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The prion-like hypothesis of neurodegenerative diseases states that the accumulation of misfolded pro-
teins in the form of aggregates is responsible for tissue death and its associated neurodegenerative
pathology and cognitive decline. Some disease-specific misfolded proteins can interact with healthy pro-
teins to form long chains that are transported through the brain along axonal pathways. Since aggregates
of different sizes have different transport properties and toxicity, it is important to follow independently
their evolution in space and time. Here, we model the spreading and propagation of aggregates of mis-
folded proteins in the brain using the general Smoluchowski theory of nucleation, aggregation, and frag-
mentation. The transport processes considered here are either anisotropic diffusion along axonal bundles
or discrete Laplacian transport along a network. In particular, we model the spreading and aggregation
of both amyloid-8 and 7 molecules in the brain connectome. We show that these two models lead to
different size distributions and different propagation along the network. A detailed analysis of these two
models also reveals the existence of four different stages with different dynamics and invasive properties.

© 2019 The Authors. Published by Elsevier Ltd.
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1. Introduction

Neurodegenerative diseases such as Alzheimer’s (AD) or Parkin-
son’s (PD) are devastating conditions associated with a systematic
destruction of brain tissues leading to cognitive decline, neurobe-
havioral symptoms, and eventually death. While for PD there ex-
ist some treatments to alleviate some of the symptoms, there is
no known cure for any of these diseases. Post-mortem analyses
of brain tissues affected by neurodegenerative diseases reveal the
presence of protein aggregates. For instance, in the case of AD, ex-
tracellular amyloid-beta (A8) plaques and intracellular neurofibril-
lary tangles of tau (t) proteins are observed and correlated with
the evolution of the disease (Jack et al., 2018). The systematic map-
ping of these lesions either in postmortem brains obtained at var-
ious stages of the disease or by in vivo positron emission tomog-
raphy imaging provides a map of the spatiotemporal evolution of
the disease (Braak and Braak, 1991; Cho et al., 2016). Unlike other
diseases, neurodegenerative diseases appear to follow a predictable
spreading pattern through the brain. For instance, in AD, T aggre-
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gates are first found in the locus coeruleus and entorhinal cortex
and then evolves to the hippocampus, the temporal cortex, the
parietal cortex before invading the motor cortex and occipital areas
(Delacourte et al., 1999). In the last stage of the disease, all cor-
tical areas are affected and the patient condition rapidly declines.
Different neurodegenerative diseases exhibit different invasion pat-
terns associated with different initial seeding zones and specific
protein aggregates.

These systematic invasion patterns of protein aggregates are
the basis of the prion-like hypothesis for neurodegenerative dis-
eases. This mechanism is based on the idea that, like prion dis-
eases (Prusiner, 1998), neurodegenerative diseases are caused by
the systematic aggregation and transport of misfolded proteins in
the brain through the axonal pathways (Jucker and Walker, 2013;
Walker and Jucker, 2015; Clavaguera et al., 2013; Goedert, 2015;
Mudher et al., 2017). Specifically, it applies to T protein aggregates
found in AD. Tau proteins are small proteins that stabilize micro-
tubules in the axon (van den Bedem and Kuhl, 2015). In healthy
tissue, they are naturally produced by the cell and transported pri-
marily along the axons where they bind to multiple microtubules.
However, in some conditions, these proteins can be hyperphos-
phorylated and start forming misfolded aggregates. This misfolded
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form of the protein acts as a toxic template on which regular
protein can be bound and converted to misfolded ones. These ag-
gregates grow into increasingly larger fibrillar assemblies (Walker
and Jucker, 2015; Goedert et al., 2017) that can also fragment into
smaller aggregates. Since t is an intracellular protein, these var-
ious large aggregates primarily spread across the brain through
the network of axonal pathways (Jucker and Walker, 2018; Olsson
et al., 2018) and various mechanisms of cell-cell spreading have
been identified (Davis et al., 2018). Similarly, it is known that A8
forms large extracellular aggregates. Assuming that these aggre-
gates are transported within the brain as a simple diffusion pro-
cess, we know from diffusion tensor imaging, that diffusion is pref-
erentially along the axons. Therefore, even though these proteins
are found outside the cell, they also diffuse anisotropically.

The kinetic of aggregation and fragmentation of misfolded pro-
teins and their spatiotemporal evolution can be modeled by either
following the total concentration of toxic proteins (Weickenmeier
et al., 2018; 2019), the concentration of healthy and toxic proteins
using a heterodimer model (Matthdus, 2006), or a Smoluchowski-
type model where the concentrations of polymers of different sizes
are followed independently (Bertsch et al., 2016).

Following the size distribution is important to understand the
slow time scales associated with the disease and to identify the
aggregate sizes responsible for damage so that they can be tar-
geted by antibodies. Therefore, we use the aggregation theory of
Smoluchowski to study the spread of intracellular protein aggre-
gates across the brain. We are particularly interested in studying
to what extent coarse-grained models, which are easier to simu-
late, can be used to represent the complex underlying kinetics. Our
approach consists in formulating the continuous problem first us-
ing anisotropic diffusion and then discretizing the equations on a
network. Once the models for AS and T propagation have been es-
tablished, we analyze them in parallel to identify typical behaviors
and how particular features arise from the modeling choices.

2. General theory of aggregation-fragmentation equations

Before we look specifically at the problem of proteins in the
brain, it is of interest to consider the general theory of Smolu-
chowski for the aggregation and fragmentation of particles in space
and time (Smoluchowski, 1916). We will first consider the con-
tinuum case before discretizing these equations on a network. In
this theory, we follow the concentration ¢; of aggregates C; of size
i e N. The concentrations are defined both in space and time so
that ¢; = ¢;(x,t), X e Q c R3,t e R. Apart from nucleation events,
we consider only binary processes where the aggregates i and j in-
teract with aggregates of size i + j with an aggregation rate k;; and
fragmentation rate §;;:

ki ..
c,~+cj;:_’_ci+j, i j=1,2.3..... (1)
L]

In addition, we assume that there exists a source of monomers and
a process of clearance reducing each population with a constant

n
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primary nucleation

relative rate. The general form of these equations is then

9c;
E5 V(D V) + ko — Ky G+ N+ A+ F,

ot i=1,2...

(2)

where D; is the diffusion tensor characterizing the spreading of
an aggregate of size i. We assume a source of monomers ky 1 =
y(X) and ko;=0 for i > 1 and clearance terms of the i-mer,
kq;=kq;(x), that are possibly space-dependent. This dependence
reflects the possibility that different locations may be associated
with higher rates of production or clearance. The remaining terms
in the equations are the nucleation term N;, the aggregation term
A;, and the fragmentation term F;,. We consider these three pro-
cesses separately:

Nucleation: We consider two different types of nucleation pro-
cesses (see Fig. 1) that are known to be important in the con-
text of protein kinetics for neurodegenerative diseases (Cohen
et al., 2011c; Frank, 2015). First, primary nucleation corresponds to
n; > 1 monomers forming an aggregate of size n;:

Gt +G 3G, (3)
———
ny times

Second, we include secondary nucleations where existing ag-
gregates facilitates the formation of new aggregates with n, > 1
monomers (Frank, 1999):

GHCi4.. 40 B CH+C,, i=2.3,... (4)
— —

n, times

In this case the rate constant is proportional to the total mass
¥; . 1ic;. Taking into account both contributions, the nucleation
term is given by

N; =§15i,n15111] +$23,’,n2C?ZZ]'Cj, i=23,... (5)
j=2
where §;; is the usual Kronecker delta (1 when i equals j and 0

otherwise). The conservation of mass in the nucleation process im-
plies that Nj + }_2, iN; = 0. Hence, we have

Ni = —11&18;n, ¢ — 1262810, Y ;. (6)
=2

Aggregation: Considering the possible changes in the concen-
tration ¢; with fixed i > 1, we see from (1) that the aggregate C;
appears in two reactions (see Fig. 2). It disappears in the presence
of G to form G ;:

j=1,2,3,..., (7)

and appears in the same type of reaction but with different indices

ki
Ci +Cj—’>C,-+j,

kij

Ci—j+cj—> i j=1,2,...,i71. (8)

n;
g §lz>§0‘

secondary nucleation

Fig. 1. The two nucleation processes. Primary nucleation brings n; monomers together to form an aggregate of size n; (here n; = 3). In secondary nucleation, the presence
of an aggregate of any size, catalyzes nucleation to form an aggregate of size n, (here n, = 2).
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Fig. 2. Aggregation processes. During aggregation an i-mer merges with a j-mer to form an (i+ j)-mer with rate k;;. Linear aggregation is the particular case where monomers

are added to an aggregate and is a good model for fibril formation.

Note that the symmetry obtained by swapping j with i — j in this
equation means that we count these reactions twice (except when
i=2j).

Taken together these effects can be written thanks to the law
of mass action as (Wattis, 2006; Collet, 2004)

i—1

A =

[\STRE

o0
@i jCiCinj = D 0 jCiCj, 9)
j=1

j=1

where the factor 1/2 appears due to the double counting and «; ; =
o =k;; when i+ j, and o;; = 2k;;. Terms of the form o 1¢% in
the equation for ¢, also represents the possibility of nucleation
from two monomers C; forming a dimer C,. Therefore, if the pri-
mary nucleation is binary (n; =2), the total nucleation rate is
a1+ &;.1f ny > 2, then there is no binary nucleation and o4 ; = 0.

Fragmentation: The fragmentation term follows the same con-
struction and takes into account the reactions (7) and (8) in the
reverse direction (see Fig. 3). We consider the loss of aggregates C;
by the reaction.

ﬁj.i—j

G2HC+G,  j=1.2....0i-1, (10)

and the creation of aggregates of size i by the fragmentation of
larger aggregates

Coy Phcac,  j=1.2.3.... (11)
which leads to
1 i-1 )
fi=-5 > Biisjci+ ) Bijcisj- (12)
=1 j=1

Note that since we only consider binary processes, we neglect
the possibility of aggregation of more than two smaller aggregates
or fragmentation processes leading to more than two aggregates of
smaller sizes. If we assume that aggregation dominates fragmenta-
tion, we have a;; > Bj;.

I .
-1
1,i-1

O
—>:+.

dissociation

Taken together, the Smoluchowski equations for nucleation-
aggregation-fragmentation read

o _

Fra V.- (D;- V&) + ko i — ki ici

00

&8¢ — na€a8i i Y e

j=2

o0
+£18in, €1 + E28in,¢12 Y Jcj
j=2
1 i-1
+5 D (@i-jcicio = Bji-j6i)

j=

—Z(aucicjfﬁ,-,jciﬂ), i=1,2,... (13)
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Whereas the general form of these equations is well accepted, the
problem is to find the specific form of the coefficients for a given
process and then solve this infinite set of nonlinear partial dif-
ferential equations. If we consider aggregates of size up to N, the
number of free parameters is of order N2. Modeling reaction rates
usually rely on a combination of physical assumptions, thermo-
dynamics, and statistical physics, all based on direct comparisons
with experimental data.

3. Smoluchowski equations for neurodegenerative diseases

The approach discussed here has been used to study the
spread of proteins in some neurodegenerative diseases (see review
Carbonell et al., 2018). For Alzheimer’s disease, the emphasis in
most models is on the evolution of A fibrils, which have been
thought as the main responsible mechanism related to cell death.
For instance, a homogeneous Smoluchowski model has been pro-
posed by Murphy and Pallitto and validated against kinetic experi-
ments (Murphy and Pallitto, 2000; Pallitto, 2001). Many other ho-
mogenous models have been considered for A8 fibrils and prion

general fragmentation

Fig. 3. Fragmentation processes. During fragmentation an i-mer aggregates with a j-mer to form an (i—j)-mer with rate f;; ;. Dissociation is the particular case where

monomers are created.
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diseases. These models are obtained from (13) by taking D; = 0 for
all i and are therefore sets of ordinary differential equations. This
is the classical framework of Smoluchowski equations for which
there exists a large literature (Ball and Jack, 1990; Davies et al.,
1999; Kreer, 1994). The central question is to obtain the evolu-
tion in time of the concentration distribution given general proper-
ties of the rate coefficients and whether gelation occurs. Physically,
gelation refers to the process of creating very large particles in the
system. Mathematically, in these equations, it corresponds to a loss
of mass in the system due to a non-zero mass flux towards larger
particles in the limit of particle sizes going to infinity. The main
advantage of the homogenous case is that differential equations for
moments of the distribution can be obtained and, in some cases,
the problem can be reduced to a finite set of differential equa-
tions for these moments. This mathematical framework can then
be used to fit the constants appearing in the system against exper-
imental data (Morris et al., 2009).

Not surprisingly, the inhomogeneous case where transport is
considered is much more complicated and no such moment for-
mulation is possible. Yet, a few mathematical works have estab-
lished the global existence of solutions for particular rate equations
(Slemrod, 1990; Dariusz, 2002; Lauren and Mischler, 2002) or ob-
tained particular solutions (Collet and Poupaud, 1996).

Of particular relevance for the present discussion is the work of
Bertsch et al. who considered a model of the form (13) for the ac-
cumulation and spreading of AB and implemented the model in a
brain slice geometry (Bertsch et al., 2016). Similar equations have
also been discretized and studied on networks by Matthdus who
was motivated by the study of prion diseases (Matthdus, 2006,
2009a, 2009b).

Here, following the prion-like hypothesis of neurodegenerative
diseases, we develop a general framework for the study of toxic
proteins propagation in the brain modeled as a network. The ap-
proach is flexible and the purpose of this first contribution is to
set-up the general guidelines for the study of such processes by il-
lustrating and comparing two different simplified models for the
aggregation and transport of either AB or t proteins, the hall-
marks of Alzheimer’s disease. According to the prion-like hypothe-
sis, these proteins are mostly transported along axonal pathways.
Hence, a network approach for the spatiotemporal evolution of
these aggregates is justified. The network models are obtained as
coarse-grained models of the continuum models.

Inevitably, we make here a number of simplifying assumptions
while keeping key features of the known mechanisms. The first
main assumption concerns the variation of the rate parameters en-
tering the aggregation equations in time or space. These parame-
ters are known to vary in space depending on the type of cells and
their genetic signature (Henderson et al., 2019) but also in time as,
for instance, the vasculature plays an important role in homeosta-
sis, for the clearance processes (Berg et al., 2019; Hernandez et al.,
2019). Yet, very little is known about these parameters in the hu-
man brain. Therefore, while the model can easily be adapted to
account for these changes, in the absence of such data, we con-
fine ourselves to constant rate parameters, both in space and time.
The second main assumption concerns the mechanisms responsi-
ble for the expansion of the population of toxic proteins. We as-
sume that conversion of healthy proteins and fragmentation of a
polymer are the only sources of creation of toxic proteins. There-
fore, we ignore stochastic events leading to the possible seeding of
new toxic proteins or known coupled mechanisms such as the in-
teraction between AB and t proteins (Ittner and Gotz, 2011). These
effects could be introduced in the model but, in the first instance,
it is important to understand the dynamics of each population
separately.

It is important to make the distinction between the population
of healthy proteins and the misfolded (toxic) ones. We assume that

in healthy conditions, the healthy proteins have a concentration
m=m(x,t). We assume that misfolded monomers are produced
through conversion of a healthy protein or by fragmentation. How-
ever, our assumption about fragmentation (see below) does not al-
low for the loss of a single monomer. Hence, toxic monomers can
only be produced by conversion of a healthy protein and will only
appear in the system as they form larger fibrils. Since we pool the
process of conversion and aggregation together through a single
constant, there is no need to track separately the population of
misfolded monomers. Hence, we use ¢; = m as the overall popula-
tion of monomers present in the system. For the dynamics to start,
we must either have a nucleation mechanism with rate « that de-
scribes the probability of two such monomers to come together to
make a dimer of misfolded proteins, or assume that this conver-
sion has already taken place and the system has a certain level of
seeded misfolded dimers.

3.1. Diffusion, growth and expansion

It is important to identify the possible sources for the creation,
transport, and expansion of toxic proteins. We define the total den-
sity and concentration of aggregates (excluding healthy monomers)
as

M:iie,—, Pzic,-. (14)
i=2 i=2

Integrated over the entire domain, these two quantities are, re-
spectively, the total mass and total number of aggregates of toxic
proteins. A typical aggregate length, measured in unit of monomer
length, is obtained as the ratio of these two moments A = M/P. In
the case of fibrils, A is the mean filament length.

There are three main processes in the dynamics, each associ-
ated with its own time scale:

Diffusion has the effect of lowering locally a high concentra-
tion by transporting aggregates in nearby regions. Hence, starting
in one small region with high concentration, diffusion allows for
seeds to propagate.

Growth refers to the evolution of the fibril length: the transfer
from small aggregates to larger aggregates. This process is mostly
controlled by the parameters «;; and leads to an increase of A.
Once a toxic seed of small size is created, growth increases the size
of that seed. The process is dampened by either fragmentation or
clearance.

Expansion refers to an increase of the total mass of toxic pro-
teins. It is controlled by three possible sub-processes: primary nu-
cleation that creates seeds directly from the pool of monomers,
secondary nucleation that creates seeds from monomers but re-
quires activation from other aggregates, and fragmentation that cre-
ates news seeds from larger aggregates at the expense of growth
processes.

While the primary nucleation process is necessary to create ini-
tially toxic seeds, the two main expansions mechanisms (secondary
nucleation or fragmentation) are observed for different proteins.
For AB, in vitro experiments on the formation of oligomers based
on the AB42 peptide have shown (Cohen et al., 2013; Frankel et al.,
2019) that both primary and secondary nucleation processes are
necessary to capture correctly the kinetic of the process across
different initial concentrations even though the overall qualita-
tive shapes of the solution curves are similar. Once a population
of toxic seed is established and grow, it acts as a catalyst for
the formation of more seeds through a positive feedback mecha-
nism. However, for t proteins, primary nucleation and fragmen-
tation is sufficient to explain homogeneous in vitro experiments
(Kundel et al., 2018). The creation of new seeds from larger ones
creates new targets for monomers to be transformed into toxic
proteins and secondary nucleation is not required.
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Based on these observations, we establish two classes of mod-
els. The first one for AB is based on primary and secondary nu-
cleations only (no fragmentation). The second class of models,
relevant for T proteins, is based on primary nucleation and frag-
mentation only (no secondary nucleation). Both models share a
number of common assumptions that we discuss now before spe-
cializing them.

3.2. Continuous models for fibril propagation

Linear aggregation: Various authors have discussed the possibil-
ity of a general aggregation mechanism from aggregates of vari-
ous sizes (Pallitto, 2001; Murphy and Pallitto, 2000). However, in
the formation of neurofibrillary tangles, the growth of a fibril is
dominated by the addition of monomers at the ends of the fibril.
Therefore, we assume here that the main mechanism is through
the formation of fibrils by addition of monomers. This assumption
considerably simplifies the equations as we only consider aggrega-
tion processes of the form
C+G G, (15)
This type of coagulation kinetic is similar to the well-known
Becker-Doring process that has been studied extensively (Ball et al.,
1986; Slemrod, 1989; Coveney and Wattis, 1996; Penrose, 1997;
Wattis and King, 1998). The main difference is that in Becker-
Doring only one monomer at most is lost during fragmentation.

We further assume that for polymers with more than two parti-
cles, the rates are independent of the size so that the probability of
attaching a monomer to a chain does not depend on how long the
chain is: k;; = ky; =k for all i > 2, which implies ;1 =a;; =«
for all i > 2. We distinguish the first two terms involving dimers

N-1
A] = —051‘1(.'% — o ZC]‘, (16)
j=2
1 2
Az = 501,17 —QC1C, (17)

2

A,‘ZO{(C]C,‘,]—C,'C]), i=3,...,N—-1, (18)

where N is the size of the super-particle discussed next.

Super-particle: Rather than considering an infinite set of equa-
tions, we consider a truncation of these equations by following the
concentration of a super-particle consisting of all aggregates of size
equal or larger than N. The value of N is chosen to be the size of
the smallest particle that is insoluble and, therefore, does not dif-
fuse. Hence, we have Dy = 0. We further assume that the super-
particle does not fragment so that Fy = 0. Following the argument
in Bertsch et al. (2016), the equation for cy is

aCN N-1 N-1
Tt =Av—kven = —kven + 537 3 @i
j=1 k=N—j
= —kncy + @CiCN_1. (19)

The limit N — oo recovers the classic case with infinitely many
species.

Primary and secondary nucleation: We assume that nucleation
happens through the formation of dimers (n; = 2) as observed ex-
perimentally (Congdon et al., 2008) and combine the two contribu-
tions to the creation of dimers by introducing 2« = oy 1 + &;. It has
been shown experimentally, by varying the initial concentrations
of monomers that the formation of aggregates of AS42 peptides
cannot be explained solely by primary nucleation but requires sec-
ondary nucleation (Cohen et al., 2013; Frankel et al., 2019). There-
fore, for the case of AB, we use secondary nucleation with n, = 2
and & =&.

Finite fragment size: When a chain fragments, we assume that it
is unlikely to lose small fragments. Hence, we assume that there is
a minimal fragment size ¢ such that fragments smaller than ¢ can-
not be produced. In a chain with j elements, there are j — 1 places
where it can break. However, since small chains cannot be pro-
duced, there are only j—1-2(¢ —1)=j+1-2¢ places where
the chain can break. Hence, we only consider the loss of aggre-
gates C; through

¢Pevc,  jotic4l.i-t. (20)
and the creation of aggregates of size i as
Cojlhcac.  j=tit4l..... (21)

Further, since the super-particle cannot fragment, we have F, =0
ifi < ¢ and for i > N— ¢ — 1. Assuming that the rate of fragmen-
tation is independent of the size and the position at which the
filament breaks, we have §; j = B for all i and j:

1 i-¢ N-1-i
F = —Eﬂzcﬁ-ﬂ Z Cisjs
j=¢ j=¢
1 N-1-i
=—5B-20+ D)+ B ) cy,
j=¢

i=¢,...,N—1, (22)

where it is understood that the sum Y-}~ c;,; vanishes iden-

tically when the upper bound (N —1—1i) is less than the lower
bound ¢, which happens for i > N — ¢ — 1. For the rest of the anal-
ysis, we will follow (Kundel et al., 2018) and assume that the
smallest possible fragment is of size { = 2, indicating the fact that
once a dimer is formed it is stable and never fragments. For the
creation of large aggregates to take place, aggregation must be fa-
vored over fragmentation, which is enforced by 8 < «.

Transport scaling: Aggregates of different sizes are not trans-
ported in the same way with larger aggregates diffusing more
slowly (Nicholson et al., 2000). Indeed, the diffusion coefficient of
a soluble molecule scales approximately as a power of its molec-
ular weight and the weight of an oligomer is proportional to its
size. Therefore, we scale the diffusion tensor according to size by a
power law of the form

D; =i D, (23)

where 7 is a constant. Assuming that the diffusion constant scales
inversely to the mass of the molecule, it scales as the cubic root of
its length (Goodhill, 1997; Nicholson and Sykova, 1998), hence, we
take n = 1/3.

For the diffusion tensor we choose (Weickenmeier et al., 2019)

D:dLl—i—(dH—dl)n@n. (24)

This is a transversely anisotropic diffusion tensor with a preferen-
tial diffusion d (with d > d,) along the axon bundle character-
ized by the unit vector field n = n(x, t).

Clearance rate: Aggregates are continuously removed from the
system through normal clearance processes such as the CSF and
the glymphatic system (lliff et al., 2012). There are two different
assumptions of interest for our study.

First, we can assume that the clearance rate is independent of
the size of the aggregate. In this case of size-independent clearance,

kii=p i=1,....N. (25)

Second, we can assume that for a given phagocytic activity
or antibody the clearance of an oligomer with i-elements is the
same as the removal of each element. Therefore, chains of size N
or larger cannot be removed and it becomes increasingly difficult
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to remove large chains: the size-dependent clearance rates are in-
versely proportional to the size of the oligomer:

k14,~=%, i=1,... N—1. (26)

Both cases are taken into account by writing kq ; = u;, i=1,...,N.
The continuous model: Taken into account all the above assump-
tions, the full equations for the concentrations take the form

a 00 ) N-1
% =V.D-Ve)+y — e —2¢ K+§Z]cj — e ch,
j=2 j=2
(27)
aCZ N
o = 277V . (D- V) — pacy 4 €2 K+$]§]cj
N-3
—(¥C1C2+ﬂZC2+]’, (28)
j=2
ac; . )
3¢ =1"V-(D-Ve) - (ui + g(l 3))@ +ac (i —a)
N—i-1
+B > iy i=3,...,N-1, (29)
j=2
ac,
aftN = —MnCN + XC1CN_1- (30)

where D is given by (24).

The main difference between the model for AB and t, apart
from the initial seeding zones, and different sets of parameters is
the choice 8 = 0 (no fragmentation) for the continuous A model
and & = 0 (no secondary nucleation) for the t model.

3.3. Scaling
It is interesting to consider the respective size of the parame-

ters and introduce a proper scaling of the parameters so that the
new variables are dimensionless. In the homogeneous case and in

of Theoretical Biology 486 (2020) 110102

After substitution in the system and then dropping the tildes,
we obtain

8C N ) N-1
a—t] =V-D-Vey)+y —pc =23k +E> jej | —a1 ) ¢
= =
(33)
862 _ 2 N .
5 =2 "W (D-Vey) — oty +ci | K +E ) jej
i
N-3
—C1G+ B Y o (34)
=
ac . .
87; =i"V.(D-Vg) - (Mf + g(l _3)>Ci +a (6 —¢)
N-i-1
+B Y cyj i=3,...,N-1, (35)
=
ac,
WN = —MUNCN + C1CN-1. (36)

In this new formulation, we have three important small dimen-
sionless parameters (8 « k <« 1 and &, k¥ « 1). Note that the rates
given in Table 1 are obtained from well-controlled in vitro homo-
geneous experiments so that they are not an accurate reflection
of the actual processes taking place in human brains. For instance,
the dynamics for t in Kundel et al. (2018) has a typical time scale
of 200 hours (experiments last about 1000 hours but most of the
dynamics take place over the first 400 hours). Since t ~ 120f it cor-
responds to a dimensionless time of about 100. Similarly, the ex-
periments on AfB leading to these parameters have a typical time
scale of 4 hours (see Fig. 1 in Cohen et al., 2013), leading to a di-
mensionless time scale of about 2400. We note that both experi-
mental time scales are much shorter than the known time scales
for the evolution of the disease (years) in the brain. The reason for

this discrepancy is not fully understood but is likely related to two
main factors. First, the initial concentration of toxic proteins may
be lower and the local processes may be much slower or in com-
petition with other biochemical reactions, leading to smaller values
of amg, hence longer times. Second, spreading within the tissue
rely on a number of processes such as exo- and endo-cytosis and
axonal diffusion for intracellular proteins and extracellular diffu-
sion for extracellular proteins. Therefore, these parameters are not
fully suited for a direct simulation of the evolution of toxic pro-

the absence of clearance and production, the remaining parame-
ters, given in Table 1 can be evaluated from in vitro experiments.

Let mg be the total initial mass of the system (or, equivalently,
the total initial monomer concentration since we assume constant
overall volume). We scale all concentrations with the initial mass
mg and time with the typical time associated with the growth pa-
rameter «. The scalings of the variables and dimensionless param-
eters are then given by

C=mpl, t= Lf (31) teins in the brain. Rather, their importance lies in the relative val-
omo ues of some of these parameters that we will respect throughout
our analysis. Hence, in the absence of better quantification of these
a=1, B — i i = Hi L R= f’ %:: Eﬂ’ ) L parameters in the brain, the following study should be considered
omo oMo o o amp as a qualitative analysis of the solutions rather than quantitative
(32) predictions.
Table 1

Typical parameters for the A model are taken from Cohen et al
(c. stands for concentration).

. (2013) and for the T model are from Kundel et al. (2018)

AB model T model

K nucleation 6x 1074M~1s! K nucleation 2.8 x 1074M1s!
& secondary nucleation 1 x 10*M~2s71 & secondary nucleation 0

B fragmentation 0 B fragmentation 11.2 x 101151

o elongation rate 6 x 106M~1s! o elongation rate 8.4 x 10°M~'s!
my initial monomer c. y/pn=10"°M my initial monomer c. y/u =10"M

4 Ko 5x 101 i Klo 333 x10°8

£ Emola 1.67 x 10-18 B Bl(amy) 1.33x 108
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4. Smoluchowski network models

It is well appreciated that integrating the continuous equations
we have derived for large N over the entire brain is extremely dif-
ficult even with the most sophisticated methods. By taking ad-
vantage of the strong anisotropy of the system, a natural coarse-
grained version of the model can be obtained. In this case, we
assume that transport only takes place along the axonal path-
way and we replace the diffusion operator by the graph Laplacian
to obtain a network approximation of the model. These models
have been shown to be excellent approximations of the continuous
model in the case of the Fischer equation and heterodimer models
(Fornari et al., 2019).

For transport along the axon, we model the spreading of
monomers and protein aggregates as a diffusion process across
the brain’s connectome. The brain connectome is modeled as a
weighted graph G with V nodes (V for vertices) and E edges ob-
tained from tractography of diffusion tensor images. We can sum-
marize the connectivity of the graph G in terms of the weighted
adjacency matrix A; obtained as the ratio of mean fiber number
n; and length I; between node i and j. From the weighted adja-
cency matrix, we compute both the weighted degree matrix D;;, a
diagonal matrix that characterizes the degree of each node i, and
the weighted graph Laplacian L as

Vv
. nij ..
L'J:p(DU_AlJ) with AU: Tl] and Dii:ZAijr l,]:l,...,V,
ij =

(37)

where p is an overall constant with the dimension of a velocity.
The particular adjacency matrix that we use for our simulations is
obtained from the tractography of diffusion tensor magnetic reso-
nance images of 418 healthy subjects of the Human Connectome
Project (McNab et al., 2013) and is based on the Budapest Refer-
ence Connectome v3.0 (Szalkai et al., 2017). The original graph con-
tains 1015 nodes and 37,477 edges and it is further reduced here to
a graph with V = 83 nodes and 1,130 edges. The average path length
(defined as the average number of steps along the shortest paths
for all possible pairs of nodes) is 5245/3403 ~ 1.54 and the global
clustering coefficient (defined as the fraction of paths of length two
in the network that are closed over all paths of length two) is
49,359/69, 149 ~ 0.71 which suggests a small-world network struc-
ture, a fact that has been repeatedly established for brain networks
(Bassett and Bullmore, 2017). Further analyses of this network can
be found in Fornari et al., 2019.

The adjacency matrix is shown in Fig. 4 and the graph Lapla-
cian is given explicitly in the Supplementary material as well as
the names and positions of each nodes as shown in Fig. 5. For vi-
sualization and analysis, we allocate each node to one particular
region of the brain, the usual four lobes: temporal, parietal, frontal
occipital, together with the basal ganglia, and the limbic region. The
last node (shown in black) corresponds to the brain stem.

4.1. The network protein model

Defining ¢;; to be the concentration of an aggregate of size i
at node j, the network equations corresponding to the continuous
model take the form of a system of N x V first-order ODES:

dC] . Vv N

. 2

g =~ 2 Licie+ vy —pajen =26 i+ E D kea
k=1 k=2

N
_Cl,jZCk,j (38)
k=2

RH ; LH
|
RH
|
-
| |
LH
| |
-
max
e | !

frontal limbic occipital basal ganglia

Fig. 4. Weighted adjacency matrix with 83 nodes obtained by averaging 418 brains.
RH and LH denote the right and left hemisphere, respectively. The color scales from
low weight (blue) to high weight (red), the latter indicating strong connections be-
tween two nodes. The external color coding around the matrix represents the dif-
ferent regions as depicted in Fig. 5. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

dCZ . - Vv N
TJ =271 LG — M2,jCoj+ 5 | ki +ED ke
k=1 k=2
N-3
—Cl.jCZ.j =+ :3 Z C2+k,j (39)
k=2
dc; . .
d;] = —i" ZijCi,k - (Mi,j + g(l - 3)>Ci,j +¢1(Cii1j—Gij)
k=1
N—i-1
+B Z Citk.j (40)
k=2
dCN i
dtwj = —UN,jCN,j + C1,jCN-1,j> (41)
wherei=3,...,N-1and j=1,...,V, and we have allowed a pos-

sible dependence of the clearance and production rates on the dif-
ferent nodes.

5. Analysis of the homogeneous case
5.1. Evolution of the total mass

To gain insight into the problem, we start our analysis with the
homogeneous case where we look for solutions that are constant

in space. In this case, both the network and continuum model lead
to the same set of ordinary differential equations:

dc; .
d—t'=y81,o—mc,-+N,-+Ai+Fi, i=12,...,N-1,  (42)
dc,

df:] = —UNCN + C1CN-1 (43)

where the different terms take their respective values for the dif-
ferent cases. Two important global quantifiers of the dynamics are
the total number of aggregates Py and the total mass M (or
equivalently, total density at constant volume), given by:

N N
Prot = Z G, Mot = Z ic;. (44)
i=1 i=1
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‘ d

limbic basal ganglia parietal frontal temporal occipital

Fig. 5. Three-dimensional views of the brain with its six associated regions (the black node denotes the brain stem). Left: view from the top. Right: view from the side.

If N — oo, gelation can occur in the system depending on the ag-
gregation law. In this case, mass is not conserved (Wattis, 2006).
However, for finite N, the evolution of the mass is given by

N
Mot _y — i (45)
i=1
If clearance is size-independent with p; = w, then
dM,
dtmt =¥ — UMot. (46)

Assuming that at time t = 0, Mt(0) = ¢1(0) =1 = y/u, then the
total mass is conserved and stable (against small perturbations of
the initial state). Due to the choice of scaling, we have M = 1.
Starting with an initial population of monomers c;(0), the total
mass remains constant while creating aggregates at the expense
of the monomer population. This process does not depend on the
particular choice of aggregation process as long as gelation does
not take place. In a finite system, gelation is equivalent to treat-
ing the super-particle separately. Since there is a finite net flux to-
wards the super-particle, the mass of the other aggregates is lost
to the super-particle.
If clearance is size-dependent with w; = /i, then

dM
G =V~ Pt

(47)

Starting again with M (0) = ¢1(0) =1 = y/u, we note that since
Prot < Mot and the equality only occurs if Myt = Pot = €1, we have
Mot > Y — wPot > 0 for t > 0 and the total mass of the system in-
creases by the creation of new monomers. Particles belonging to
aggregates are removed from the system by clearance but their re-
moval is slower than the removal of monomers.

More generally, if we have p; < p4,Vi > 1 and there is at least
one k > 1 such that u, < pq, then, following the same reasoning

and initial condition, we have again M > 0 for t > 0. The total mass
of the system increases.

5.2. Moment analysis and evolution of the toxic mass

For the rest of the analysis of the homogeneous system, we
will assume that p; = u for all i and that N is sufficiently large
as to not affect the dynamics on intermediate time scales of dis-
ease progression. Therefore, it is suitable to study the system in
the limit N — oo. Further, we are interested in solutions with no
initial seeding, so that ¢;(0) =0, i> 1 and ¢;(0) = 1. As the sys-
tem involves, we have, for all time, c¢;(t) € [0, 1] and M(t) € [0, 1].
This choice of initial conditions also implies that y = u. The ho-
mogeneous system now reads

dC [o¢] o0
d—gz,u(l—cl)—Zcf K+EY ke ) —a ) (48)
k=2 k=2
dC [o¢] [o¢]
(th =—puc+ ik +ED ke | —cica+ B ok (49)
k=2 k=2
dC,‘ . > .
@ —(H« + g(l - 3))Ci +c(Ciq —¢)+ B ’;:ka i>2.
(50)

5.3. Moment analysis and evolution of the toxic mass

A classic approach to study the infinite system of ODEs (48)-
(50) is to obtain equations for the moments

Q,‘ = Z inCi.
i=2

(51)
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Fig. 6. Dynamics of monomer and toxic protein mass in the A model. Here, the
initial exponential growth of the toxic population is associated with the time scale
71 ~ 35 and 7, &~ 66. Parameters: u = 1072,k =& = 1073,

In particular, the first two moments are associated with the total
number of toxic aggregates P = Qg and the total mass M = Qq, re-
spectively. We note that the third moment Q, does not appear in
this description. This is due to the fact that the two terms involv-
ing Qy are —1/23%7i(i—3)¢ and 3, > o icij =D ;_3i(i —3)¢;,
and they cancel exactly. The same cancellation occurs in the model
of prion growth (Masel et al., 1999; Pdschel et al.,, 2003; Cohen
et al., 2011c) and the solution of the resulting closed system can be
obtained approximately (Knowles et al., 2009). This fact has been
used by many authors to match experimental data with model pre-
dictions (Cohen et al., 2011a; 2011b; Knowles et al., 2011).

For our model, using the scaled system (48)-(50), the defini-
tion (14), and m(t) = ¢;(t), we obtain

and for the initial condition m(0) = 1, M(0) = P(0) =0, we have
m(t) =1—-M(t) Yt. We note that the system (52)-(54) is not
closed when B # 0 as it contains the variable c,.

5.4. Analysis of the AB model

Taking 8 =0 in the moment Eqs. (52)-(54) leads to a closed
system for (m, P, M):

%’? =u(1—m)—2m?(k + EM) — mP, (56)
%:— P+ m?(k + EM), (57)
clTAt/I = —uM + 2m?(x + EM) + mP. (58)

As shown in Fig. 6, its dynamics from the initial condition (1,0,0)
tends asymptotically to a fixed point (mu, Px, Mo) Where my, is
the first positive root of
miE —m? (kK — 2u& +&) —m* Quk +§) —mu® + pu* =0, (59)
and
m2
Po = == (k + (1 —my)).
w
From the asymptotic values, we can determine the exact
asymptotic distribution by finding the equilibria of (48)-(50) in the
case § =0:
_ mi_ (k +EMy)
o me)t
an example of which is shown in Fig. 7 together with a numer-
ical solution of the dynamics leading to the asymptotic distribu-

My =1 — Mg, (60)

i=2,3,... (61)

dm ) tion. We note that the dynamic is associated with multiple time
G - (1—m) —2m*(k +&M) — mP, (52) scales. Initially, the population of toxic protein increases exponen-
tially with a typical time scale obtained by assuming that m(t) ~ 1.
dpr ) B But, the size distribution only reaches its asymptotic value over
dar = P+m* (i +EM) + j(M_ 3P +c), (53) a much longer typical time scale compared to the mass of toxic
protein. Using m(t) =1 in (56)-(58) leads to a linear system with
dM ) early time dynamics
ar = —uM +2m*(k + EM) + mP. (54) )
M(t) =2kt — sk (=142 —48) 2 + O3). 62
As expected we have m + M = My, and © 2 ( ® 5) ) (62)
dMor The time at which this solution reaches the asymptotic value M,
T m(1 — M), (55)  provides an estimate for the time scale of early expansion of the
A -log(cu()
75 n b
00006} <" @ ®)
0.0004} %0¢
._....
0.0002} ""‘-.,. 25} 21200
s\ A
n n
0 . . > . . : i -
50 100 150 200 0 100 200 300 400 500

Fig. 7. (a) Asymptotic size-distribution in the homogeneous A model. (b) Dynamical evolution of the size distribution (dashed curves indicates the exact asymptotic
solution). The typical time scale for an aggregate of size n to reach equilibrium is t,. For instance, here T,00 &~ 574 and T409 ~ 1156. Parameters: = 1072,k =& = 1073,
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- - : >
0 50 100 150 200

Fig. 8. Dynamics of monomer and toxic protein mass in the v model. The dashed

line indicates the solution of the moment equations for the monomers obtained by
setting ¢, = 0. Parameters: = 1072,k = 8 = 1073,

toxic proteins
2VK = V22K + Moo (1 + 46 —210)
V(1 +4§ -2p) '

The initial expansion phase is followed by a saturation stage
with time scale t, at which m is close to its asymptotic value mq,

1= (63)

T2=T1+1/\/E. (64)

For longer times, the system exhibits a slower dynamical evolution
over a time scale T, > 7, for large n towards the asymptotic size
distribution. Indeed, once c; is closed to its asymptotic value, the
equations for ¢; with i > 2 becomes linear with a typical decay rate
given by 1/(u + my ). Hence the concentration c, reaches equilib-
rium on a time scale

" 1 n—1

Th = = .
" §u+mm LA+ M

(65)
A couple of examples of these time scales are shown in Fig. 7.
5.5. Analysis of the T model

The moment equations for the T model read

dp
a:_MP+/<m2+§(M—3P+c2), (67)
c:TI\t/I = —puM + 2km? + mP. (68)

The analysis of these equations is complicated by the fact that they
involved c,(t). However, since 8 « 1 we expect fc, to be also
small, therefore this term can be neglected in the first instance to
obtain an approximate but closed system for the moments. Indeed,
Fig. 8 shows that the numerical solutions of the full system is in-
distinguishable from the approximate moment equations. To make
this argument more precise, we can obtain exact upper and lower
bounds for the asymptotic monomer mass m., by realizing that,
asymptotically, c; =0 < ¢; < P = ¢, where

(1 —my) - 2mik
= e )

Py (69)

Then, the asymptotic concentration of monomer m, is sandwiched
between m} < my <my, where m% are the two real solutions
of

21cm?® + m? (4k e+ (6k — )B) +m(B(cs + 3+ 1) +2u%)
-pn(2p+3p) =0.

The asymptotic size distribution can be obtained by solving numer-
ically the full system (48) and (50) for time t > t; as shown in
Fig. 9. The early dynamics is dominated by the nucleation process
with a typical time scale 7; = 1/./k. We note that this size distri-
bution is markedly different than the one fone found for the AS
model. It has a maximum at a value less than the average length
given by M. /P. In order to obtain an estimate of this asymptotic
profile, we assume that we know from the moment equation the
asymptotic values of both the monomer population m, and the
total aggregate number P, from the previous argument. The prob-
lem is then to find a solution for the infinite set of equations

de;
de

(70)

o0
= —(M + g(i - 3))Ci +ci(Ciir =)+ B ;Ciw i>2,
K=
(71)
where we have approximated Eq. (43) by changing the summation
index in the last term (from k =2 to k = 1). We can obtain a con-

dm tinuous limit of this equation by assuming that it is a discretization
Fri w(1 —m) —2km* — mP, (66)  of an equation for the variable y(s, t) such that y(n, t) = cy(t). The
A Cn (@) A (b)
0.0015F 250 log(cn(t)
Q
200
0.001 150l
100
0.0005
50
n — n
0 : : > : : : : >
Smax 25 50 75 100 0 100 200 300 400 500

Fig. 9. (a) Asymptotic size-distribution in the homogeneous T model. Here, the average length given is M, /P, ~ 21 and the maximum is reached at size 15. The continuous
(blue) curve is the continuum approximation. The predicted maximum also occurs at 15, the closest integer to smax ~ 15.12. (b) Dynamical evolution of the size distribution.
Parameters: 1 = 1072,k = 8 = 103, (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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difference between two consecutive equations of the form (71) is

d .
a(Cm —G) = —<M + g(l - 2)) (Cip1 =€)

—m(t) (Ciy1 — 2¢i + ¢;) + BCiyr. (72)
Using the discretization of y with a unit step, we have

92
% ~ Cip1 — G, Tg A Cip1 =26+ G, G ZTJS/ +J. (73)
Eq. (72) can then be written
3%y B .\ 3%y
The steady state of this equation is given by the solution of
9%y B .\

This is a linear second-order equation for y. Enforcing that the so-
lution at s = 0 is bounded leads to a solution with a single con-
stant:

_ euisp)?

V() =K((2u +5B)* —2m B)e” i (76)
The constant K is found by the condition
B
o Pe Pnx
p(s)yds=P, = K=-—"0———, 77
|G BT (77)

This solution, shown in Fig. 9, is a good approximation of the exact
discrete distribution. In particular, it gives an excellent estimate for
the maximum, located at the closest integer to

_ M S p
Smax = B 2‘3~ (78)

This estimate also shows that fragmentation is necessary to ob-
serve a maximum away from N = 2.

The asymptotic dynamics for large t can be found by analyz-
ing (74) and looking for solutions of the form

y(s.t) =y(s) +€"x(s), (79)

which leads to an equation of the form (75) where y is replaced
by x and m is replaced by me + r. This equation has two so-
lutions and the conditions that this time-dependent solution pre-
serves both the number and mass of aggregates

/ x(s)ds =0, / sx(s)ds =0, (80)
2 2
lead to an equation for r

281 + 1(4BMma — 204%) — 217 (2B + 241 — mag) + 2BmZ, = 0.
(81)

Both solutions are valid but the largest negative solution is the so-
lution of interest for the dynamics. Indeed the smallest negative
exponent describes solutions that quickly decay to the static solu-
tion. The solution associated with the largest exponent is the one
observed for large times.

6. Network simulation

Next, we consider the dynamical evolution of protein con-
centrations at the level of the network. The first question is to
scale parameters and variable correctly from the homogeneous
equations studied in the previous section and valid at one node to
the entire network. The total mass of monomer in the system my
is assumed to be distributed uniformly on all the V nodes so that,

in the scaled variables (31), the initial conditions for the network
are

cj=1/V, ;=0 k=2,...,N; j=1,...,V. (82)

Then, for the network to have the same kinetics as the homoge-
neous system, we must scale the parameters from the homogenous
system (now described by the subscripts “hom”) as follows

Yy = Vhom/vz’ n= Mhom/v’ 5 = Ehomvv ,3 = ,Bhom/v’
K = Khom- (83)

Similarly the time scale is now t = ty,,V. The equivalence with
the homogenous system is obtained by setting x; =k and p =0
in (38)-(41). Then the total mass of monomers m =73 c;; and
toxic proteins m =Y ke, ; have the same dynamics as the one
obtained in Figs. 6 and 8.

The second question is how to properly seed the system to ex-
press the fact that the disease starts at a given location. We can
either start with a non-zero initial condition of dimers at a given
node or assume that the main mechanism for the initial creation
of toxic proteins is due to nucleation at a given node. Here, we
choose the latter modeling assumption and assume that «; van-
ishes everywhere except at given nodes where it assumes a small
value. These nodes are the seeding regions were neurodegenera-
tive diseases are known to start. For the A8 model we start at
the two nodes characterizing the posterior cingulate (Leech and
Sharp, 2013). For the T model, we seed the system in the entorhi-
nal region (De Calignon et al., 2012) (the list of regions of interest,
together with their node number, lobe, hemisphere, and spatial co-
ordinates is given in the Supplementary Material).

Since the diffusion tends to homogenize the system, we expect
that for long times the dynamics is uniform over all the nodes so
that the size distribution is described by the homogeneous system.

From now on, we assume that the clearance rate for each ag-
gregate is the same so that the total mass of proteins is conserved.

6.1. Comparison of the AB and Tt models

For both systems, we use the same parameters apart for the
fragmentation (8 = 0 for the A model), the secondary nucleation
(& =0 for the T model) and the seeding region as described above.
For the simulations we chose the parameters given in Table 2. Note
that due to fragmentation, the asymptotic decay in size is faster
with the 7 model. Hence, for the values of the parameters chosen
here, we only need to consider aggregates of size up to N = 200 as
the concentration of larger aggregates is negligible.

6.1.1. Evolution of total monomer and toxic protein mass

Despite the fact that the system is not homogeneous, the over-
all total toxic mass (obtained by summing the mass of each ag-
gregates at each node) follows a similar evolution as the homoge-
neous system. For the AB model, the asymptotic value for m., can
be obtained by using (59) for the entire system after the proper
scaling of the parameters

m& )V —m? (g /V = 2uE +&/V) —m* (2quK +&/V)
+ 121 -m) =0, (84)

where q is the number of seeded nodes (2 in our case). For the t
model, we use the network version of (70)

2qiem3 )V + m? (4qic i + (6gic )V — 1)BV)
+m(BYBuV +1) +2u*V?) — u(2u +3p)V? =0. (85)

The evolution for the particular choice of parameters in Table 2 is
shown in Fig. 10.
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Fig. 10. The total monomer concentration m(t) (the sum of c;; over all the nodes) and the total mass of aggregates M(t) =1— m(t) for (a) the A model (with both
estimated and numerical asymptotic value given by m., ~ 0.45); and (b) the T model (with both estimated and numerical asymptotic value given by m., ~ 0.23). Parameters

given in Table 2.

Table 2

Parameters chosen for the numerical simulation based on the analysis of the homogeneous system (c.

stands for concentration).

ApB model T model
Ki nucleation at node i 1073 (8i14 + 8iss) ki nucleation at node i 1073 (8;.27 + Si6s)
& secondary nucleation 1073V & secondary nucleation 0
B fragmentation rate 0 B fragmentation rate 1073 v
o elongation rate 1 o elongation rate 1
y production rate 10-2/V2 y production rate 10-2/V2
w clearance rate 10-2)v w clearance rate 1072V
P diffusion constant 2x10°° 0 diffusion constant 2x 1073
my initial monomer c. 1 mo initial monomer c. 1
1% number of nodes 83 1% number of nodes 83
N super-particle size 400 N super-particle size 200
A Cn (a) AR model A Cn (b) T model
0.00025 0.0012 "
0.001 120
0.0002
0.0008
0.00015
0.0006
0.0001 |
0.0004
0-00005 0.0002 f
n n
0 - - ~ 0 é - >
0 50 100 150 200 250 300’ 0 20 40 60 80 100

Fig. 11. Size distribution for (a) the AB model at times 5000 to 70,000 (indicated by 5 to 70 on the curves) (b) the T model at times 20,000 to 120,000 (indicated by 20 to

120 on the curves) with estimated and computed nmax ~ 17. The dashed lines is the estimated asymptotic distribution. Parameters given in Table 2.

6.1.2. Evolution of the size distribution

We compute for the values given in Table 2, the evolution of
the size distribution for both models. We can obtain asymptotic
estimates based on the same argument as in the previous section.
For the A model, we have

o = M (@ /V+§/V(1 —mx))
" (UV + M) '
For the T model, we have

Qu+np)?V —2m..p exp | 4B+ w3V — 2u+sp)?v
B+ 4Bme, '

(86)

Cchn =Py

(87)

with a maximum at the closest integer to

6my,

BV

oK
25

Nmax =

(88)

In the example shown in Fig. 11, this approximation is consistent
with the numerical solution of the full system.

We notice that the two models exhibit distinct size distribution
and that for the t model, long chains (of size > 40 monomers)
tends to disappear quickly in the long-time dynamics, while this
is not the case for the A8 model that has a much longer-tailed
distribution.
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Fig. 12. Spreading in the right hemisphere. Top row: Toxic mass at each node in the right hemisphere for (a) the A model and (b) the r model. Bottom row: For each
region in the right hemisphere, we show the average toxic mass for (c) the A model and (d) the T model. Parameters given in Table 2.

6.1.3. Spreading behavior over the network

To understand the evolution of the toxic proteins over the en-
tire network, we compute at each node the toxic mass as a func-
tion of time:

N
Mj(t) =) cj(t), j=1,....V. (89)
i=2

We also average the toxic mass for six regions (consisting of the
usual four lobes: temporal, parietal, frontal occipital, together with
the basal ganglia, and the limbic region shown in Fig. 5):

MO = LSy

j=1,...,6, (90)
rj ieR;

where R; is defined as the set of all nodes in that region and r; is

the number of elements of R;.

The evolution of the toxic mass at each node clearly illustrate
the extra delay in the spreading of the disease associated with dif-
fusion from one node to the next. While the progression at the
seeding node is very fast, other nodes feel the effect of the disease
over a new time scale directly associated with diffusion (through
the overall scaling constant p). The last node to be invaded is the
frontal pole sitting at the extremity of the frontal lobe and poorly
connected in the connectome. If these extreme nodes are removed
from the computation, the occipital lobe becomes the last lobe to
be fully infected.

6.1.4. Staging estimates

A striking features of Fig. 12a,b is that staging is established
very early on in the dynamics. Once the process starts the order-
ing of nodes by the toxic mass does not change significantly (no
curves intersect). This observation can be used to provide an esti-
mate of the spatial staging. Indeed, for early times, the only signif-
icant change in the system is a conversion from a large population
of healthy monomers to dimers. Therefore, we have ¢;; ~ 1/V and
¢ij ~ 0 for all i > 2. Denoting q; =c, ; and using Eq. (39), the
dynamics of dimers for early time is therefore approximated by

v i
ql.z_zf'iZijqk-raqijv—é, ji=1,...,V, (91)
k=1

where a = 26 /V% — 1/V — . This is a linear system of ODEs with
constant coefficients that can be solved using traditional meth-
ods of diagonalization (Goriely, 2001; Perko, 2001). Indeed, from
the graph Laplacian L, we can build the matrix U whose columns
are eigenvectors associated with the eigenvalues of L. Introducing
the diagonal matrix A = diag(A{,...,An), we have LU = UA. Then,
the solution is simply

v e(a=27"3)t ]
Qj:ZUjk bkm ., J=1,....V, (92)
k=1

where

1 Vv
be= 73 > WUk (93)
=1
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Fig. 13. Spatial evolution of t at four time steps corresponding to the initial stage (t =5, 187), primary infection (t = 16, 018), secondary infection (t = 25, 263), and late
stage (t = 37,500). The value of max is defined as the maximum value of M; over all nodes and for all times.

This approximation can be used to sort out the nodes according to
the strength of the infection. It provides an excellent overall ap-
proximation of the staging that recovers, without the need of any
numerical simulation, the overall lobe staging shown in Fig. 12¢,d.
It can also be used to obtain an understanding of the infection pro-
cess based on the topological properties of the network. Indeed.
Expanding this expression for small times, we obtain

vov
a
quj':"j(t“‘itz =277 3N U U Dk |2+ O(E3),
k=1 1=1

j=1,...,V. (94)
This solution can be further simplified by using L = UAU-1:

a 2 )
V2= kj(t+5t%) = 5o D L+ OF), j=1,....V.
k=1

(95)

An interesting structure now appears in this solution. We define

q=(q,..., qyv), and similarly k = («kq, ..., ky). Then, after basic

alegbraic manipulations, the expansion for the solution q can be

written

viq = i(m 2711)" ke e (96)
S

n=1

where 1 is the identity matrix.

This expression shows that at very early times, to order O(t),
the only nodes affected are the nodes that are seeded (the nodes
j for which «; # 0). This behavior is observed in both Fig. 12a,b
where the concentration at the seed is seen to increase linearly be-
fore it affects other nodes. Later on, to order O(t2), the toxic mass
increases at the seeded node depending on the kinetics (encoded
in the parameter a). It also increases at other nodes depending on
the product Lk. This product is identically zero for all nodes unless
connected to the seeding node. To order O(t?), a node k has non-
zero toxic mass if and only if Lj # O where j is one of the seeded
nodes. Remarkably this expression mostly depends on the topology
of the network (encoded in the matrix L). To order O(t3), a node
has non-zero toxic mass if and only if its path length (the small-
est number of steps between two nodes) to a seeded node is two.
Hence, to O(t3) a new node is seeded only if it is connected to a
neighbor of a seeded node. In general, to order O(t") a node has
non-zero toxic mass if and only if its path length to a seeded node
is less than n. For instance, the early dynamics of a node j that is
located at a path length of 5 from a single seeding node k will be

q =-2" SU(LS)]kKk +O(t7) (97)
However, due to the small-world structure of the brain network,
the average path length is 1.5. Therefore, most nodes connected to
the neighbors of the seeded node will have a dynamics starting
to order O(t3). We conclude that within this model, the following
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Fig. 14. Spatial evolution of AB at four time steps corresponding to the initial stage (t = 13, 722), primary infection (t = 37, 820), secondary infection (t = 51, 681), and late
stage (t = 66, 599). The value of max is defined as the maximum value of M; over all nodes and for all times.

staging dynamics, illustrated in Figs. 13 and 14 (full movies given
in the Supplementary Material), naturally emerges:

o Initial stage: occurring at times O(t) at the seeding nodes (the
nodes j such that «; # 0).

e Primary infection: occurring at times O(t2) at the nodes di-
rectly connected to the seeding nodes.

« Secondary infection: occurring at times @(t3) and depending
both on the network topology and the protein kinetics. It affects
only regions close to the nodes connected to the seeding nodes.

o Late stage: After the secondary infection, a rapid progression
towards an invasion of the entire system takes place. Only
nodes that are poorly connected (such as the frontal poles) re-
main unaffected.

7. Conclusion

We have derived a class of models for the spatial progression of
key molecules associated with neurodegenerative diseases. These
models follow the evolution of aggregates of different sizes and
take the form of sets of nonlinear reaction-diffusion equation when
the evolution of the aggregates are considered in a continuum with
diffusion along axonal pathways. Taking into account the strong
transport anisotropy present in the brain, these equations can be
further reduced to systems of Smoluchowski equations interacting
on a network through the graph Laplacian. The study of such sys-
tems is guided by the homogeneous case for which both total mass

evolution and the distribution of aggregates can either be obtained
exactly or approximated through various methods by taking advan-
tage of the specific structure of the system.

Here, we considered two paradigmatic cases: a model for the
extracellular dispersal of amyloid-g further expanded by secondary
seeding and aggregation, and a model for the intracellular propa-
gation of T molecules where fragmentation plays a key role. The
comparative study of these models shows that fragmentation is
key to observe a non-monotonic distribution of aggregate concen-
trations. It also shows the key role of primary and secondary nu-
cleation processes for the expansion of the initial population.

At the local level, the increase in toxic mass is characterized
by an early phase of seeding depending on primary nucleation, fol-
lowed by a period of linear growth mostly controlled by aggrega-
tion of monomers onto the fibril. Following this early phase, an
expansion phase takes places that requires secondary nucleation
and/or fragmentation. However, if mass is conserved, the expan-
sion phase terminates with a saturation phase where toxic and
healthy molecules are in balance.

At the global level, the local dynamics is coupled with trans-
port. For a network, the weighted graph Laplacian obtained from
tractography provides a direct way to model the transport of toxic
aggregates along axonal pathways. The study of the full system for
both the A and T models reveals the existence of four different
stages in the progression of the disease as shown in Fig. 15. An
initial stage develops at the seeded node. The evolution is mostly
local in time and well described by the homogeneous equation.
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The primary infection takes place in nodes connected to the seeded
nodes and mostly depends on the diffusion process rather than
the aggregation kinetics. These nodes becomes new seeds and sec-
ondary infection in all nodes connected to the primary nodes takes
place and so on. Recalling that the average path length is about 1.5,
it is clear that this network structure leads to rapid infection at this
stage of most nodes. In the late stage, the disease has invaded all
nodes and the toxic mass quickly saturates to its maximal values
in balance with the population of healthy monomers.

When clearance does not depend on the aggregate size, these
models conserve the total initial mass of monomers. This assump-
tion simplifies considerably the study and a complete analysis of
the general case, in which clearance varies with aggregate size,
would be of great interest. The relative ordering of the parame-
ters we have used in our analysis are based on experimental data.
Hence, the typical qualitative features observed in the analysis are
universal and directly relevant to the disease progression. Other
parameters, such as the effective diffusion constant, production
and clearance rates, are not directly accessible based on existing
data. The effective diffusion constant in our study has been chosen
based on the observation that staging is observed (which implies a
very small effective constant). Further study of axonal diffusion in
axons and tissues is needed to relate this crucial parameter to mi-
croscopic processes. Similarly, it is understood that clearance is key
to slow down the progression of the disease. Therefore, a careful
analysis of the corresponding parameter and its relationship with
other phenomena, such as the vasculature and the glymphatic sys-
tem, will be crucial in uncovering basic mechanisms and identify
possible therapeutic targets.

Theoretical research in neurodegenerative diseases has been so
far separated into detailed in vitro analysis of aggregation kinet-
ics on the one hand and linear transport on network compared to
structural data on the other hand. Both aspects have been shown

to be of great importance for our understanding of the diseases.
The theory presented here shows that both approaches can be
combined within the same mathematical framework and easily an-
alyzed analytically and computationally. The proposed theory is
sufficiently flexible to be further generalized to more intricate ki-
netics or coupled to other important phenomena.
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