the misfolded state, c = 1. While the Fisher–Kolmogorov
model is attractive because of its simplicity and its low com-
putational cost, its parameter α is purely phenomenological,
it provides no insight into the mechanisms of infection, and
it cannot capture intermediate equilibrium states as, for
example, a result of pharmocological treatment.
2.2. The Heterodimer model
The simplest possible kinetic model that accounts for two
configurations of the protein, the natural healthy state p
and the misfolded state ~p, is the Heterodimer model [21].
In this model, misfolded proteins recruit healthy proteins at
a rate k110, healthy proteins bind to misfolded proteins
and adopt their conformation at a rate k1020, and the resulting
polymer fragments into infectious seeds at a rate k202,

pþ ~p!k110 p ~p p ~p !k1020 ~p ~p ~p ~p!k202 ~pþ ~p: (2:2)

For simplicity, we collectively represent the conformational
conversion from the healthy to the misfolded state as a
single step through the rate constant k12,

pþ ~p!k12 ~pþ ~p: (2:3)
These considerations motivate a system of governing
equations for the spatio-temporal evolution of the total
amount of healthy and misfolded proteins p and ~p [24],

dp
dt

¼ r � (D � rp)þ k0 � k1 p� k12 p ~p

and
d~p
dt

¼ r � (D � r~p)� ~k1 ~pþ k12 p ~p,

9>>=
>>; (2:4)

where D is the diffusion tensor that characterizes protein
spreading, k0 is the production rate of healthy protein, k1
and ~k1 are the clearance rates of healthy and misfolded pro-
teins, and k12 is the conversion rate from the healthy to the
misfolded state, as illustrated in figure 3.

In the initial healthy state, the healthy and misfolded
protein concentrations are p0 = k0/k1 and ~p0 ¼ 0; in the dis-
eased state, they converge towards p1 ¼ ~k1=k12 and
~p1 ¼ k0=~k1 � k1=k12.

We can simplify the Heterodimer model (2.4) by assum-
ing that, initially, the amount of healthy protein is much
larger than the amount of misfolded protein, p � ~p, which
implies that dp/dt≈ 0 and r � (D � rp) � 0. With these
assumptions, equation (2.4) provides an explicit estimate of
the amount of healthy protein p,

k0 � k1 p� k12 p ~p ¼ 0 thus p ¼ k0
k1 þ k12 ~p

: (2:5)

We approximate the healthy protein concentration p using a
Taylor series, p ¼ k0=k1 [1� ~p k12=k1], and substitute this
expression into equation (2.4),

d~p
dt

¼ r � (D � r~p)þ k12
k0
k1

� ~k1

� �
~p� k212 k0

k21
~p2: (2:6)

By re-parametrizing equation (2.6) in terms of the misfolded
protein concentration, c ¼ ~p=~pmax with ~pmax ¼ k1=k12 � k21=
k212 ~k1=k0, we recover the special case of the Fisher–Kolmogorov
model (2.1) for a single unknown, the misfolded protein
concentration c,

dc
dt

¼ r � (D � rc)þ a c [1� c] with a ¼ k12
k0
k1

� ~k1: (2:7)

Interestingly, the Fisher–Kolmogorov parameter α now takes a
physical interpretation in terms of the rates of production k0,
clearance k1 and ~k1, and conversion k12. While the Heterodimer
model (2.4) strikes a natural balance between computational
efficiency andmechanistic insight, it does not explicitly capture
the size distribution of misfolded protein aggregates, their
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Figure 4. Kinetics of the Smoluchowski model. The Smoluchowski model has
n unknowns ci, one for the concentration of each size i = 1,…, n, where c1
represents the concentration of healthy monomers. The model produces
healthy protein at a rate k0, clears healthy and misfolded protein at rates
k1 and ki, nucleates two misfolded proteins from two healthy proteins at
a rate κ, aggregates by adding single healthy proteins to misfolded filaments
at a rate a, and fragments misfolded filaments at a rate f. (Online version in
colour.)

oyalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190356
2.3. The Smoluchowski model
To characterize the size distribution of misfolded protein
aggregates, we consider the Smoluchowski model, a set of
population balance equations that explicitly account for the
kinetics of nucleation, aggregation, fragmentation and clear-
ance of particles of different sizes [22]. For more than a
century, the Smoluchowski model has been widely used in
statistical physics to characterize processes of polymerization,
coalescence of aerosols, emulsication and flocculation. It fol-
lows the n concentrations ci of particles of size i = 1,…, n
and explicitly models their aggregation and fragmentation
through the individual aggregation and fragmentation rates
aij and fij with i, j = 1,…, n,

ci þ c j!
aij
ciþj and ciþj !

fij
ci þ c j: (2:8)

We can summarize the collective effects of aggregation
and fragmentation on the concentration ci through the
aggregation and fragmentation Ai and Fi,

Ai ¼
Pi�1

j¼1
a jði�jÞc jci�j �

P1
j¼1

2aijcic j

and Fi ¼
Pi�1

j¼1
f jði�jÞci �

P1
j¼1

2fijciþj:

9>>>>=
>>>>;

(2:9)

Aggregation of two smaller particles cj and ci−j creates new
particles ci and removes particles ci as they aggregate with
cj to larger particles ci+j. Fragmentation removes particles ci
as they fragment into two smaller particles cj and cj−i and
adds new particles ci from the fragmentation of larger par-
ticles ci+j into ci and cj. Taken together, the Smoluchowski
model tracks the size distribution of particles through a
nonlinear system of reaction–diffusion equations for the
unknown concentrations ci [25],

dci
dt

¼ r � (Di � rci)þ k0i � ki ci þ Ai � Fi, (2:10)

where Di is the size-specific diffusion tensor, k0 is the pro-
duction rate, ki is the clearance rate, and Ai and Fi are the
size-specific aggregation and clearance rates according to
aggregation–fragmentation kinetics (2.9). Here, we adopt a
simplification of the Smoluchowski model (2.10), the
nucleated polymerization model [26,27] with a nucleus size
of two and spontaneous nucleation, to model the nucleation,
aggregation, and fragmentation of tau proteins in Alzhei-
mer’s disease [17] and make the following simplifying
assumptions: we assume that diffusion is size-independent,
Di =D; production is only possible for healthy monomers,
k01 = k0 for i = 1, but not for misfolded particles of any other
size, k0i = 0 for i > 1; clearance occurs at k1 for healthy mono-
mers, is size-independent k2 = ki for larger particles 1 < i < n;
and impossible kn = 0 for the largest particle size i = n; nuclea-
tion of two monomers occurs at a nucleation rate a11 = κ and
is irreversible; aggregation of larger particles is size-indepen-
dent aij = a, but can only occur by adding single monomers
for i = 1 or j = 1 and is impossible aij = 0 otherwise; fragmenta-
tion into monomers is impossible fij = 0 for i = 1 or j = 1,
fragmentation into larger particles is size-independent fij = f
for 1 < i, j < n, and fragmentation is impossible fij = 0 for the
largest particle size i, j = n. This results in the following
explicit set of equations for the concentrations of sizes 1, 2,
i = 3,…, n− 1, and n [28],

dc1
dt

¼ divðD � rc1Þ þ k0 � k1c1 � 2kc21 � ac1
Xn�1

j¼2

c j

dc2
dt

¼ divðD � rc2Þ � k2c2 þ kc21 � ac1c2 þ 2f
Xn�3

j¼2

c2þj

dci
dt

¼ divðD � rciÞ � ki ci � ac1ci þ ac1ci�1 þ 2f
Xn�i�1

j¼2

ciþj � f ½i� 3�ci

and
dcn
dt

¼ divðD � rcnÞ þ ac1cn�1:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

(2:11)

Figure 4 illustrates the Smoluchowski model for tau proteins.
In addition to the global diffusion D, this model has six
local kinetic parameters, the production of healthy monomers
k0, the clearance of healthy monomers k1 and misfolded poly-
mers k2 = ki, the nucleation κ, the aggregation a and the
fragmentation f. Notably, the Smoluchowski model features
two distinct mechanisms to convert healthy proteins into mis-
folded proteins [17]: primary conversion reflected through the
nucleation rate κ and secondary conversion reflected through
the aggregation rate a. While the Smoluchowski model follows
the size distribution of individual aggregates, allows for size-
specific transport, aggregation, fragmentation and clearance,
and provides a mechanistic interpretation of the protein mis-
folding [29], its intrinsic disadvantage is its large number of
parameters and, with it, the risk of overfitting.
3. Brain network models
A defining feature of prion-like diseases is the spreading of
misfolded proteins from a small infected region along
axonal fibre tracts throughout the entire brain [30]. We
model this spreading as the diffusion across the brain’s con-
nectome [31], which we represent as a weighted undirected
graph G with N nodes and E edges.

3.1. The connectivity-weighted graph
We extract the graph G from the tractography of diffusion
tensor magnetic resonance images of 418 healthy subjects of
the Human Connectome Project [32] using the Budapest
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Figure 5. Brain network model. Misfolded tau proteins spread across the
brain’s connectome represented as a weighted graph G with N = 83
nodes and E = 1130 edges. Edges are weighted by the mean fibre
number nIJ divided by the mean fibre length lIJ averaged over 418 healthy
brains from the Human Connectome Project. (Online version in colour.)
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Reference Connectome v. 3.0 [33]. While our method is gen-
erally applicable to graphs of any resolution, for illustrative
purposes, we map the original graph with N = 1015 nodes
and E = 37 477 edges onto a graph with N = 83 nodes and
E = 1130 edges. This resolution corresponds to the widely
used Freesurfer parcellation [34] and allows us to rapidly
map the node representation back onto the brain surface.
The degree of our initial graph, the number of edges per
node, varies between 6 and 48, with fewest edges at the fron-
tal pole and most edges at the caudate. We weight each edge
by the mean fibre number nIJ divided by the mean fibre
length lIJ averaged over all 418 brains. The mean fibre
number varies between 1≤ nIJ ≤ 596, with an average of
�nIJ ¼ 40:2 fibres per edge and most fibres between the
superior parietal and the precuneus regions. The mean fibre
length varies between 11.3 mm≤ lIJ≤ 136.8 mm, with an
average of �lIJ ¼ 38:40mm and the longest fibres between the
lateral orbitofronal and the precuneus regions. Figure 5 illus-
trates our graph G with the edges colour-coded by the mean
fibre number nIJ, mapped onto a three-dimensional brain
model from magnetic resonance images [35].

3.2. The graph Laplacian
We summarize the connectivity of the graph G in terms of the
degree matrix DII, a diagonal matrix that characterizes the
degree of each node I, and the weighted adjacency matrix
AIJ, the ratio of mean fibre number and length between
nodes I and J. The difference between the degree matrix DIJ

and the adjacency matrix AIJ defines the weighted graph
Laplacian LIJ,

LIJ ¼ DIJ � AIJ with AIJ ¼ nIJ
lIJ

and DII ¼ diag
XN

J¼1,J=I

AIJ :

9>>>>=
>>>>;

(3:1)

Figure 6a illustrates the degreeDII of the baseline non-weighted
graph, and the degree DII of our connectivity-weighted graph
G (figure 6b) along with its adjacency AIJ (figure 6c). For our
connectivity-weighted graph, the degree varies between
2.1≤DII≤ 127.6, with an average degree of �DII ¼ 42:8 per
node, and the lowest and highest degrees in the frontal pole,
shown in blue, and in the precentral gyrus, shown in red.
The adjacency matrix clearly reflects the small-world architec-
ture of our brain with strongly connected hubs within the
right and left hemispheres, indicated through the lower left
and upper right quadrants, and strong connections within
the four lobes, indicated through the eight red regions along
the diagonal. The adjacency varies between 0.01≤AIJ≤
35.32, with an average adjacency of �AIJ ¼ 1:57 per edge, and
lowest and highest values between the superior parietal
and the precuneus regions and between the lateral orbitofron-
tal and the isthmus cingulate regions. These pronounced
variations in degree and adjacency confirm the general
notion that the architecture of our brain resembles a small-
world network [1] in which highly connected nodes are more
likely to become infected and turn into hubs of misfolded
protein spreading.

3.3. The network model
We assume that the weighted Laplacian LIJ characterizes the
spreading of healthy and misfolded proteins across the
brain network and discretize our three kinetic models on
our weighted undirected graph G. Specifically, we introduce
the concentrations cI, pI, ~pI and ciI as global unknowns
at the I = 1,…,N nodes of our graph G. This results in the
discretized sets of equations for the single concentration
Fisher–Kolmogorov model (2.1) with N unknowns,

dcI
dt

¼ �
XN
J¼1

LIJcJ þ acI ½1� cI �, (3:2)

for two-concentration Heterodimer model (2.4) with 2 N
unknowns,

d pI
dt

¼ �
XN
J¼1

LIJ pJ þ k0 � k1pI � k12pI ~pI

and
d~pI
dt

¼ �
XN
j¼1

LIJ~pJ � ~k1~pI þ k12 pI~pI ,

9>>>>>=
>>>>>;

(3:3)

and for the n-concentration Smoluchowski model (2.10) with
n ×N unknowns,

dciI
dt

¼ �
XN
J¼1

LIJciJ þ k0i � kiciI þ AiI � FiI : (3:4)

We discretize our network models in time using either
implicit or explicit time integration schemes to simulate the
spatio-temporal evolution of misfolded proteins across
the brain.
4. Biomarker models
A biomarker is a global metric to characterize the evolution
of neurodegeneration across the brain [36]. We calculate
the biomarker abnormality as the temporal evolution of the
total concentration of misfolded proteins integrated across a
specific region of interest or across the brain as a whole.
Biomarker abnormalities of the individual lobes provide
insight into the spatio-temporal sequence of infection;
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Figure 6. Brain network model. The connectivity of the graph G is represented through the degree DII, the number of edges per node, and the adjacency AIJ = nIJ/
lIJ, the ratio of fibre number and length. (a) Degree DII of non-weighted and (b) connectivity-weighted graphs and (c) adjacency AIJ of connectivity-weighted graph,
averaged over 418 healthy brains from the Human Connectome Project. (Online version in colour.)

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190356

6

global biomarker abnormalities of the brain as a whole pro-
vide a window into the progression of neurodegeneration
and the time line of infection.
4.1. The Fisher–Kolmogorov model
Figure 7 summarizes the biomarker abnormality in all four
lobes throughout a time period of three decades as predicted
by the Fisher–Kolmogorov model (3.2). For the simulation,
we chose a conversion rate constant of α = 0.5 and seeded
misfolded proteins by increasing the initial concentration in
the entorhinal cortex to c0 = 0.1. Our simulation uses an
implicit time integration scheme with 100 times steps of
Δt = 0.4 years, and runs 0.55 and 0.64 s without and with
output on a standard laptop computer. Figure 1c summarizes
the resulting activation sequence. We post-process the
simulation to calculate the biomarker abnormality,

CðtÞ ¼
XN
I¼1

cIðtÞ: (4:1)

as the discrete sum of the misfolded protein concentration cI
at the I nodes of the temporal, frontal, parietal and occipital
lobes, and of the brain as a whole. All biomarker curves in
figure 7 display a smooth sigmoidal form, which is in excel-
lent agreement with brain network spreading models in
general [37] and with clinical biomarker models of neurode-
generation in particular [36]. The individual biomarkers
of the four lobes reveal the characteristic spreading of
misfolded tau protein in Alzheimer’s disease starting in the
temporal lobe, shown in green, followed by the frontal, par-
ietal, and occipital lobes, shown in red, orange, and blue.
This activation sequence agrees well with the clinically
observed spreading pattern [14] in figure 1a. For comparison,
the dashed grey and black lines in figure 7 show the bio-
marker integrated over the entire brain as predicted by
the continuum model [16] in figure 1b and by the Fisher–
Kolmogorov network model in figure 1c. This quantitative
comparison confirms that, even at a much lower spatial resol-
ution, our network model captures the integral characteristics
of continuum models for Alzheimer’s disesase [38].
4.2. The Heterodimer model
Figure 8 summarizes the biomarker abnormality in all four
lobes, similar to figure 7, but now, instead of using the one-
concentration Fisher–Kolmogorov model (3.2), using the
two-concentration Heterodimer model (3.3). For the simu-
lation, we chose a production rate of k0 = 1.0, clearance rates
of k1 = 0.5 and ~k1 ¼ 0:5, and a conversion rate of k12 = 0.5,
which results in an initial healthy concentration of p0 = 2.0
and an initial misfolded concentration of ~p0 ¼ 0:0, which
we increased locally in the entorhinal cortex to ~p0 ¼ 0:1 to
seed misfolding. Our simulation uses an implicit time inte-
gration scheme with 100 times steps of Δt = 0.4 years, and
runs slightly longer than the Fisher–Kolmogorov model,
but still completes in 0.66 and 0.68 s without and with
output on a standard laptop computer. Again we calculate
the biomarker abnormality,

ePðtÞ ¼ XN
I¼1

~pIðtÞ: (4:2)

as the discrete sum of the misfolded protein concentration ~pI
at the I nodes of the four lobes and of the brain as a
whole. Figure 8 confirms that, for a conversion rate,
a ¼ k12 k0=k1 � ~k1 in accordance with equation (2.7), the Het-
erodimer model predicts an identical infection sequence and
similar biomarker curves as the Fisher–Kolmogorov model:
The green, red, orange and blue curves of the individual
lobes and the dashed grey curve of the whole brain in
figure 8 are indistinguishable from the curves in figure 7.
This suggests that, if we are exclusively interested in the
spreading of misfolded protein, from an initial healthy to a
fully misfolded state, we can use the simple Fisher–
Kolmogorov model (3.2) without loss of accuracy and
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the characteristic activation sequence in Alzheimer’s disease from the tem-
poral lobe to the frontal, parietal and occipital lobes. The dashed grey
and black lines highlight the biomarker abnormality C of the Fisher–
Kolmogorov network and continuum model in figure 1 integrated across
the entire brain. (Online version in colour.)

occipital

frontal
parietal

temporal

continuum
network

time (yr)0 10 20

100

bi
om

ar
ke

r 
ab

no
rm

al
ity

 (
%

)

k
~

1   = 0.5

k1  = 0.5
k0  = 1.0

k12 = 0.5

5 15
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interpret its phenomenological rate constant α as a combi-
nation of the mechanistic rate constants k0, k1, ~k1 and k12 of
the Heterodimer model.

4.3. Infection times
We now adopt the Heterodimer model to study the regional
vulnerability of different brain regions. Specifically, we suc-
cessively seed misfolded protein in all N = 83 regions,
simulate the spatio-temporal spreading across the brain, cal-
culate the resulting 83 biomarker curves, and quantify the
individual infection times. Figure 9 summarizes the bio-
marker curves and their associated brain regions colour-
coded by infection time. Misfolded proteins spread fastest
when seeded in the putamen or insula with a total infection
times of 20.2 years, shown in red, and slowest when seeded
in the frontal pole and entorhinal region with infection
times of 30.4 and 28.8 years, shown in blue. The significant
variation in infection times, by more than 10 years, under-
lines the heterogeneity of the brain network with a few
highly connected hubs [1]. These observations agree well
with the hierarchical spread of epidemic outbreaks known
from general network theory [39]. For comparison, the
dashed grey line illustrates the lower limit of the infection
time of 16.6 years, associated with a homogeneous seeding
across all N = 83 regions. The mean infection time of
24.9 years on the heterogeneous network is almost exactly
50% longer. Interestingly, the entorhinal cortex, which is
known as the region where misfolded tau proteins are
first observed [14], is associated with the second longest in
infection time. This could explain, at least in part, why tau
pathology is so difficult to detect during the early stages of
Alzeimer’s disease [13]. The heterogeneous vulnerability
of the brain network in figure 9 presents opportunities
when designing treatment strategies: Reducing the local
accumulation of misfolded protein in highly infectious
regions such as the putamen or the insula will have a more
pronounced effect on slowing down neurodegeneration
than intervening in poorly connected regions such as the
frontal pole. The following section focusses on different
potential treatment options.
5. Treatment opportunities
Now that we have established a solid baseline simulation for
the progression of Alzheimer’s disease that agrees well with
clinical observations, we explore the potential of our
models for simulating different treat opportunities. Two
promising therapeutic strategies are currently emerging to
delay or even prevent the progression of Alzheimer’s disease
[40]: reducing misfolding [41] and increasing clearance [42].
Even if, to date, we do not have a precise knowledge about
all the model parameters, we can still perform numerical
experiments to elaborate the mechanisms and time scales
associated with these interventions.

5.1. Delaying conversion
Figures 10 and 11 reveal the effects of reducing misfolding
and increasing clearance with the Fisher–Kolmogorov
model. The only model parameter is the conversion rate
a ¼ k12 k0=k1 � ~k1, which we can interpret as a combination of
production k0, clearance k1 and ~k1, and conversion k12. Figures
10 and 11 illustrate simulations of the baseline case with α =
0.5, and reduced values of α, which collectively mimic reduced
misfolding k12 and increased clearance ~k1. The simulations con-
firm our intuition that decreasing the conversion α delays the
accumulation of the misfolded protein c and with it the bio-
marker abnormality C. However, figures 10 and 11 also
illustrate an inherent limitation of the Fisher–Kolmogorov
model: once misfolded protein is present anywhere in the
brain, the concentrationwill always be repelled from thehealthy
state and attracted to the misfolded state. While the Fisher–Kol-
mogorovmodel (2.1) is a simple model to efficiently explore the
dynamics of protein misfolding on more complex three-dimen-
sional finite-element geometries [16] and to study the interplay
of biochemical and biomechanical degeneration [38], for appli-
cations with intermediate states, we recommend using more
mechanistic kinetic models like the Heterodimer model (2.4)
or the Smoluchowski model (2.10).

5.2. Reducing misfolding
Figures 12 and 13 illustrate the effect of reducing misfolding
with the Heterodimer model. A turnover rate of k12 = 0.50
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Figure 9. Infection times. Biomarker curves for misfolded protein seeding in
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Figure 10. Delaying conversion. The Fisher–Kolmogorov model predicts that
lower conversion rates α delay the increase of misfolded protein c. Baseline
Alzheimer’s disease (a) and Alzheimer’s disease with moderately (b) and
markedly (c) reduced conversion α from the healthy to the misfolded
state. (Online version in colour.)
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Figure 12. Reducing misfolding. The Heterodimer model predicts that lower
turnover rates k12 delay and reduce the accumulation of misfolded protein ~p.
Baseline Alzheimer’s disease (a) and Alzheimer’s disease with moderately (b)
and markedly (c) reduced turnover k12 from the healthy to the misfolded
state. (Online version in colour.)
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predicts the baseline progression of Alzheimer’s disease in
agreement with figure 1. For this baseline case with a pro-
duction of k0 = 1.0, clearances of k1 = 0.5 and ~k1 ¼ 0:5, and
a conversion of k12 = 0.5 the Heterodimer model is identical to
the Fisher–Kolmogorov model with a conversion of α = 0.50.
According to equation (2.7), decreasing the Heterodimer
conversion to k12 = 0.40 would correspond to decreasing
the Fisher–Kolmogorov conversion to α = 0.3. However, the
k12 = 0.40 pattern in figure 12 and the α = 0.3 pattern in
figure 10 show significant differences: decreasing the turn-
over rate moderately to k12 = 0.45 and markedly to k12 = 0.40
not only delays but also reduces the accumulation of mis-
folded protein ~p and with it the biomarker abnormality ~P.
Strikingly, in the early stages of neurodegeneration, even a
small reduction of misfolding can delay disease progression
by several decades [41] and reduce the resting state of mis-
folded protein ~p1 ¼ k0=~k1 � k1=k12 below its untreated
value, here to ~p1 ¼ 0:89 for k12 = 0.45 and to ~p1 ¼ 0:75 for
k12 = 0.40.
5.3. Increasing clearance
Figures 14 and 15 highlight the effect of increasing clearance
with the Heterodimer model. A clearance rate of ~k1 ¼ 0:50
predicts the baseline progression of Alzheimer’s in agreement
with figure 1. For this baseline case, the Heterodimer model is
identical to the Fisher–Kolmogorov model with a conversion
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Figure 14. Increasing clearance. The Heterodimer model predicts that higher
clearance rates ~k1 delay and reduce the accumulation of misfolded protein ~p.
Baseline Alzheimer’s disease (a) and Alzheimer’s disease with moderately (b)
and markedly (c) increased clearance ~k1 of misfolded protein. (Online version
in colour.)
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of α = 0.50. According to equation (2.7), increasing the clear-
ance to ~k1 ¼ 0:70 would correspond to decreasing the
conversion to α = 0.3. But, similar to the previous example,
the ~k1 ¼ 0:70 pattern in figure 14 and the α = 0.3 pattern in
figure 10 show significant differences: increasing the clear-
ance rate ~k1 has similar effects as decreasing the turnover
rate k12; it not only delays but also reduces the accumulation
of misfolded protein ~p and with it the biomarker abnormality
P. Similar to a decreased turnover, an increased clearance can
delay disease progression by several decades [42] and reduce
the resting state of misfolded protein ~p1 ¼ k0=~k1 � k1=k12 sig-
nificantly below its untreated value, here to ~p1 ¼ 0:67 for
~k1 ¼ 0:60 and to ~p1 ¼ 0:43 for ~k1 ¼ 0:70. While the Heterodi-
mer model provides valuable insight into the clearance of all
misfolded proteins, it cannot predict the effect of the selective
clearance of small molecules.
6. Size matters
In this last example, we explore the interplay of nucleation,
aggregation, fragmentation and the general distribution of
particle size using the Smoluchowski model and highlight
its advantages over the Fisher–Kolmogorov and Heterodimer
models.

6.1. Biomarker spectrum
To illustrate the dynamics of the Smoluchowski model, we
consider the biomarker spectrum of the principal moments
of the size distribution, the overall concentration of misfolded
proteins ci above a critical size i≥ j,

C j(t) ¼
XN
I¼1

Xn
i¼j

ciI(t), (6:1)

and the overall mass of misfolded proteins i ci above a critical
size i≥ j,

M j(t) ¼
XN
I¼1

Xn
i¼j

i ciI(t), (6:2)

where ciI denotes the concentration of proteins of length i =
1,…, n at node I = 1,…,N. Specifically, C2 and M2 denote
the total aggregate concentration and the total aggregate
mass, and �c ¼ M2=C2 denotes the mean aggregate length.
Figure 16 illustrates the biomarker spectrum M j for a simu-
lation with a production rate of k0 = 1.0, clearance rates of
k1 = 0.5 for healthy monomers, k2 = ki = 0.5 for aggregates,
and kn = 0.0 for the particles of the largest size, an aggregation
rate of a = 10.0, a fragmentation rate of f = 0.048, and nuclea-
tion rates of κ = 0.00016 in the entorhinal cortex and κ = 0.0
in all other regions. There is a large uncertainty about the
true values for these rate constants and they may differ
highly between variants [26]. Naturally, the choice of these
rates will affect the sequence of events and the interplay of
nucleation, aggregation, fragmentation and spread [28].
Here, we chose the parameter values such that their order
of magnitude closely followed reported values in the
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literature [43], where the largest rate constant is the monomer
production k0 followed by the monomer clearance k1, the
polymer clearance ki, the fragmentation f and the nucleation
κ. Because of the small time constants, we now have to use
a finer time discretization with 1000 times steps of Δt =
0.04 years, and we now use an explicit time integration.
Our average simulation with n = 50 discrete aggregate sizes
runs 1.97 and 2.20 s without and with output on a standard
laptop computer; increasing the number of aggregates to
n = 500 increases the simulation time to 6.96 and 16.43
seconds without and with output. Interestingly, the mass of
all misfolded proteins M2, the dark red curve in figure 16,
is almost indistinguishable from dashed black curve that
highlights the biomarkers C of the Fisher–Kolmogorov
model in figure 7 and ~P of the Heterodimer model in
figure 8. However, in contrast to the Fisher–Kolmogorov
and Heterodimer models, the Smoluchowski model features
several competing mechanisms and time scales and allows
for two distinct types of conversion, nucleation and aggrega-
tion. To better understand the dynamics of the Smoluchowski
model, we explored the parameter space and learned that
increasing the production k0, the aggregation a, or the frag-
mentation f accelerates and increases protein misfolding
and shifts the curves in figure 16 to the left and upward;
increasing the nucleation κ accelerates protein misfolding
and shifts the curves to the left, but not upward; and increas-
ing the clearance k1 or k2 = ki decelerates and reduces protein
misfolding and shifts the curves to the right and downward.
The initial time delay between the red M2 curve for ci≥ 2 and
the blue M50 curve for ci = 50 illustrates the aggregation
dynamics, and confirms our intuition that smaller particles
have to form first to trigger the aggregation of larger par-
ticles. Intermediate aggregate sizes, 20≤ ci≤ 30, highlighted
through the yellow M20 to green M30 curves, display a
small bump and increase initially, but then either partially
clear or fragment into smaller aggregates.

6.2. Aggregate size distribution
Figure 17 illustrates the emerging aggregate size distribution
and explains the dynamic features of the model: strikingly,
the mean particle size, highlighted through the colour-
coded dots, increases during the early stages of infection up
to a mean particle size of 24.8 after 5.3 years, but then
decreases gradually during the later stages towards a con-
verged mean particle size of 15.7 after 30 years. This agrees
well with the dynamics of the Smoluchowski model, which
is known to predict an initial increase of the average particle
size followed by a gradual decrease towards the homeostatic
mean [43]. The red curve of the converged aggregate size dis-
tribution agrees well with the dashed black line of the
analytical solution [43].

Figure 18 illustrates the spatio-temporal evolution of
aggregates of different sizes. For illustrative purposes,
rather then showing the discrete network with the individual
N = 83 nodes, we colour-coded the associated 83 brain
regions according to their misfolded protein concentration
using the software tool Freesurfer [34]. The time lapse
images show that misfolded tau proteins occur first in the
locus coeruleus and transentorhinal layer from where
they spread to the transentorhinal region and the proper
entorhinal cortex and ultimately affect all interconnected
neocortical brain regions. This spreading pattern agrees
well with clinical observations [15], the continuum model
of tau protein spreading [16], and our predictions with the
Fisher–Kolmogorov and Heterodimer models in figure 1.
Initially, the emerging aggregates are small, but they grow
into progressively larger sizes as suggested by the biomarker
spectrum in figure 16, and converge towards the final
aggregate size distribution as indicated in figure 17. While
analytical approximations exist to predict the biomarker
curve and final size distribution for size-independent model
parameters [43], numerical methods are necessary to predict
the effect of selective parameter changes on these global
readouts of the model.
6.3. Size-specific treatment
Figure 19 highlights the effect of selective size-targeted
clearance on the biomarker spectrum as predicted by the
numerical Smoluchowski model. A homogeneous clearance
rate of ki = 0.50 as indicated by the red biomarker spectrum,
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Figure 18. Typical pattern of tau aggregation in Alzheimer’s disease. The
Smoluchowski model predicts that misfolded tau proteins occur first in
the locus coeruleus and transentorhinal layer from where they spread
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predicts the baseline progression of Alzheimer’s disease in
agreement with figure 16. Increasing the clearance of a
single specific aggregate size i from ki = 0.5 to ki = 10, while
keeping all other clearance rates unchanged, delays and
reduces the accumulation of misfolded tau protein ci and
with it the biomarker spectrum M. Clearing a specific aggre-
gate size i at a higher rate not only affects smaller aggregate
sizes through a reduced fragmentation but also larger aggre-
gate sizes through a reduced aggregation, which, collectively,
results in an overall narrower biomarker spectrum. Increasing
the target size of clearance, here from c2 shown in orange to c6
shown in blue decelerates and reduces protein misfolding
and increases narrowing of the overall spectrum. Taken
together, while the Fisher–Kolmogorov model and the
Heterodimer model provide valuable insight into the kinetics
of protein misfolding, only the Smoluchowski model can
explain the interplay between primary conversion through
nucleation, secondary conversion through aggregation, and
the general distribution of particle size. Although targeting
a single specific size might seem rather hypothetical, we
can envision therapeutic approaches that target the pro-
duction or clearance of small particles below a characteristic
size [44].
7. Conclusion
Despite their complexity, neurodegenerative diseases display
remarkably consistent histopathological patterns. In Alzhei-
mer’s disease, these invasion patterns are highly correlated
with the spreading of misfolded amyloid beta and tau pro-
teins. Here, we modelled the spreading of tau proteins by
combining misfolding kinetics and network diffusion
through a connectivity-weighted graph. In our dynamic
brain network model, the concentrations of healthy and
misfolded protein emerge dynamically at each node and pro-
pagate across the graph through its connectivity-weighted
edges. Our model correctly predicts the spatio-temporal
spreading pattern of tau in Alzheimer’s disease. There is cur-
rently no in vivo technology to quantify these spreading
patterns longitudinally and non-invasively in humans. Our
model provides a computational window into the interacting
time scales and mechanisms of neurodegeneration. Its
computational efficiency allows us to rapidly screen the land-
scape of disease-specific parameters that govern the kinetics of
protein misfolding and spreading. We have demonstrated
the potential of our model by simulating biomarker curves,
aggregate size distributions, infection times and therapeutic
intervention. A better understanding of the spreading of
misfolded proteins could open new therapeutic opportunities
towards blocking protein misfolding and promoting protein
clearance using antibodies or small molecules. Ultimately,
we envision that brain network models can help us answer
some of the fundamental open questions in neurodegenera-
tion: Why do neurodegenerative diseases progress so slowly,
but yet so highly reproducibly? Can we identify early bio-
markers of neurodegeneration that would allow us to
interfere early? Why is neurodegeneration currently unstop-
pable? Can we interfere therapeutically and what would be
the best time to do so? What are the roles of intra- and extra-
cellular propagation? Can we manipulate spreading and
where do we best interfere? What is the timeline of neurode-
generation? Can we predict personalized risk curves for
individuals and estimate the socio-economic burden for an
entire population? While we are still far from answering
these questions, we believe that quantitative brain network
modelling is a promising step towards identifying the
key mechanisms of neurodegeneration and their roles in
neurodegenerative disease.
Data accessibility. This article does not contain any additional data.

Competing interests. We declare we have no competing interests.
Funding. This work was supported by the Engineering and Physical
Sciences Research Council grant no. EP/R020205/1 to A.G. and by
the National Science Foundation grant no. CMMI 1727268 to E.K.



12
References
royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190356
1. Bassett DS, Bullmore E. 2006 Small-world brain
networks. Neuroscientist 12, 512–523. (doi:10.1177/
1073858406293182)

2. Bassett DS, Bullmore ET. 2017 Small-world brain
networks revisited. Neuroscientist 23, 499–516.
(doi:10.1177/1073858416667720)

3. Bullmore E, Sporns O. 2009 Complex brain
networks: graph theoretical analysis of structural
and functional systems. Nat. Rev. Neurosci. 10,
186–198. (doi:10.1038/nrn2575)

4. Kuhl E. 2019 Connectomics of neurodegeneration.
Nat. Neurosci. 22, 1200–1202. (doi:10.1038/s41593-
019-0459-3)

5. Raj A, Kuceyeski A, Weiner M. 2012 A network diffusion
model of disease progression in dementia. Neuron 73,
1204–1215. (doi:10.1016/j.neuron.2011.12.040)

6. Iturria-Medina Y, Sotero RC, Toussaint PJ, Evans AC,
Initiative ADN. 2014 Epidemic spreading model to
characterize misfolded proteins propagation in
aging and associated neurodegenerative disorders.
PLoS Comput. Biol. 10, e1003956. (doi:10.1371/
journal.pcbi.1003956)

7. Jucker M, Walker LC. 2011 Pathogenic protein
seeding in Alzheimer disease and other
neurodegenerative disorders. Ann. Neurol. 70,
532–540. (doi:10.1002/ana.v70.4)

8. Prusiner SB. 1998 Prions. Proc. Natl Acad. Sci. USA
95, 13 363–13 383. (doi:10.1073/pnas.95.23.13363)

9. Ittner LM, Gotz J. 2011 Amyloid-beta and tau – a
toxic pas de deux in Alzheimer’s disease. Nat. Rev.
Neurosci. 12, 67–72. (doi:10.1038/nrn2967)

10. Goedert M. 2015 Alzheimer’s and Parkinson’s
diseases: the prion concept in relation to assembled
Aβ, tau, and α-synuclein. Science 349, 1255555.
(doi:10.1126/science.1255555)

11. Eisenberg D, Jucker M. 2012 The amyloid state of
proteins in human diseases. Cell 148, 1188–1203.
(doi:10.1016/j.cell.2012.02.022)

12. Bressloff PC, Newby JM. 2013 Stochastic models of
intracellular transport. Rev. Mod. Phys. 85,
135–196. (doi:10.1103/RevModPhys.85.135)

13. Walker LC, Jucker M. 2015 Neurodegenerative diseases:
expanding the prion concept. Annu. Rev. Neurosci. 38,
87–103. (doi:10.1146/annurev-neuro-071714-033828)

14. Braak H, Braak E. 1991 Neuropathological stageing
of Alzheimer-related changes. Acta Neuropathol. 82,
239–259. (doi:10.1007/BF00308809)

15. Jucker M, Walker LC. 2013 Self-propagation of
pathogenic protein aggregates in neurodegenerative
diseases. Nature 501, 45–51. (doi:10.1038/
nature12481)

16. Weickenmeier J, Kuhl E, Goriely A. 2018 The
multiphysics of prion-like diseases: progression and
atrophy. Phys. Rev. Lett. 121, 158101. (doi:10.1103/
PhysRevLett.121.158101)

17. Knowles TPJ, Waudby CA, Devlin GL, Cohen SIA,
Aguzzi A, Vendruscolo M, Terentjev EM, Welland
ME, Dobson CM. 2009 An analytical solution to the
kinetics of breakable filament assembly. Science
326, 1533–1537. (doi:10.1126/science.1178250)
18. Weickenmeier J, Jucker M, Goriely A, Kuhl E. 2019 A
physics-based model explains the prion-like features
of neurodegeneration in Alzheimer’s disease,
Parkinson’s disease, and amyotrophic lateral
sclerosis. J. Mech. Phys. Solids 124, 264–281.
(doi:10.1016/j.jmps.2018.10.013)

19. Fisher RA. 1937 The wave of advance of
advantageous genes. Ann. Eugen. 7, 355–369.
(doi:10.1111/j.1469-1809.1937.tb02153.x)

20. Kolmogorov AN. 1937 A study of the equation of
diffusion with increase in the quantity of matter,
and its application to a biological problem. Moscow
Univ. Bull. Math. 1, 1–25.

21. Prusiner SB et al. 1990 Transgenic studies implicate
interactions between homologous PrP isoforms in
scrapie prion replication. Cell 63, 673–686. (doi:10.
1016/0092-8674(90)90134-Z)

22. Smoluchowski M. 1916 Drei Vorträge über
diffusion, Brownsche Molekularbewegung, und
Koagulation von Kollidteilchen. Phys. Z. 17,
557–5171, 585–599.

23. Simpson MJ, Treloar KK, Binder BJ, Haridas P,
Manton KJ, Leavesley DI, McElwain DLS, Baker RE.
2013 Quantifying the role of cell motility and cell
proliferation in a circular barrier assay. J. R. Soc.
Interface 10, 20130007. (doi:10.1098/rsif.2013.0007)

24. Matthäus F. 2006 Diffusion versus network models
as descriptions for the spread of prion diseases in
the brain. J. Theor. Biol. 240, 104–113. (doi:10.
1016/j.jtbi.2005.08.030)

25. Bertsch M, Franchi B, Marcello N, Tesi MC, Tosin A.
2017 Alzheimer’s disease: a mathematical model for
onset and progression. Math. Med. Biol. 34,
193–214. (doi:10.1093/imammb/dqw003)

26. Masel J, Jansen VA, Nowak MA. 1999 Quantifying
the kinetic parameters of prion replication. Biophys.
Chem. 77, 139–152. (doi:10.1016/S0301-
4622(99)00016-2)

27. Greer ML, Pujo-Menjouet L, Webb GF. 2006 A
mathematical analysis of the dynamics of prion
proliferation. J. Theor. Biol. 242, 598–606. (doi:10.
1016/j.jtbi.2006.04.010)

28. Fornari S, Schafer A, Kuhl E, Goriely A. 2019
Spatially-extended nucleation-aggregation-
fragmentation models for the dynamics of prion-like
neurodegenerative protein-spreading in the brain
and its connectome. bioRxiv. (doi:10.1101/692038)

29. Kundel F, Hong L, Falcon B, McEwan WA, Michaels
TCT, Meisl G, Estras N, Abramov AY, Knowles TJP,
Goedert M. 2018 Measurement of tau filament
fragmentation provides insight into prion-like
spreading. ACS Chem. Neurosci. 9, 1276–1282.
(doi:10.1021/acschemneuro.8b00094)

30. Henderson MX, Cornblath E, Darwich A, Zhang B,
Brown H, Gathagan RJ, Sandler RM, Bassett DS,
Trojanowski JQ, Lee VMY. 2019 Quantitative
α-synuclein pathology mapping and network
analysis provide a framework for understanding
pathological protein spread. Nat. Neurosci. 22,
1248–1257. (doi:10.1038/s41593-019-0457-5)
31. Betzel RF, Bassett DS. 2017 Generative models for
network neuroscience: prospects and promise.
J. R. Soc. Interface 14, 20170623. (doi:10.1098/rsif.
2017.0623)

32. McNab JA et al. 2013 The human connectome
project and beyond: initial applications of 300 mt/m
gradients. Neuroimage 80, 234–245. (doi:10.1016/j.
neuroimage.2013.05.074)

33. Szalkai B, Kerepesi C, Varga B, Grolmusz V. 2017
Parameterizable consensus connectomes from the
Human Connectome Project: the Budapest
Reference Connectome Server v3.0. Cogn. Neurodyn.
11, 113–116. (doi:10.1007/s11571-016-9407-z)

34. Dale AM, Fischl B, Sereno MI. 1999 Cortical surface-
based analysis. I. Segmentation and surface
reconstruction. Neuroimage 9, 179–194. (doi:10.
1006/nimg.1998.0395)

35. Weickenmeier J, Butler C, Young PG, Goriely A, Kuhl
E. 2017 The mechanics of decompressive
craniectomy: personalized simulations. Comput.
Methods Appl. Mech. Eng. 314, 180–195. (doi:10.
1016/j.cma.2016.08.011)

36. Jack CR, Holtzman DM. 2013 Biomarker modeling of
Alzheimer’s disease. Neuron 80, 1347–1358.
(doi:10.1016/j.neuron.2013.12.003)

37. O’Dea R, Cofts JJ, Kaiser M. 2013 Spreading
dynamics on spatially constrained complex brain
networks. J. R. Soc. Interface 10, 20130016. (doi:10.
1098/rsif.2013.0016)

38. Schafer A, Weickenmeier J, Kuhl E. 2019 The
interplay of biochemical and biomechanical
degeneration in Alzheimer’s disease. Comput.
Methods Appl. Mech. Eng. 352, 369–388. (doi:10.
1016/j.cma.2019.04.028)

39. Barthelemy M, Barrat A, Pastor-Satorras R,
Vespignani A. 2004 Velocity and hierarchical spread
of epidemic outbreaks in scale-free networks. Phys.
Rev. Lett. 92, 178701. (doi:10.1103/PhysRevLett.92.
178701)

40. Polanco JC, Bodea LG, Martinez-Marmol R, Meunier
FA, Götz J. 2018 Amyloid-β and tau complexity—
towards improved biomarkers and targeted
therapies. Nat. Rev. Neurol. 14, 22–39. (doi:10.
1038/nrneurol.2017.162)

41. Congdon EE, Sigurdsson EM. 2018 Tau-targeting
therapies for Alzheimer disease. Nat. Rev. Neurol.
14, 399–415. (doi:10.1038/s41582-018-0013-z)

42. Xin S-H, Tan L, Cao X, Yu J-T, Tan L. 2018 Clearance
of amyloid beta and tauin Alzheimer’s disease: from
mechanisms to therapy. Cogn. Neurodyn. 34,
733–748. (doi:10.1007 s12640-018-9895-1)

43. Pöschel T, Brilliantov NV, Frömmel C. 2003 Kinetics
of prion growth. Biophys. J. 85, 3460–3474.
(doi:10.1016/S0006-3495(03)74767-5)

44. Chia S, Habchi J, Michaels TCT, Cohen SIA, Linse S,
Dobson CM, Knowles TPJ, Vendruscolo M. 2018
SAR by kinetics for drug discovery in protein
misfolding diseases. Proc. Natl Acad. Sci. USA
115, 10 245–10 250. (doi:10.1073/pnas.
1807884115)

http://dx.doi.org/10.1177/1073858406293182
http://dx.doi.org/10.1177/1073858406293182
http://dx.doi.org/10.1177/1073858416667720
http://dx.doi.org/10.1038/nrn2575
http://dx.doi.org/10.1038/s41593-019-0459-3
http://dx.doi.org/10.1038/s41593-019-0459-3
http://dx.doi.org/10.1016/j.neuron.2011.12.040
http://dx.doi.org/10.1371/journal.pcbi.1003956
http://dx.doi.org/10.1371/journal.pcbi.1003956
http://dx.doi.org/10.1002/ana.v70.4
http://dx.doi.org/10.1073/pnas.95.23.13363
http://dx.doi.org/10.1038/nrn2967
http://dx.doi.org/10.1126/science.1255555
http://dx.doi.org/10.1016/j.cell.2012.02.022
http://dx.doi.org/10.1103/RevModPhys.85.135
http://dx.doi.org/10.1146/annurev-neuro-071714-033828
http://dx.doi.org/10.1007/BF00308809
http://dx.doi.org/10.1038/nature12481
http://dx.doi.org/10.1038/nature12481
http://dx.doi.org/10.1103/PhysRevLett.121.158101
http://dx.doi.org/10.1103/PhysRevLett.121.158101
http://dx.doi.org/10.1126/science.1178250
http://dx.doi.org/10.1016/j.jmps.2018.10.013
http://dx.doi.org/10.1111/j.1469-1809.1937.tb02153.x
http://dx.doi.org/10.1016/0092-8674(90)90134-Z
http://dx.doi.org/10.1016/0092-8674(90)90134-Z
http://dx.doi.org/10.1098/rsif.2013.0007
http://dx.doi.org/10.1016/j.jtbi.2005.08.030
http://dx.doi.org/10.1016/j.jtbi.2005.08.030
http://dx.doi.org/10.1093/imammb/dqw003
http://dx.doi.org/10.1016/S0301-4622(99)00016-2
http://dx.doi.org/10.1016/S0301-4622(99)00016-2
http://dx.doi.org/10.1016/j.jtbi.2006.04.010
http://dx.doi.org/10.1016/j.jtbi.2006.04.010
http://dx.doi.org/10.1101/692038
http://dx.doi.org/10.1021/acschemneuro.8b00094
http://dx.doi.org/10.1038/s41593-019-0457-5
http://dx.doi.org/10.1098/rsif.2017.0623
http://dx.doi.org/10.1098/rsif.2017.0623
http://dx.doi.org/10.1016/j.neuroimage.2013.05.074
http://dx.doi.org/10.1016/j.neuroimage.2013.05.074
http://dx.doi.org/10.1007/s11571-016-9407-z
http://dx.doi.org/10.1006/nimg.1998.0395
http://dx.doi.org/10.1006/nimg.1998.0395
http://dx.doi.org/10.1016/j.cma.2016.08.011
http://dx.doi.org/10.1016/j.cma.2016.08.011
http://dx.doi.org/10.1016/j.neuron.2013.12.003
http://dx.doi.org/10.1098/rsif.2013.0016
http://dx.doi.org/10.1098/rsif.2013.0016
http://dx.doi.org/10.1016/j.cma.2019.04.028
http://dx.doi.org/10.1016/j.cma.2019.04.028
http://dx.doi.org/10.1103/PhysRevLett.92.178701
http://dx.doi.org/10.1103/PhysRevLett.92.178701
http://dx.doi.org/10.1038/nrneurol.2017.162
http://dx.doi.org/10.1038/nrneurol.2017.162
http://dx.doi.org/10.1038/s41582-018-0013-z
http://dx.doi.org/10.1007/s12640-018-9895-1
http://dx.doi.org/10.1016/S0006-3495(03)74767-5
http://dx.doi.org/10.1073/pnas.1807884115
http://dx.doi.org/10.1073/pnas.1807884115

	Prion-like spreading of Alzheimer’s disease within the brain’s connectome
	Motivation
	Kinetic models
	The Fisher–Kolmogorov model
	The Heterodimer model
	The Smoluchowski model

	Brain network models
	The connectivity-weighted graph
	The graph Laplacian
	The network model

	Biomarker models
	The Fisher–Kolmogorov model
	The Heterodimer model
	Infection times

	Treatment opportunities
	Delaying conversion
	Reducing misfolding
	Increasing clearance

	Size matters
	Biomarker spectrum
	Aggregate size distribution
	Size-specific treatment

	Conclusion
	Data accessibility
	Competing interests
	Funding
	References


