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a b s t r a c t 

The prion-like hypothesis of neurodegenerative diseases states that the accumulation of misfolded pro- 

teins in the form of aggregates is responsible for tissue death and its associated neurodegenerative 

pathology and cognitive decline. Some disease-specific misfolded proteins can interact with healthy pro- 

teins to form long chains that are transported through the brain along axonal pathways. Since aggregates 

of different sizes have different transport properties and toxicity, it is important to follow independently 

their evolution in space and time. Here, we model the spreading and propagation of aggregates of mis- 

folded proteins in the brain using the general Smoluchowski theory of nucleation, aggregation, and frag- 

mentation. The transport processes considered here are either anisotropic diffusion along axonal bundles 

or discrete Laplacian transport along a network. In particular, we model the spreading and aggregation 

of both amyloid- β and τ molecules in the brain connectome. We show that these two models lead to 

different size distributions and different propagation along the network. A detailed analysis of these two 

models also reveals the existence of four different stages with different dynamics and invasive properties. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Neurodegenerative diseases such as Alzheimer’s (AD) or Parkin-

on’s (PD) are devastating conditions associated with a systematic

estruction of brain tissues leading to cognitive decline, neurobe-

avioral symptoms, and eventually death. While for PD there ex-

st some treatments to alleviate some of the symptoms, there is

o known cure for any of these diseases. Post-mortem analyses

f brain tissues affected by neurodegenerative diseases reveal the

resence of protein aggregates. For instance, in the case of AD, ex-

racellular amyloid-beta (A β) plaques and intracellular neurofibril-

ary tangles of tau ( τ ) proteins are observed and correlated with

he evolution of the disease ( Jack et al., 2018 ). The systematic map-

ing of these lesions either in postmortem brains obtained at var-

ous stages of the disease or by in vivo positron emission tomog-

aphy imaging provides a map of the spatiotemporal evolution of

he disease ( Braak and Braak, 1991; Cho et al., 2016 ). Unlike other

iseases, neurodegenerative diseases appear to follow a predictable

preading pattern through the brain. For instance, in AD, τ aggre-
∗ Corresponding author. 
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ates are first found in the locus coeruleus and entorhinal cortex

nd then evolves to the hippocampus, the temporal cortex, the

arietal cortex before invading the motor cortex and occipital areas

 Delacourte et al., 1999 ). In the last stage of the disease, all cor-

ical areas are affected and the patient condition rapidly declines.

ifferent neurodegenerative diseases exhibit different invasion pat-

erns associated with different initial seeding zones and specific

rotein aggregates. 

These systematic invasion patterns of protein aggregates are

he basis of the prion-like hypothesis for neurodegenerative dis-

ases. This mechanism is based on the idea that, like prion dis-

ases ( Prusiner, 1998 ), neurodegenerative diseases are caused by

he systematic aggregation and transport of misfolded proteins in

he brain through the axonal pathways ( Jucker and Walker, 2013;

alker and Jucker, 2015; Clavaguera et al., 2013; Goedert, 2015;

udher et al., 2017 ). Specifically, it applies to τ protein aggregates

ound in AD. Tau proteins are small proteins that stabilize micro-

ubules in the axon ( van den Bedem and Kuhl, 2015 ). In healthy

issue, they are naturally produced by the cell and transported pri-

arily along the axons where they bind to multiple microtubules.

owever, in some conditions, these proteins can be hyperphos-

horylated and start forming misfolded aggregates. This misfolded
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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form of the protein acts as a toxic template on which regular τ
protein can be bound and converted to misfolded ones. These ag-

gregates grow into increasingly larger fibrillar assemblies ( Walker

and Jucker, 2015; Goedert et al., 2017 ) that can also fragment into

smaller aggregates. Since τ is an intracellular protein, these var-

ious large aggregates primarily spread across the brain through

the network of axonal pathways ( Jucker and Walker, 2018; Olsson

et al., 2018 ) and various mechanisms of cell-cell spreading have

been identified ( Davis et al., 2018 ). Similarly, it is known that A β
forms large extracellular aggregates. Assuming that these aggre-

gates are transported within the brain as a simple diffusion pro-

cess, we know from diffusion tensor imaging, that diffusion is pref-

erentially along the axons. Therefore, even though these proteins

are found outside the cell, they also diffuse anisotropically. 

The kinetic of aggregation and fragmentation of misfolded pro-

teins and their spatiotemporal evolution can be modeled by either

following the total concentration of toxic proteins ( Weickenmeier

et al., 2018; 2019 ), the concentration of healthy and toxic proteins

using a heterodimer model ( Matthäus, 2006 ), or a Smoluchowski-

type model where the concentrations of polymers of different sizes

are followed independently ( Bertsch et al., 2016 ). 

Following the size distribution is important to understand the

slow time scales associated with the disease and to identify the

aggregate sizes responsible for damage so that they can be tar-

geted by antibodies. Therefore, we use the aggregation theory of

Smoluchowski to study the spread of intracellular protein aggre-

gates across the brain. We are particularly interested in studying

to what extent coarse-grained models, which are easier to simu-

late, can be used to represent the complex underlying kinetics. Our

approach consists in formulating the continuous problem first us-

ing anisotropic diffusion and then discretizing the equations on a

network. Once the models for A β and τ propagation have been es-

tablished, we analyze them in parallel to identify typical behaviors

and how particular features arise from the modeling choices. 

2. General theory of aggregation-fragmentation equations 

Before we look specifically at the problem of proteins in the

brain, it is of interest to consider the general theory of Smolu-

chowski for the aggregation and fragmentation of particles in space

and time ( Smoluchowski, 1916 ). We will first consider the con-

tinuum case before discretizing these equations on a network. In

this theory, we follow the concentration c i of aggregates C i of size

i ∈ N . The concentrations are defined both in space and time so

that c i = c i (x , t) , x ∈ � ⊂ R 

3 , t ∈ R . Apart from nucleation events,

we consider only binary processes where the aggregates i and j in-

teract with aggregates of size i + j with an aggregation rate k i,j and

fragmentation rate β i,j : 

 i + C j 
k i, j 

�
βi, j 

C i + j , i, j = 1 , 2 , 3 , . . . , (1)

In addition, we assume that there exists a source of monomers and

a process of clearance reducing each population with a constant
Fig. 1. The two nucleation processes. Primary nucleation brings n 1 monomers together to

of an aggregate of any size, catalyzes nucleation to form an aggregate of size n 2 (here n 2 
elative rate. The general form of these equations is then 

∂ c i 
∂t 

= ∇ · (D i · ∇c i ) + k 0 ,i − k 1 ,i c i + N i + A i + F i , i = 1 , 2 . . . 

(2)

here D i is the diffusion tensor characterizing the spreading of

n aggregate of size i . We assume a source of monomers k 0 , 1 =
(x ) and k 0 ,i = 0 for i > 1 and clearance terms of the i -mer,

 1 ,i = k 1 ,i (x ) , that are possibly space-dependent. This dependence

eflects the possibility that different locations may be associated

ith higher rates of production or clearance. The remaining terms

n the equations are the nucleation term N i , the aggregation term

 i , and the fragmentation term F i . We consider these three pro-

esses separately: 

Nucleation: We consider two different types of nucleation pro-

esses (see Fig. 1 ) that are known to be important in the con-

ext of protein kinetics for neurodegenerative diseases ( Cohen

t al., 2011c; Frank, 2015 ). First, primary nucleation corresponds to

 1 > 1 monomers forming an aggregate of size n 1 : 

 1 + . . . + C 1 
 ︷︷ ︸ 

n 1 times 

ξ1 −→ C n 1 . (3)

Second, we include secondary nucleations where existing ag-

regates facilitates the formation of new aggregates with n 2 > 1

onomers ( Frank, 1999 ): 

 i + C 1 + . . . + C 1 ︸ ︷︷ ︸ 
n 2 times 

ξ2 −→ C i + C n 2 , i = 2 , 3 , . . . (4)

n this case the rate constant is proportional to the total mass

i > 1 ic i . Taking into account both contributions, the nucleation

erm is given by 

N i = ξ1 δi,n 1 c 
n 1 
1 

+ ξ2 δi,n 2 c 
n 2 
1 

∞ ∑ 

j=2 

jc j , i = 2 , 3 , . . . (5)

here δi,j is the usual Kronecker delta (1 when i equals j and 0

therwise). The conservation of mass in the nucleation process im-

lies that N 1 + 

∑ ∞ 

i =2 iN i = 0 . Hence, we have 

N 1 = −n 1 ξ1 δi,n 1 c 
n 1 
1 

− n 2 ξ2 δi,n 2 c 
n 2 
1 

∞ ∑ 

j=2 

jc j . (6)

Aggregation: Considering the possible changes in the concen-

ration c i with fixed i > 1, we see from (1) that the aggregate C i 
ppears in two reactions (see Fig. 2 ). It disappears in the presence

f C j to form C i + j : 

 i + C j 
k i, j −→ C i + j , j = 1 , 2 , 3 , . . . , (7)

nd appears in the same type of reaction but with different indices

 i − j + C j 
k i − j, j −→ C i , j = 1 , 2 , . . . , i − 1 . (8)
 form an aggregate of size n 1 (here n 1 = 3 ). In secondary nucleation, the presence 

= 2 ). 
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Fig. 2. Aggregation processes. During aggregation an i -mer merges with a j -mer to form an (i + j) -mer with rate k i,j . Linear aggregation is the particular case where monomers 

are added to an aggregate and is a good model for fibril formation. 
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ote that the symmetry obtained by swapping j with i − j in this

quation means that we count these reactions twice (except when

 = 2 j). 

Taken together these effects can be written thanks to the law

f mass action as ( Wattis, 2006; Collet, 2004 ) 

 i = 

1 

2 

i −1 ∑ 

j=1 

α j,i − j c j c i − j −
∞ ∑ 

j=1 

αi, j c i c j , (9)

here the factor 1/2 appears due to the double counting and αi, j =
j,i = k i, j when i � = j, and αi,i = 2 k i,i . Terms of the form α1 , 1 c 

2 
1 

in

he equation for c 2 also represents the possibility of nucleation

rom two monomers C 1 forming a dimer C 2 . Therefore, if the pri-

ary nucleation is binary ( n 1 = 2 ), the total nucleation rate is

1 , 1 + ξ1 . If n 1 > 2, then there is no binary nucleation and α1 , 1 = 0 .

Fragmentation: The fragmentation term follows the same con-

truction and takes into account the reactions (7) and (8) in the

everse direction (see Fig. 3 ). We consider the loss of aggregates C i 
y the reaction. 

 i 

β j,i − j −→ C j + C i − j , j = 1 , 2 , . . . , i − 1 , (10)

nd the creation of aggregates of size i by the fragmentation of

arger aggregates 

 i + j 
βi, j −→ C i + C j , j = 1 , 2 , 3 , . . . , (11)

hich leads to 

 i = −1 

2 

i −1 ∑ 

j=1 

β j,i − j c i + 

∞ ∑ 

j=1 

βi, j c i + j . (12)

Note that since we only consider binary processes, we neglect

he possibility of aggregation of more than two smaller aggregates

r fragmentation processes leading to more than two aggregates of

maller sizes. If we assume that aggregation dominates fragmenta-

ion, we have αi,j > β i,j . 
ig. 3. Fragmentation processes. During fragmentation an i -mer aggregates with a j -me

onomers are created. 
Taken together, the Smoluchowski equations for nucleation-

ggregation-fragmentation read 

∂ c i 
∂t 

= ∇ · (D i · ∇c i ) + k 0 ,i − k 1 ,i c i 

−n 1 ξ1 δi, 1 c 
n 1 
1 

− n 2 ξ2 δi, 1 c 
n 2 
1 

∞ ∑ 

j=2 

jc j 

+ ξ1 δi,n 1 c 
n 1 
1 

+ ξ2 δi,n 2 c 
n 2 
1 

∞ ∑ 

j=2 

jc j 

+ 

1 

2 

i −1 ∑ 

j=1 

(
α j,i − j c j c i − j − β j,i − j c i 

)
−

∞ ∑ 

j=1 

(
αi, j c i c j − βi, j c i + j 

)
, i = 1 , 2 , . . . (13) 

hereas the general form of these equations is well accepted, the

roblem is to find the specific form of the coefficients for a given

rocess and then solve this infinite set of nonlinear partial dif-

erential equations. If we consider aggregates of size up to N , the

umber of free parameters is of order N 

2 . Modeling reaction rates

sually rely on a combination of physical assumptions, thermo-

ynamics, and statistical physics, all based on direct comparisons

ith experimental data. 

. Smoluchowski equations for neurodegenerative diseases 

The approach discussed here has been used to study the

pread of proteins in some neurodegenerative diseases (see review

arbonell et al., 2018 ). For Alzheimer’s disease, the emphasis in

ost models is on the evolution of A β fibrils, which have been

hought as the main responsible mechanism related to cell death.

or instance, a homogeneous Smoluchowski model has been pro-

osed by Murphy and Pallitto and validated against kinetic experi-

ents ( Murphy and Pallitto, 20 0 0; Pallitto, 20 01 ). Many other ho-

ogenous models have been considered for A β fibrils and prion
r to form an (i − j) -mer with rate βi,i − j . Dissociation is the particular case where 
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diseases. These models are obtained from (13) by taking D i = 0 for

all i and are therefore sets of ordinary differential equations. This

is the classical framework of Smoluchowski equations for which

there exists a large literature ( Ball and Jack, 1990; Davies et al.,

1999; Kreer, 1994 ). The central question is to obtain the evolu-

tion in time of the concentration distribution given general proper-

ties of the rate coefficients and whether gelation occurs. Physically,

gelation refers to the process of creating very large particles in the

system. Mathematically, in these equations, it corresponds to a loss

of mass in the system due to a non-zero mass flux towards larger

particles in the limit of particle sizes going to infinity. The main

advantage of the homogenous case is that differential equations for

moments of the distribution can be obtained and, in some cases,

the problem can be reduced to a finite set of differential equa-

tions for these moments. This mathematical framework can then

be used to fit the constants appearing in the system against exper-

imental data ( Morris et al., 2009 ). 

Not surprisingly, the inhomogeneous case where transport is

considered is much more complicated and no such moment for-

mulation is possible. Yet, a few mathematical works have estab-

lished the global existence of solutions for particular rate equations

( Slemrod, 1990; Dariusz, 2002; Lauren and Mischler, 2002 ) or ob-

tained particular solutions ( Collet and Poupaud, 1996 ). 

Of particular relevance for the present discussion is the work of

Bertsch et al. who considered a model of the form (13) for the ac-

cumulation and spreading of A β and implemented the model in a

brain slice geometry ( Bertsch et al., 2016 ). Similar equations have

also been discretized and studied on networks by Matthäus who

was motivated by the study of prion diseases ( Matthäus, 2006,

20 09a, 20 09b ). 

Here, following the prion-like hypothesis of neurodegenerative

diseases, we develop a general framework for the study of toxic

proteins propagation in the brain modeled as a network. The ap-

proach is flexible and the purpose of this first contribution is to

set-up the general guidelines for the study of such processes by il-

lustrating and comparing two different simplified models for the

aggregation and transport of either A β or τ proteins, the hall-

marks of Alzheimer’s disease. According to the prion-like hypothe-

sis, these proteins are mostly transported along axonal pathways.

Hence, a network approach for the spatiotemporal evolution of

these aggregates is justified. The network models are obtained as

coarse-grained models of the continuum models. 

Inevitably, we make here a number of simplifying assumptions

while keeping key features of the known mechanisms. The first

main assumption concerns the variation of the rate parameters en-

tering the aggregation equations in time or space. These parame-

ters are known to vary in space depending on the type of cells and

their genetic signature ( Henderson et al., 2019 ) but also in time as,

for instance, the vasculature plays an important role in homeosta-

sis, for the clearance processes ( Berg et al., 2019; Hernández et al.,

2019 ). Yet, very little is known about these parameters in the hu-

man brain. Therefore, while the model can easily be adapted to

account for these changes, in the absence of such data, we con-

fine ourselves to constant rate parameters, both in space and time.

The second main assumption concerns the mechanisms responsi-

ble for the expansion of the population of toxic proteins. We as-

sume that conversion of healthy proteins and fragmentation of a

polymer are the only sources of creation of toxic proteins. There-

fore, we ignore stochastic events leading to the possible seeding of

new toxic proteins or known coupled mechanisms such as the in-

teraction between A β and τ proteins ( Ittner and Götz, 2011 ). These

effects could be introduced in the model but, in the first instance,

it is important to understand the dynamics of each population

separately. 

It is important to make the distinction between the population

of healthy proteins and the misfolded (toxic) ones. We assume that
n healthy conditions, the healthy proteins have a concentration

 = m (x , t) . We assume that misfolded monomers are produced

hrough conversion of a healthy protein or by fragmentation. How-

ver, our assumption about fragmentation (see below) does not al-

ow for the loss of a single monomer. Hence, toxic monomers can

nly be produced by conversion of a healthy protein and will only

ppear in the system as they form larger fibrils. Since we pool the

rocess of conversion and aggregation together through a single

onstant, there is no need to track separately the population of

isfolded monomers. Hence, we use c 1 = m as the overall popula-

ion of monomers present in the system. For the dynamics to start,

e must either have a nucleation mechanism with rate κ that de-

cribes the probability of two such monomers to come together to

ake a dimer of misfolded proteins, or assume that this conver-

ion has already taken place and the system has a certain level of

eeded misfolded dimers. 

.1. Diffusion, growth and expansion 

It is important to identify the possible sources for the creation,

ransport, and expansion of toxic proteins. We define the total den-

ity and concentration of aggregates (excluding healthy monomers)

s 

 = 

∞ ∑ 

i =2 

ic i , P = 

∞ ∑ 

i =2 

c i . (14)

ntegrated over the entire domain, these two quantities are, re-

pectively, the total mass and total number of aggregates of toxic

roteins. A typical aggregate length, measured in unit of monomer

ength, is obtained as the ratio of these two moments λ = M/P . In

he case of fibrils, λ is the mean filament length. 

There are three main processes in the dynamics, each associ-

ted with its own time scale: 

Diffusion has the effect of lowering locally a high concentra-

ion by transporting aggregates in nearby regions. Hence, starting

n one small region with high concentration, diffusion allows for

eeds to propagate. 

Growth refers to the evolution of the fibril length: the transfer

rom small aggregates to larger aggregates. This process is mostly

ontrolled by the parameters αi,j and leads to an increase of λ.

nce a toxic seed of small size is created, growth increases the size

f that seed. The process is dampened by either fragmentation or

learance. 

Expansion refers to an increase of the total mass of toxic pro-

eins. It is controlled by three possible sub-processes: primary nu-

leation that creates seeds directly from the pool of monomers,

econdary nucleation that creates seeds from monomers but re-

uires activation from other aggregates, and fragmentation that cre-

tes news seeds from larger aggregates at the expense of growth

rocesses. 

While the primary nucleation process is necessary to create ini-

ially toxic seeds, the two main expansions mechanisms (secondary

ucleation or fragmentation) are observed for different proteins.

or A β , in vitro experiments on the formation of oligomers based

n the A β42 peptide have shown ( Cohen et al., 2013; Frankel et al.,

019 ) that both primary and secondary nucleation processes are

ecessary to capture correctly the kinetic of the process across

ifferent initial concentrations even though the overall qualita-

ive shapes of the solution curves are similar. Once a population

f toxic seed is established and grow, it acts as a catalyst for

he formation of more seeds through a positive feedback mecha-

ism. However, for τ proteins, primary nucleation and fragmen-

ation is sufficient to explain homogeneous in vitro experiments

 Kundel et al., 2018 ). The creation of new seeds from larger ones

reates new targets for monomers to be transformed into toxic

roteins and secondary nucleation is not required. 



S. Fornari, A. Schäfer and E. Kuhl et al. / Journal of Theoretical Biology 486 (2020) 110102 5 

 

e  

c  

r  

m  

n  

c

3

 

i  

o  

t  

d  

T  

t  

c  

t

C  

T  

B  

1  

W  

D

 

c  

a  

c

f

A  

A  

A  

w

 

t  

c  

e  

t  

f  

p  

i

T  

s

 

h  

p  

t  

b  

o  

c  

o  

f  

a

 

i  

a  

n  

w  

d  

t  

g

C  

a

C  

F  

i  

t  

fi

F

w  

t  

b  

y  

s  

o  

c  

v

 

p  

s  

a  

u  

s  

p

D

w  

i  

i  

t

 

D  

T  

t  

i

 

s  

t  

a

 

t  

k  

 

o  

s  

o  
Based on these observations, we establish two classes of mod-

ls. The first one for A β is based on primary and secondary nu-

leations only (no fragmentation). The second class of models,

elevant for τ proteins, is based on primary nucleation and frag-

entation only (no secondary nucleation). Both models share a

umber of common assumptions that we discuss now before spe-

ializing them. 

.2. Continuous models for fibril propagation 

Linear aggregation: Various authors have discussed the possibil-

ty of a general aggregation mechanism from aggregates of vari-

us sizes ( Pallitto, 2001; Murphy and Pallitto, 20 0 0 ). However, in

he formation of neurofibrillary tangles, the growth of a fibril is

ominated by the addition of monomers at the ends of the fibril.

herefore, we assume here that the main mechanism is through

he formation of fibrils by addition of monomers. This assumption

onsiderably simplifies the equations as we only consider aggrega-

ion processes of the form 

 i + C 1 
k i, 1 −→ C i +1 . (15)

his type of coagulation kinetic is similar to the well-known

ecker-Döring process that has been studied extensively ( Ball et al.,

986; Slemrod, 1989; Coveney and Wattis, 1996; Penrose, 1997;

attis and King, 1998 ). The main difference is that in Becker-

öring only one monomer at most is lost during fragmentation. 

We further assume that for polymers with more than two parti-

les, the rates are independent of the size so that the probability of

ttaching a monomer to a chain does not depend on how long the

hain is: k i, 1 = k 1 ,i = k for all i > 2, which implies αi, 1 = α1 ,i = α
or all i > 2. We distinguish the first two terms involving dimers 

 1 = −α1 , 1 c 
2 
1 − αc 1 

N−1 ∑ 

j=2 

c j , (16)

 2 = 

1 

2 

α1 , 1 c 
2 
1 − αc 1 c 2 , (17)

 i = α( c 1 c i −1 − c i c 1 ) , i = 3 , . . . , N − 1 , (18)

here N is the size of the super-particle discussed next. 

Super-particle: Rather than considering an infinite set of equa-

ions, we consider a truncation of these equations by following the

oncentration of a super-particle consisting of all aggregates of size

qual or larger than N . The value of N is chosen to be the size of

he smallest particle that is insoluble and, therefore, does not dif-

use. Hence, we have D N = 0 . We further assume that the super-

article does not fragment so that F N = 0 . Following the argument

n Bertsch et al. (2016) , the equation for c N is 

∂ c N 
∂t 

= A N − k N c N = −k N c N + 

1 

2 

N−1 ∑ 

j=1 

N−1 ∑ 

k = N− j 

α j,k c j c k 

= −k N c N + αc 1 c N−1 . (19) 

he limit N → ∞ recovers the classic case with infinitely many

pecies. 

Primary and secondary nucleation: We assume that nucleation

appens through the formation of dimers ( n 1 = 2 ) as observed ex-

erimentally ( Congdon et al., 2008 ) and combine the two contribu-

ions to the creation of dimers by introducing 2 κ = α1 , 1 + ξ1 . It has

een shown experimentally, by varying the initial concentrations

f monomers that the formation of aggregates of A β42 peptides

annot be explained solely by primary nucleation but requires sec-

ndary nucleation ( Cohen et al., 2013; Frankel et al., 2019 ). There-

ore, for the case of A β , we use secondary nucleation with n 2 = 2

nd ξ = ξ . 
2 
Finite fragment size: When a chain fragments, we assume that it

s unlikely to lose small fragments. Hence, we assume that there is

 minimal fragment size ζ such that fragments smaller than ζ can-

ot be produced. In a chain with j elements, there are j − 1 places

here it can break. However, since small chains cannot be pro-

uced, there are only j − 1 − 2(ζ − 1) = j + 1 − 2 ζ places where

he chain can break. Hence, we only consider the loss of aggre-

ates C i through 

 i 

β j,i − j −→ C j + C i − j , j = ζ , ζ + 1 , . . . , i − ζ , (20)

nd the creation of aggregates of size i as 

 i + j 
βi, j −→ C i + C j , j = ζ , ζ + 1 , . . . , . (21)

urther, since the super-particle cannot fragment, we have F i = 0

f i < ζ and for i > N − ζ − 1 . Assuming that the rate of fragmen-

ation is independent of the size and the position at which the

lament breaks, we have βi, j = β for all i and j : 

 i = −1 

2 

β
i −ζ∑ 

j= ζ
c i + β

N−1 −i ∑ 

j= ζ
c i + j , 

= −1 

2 

β(i − 2 ζ + 1) c i + β
N−1 −i ∑ 

j= ζ
c i + j , i = ζ , . . . , N − 1 , (22) 

here it is understood that the sum 

∑ N−1 −i 
j= ζ c i + j vanishes iden-

ically when the upper bound (N − 1 − i ) is less than the lower

ound ζ , which happens for i > N − ζ − 1 . For the rest of the anal-

sis, we will follow ( Kundel et al., 2018 ) and assume that the

mallest possible fragment is of size ζ = 2 , indicating the fact that

nce a dimer is formed it is stable and never fragments. For the

reation of large aggregates to take place, aggregation must be fa-

ored over fragmentation, which is enforced by β < α. 

Transport scaling: Aggregates of different sizes are not trans-

orted in the same way with larger aggregates diffusing more

lowly ( Nicholson et al., 20 0 0 ). Indeed, the diffusion coefficient of

 soluble molecule scales approximately as a power of its molec-

lar weight and the weight of an oligomer is proportional to its

ize. Therefore, we scale the diffusion tensor according to size by a

ower law of the form 

 i = i −ηD , (23) 

here η is a constant. Assuming that the diffusion constant scales

nversely to the mass of the molecule, it scales as the cubic root of

ts length ( Goodhill, 1997; Nicholson and Syková, 1998 ), hence, we

ake η = 1 / 3 . 

For the diffusion tensor we choose ( Weickenmeier et al., 2019 )

 = d ⊥ 1 + (d ‖ − d ⊥ ) n � n . (24)

his is a transversely anisotropic diffusion tensor with a preferen-

ial diffusion d ‖ (with d ‖ � d ⊥ ) along the axon bundle character-

zed by the unit vector field n = n (x , t) . 

Clearance rate: Aggregates are continuously removed from the

ystem through normal clearance processes such as the CSF and

he glymphatic system ( Iliff et al., 2012 ). There are two different

ssumptions of interest for our study. 

First, we can assume that the clearance rate is independent of

he size of the aggregate. In this case of size-independent clearance ,

 1 ,i = μ i = 1 , . . . , N. (25)

Second, we can assume that for a given phagocytic activity

r antibody the clearance of an oligomer with i -elements is the

ame as the removal of each element. Therefore, chains of size N

r larger cannot be removed and it becomes increasingly difficult



6 S. Fornari, A. Schäfer and E. Kuhl et al. / Journal of Theoretical Biology 486 (2020) 110102 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w

 

 

 

 

I  

s  

g  

g  

o  

t  

o  

d  

r  

p  

s  

m  

m  

f  

t  

m  

b  

p  

o  

r  

a  

s  

f  

t  

u  

o  

p  

a  

p

to remove large chains: the size-dependent clearance rates are in-

versely proportional to the size of the oligomer: 

k 1 ,i = 

μ

i 
, i = 1 , . . . , N − 1 . (26)

Both cases are taken into account by writing k 1 ,i = μi , i = 1 , . . . , N.

The continuous model: Taken into account all the above assump-

tions, the full equations for the concentrations take the form 

∂ c 1 
∂t 

= ∇ · (D · ∇c 1 ) + γ − μ1 c 1 − 2 c 2 1 

( 

κ + ξ
∞ ∑ 

j=2 

jc j 

) 

− αc 1 

N−1 ∑ 

j=2 

c j ,

(27)

∂ c 2 
∂t 

= 2 

−η∇ · (D · ∇c 2 ) − μ2 c 2 + c 2 1 

( 

κ + ξ
N ∑ 

j=2 

jc j 

) 

−αc 1 c 2 + β
N−3 ∑ 

j=2 

c 2+ j , (28)

∂ c i 
∂t 

= i −η∇ ·(D ·∇c i ) −
(

μi + 

β

2 

(i − 3) 

)
c i + αc 1 (c i −1 − c i ) 

+ β
N−i −1 ∑ 

j=2 

c i + j i = 3 , . . . , N−1 , (29)

∂ c N 
∂t 

= −μn c N + αc 1 c N−1 . (30)

where D is given by (24) . 

The main difference between the model for A β and τ , apart

from the initial seeding zones, and different sets of parameters is

the choice β = 0 (no fragmentation) for the continuous A β model

and ξ = 0 (no secondary nucleation) for the τ model. 

3.3. Scaling 

It is interesting to consider the respective size of the parame-

ters and introduce a proper scaling of the parameters so that the

new variables are dimensionless. In the homogeneous case and in

the absence of clearance and production, the remaining parame-

ters, given in Table 1 can be evaluated from in vitro experiments. 

Let m 0 be the total initial mass of the system (or, equivalently,

the total initial monomer concentration since we assume constant

overall volume). We scale all concentrations with the initial mass

m 0 and time with the typical time associated with the growth pa-

rameter α. The scalings of the variables and dimensionless param-

eters are then given by 

c i = m 0 ̃  c i , t = 

1 

αm 0 

˜ t (31)

˜ α = 1 , ˜ β = 

β

αm 0 

, ˜ μi = 

μi 

αm 0 

, ˜ κ = 

κ

α
, ˜ ξ = 

ξm 0 

α
, ˜ D = 

D 

αm 0 

. 

(32)
Table 1 

Typical parameters for the A β model are taken from Cohen et al

(c. stands for concentration). 

A β model 

κ nucleation 6 × 10 −4 M 

−1 s −1 

ξ secondary nucleation 1 × 10 4 M 

−2 s −1 

β fragmentation 0 

α elongation rate 6 × 10 6 M 

−1 s −1 

m 0 initial monomer c. γ /μ = 10 −6 M 

˜ κ κ/ α 5 × 10 −11 

˜ ξ ξm 0 / α 1 . 67 × 10 −18 
After substitution in the system and then dropping the tildes,

e obtain 

∂ c 1 
∂t 

= ∇ · (D · ∇c 1 ) + γ − μ1 c 1 − 2 c 2 1 

( 

κ + ξ
N ∑ 

j=2 

jc j 

) 

− c 1 

N−1 ∑ 

j=2 

c j , 

(33)

∂ c 2 
∂t 

= 2 

−η∇ · (D · ∇c 2 ) − μ2 c 2 + c 2 1 

( 

κ + ξ
N ∑ 

j=2 

jc j 

) 

−c 1 c 2 + β
N−3 ∑ 

j=2 

c 2+ j , (34)

∂ c i 
∂t 

= i −η∇ ·(D ·∇c i ) −
(

μi + 

β

2 

(i − 3) 

)
c i + c 1 (c i −1 − c i ) 

+ β
N−i −1 ∑ 

j=2 

c i + j i = 3 , . . . , N−1 , (35)

∂ c N 
∂t 

= −μN c N + c 1 c N−1 . (36)

n this new formulation, we have three important small dimen-

ionless parameters ( β � κ � 1 and ξ , κ � 1). Note that the rates

iven in Table 1 are obtained from well-controlled in vitro homo-

eneous experiments so that they are not an accurate reflection

f the actual processes taking place in human brains. For instance,

he dynamics for τ in Kundel et al. (2018) has a typical time scale

f 200 hours (experiments last about 10 0 0 hours but most of the

ynamics take place over the first 400 hours). Since t ≈ 120 ̃ t it cor-

esponds to a dimensionless time of about 100. Similarly, the ex-

eriments on A β leading to these parameters have a typical time

cale of 4 hours (see Fig. 1 in Cohen et al., 2013 ), leading to a di-

ensionless time scale of about 2400. We note that both experi-

ental time scales are much shorter than the known time scales

or the evolution of the disease (years) in the brain. The reason for

his discrepancy is not fully understood but is likely related to two

ain factors. First, the initial concentration of toxic proteins may

e lower and the local processes may be much slower or in com-

etition with other biochemical reactions, leading to smaller values

f αm 0 , hence longer times. Second, spreading within the tissue

ely on a number of processes such as exo- and endo-cytosis and

xonal diffusion for intracellular proteins and extracellular diffu-

ion for extracellular proteins. Therefore, these parameters are not

ully suited for a direct simulation of the evolution of toxic pro-

eins in the brain. Rather, their importance lies in the relative val-

es of some of these parameters that we will respect throughout

ur analysis. Hence, in the absence of better quantification of these

arameters in the brain, the following study should be considered

s a qualitative analysis of the solutions rather than quantitative

redictions. 
. (2013) and for the τ model are from Kundel et al. (2018) 

τ model 

κ nucleation 2 . 8 × 10 −4 M 

−1 s −1 

ξ secondary nucleation 0 

β fragmentation 11 . 2 × 10 −11 s −1 

α elongation rate 8.4 × 10 3 M 

−1 s −1 

m 0 initial monomer c. γ /μ = 10 −6 M 

˜ κ κ/ α 3 . 33 × 10 −8 

˜ β β/( αm 0 ) 1 . 33 × 10 −8 
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Fig. 4. Weighted adjacency matrix with 83 nodes obtained by averaging 418 brains. 

RH and LH denote the right and left hemisphere, respectively. The color scales from 

low weight (blue) to high weight (red), the latter indicating strong connections be- 

tween two nodes. The external color coding around the matrix represents the dif- 

ferent regions as depicted in Fig. 5 . (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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. Smoluchowski network models 

It is well appreciated that integrating the continuous equations

e have derived for large N over the entire brain is extremely dif-

cult even with the most sophisticated methods. By taking ad-

antage of the strong anisotropy of the system, a natural coarse-

rained version of the model can be obtained. In this case, we

ssume that transport only takes place along the axonal path-

ay and we replace the diffusion operator by the graph Laplacian

o obtain a network approximation of the model. These models

ave been shown to be excellent approximations of the continuous

odel in the case of the Fischer equation and heterodimer models

 Fornari et al., 2019 ). 

For transport along the axon, we model the spreading of

onomers and protein aggregates as a diffusion process across

he brain’s connectome. The brain connectome is modeled as a

eighted graph G with V nodes ( V for vertices) and E edges ob-

ained from tractography of diffusion tensor images. We can sum-

arize the connectivity of the graph G in terms of the weighted

djacency matrix A ij obtained as the ratio of mean fiber number

 ij and length l ij between node i and j . From the weighted adja-

ency matrix, we compute both the weighted degree matrix D ii , a

iagonal matrix that characterizes the degree of each node i , and

he weighted graph Laplacian L ij as 

 i j = ρ(D i j − A i j ) with A i j = 

n i j 

l i j 

and D ii = 

V ∑ 

j=1 

A i j , i, j = 1 , . . . , V, 

(37) 

here ρ is an overall constant with the dimension of a velocity.

he particular adjacency matrix that we use for our simulations is

btained from the tractography of diffusion tensor magnetic reso-

ance images of 418 healthy subjects of the Human Connectome

roject ( McNab et al., 2013 ) and is based on the Budapest Refer-

nce Connectome v3.0 ( Szalkai et al., 2017 ). The original graph con-

ains 1015 nodes and 37,477 edges and it is further reduced here to

 graph with V = 83 nodes and 1,130 edges. The average path length

defined as the average number of steps along the shortest paths

or all possible pairs of nodes) is 5245/3403 ≈ 1.54 and the global

lustering coefficient (defined as the fraction of paths of length two

n the network that are closed over all paths of length two) is

9 , 359 / 69 , 149 ≈ 0 . 71 which suggests a small-world network struc-

ure , a fact that has been repeatedly established for brain networks

 Bassett and Bullmore, 2017 ). Further analyses of this network can

e found in Fornari et al., 2019 . 

The adjacency matrix is shown in Fig. 4 and the graph Lapla-

ian is given explicitly in the Supplementary material as well as

he names and positions of each nodes as shown in Fig. 5 . For vi-

ualization and analysis, we allocate each node to one particular

egion of the brain, the usual four lobes: temporal, parietal, frontal

ccipital , together with the basal ganglia , and the limbic region . The

ast node (shown in black) corresponds to the brain stem. 

.1. The network protein model 

Defining c i,j to be the concentration of an aggregate of size i

t node j , the network equations corresponding to the continuous

odel take the form of a system of N × V first-order ODES: 

d c 1 , j 

d t 
= −

V ∑ 

k =1 

L jk c 1 ,k + γ j − μ1 , j c 1 , j − 2 c 2 1 , j 

( 

κ j + ξ
N ∑ 

k =2 

kc 2 ,k 

) 

−c 1 , j 

N ∑ 

k =2 

c k, j (38) 
d c 2 , j 

d t 
= −2 

−η
V ∑ 

k =1 

L jk c 2 ,k − μ2 , j c 2 , j + c 2 1 , j 

( 

κ j + ξ
N ∑ 

k =2 

kc 2 ,k 

) 

−c 1 , j c 2 , j + β
N−3 ∑ 

k =2 

c 2+ k, j (39) 

d c i, j 

d t 
= −i −η

V ∑ 

k =1 

L jk c i,k −
(

μi, j + 

β

2 

(i − 3) 

)
c i, j + c 1 , j (c i −1 , j − c i, j ) 

+ β
N−i −1 ∑ 

k =2 

c i + k, j (40) 

d c N, j 

d t 
= −μN, j c N, j + c 1 , j c N−1 , j , (41)

here i = 3 , . . . , N−1 and j = 1 , . . . , V, and we have allowed a pos-

ible dependence of the clearance and production rates on the dif-

erent nodes. 

. Analysis of the homogeneous case 

.1. Evolution of the total mass 

To gain insight into the problem, we start our analysis with the

omogeneous case where we look for solutions that are constant

n space. In this case, both the network and continuum model lead

o the same set of ordinary differential equations: 

d c i 
d t 

= γ δ1 , 0 − μi c i + N i + A i + F i , i = 1 , 2 , . . . , N − 1 , (42)

d c N 
d t 

= −μN c N + c 1 c N−1 (43)

here the different terms take their respective values for the dif-

erent cases. Two important global quantifiers of the dynamics are

he total number of aggregates P tot and the total mass M tot (or

quivalently, total density at constant volume), given by: 

 tot = 

N ∑ 

i =1 

c i , M tot = 

N ∑ 

i =1 

ic i . (44)
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Fig. 5. Three-dimensional views of the brain with its six associated regions (the black node denotes the brain stem). Left: view from the top. Right: view from the side. 
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If N → ∞ , gelation can occur in the system depending on the ag-

gregation law. In this case, mass is not conserved ( Wattis, 2006 ).

However, for finite N , the evolution of the mass is given by 

d M tot 

d t 
= γ −

N ∑ 

i =1 

iμi c i . (45)

If clearance is size-independent with μi = μ, then 

d M tot 

d t 
= γ − μM tot . (46)

Assuming that at time t = 0 , M tot (0) = c 1 (0) = 1 = γ /μ, then the

total mass is conserved and stable (against small perturbations of

the initial state). Due to the choice of scaling, we have M tot = 1 .

Starting with an initial population of monomers c 1 (0), the total

mass remains constant while creating aggregates at the expense

of the monomer population. This process does not depend on the

particular choice of aggregation process as long as gelation does

not take place. In a finite system, gelation is equivalent to treat-

ing the super-particle separately. Since there is a finite net flux to-

wards the super-particle, the mass of the other aggregates is lost

to the super-particle. 

If clearance is size-dependent with μi = μ/i, then 

d M tot 

d t 
= γ − μP tot . (47)

Starting again with M tot (0) = c 1 (0) = 1 = γ /μ, we note that since

P tot ≤ M tot and the equality only occurs if M tot = P tot = c 1 , we have
˙ M tot > γ − μP tot > 0 for t > 0 and the total mass of the system in-

creases by the creation of new monomers. Particles belonging to

aggregates are removed from the system by clearance but their re-

moval is slower than the removal of monomers. 

More generally, if we have μi ≤ μ1 , ∀ i > 1 and there is at least

one k > 1 such that μ < μ , then, following the same reasoning
k 1 
nd initial condition, we have again 

˙ M > 0 for t > 0. The total mass

f the system increases. 

.2. Moment analysis and evolution of the toxic mass 

For the rest of the analysis of the homogeneous system, we

ill assume that μi = μ for all i and that N is sufficiently large

s to not affect the dynamics on intermediate time scales of dis-

ase progression. Therefore, it is suitable to study the system in

he limit N → ∞ . Further, we are interested in solutions with no

nitial seeding, so that c i (0) = 0 , i > 1 and c 1 (0) = 1 . As the sys-

em involves, we have, for all time, c 1 ( t ) ∈ [0, 1] and M ( t ) ∈ [0, 1].

his choice of initial conditions also implies that γ = μ. The ho-

ogeneous system now reads 

d c 1 
d t 

= μ( 1 − c 1 ) − 2 c 2 1 

( 

κ + ξ
∞ ∑ 

k =2 

kc 2 ,k 

) 

− c 1 

∞ ∑ 

k =2 

c k , (48)

d c 2 
d t 

= −μc 2 + c 2 1 

( 

κ + ξ
∞ ∑ 

k =2 

kc 2 ,k 

) 

− c 1 c 2 + β
∞ ∑ 

k =2 

c 2+ k , (49)

d c i 
d t 

= −
(

μ + 

β

2 

( i − 3 ) 

)
c i + c 1 ( c i −1 − c i ) + β

∞ ∑ 

k =2 

c i + k i > 2 . 

(50)

.3. Moment analysis and evolution of the toxic mass 

A classic approach to study the infinite system of ODEs (48) –

50) is to obtain equations for the moments 

 i = 

∑ 

i =2 

i n c i . (51)
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Fig. 6. Dynamics of monomer and toxic protein mass in the A β model. Here, the 

initial exponential growth of the toxic population is associated with the time scale 

τ 1 ≈ 35 and τ 2 ≈ 66. Parameters: μ = 10 −2 , κ = ξ = 10 −3 . 
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n particular, the first two moments are associated with the total

umber of toxic aggregates P = Q 0 and the total mass M = Q 1 , re-

pectively. We note that the third moment Q 2 does not appear in

his description. This is due to the fact that the two terms involv-

ng Q 2 are −1 / 2 
∑ 

i (i − 3) c i and 

∑ 

i =2 

∑ 

k =2 ic i + j = 

∑ 

i =3 i (i − 3) c i ,

nd they cancel exactly. The same cancellation occurs in the model

f prion growth ( Masel et al., 1999; Pöschel et al., 2003; Cohen

t al., 2011c ) and the solution of the resulting closed system can be

btained approximately ( Knowles et al., 2009 ). This fact has been

sed by many authors to match experimental data with model pre-

ictions ( Cohen et al., 2011a; 2011b; Knowles et al., 2011 ). 

For our model, using the scaled system (48)–(50) , the defini-

ion (14) , and m (t) = c 1 (t) , we obtain 

d m 

d t 
= μ(1 − m ) − 2 m 

2 (κ + ξM) − mP, (52)

d P 

d t 
= −μP + m 

2 (κ + ξM) + 

β

2 

(M − 3 P + c 2 ) , (53)

d M 

d t 
= −μM + 2 m 

2 (κ + ξM) + mP. (54)

s expected we have m + M = M tot and 

d M tot 

d t 
= μ(1 − M tot ) , (55)
ig. 7. (a) Asymptotic size-distribution in the homogeneous A β model. (b) Dynamical 

olution). The typical time scale for an aggregate of size n to reach equilibrium is τ n . For
nd for the initial condition m (0) = 1 , M(0) = P (0) = 0 , we have

 (t) = 1 − M(t) ∀ t . We note that the system (52) –( 54) is not

losed when β � = 0 as it contains the variable c 2 . 

.4. Analysis of the A β model 

Taking β = 0 in the moment Eqs. (52) –(54) leads to a closed

ystem for ( m, P, M ): 

d m 

d t 
= μ(1 − m ) − 2 m 

2 (κ + ξM) − mP, (56)

d P 

d t 
= −μP + m 

2 (κ + ξM) , (57)

d M 

d t 
= −μM + 2 m 

2 (κ + ξM) + mP. (58)

s shown in Fig. 6 , its dynamics from the initial condition (1,0,0)

ends asymptotically to a fixed point ( m ∞ 

, P ∞ 

, M ∞ 

) where m ∞ 

is

he first positive root of 

 

4 ξ − m 

3 (κ − 2 μξ + ξ ) − m 

2 (2 μκ + ξ ) − mμ2 + μ2 = 0 , (59)

nd 

 ∞ 

= 1 − m ∞ 

, P ∞ 

= 

m 

2 
∞ 

μ
(κ + ξ (1 − m ∞ 

)) . (60)

From the asymptotic values, we can determine the exact

symptotic distribution by finding the equilibria of (48)–(50) in the

ase β = 0 : 

 i = 

m 

i 
∞ 

(κ + ξM ∞ 

) 

(μ + m ∞ 

) i −1 
, i = 2 , 3 , . . . (61)

n example of which is shown in Fig. 7 together with a numer-

cal solution of the dynamics leading to the asymptotic distribu-

ion. We note that the dynamic is associated with multiple time

cales. Initially, the population of toxic protein increases exponen-

ially with a typical time scale obtained by assuming that m ( t ) ≈ 1.

ut, the size distribution only reaches its asymptotic value over

 much longer typical time scale compared to the mass of toxic

rotein. Using m (t) = 1 in (56) –(58) leads to a linear system with

arly time dynamics 

(t) = 2 κ t − 1 

2 

κ(−1 + 2 μ − 4 ξ ) t 2 + O(t 3 ) . (62)

he time at which this solution reaches the asymptotic value M ∞ 

rovides an estimate for the time scale of early expansion of the
evolution of the size distribution (dashed curves indicates the exact asymptotic 

 instance, here τ 200 ≈ 574 and τ 400 ≈ 1156. Parameters: μ = 10 −2 , κ = ξ = 10 −3 . 
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Fig. 8. Dynamics of monomer and toxic protein mass in the τ model. The dashed 

line indicates the solution of the moment equations for the monomers obtained by 

setting c 2 = 0 . Parameters: μ = 10 −2 , κ = β = 10 −3 . 
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toxic proteins 

τ1 = −2 

√ 

κ − √ 

2 

√ 

2 κ + M ∞ 

(1 + 4 ξ − 2 μ) √ 

κ(1 + 4 ξ − 2 μ) 
. (63)

The initial expansion phase is followed by a saturation stage

with time scale τ 2 at which m is close to its asymptotic value m ∞ 

τ2 = τ1 + 1 / 
√ 

κ. (64)

For longer times, the system exhibits a slower dynamical evolution

over a time scale τ n > τ 2 for large n towards the asymptotic size

distribution. Indeed, once c 1 is closed to its asymptotic value, the

equations for c i with i > 2 becomes linear with a typical decay rate

given by 1 / (μ + m ∞ 

) . Hence the concentration c n reaches equilib-

rium on a time scale 

τn = 

n ∑ 

i =2 

1 

μ + m ∞ 

= 

n − 1 

μ + m ∞ 

. (65)

A couple of examples of these time scales are shown in Fig. 7 . 

5.5. Analysis of the τ model 

The moment equations for the τ model read 

d m = μ(1 − m ) − 2 κm 

2 − mP, (66)

d t 

Fig. 9. (a) Asymptotic size-distribution in the homogeneous τ model. Here, the average le

(blue) curve is the continuum approximation. The predicted maximum also occurs at 15, 

Parameters: μ = 10 −2 , κ = β = 10 −3 . (For interpretation of the references to colour in this
d P 

d t 
= −μP + κm 

2 + 

β

2 

(M − 3 P + c 2 ) , (67)

d M 

d t 
= −μM + 2 κm 

2 + mP. (68)

he analysis of these equations is complicated by the fact that they

nvolved c 2 ( t ). However, since β � 1 we expect βc 2 to be also

mall, therefore this term can be neglected in the first instance to

btain an approximate but closed system for the moments. Indeed,

ig. 8 shows that the numerical solutions of the full system is in-

istinguishable from the approximate moment equations. To make

his argument more precise, we can obtain exact upper and lower

ounds for the asymptotic monomer mass m ∞ 

by realizing that,

symptotically, c −
2 

= 0 < c 2 < P ∞ 

= c + 
2 
, where 

 ∞ 

= 

μ(1 − m ∞ 

) − 2 m 

2 
∞ 

κ

m ∞ 

. (69)

hen, the asymptotic concentration of monomer m ∞ 

is sandwiched

etween m 

+ ∞ 

< m ∞ 

< m 

−∞ 

where m 

±∞ 

are the two real solutions

f 

 κm 

3 + m 

2 (4 κμ + (6 κ − 1) β) + m 

(
β(c ±2 + 3 μ + 1) + 2 μ2 

)
−μ(2 μ + 3 β) = 0 . (70)

he asymptotic size distribution can be obtained by solving numer-

cally the full system (48) and (50) for time t � τ 1 as shown in

ig. 9 . The early dynamics is dominated by the nucleation process

ith a typical time scale τ1 = 1 / 
√ 

κ . We note that this size distri-

ution is markedly different than the one fone found for the A β
odel. It has a maximum at a value less than the average length

iven by M ∞ 

/ P ∞ 

. In order to obtain an estimate of this asymptotic

rofile, we assume that we know from the moment equation the

symptotic values of both the monomer population m ∞ 

and the

otal aggregate number P ∞ 

from the previous argument. The prob-

em is then to find a solution for the infinite set of equations 

d c i 
d t 

= −
(

μ + 

β

2 

( i − 3 ) 

)
c i + c 1 ( c i −1 − c i ) + β

∞ ∑ 

k =1 

c i + k i > 2 , 

(71)

here we have approximated Eq. (43) by changing the summation

ndex in the last term (from k = 2 to k = 1 ). We can obtain a con-

inuous limit of this equation by assuming that it is a discretization

f an equation for the variable y ( s, t ) such that y (n, t) = c n (t) . The
ngth given is M ∞ / P ∞ ≈ 21 and the maximum is reached at size 15. The continuous 

the closest integer to s max ≈ 15.12. (b) Dynamical evolution of the size distribution. 

 figure legend, the reader is referred to the web version of this article.) 
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ifference between two consecutive equations of the form (71) is 

d 

d t 
(c i +1 − c i ) = −

(
μ + 

β

2 

(i − 2) 

)
(c i +1 − c i ) 

−m (t)(c i +1 − 2 c i + c i ) + βc i +1 . (72) 

sing the discretization of y with a unit step, we have 

∂y 

∂s 
≈ c i +1 − c i , 

∂ 2 y 

∂s 2 
≈ c i +1 − 2 c i + c i , c i +1 ≈

∂y 

∂s 
+ y. (73)

q. (72) can then be written 

∂ 2 y 

∂ s∂ t 
= −

(
μ + 

β

2 

s 

)
∂y 

∂s 
− m (t) 

∂ 2 y 

∂s 2 
+ βy. (74)

he steady state of this equation is given by the solution of 

 ∞ 

∂ 2 y 

∂s 2 
+ 

(
μ + 

β

2 

s 

)
∂y 

∂s 
− βy = 0 . (75)

his is a linear second-order equation for y . Enforcing that the so-

ution at s = 0 is bounded leads to a solution with a single con-

tant: 

 

 (s ) = K 

(
(2 μ + sβ) 2 − 2 m ∞ 

β
)
e −

(2 μ+ sβ) 2 

4 βm ∞ . (76)

he constant K is found by the condition 

 ∞ 

2 

ˆ y ( s ) d s = P ∞ 

⇒ K = 

P ∞ 

e 
( β+ μ) 2 

βm ∞ 

4 m ∞ 

( β + μ) 
, (77) 

his solution, shown in Fig. 9 , is a good approximation of the exact

iscrete distribution. In particular, it gives an excellent estimate for

he maximum, located at the closest integer to 

 max = 

√ 

6 m ∞ 

β
− 2 

μ

β
. (78) 

his estimate also shows that fragmentation is necessary to ob-

erve a maximum away from N = 2 . 

The asymptotic dynamics for large t can be found by analyz-

ng (74) and looking for solutions of the form 

 (s, t) = ̂

 y (s ) + e rt x (s ) , (79)

hich leads to an equation of the form (75) where y is replaced

y x and m ∞ 

is replaced by m ∞ 

+ r. This equation has two so-

utions and the conditions that this time-dependent solution pre-

erves both the number and mass of aggregates 
 ∞ 

2 

x (s ) d s = 0 , 

∫ ∞ 

2 

sx (s ) d s = 0 , (80)

ead to an equation for r 

 βr 2 + r 
(
4 βm ∞ 

− 2 μ2 
)

− 2 μ2 (2 β + 2 μ − m ∞ 

) + 2 βm 

2 
∞ 

= 0 . 

(81) 

oth solutions are valid but the largest negative solution is the so-

ution of interest for the dynamics. Indeed the smallest negative

xponent describes solutions that quickly decay to the static solu-

ion. The solution associated with the largest exponent is the one

bserved for large times. 

. Network simulation 

Next, we consider the dynamical evolution of protein con-

entrations at the level of the network. The first question is to

cale parameters and variable correctly from the homogeneous

quations studied in the previous section and valid at one node to

he entire network. The total mass of monomer in the system m 0 

s assumed to be distributed uniformly on all the V nodes so that,
n the scaled variables (31) , the initial conditions for the network

re 

 1 , j = 1 /V, c k, j = 0 k = 2 , . . . , N; j = 1 , . . . , V. (82)

hen, for the network to have the same kinetics as the homoge-

eous system, we must scale the parameters from the homogenous

ystem (now described by the subscripts “hom”) as follows 

= γhom 

/V 

2 , μ = μhom 

/V, ξ = ξhom 

V, β = βhom 

/V, 

κ = κhom 

. (83) 

imilarly the time scale is now t = t hom 

V . The equivalence with

he homogenous system is obtained by setting κi = κ and ρ = 0

n (38) –(41) . Then the total mass of monomers m = 

∑ 

c 1 , j and

oxic proteins m = 

∑ 

kc k, j have the same dynamics as the one

btained in Figs. 6 and 8 . 

The second question is how to properly seed the system to ex-

ress the fact that the disease starts at a given location. We can

ither start with a non-zero initial condition of dimers at a given

ode or assume that the main mechanism for the initial creation

f toxic proteins is due to nucleation at a given node. Here, we

hoose the latter modeling assumption and assume that κ i van-

shes everywhere except at given nodes where it assumes a small

alue. These nodes are the seeding regions were neurodegenera-

ive diseases are known to start. For the A β model we start at

he two nodes characterizing the posterior cingulate ( Leech and

harp, 2013 ). For the τ model, we seed the system in the entorhi-

al region ( De Calignon et al., 2012 ) (the list of regions of interest,

ogether with their node number, lobe, hemisphere, and spatial co-

rdinates is given in the Supplementary Material). 

Since the diffusion tends to homogenize the system, we expect

hat for long times the dynamics is uniform over all the nodes so

hat the size distribution is described by the homogeneous system.

From now on, we assume that the clearance rate for each ag-

regate is the same so that the total mass of proteins is conserved.

.1. Comparison of the A β and τ models 

For both systems, we use the same parameters apart for the

ragmentation ( β = 0 for the A β model), the secondary nucleation

 ξ = 0 for the τ model) and the seeding region as described above.

or the simulations we chose the parameters given in Table 2 . Note

hat due to fragmentation, the asymptotic decay in size is faster

ith the τ model. Hence, for the values of the parameters chosen

ere, we only need to consider aggregates of size up to N = 200 as

he concentration of larger aggregates is negligible. 

.1.1. Evolution of total monomer and toxic protein mass 

Despite the fact that the system is not homogeneous, the over-

ll total toxic mass (obtained by summing the mass of each ag-

regates at each node) follows a similar evolution as the homoge-

eous system. For the A β model, the asymptotic value for m ∞ 

can

e obtained by using (59) for the entire system after the proper

caling of the parameters 

m 

4 ξ/V − m 

3 ( qκ/V − 2 μξ + ξ/V ) − m 

2 ( 2 qμκ + ξ/V ) 

+ μ2 V 

2 ( 1 − m ) = 0 , (84) 

here q is the number of seeded nodes (2 in our case). For the τ
odel, we use the network version of (70) 

2 qκm 

3 /V + m 

2 ( 4 qκμ + ( 6 qκ/V − 1 ) βV ) 

+ m 

(
βV ( 3 μV + 1 ) + 2 μ2 V 

2 
)

− μ( 2 μ + 3 β) V 

2 = 0 . (85) 

he evolution for the particular choice of parameters in Table 2 is

hown in Fig. 10 . 
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Fig. 10. The total monomer concentration m ( t ) (the sum of c 1, i over all the nodes) and the total mass of aggregates M(t) = 1 − m (t) for (a) the A β model (with both 

estimated and numerical asymptotic value given by m ∞ ≈ 0.45); and (b) the τ model (with both estimated and numerical asymptotic value given by m ∞ ≈ 0.23). Parameters 

given in Table 2 . 

Table 2 

Parameters chosen for the numerical simulation based on the analysis of the homogeneous system (c. 

stands for concentration). 

A β model τ model 

κ i nucleation at node i 10 −3 (δi, 14 + δi, 55 ) κ i nucleation at node i 10 −3 (δi, 27 + δi, 68 ) 

ξ secondary nucleation 10 −3 V ξ secondary nucleation 0 

β fragmentation rate 0 β fragmentation rate 10 −3 /V 

α elongation rate 1 α elongation rate 1 

γ production rate 10 −2 /V 2 γ production rate 10 −2 /V 2 

μ clearance rate 10 −2 /V μ clearance rate 10 −2 /V 

ρ diffusion constant 2 × 10 −5 ρ diffusion constant 2 × 10 −5 

m 0 initial monomer c. 1 m 0 initial monomer c. 1 

V number of nodes 83 V number of nodes 83 

N super-particle size 400 N super-particle size 200 

Fig. 11. Size distribution for (a) the A β model at times 50 0 0 to 70,0 0 0 (indicated by 5 to 70 on the curves) (b) the τ model at times 20,0 0 0 to 120,0 0 0 (indicated by 20 to 

120 on the curves) with estimated and computed n max ≈ 17. The dashed lines is the estimated asymptotic distribution. Parameters given in Table 2 . 
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6.1.2. Evolution of the size distribution 

We compute for the values given in Table 2 , the evolution of

the size distribution for both models. We can obtain asymptotic

estimates based on the same argument as in the previous section.

For the A β model, we have 

c n = 

m 

n 
∞ 

(qκ/V + ξ/V (1 − m ∞ 

)) 

(μV + m ∞ 

) n −1 
. (86)

For the τ model, we have 

c n = P ∞ 

(2 μ + nβ) 2 V − 2 m ∞ 

β

(β + μ) 
exp 

[
4(β + μ) 2 V − (2 μ + sβ) 2 V 

4 βm ∞ 

]
, 

(87)
ith a maximum at the closest integer to 

 max = 

√ 

6 m ∞ 

βV 

− 2 

μ

β
. (88)

n the example shown in Fig. 11 , this approximation is consistent

ith the numerical solution of the full system. 

We notice that the two models exhibit distinct size distribution

nd that for the τ model, long chains (of size > 40 monomers)

ends to disappear quickly in the long-time dynamics, while this

s not the case for the A β model that has a much longer-tailed

istribution. 
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Fig. 12. Spreading in the right hemisphere. Top row: Toxic mass at each node in the right hemisphere for (a) the A β model and (b) the τ model. Bottom row: For each 

region in the right hemisphere, we show the average toxic mass for (c) the A β model and (d) the τ model. Parameters given in Table 2 . 
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.1.3. Spreading behavior over the network 

To understand the evolution of the toxic proteins over the en-

ire network, we compute at each node the toxic mass as a func-

ion of time: 

 j (t) = 

N ∑ 

i =2 

c i, j (t) , j = 1 , . . . , V. (89)

e also average the toxic mass for six regions (consisting of the

sual four lobes: temporal, parietal, frontal occipital , together with

he basal ganglia , and the limbic region shown in Fig. 5 ): 

 

( j) = 

1 

r j 

∑ 

i ∈R j 

M i , j = 1 , . . . , 6 , (90)

here R j is defined as the set of all nodes in that region and r j is

he number of elements of R j . 

The evolution of the toxic mass at each node clearly illustrate

he extra delay in the spreading of the disease associated with dif-

usion from one node to the next. While the progression at the

eeding node is very fast, other nodes feel the effect of the disease

ver a new time scale directly associated with diffusion (through

he overall scaling constant ρ). The last node to be invaded is the

rontal pole sitting at the extremity of the frontal lobe and poorly

onnected in the connectome. If these extreme nodes are removed

rom the computation, the occipital lobe becomes the last lobe to

e fully infected. 
.1.4. Staging estimates 

A striking features of Fig. 12 a,b is that staging is established

ery early on in the dynamics. Once the process starts the order-

ng of nodes by the toxic mass does not change significantly (no

urves intersect). This observation can be used to provide an esti-

ate of the spatial staging. Indeed, for early times, the only signif-

cant change in the system is a conversion from a large population

f healthy monomers to dimers. Therefore, we have c 1, j ≈ 1/ V and

 i,j ≈ 0 for all i > 2. Denoting q j = c 2 , j and using Eq. (39) , the

ynamics of dimers for early time is therefore approximated by 

˙ 
 j = −2 

−η
V ∑ 

k =1 

L jk q k + aq j + 

κ j 

V 

2 
, j = 1 , . . . , V, (91)

here a = 2 ξ/V 2 − 1 /V − μ2 . This is a linear system of ODEs with

onstant coefficients that can be solved using traditional meth-

ds of diagonalization ( Goriely, 2001; Perko, 2001 ). Indeed, from

he graph Laplacian L , we can build the matrix U whose columns

re eigenvectors associated with the eigenvalues of L . Introducing

he diagonal matrix � = diag (λ1 , . . . , λn ) , we have LU = U�. Then,

he solution is simply 

 j = 

V ∑ 

k =1 

U jk 

[
b k 

e (a −2 −ηλk ) t 

a − 2 

−ηλk 

]
, j = 1 , . . . , V, (92)

here 

 k = 

1 

V 

2 

V ∑ 

l=1 

(U 

−1 ) kl κl . (93)
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Fig. 13. Spatial evolution of τ at four time steps corresponding to the initial stage ( t = 5 , 187 ), primary infection ( t = 16 , 018 ), secondary infection ( t = 25 , 263 ), and late 

stage ( t = 37 , 500 ). The value of max is defined as the maximum value of M i over all nodes and for all times. 
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This approximation can be used to sort out the nodes according to

the strength of the infection. It provides an excellent overall ap-

proximation of the staging that recovers, without the need of any

numerical simulation, the overall lobe staging shown in Fig. 12 c,d.

It can also be used to obtain an understanding of the infection pro-

cess based on the topological properties of the network. Indeed.

Expanding this expression for small times, we obtain 

 

2 q j = κ j (t + 

a 

2 

t 2 ) − 2 

−η−1 

[ 

V ∑ 

k =1 

V ∑ 

l=1 

U jk (U 

−1 ) kl κl λk 

] 

t 2 + O(t 3 ) , 

j = 1 , . . . , V. (94)

This solution can be further simplified by using L = U �U 

−1 : 

 

2 q j = κ j (t + 

a 

2 

t 2 ) − t 2 

2 

η+1 

V ∑ 

k =1 

L jk κk + O(t 3 ) , j = 1 , . . . , V. 

(95)

An interesting structure now appears in this solution. We define

q = (q 1 , . . . , q V ) , and similarly κ = (κ1 , . . . , κV ) . Then, after basic

alegbraic manipulations, the expansion for the solution q can be

written 

 

2 q = 

∞ ∑ 

n =1 

(
a 1 − 2 

−ηL 
)n −1 

κ
t n 

n ! 
, (96)

where 1 is the identity matrix. 
This expression shows that at very early times, to order O(t) ,

he only nodes affected are the nodes that are seeded (the nodes

 for which κ j � = 0 ). This behavior is observed in both Fig. 12 a,b

here the concentration at the seed is seen to increase linearly be-

ore it affects other nodes. Later on, to order O(t 2 ) , the toxic mass

ncreases at the seeded node depending on the kinetics (encoded

n the parameter a ). It also increases at other nodes depending on

he product L κ. This product is identically zero for all nodes unless

onnected to the seeding node. To order O(t 2 ) , a node k has non-

ero toxic mass if and only if L jk � = 0 where j is one of the seeded

odes. Remarkably this expression mostly depends on the topology

f the network (encoded in the matrix L ). To order O(t 3 ) , a node

as non-zero toxic mass if and only if its path length (the small-

st number of steps between two nodes) to a seeded node is two.

ence, to O(t 3 ) a new node is seeded only if it is connected to a

eighbor of a seeded node. In general, to order O(t n ) a node has

on-zero toxic mass if and only if its path length to a seeded node

s less than n . For instance, the early dynamics of a node j that is

ocated at a path length of 5 from a single seeding node k will be

 

2 q j = −2 

−5 η(L 5 ) jk κk 

t 6 

6! 
+ O(t 7 ) . (97)

owever, due to the small-world structure of the brain network,

he average path length is 1.5. Therefore, most nodes connected to

he neighbors of the seeded node will have a dynamics starting

o order O(t 3 ) . We conclude that within this model, the following
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Fig. 14. Spatial evolution of A β at four time steps corresponding to the initial stage ( t = 13 , 722 ), primary infection ( t = 37 , 820 ), secondary infection ( t = 51 , 681 ), and late 

stage ( t = 66 , 599 ). The value of max is defined as the maximum value of M i over all nodes and for all times. 
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taging dynamics, illustrated in Figs. 13 and 14 (full movies given

n the Supplementary Material), naturally emerges: 

• Initial stage: occurring at times O(t) at the seeding nodes (the

nodes j such that κ j � = 0 ). 
• Primary infection: occurring at times O(t 2 ) at the nodes di-

rectly connected to the seeding nodes. 
• Secondary infection: occurring at times O(t 3 ) and depending

both on the network topology and the protein kinetics. It affects

only regions close to the nodes connected to the seeding nodes.
• Late stage: After the secondary infection, a rapid progression

towards an invasion of the entire system takes place. Only

nodes that are poorly connected (such as the frontal poles) re-

main unaffected. 

. Conclusion 

We have derived a class of models for the spatial progression of

ey molecules associated with neurodegenerative diseases. These

odels follow the evolution of aggregates of different sizes and

ake the form of sets of nonlinear reaction-diffusion equation when

he evolution of the aggregates are considered in a continuum with

iffusion along axonal pathways. Taking into account the strong

ransport anisotropy present in the brain, these equations can be

urther reduced to systems of Smoluchowski equations interacting

n a network through the graph Laplacian. The study of such sys-

ems is guided by the homogeneous case for which both total mass
volution and the distribution of aggregates can either be obtained

xactly or approximated through various methods by taking advan-

age of the specific structure of the system. 

Here, we considered two paradigmatic cases: a model for the

xtracellular dispersal of amyloid- β further expanded by secondary

eeding and aggregation, and a model for the intracellular propa-

ation of τ molecules where fragmentation plays a key role. The

omparative study of these models shows that fragmentation is

ey to observe a non-monotonic distribution of aggregate concen-

rations. It also shows the key role of primary and secondary nu-

leation processes for the expansion of the initial population. 

At the local level, the increase in toxic mass is characterized

y an early phase of seeding depending on primary nucleation, fol-

owed by a period of linear growth mostly controlled by aggrega-

ion of monomers onto the fibril. Following this early phase, an

xpansion phase takes places that requires secondary nucleation

nd/or fragmentation. However, if mass is conserved, the expan-

ion phase terminates with a saturation phase where toxic and

ealthy molecules are in balance. 

At the global level, the local dynamics is coupled with trans-

ort. For a network, the weighted graph Laplacian obtained from

ractography provides a direct way to model the transport of toxic

ggregates along axonal pathways. The study of the full system for

oth the A β and τ models reveals the existence of four different

tages in the progression of the disease as shown in Fig. 15 . An

nitial stage develops at the seeded node. The evolution is mostly

ocal in time and well described by the homogeneous equation.
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Fig. 15. Sketch of the disease evolution as predicted by the model. The local dynamics at each node is shown vertically and starts by seeding, followed by growth, expansion, 

and saturation. At the global level, the initial stage takes place at the seeded node (blue) and is initially linear in time. Primary infection takes place at nodes (green) 

connected to the seeded nodes and is driven mostly by the topology of the system as encoded by the graph Laplacian. Secondary infection takes place in secondary nodes 

(red). These are nodes connected to the primary nodes. The late stage sees a full infection of the system as the concentration of the toxic mass increases both by local 

kinetics and by diffusion from neighboring nodes. Nodes that are poorly connected to the network are the last affected (gray). (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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The primary infection takes place in nodes connected to the seeded

nodes and mostly depends on the diffusion process rather than

the aggregation kinetics. These nodes becomes new seeds and sec-

ondary infection in all nodes connected to the primary nodes takes

place and so on. Recalling that the average path length is about 1.5,

it is clear that this network structure leads to rapid infection at this

stage of most nodes. In the late stage , the disease has invaded all

nodes and the toxic mass quickly saturates to its maximal values

in balance with the population of healthy monomers. 

When clearance does not depend on the aggregate size, these

models conserve the total initial mass of monomers. This assump-

tion simplifies considerably the study and a complete analysis of

the general case, in which clearance varies with aggregate size,

would be of great interest. The relative ordering of the parame-

ters we have used in our analysis are based on experimental data.

Hence, the typical qualitative features observed in the analysis are

universal and directly relevant to the disease progression. Other

parameters, such as the effective diffusion constant, production

and clearance rates, are not directly accessible based on existing

data. The effective diffusion constant in our study has been chosen

based on the observation that staging is observed (which implies a

very small effective constant). Further study of axonal diffusion in

axons and tissues is needed to relate this crucial parameter to mi-

croscopic processes. Similarly, it is understood that clearance is key

to slow down the progression of the disease. Therefore, a careful

analysis of the corresponding parameter and its relationship with

other phenomena, such as the vasculature and the glymphatic sys-

tem, will be crucial in uncovering basic mechanisms and identify

possible therapeutic targets. 

Theoretical research in neurodegenerative diseases has been so

far separated into detailed in vitro analysis of aggregation kinet-

ics on the one hand and linear transport on network compared to

structural data on the other hand. Both aspects have been shown
o be of great importance for our understanding of the diseases.

he theory presented here shows that both approaches can be

ombined within the same mathematical framework and easily an-

lyzed analytically and computationally. The proposed theory is

ufficiently flexible to be further generalized to more intricate ki-

etics or coupled to other important phenomena. 
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