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Abstract
Understanding how axons fail is critical to preventing brain injury. From stretch experiments, we know how axons respond
to forces on the time scales of milliseconds and days. Yet, there is no mechanical model that explains the behavior of the
axon at both short and long time scales. Here we propose a constitutive model to study the limits of stretch-mediated axonal
disconnection at different time scales. Our model combines viscoelasticity using a neo-Hookean standard linear solid and
growth using stress-mediated accelerated elongation. By limiting peak and average membrane tensions, our model predicts
critical elongations and elongation rates. Interestingly, the critical elongation rate is not constant, but increases after an
acclimation period. Combining viscoelasticity and growth is essential to simulate axonal disconnection in stretch-mediated
growth at both short and long time scales. Our model can help optimize axonal stretch experiments and provides insight into
the interacting time scales within the axon.
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1 Introduction

In the neuron, multiple slender processes extend from the
cell body to form connections with other cells. The longest
of these is known as the axon. Axons grow to lengths of over
1m long in humans and over 10m long in the blue whale
[30]. It is estimated that in order to reach these lengths, rates
of axonal growth can be as high as 2cm/day [6]. How the
axon achieves this growth rate remains unsettled.

Earlier studies on axonal growth focused on the first phase
during which chemical and physical cues guide the axon to
its target [24,25]. Interest then turned to growth that occurs
after the axon has reached its target and formed a connection
[3,34,40]. It is thought that during this phase, organ growth
triggers axon growth as the distance between the end tar-
get and the soma increases [18]. This is illustrated in Fig. 1.
Studies have replicated this phenomenon in vitro by using
microneedles to pull on individual axons [40] and by using
micro stepper motors to apply incremental displacements
to neuron populations [34]. In the experiments using the
micro stepper motor, axons were elongated using short dis-
placement increments followed by periods of relaxation. The
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overall elongation rate could be adjusted either by increasing
the magnitude of the displacement increments or by adjust-
ing the duration of the relaxation period. If elongation was
applied slowly enough, growth was observed. On the other
hand, if the elongation was too rapid, growth could not keep
up, and disconnection occurred. While low levels of stretch
promoted growth, higher levels led to axonal injury and dis-
connection [31,34].

Understanding the threshold between disconnection and
growth has potential applications both in limb lengthen-
ing procedures and in nerve repair. In limb lengthening,
nerves must grow along with the rest of the surrounding tis-
sues [1]. Elongating the limb at too high a rate can lead to
impaired nerve function [33]. The disconnection threshold
influences the maximum growth rate achievable during the
limb lengthening procedure. In nerve repair, gradual length-
ening has been explored as an alternative to grafting, which
is currently the gold standard [38]. Grafts are preferred in
repairing large nerve gaps, as a high level of tension is harm-
ful for the regeneration process [20,35,36]. High levels of
tension result when the two ends of the nerve are immedi-
ately pulled together and sutured. Taking advantage of axonal
stretch growth, studies are exploring ways to elongate the
nerve gradually prior to reconnection [38]. Gradual elon-
gation has been attempted both intraoperatively [2,28] and
via an implanted device [23,39]. The elongation time for
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Fig. 1 Stretch-mediated axonal growth. A displacement is applied to
the end of the axon. At first, this stretch is entirely viscoelastic, but over
time, growth occurs. As the amount of growth increases, the viscoelastic
part of the stretch decreases, leading to a decrease in stress. The presence
of growth is often inferred from an increase in axon diameter

the intraoperative method ranges from minutes to an hour,
whereas an implanted device can elongate over a period
of 2weeks [2,23,28,39]. Knowledge of the disconnection
thresholdwould inform the selection of a repairmethodbased
on nerve gap size.

A computational model of axonal growth could be used
to predict disconnection. Early phenomenological models
of the axon represented its viscoelastic response at short
time scales using the standard linear solid model [9] in
which a dashpot added in series with the viscoelastic element
represents growth [9,29]. More recently, three-dimensional
continuummodels incorporated growth using the multiplica-
tive decomposition of the deformation gradient into elastic
and inelastic parts [16,22]. In these studies, the elastic part
is modeled as both hyperelastic [22] and viscoelastic [16],
while the inelastic part represents growth. Other models have
looked at smaller scales and calculated axonal growth rates
based on the transport and action of cytoskeletal proteins
[10,12,37]. These protein-level models can link membrane
tension and protein production rates and provide insight into
the stretch-limiting mechanisms. One such growth model,
combined with a threshold on axon membrane tension,
predicted disconnection thresholds that agreed well with
experiments [32]. While the model explains disconnection
behavior at long time scales, it does not explain the short
time scale limits on displacement step magnitude and fre-
quency.

Here, we propose a newmodel that integrates viscoelastic-
ity and growth to predict axonal disconnection at both short

and long time scales. Following the method used in previ-
ous studies, we multiplicatively decompose the deformation
gradient into a viscoelastic and a growth part [16,22]. By
applying thresholds on membrane tension, we show that the
viscoelastic response of the axon governs disconnection at
short time scales, whereas growth governs the behavior at
long time scales.

2 Methods

2.1 Axonal growth

We represent axonal growth using a multiplicative decom-
position of the deformation gradient F,

F = Fv · Fg , (1)

where Fv is the viscoelastic part and Fg is the growth part.
We assume that the viscoelastic part is incompressible and
that any change in cross-sectional area is solely due to the
viscoelastic deformation. The total deformation gradient then
becomes

F = λ a0 ⊗ a0 + 1/
√

λv( I − a0 ⊗ a0 ) , (2)

where λ and λv are the total and viscoelastic part of the
stretch, I is the unit tensor, and a0 is the unit vector in the axon
direction in the reference configuration. We model axonal
growth as one-dimensional fiber growth and introduce the
growth tensor as

Fg = I + ( ϑ − 1 ) a0 ⊗ a0 , (3)

where ϑ is the growth multiplier that represents the increase
in grown length [26,27]. In the following, we consider exper-
iments of uniaxial axonal tension, for which the total stretch
λ in the axonal direction a0 decomposes multiplicatively into
a viscous part λv and a growth part λg,

λ = λv λg with λg = ϑ . (4)

We model the evolution of the growth multiplier as

ϑ̇(t) = f (t) 〈σ(t) − σc〉 , (5)

where f (t) represents a general function specifying how
the strength of the growth trigger varies with time. σ is the
normal Cauchy stress in the axonal direction, and σc is the
stress threshold for growth to occur. The Macaulay bracket
is defined as

〈σ(t) − σc〉 =
{
0 σ ≤ σc

σ(t) − σc σ > σc
. (6)
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Table 1 Parameters of the axon model

Parameter Value Unit References

G∞ 10−9 Pa−1 s−1 [22]

G 10−7 Pa−1 s−1 [22]

τg 5.5e5 s [22]

σc 0 Pa [5]

γ∞ 2.05e−2 – [9]

γ 9.795e−1 – [9]

τv 100 s [9]

μ 2.767e4 Pa [9]

T0 7.5e−4 Nm−1 [32]

We choose the following form for f (t),

f (t) = G∞ − G exp(−t/τg) , (7)

whereG∞,G, and τg are time constants of the growthmodel.
We select this evolution law because it postulates that growth
accelerates over time in agreement with experimental obser-
vations [31]. We calibrate the time constants G∞, G, and τg
in accordance with diameter recovery experiments [22] and
select a stress threshold of σc = 0motivated by experimental
observations [5].

2.2 Axonal viscosity

Wecalculate the normal Cauchy stress in the axonal direction
using the viscoelastic part of the deformation gradient using
a Prony series approach [4],

σ(t) =
∫ t

−∞
g(t − s)

d

ds
σ 0(s) ds . (8)

Here g(t) is the relaxation function for a standard linear solid,

g(t) = γ∞ + γ exp(−t/τv) . (9)

where γ∞ is the long-term modulus of the relaxed axon, γ is
the viscous relaxation coefficient, τv is the viscous relaxation
time, and σ 0 is the initial stress [9]. We derive the initial
axonal stress from the following stored-energy function for
an incompressible neo-Hookean material [17],

ψ0 = 1

2
μ ((λv)2 + 2/λv − 3 ) , (10)

where μ is the shear modulus of the axon [9]. Table 1 sum-
marizes the values of all the constitutive model parameters.
The initial Cauchy stress becomes,

σ 0 = λv
∂ψ0

∂λv
= μ ( (λv)2 − 1/λv ) . (11)

Now we define,

h(t) =
∫ t

−∞
exp(−(t − s)/τv)

d

ds
σ 0(s) ds , (12)

so that the normal Cauchy stress in the axon direction sim-
plifies to

σ(t) = γ∞ σ 0(t) + γ h(t) . (13)

2.3 Axonal disconnection

Following the literature [32], we assume that membrane
tension governs axonal disconnection, and estimate themem-
brane tension from the stress output of our model. To do this,
we assume a worst-case scenario in which the membrane
carries all of the force on the axon,

T (t) = F(t)/C(t) + T0 = σ(t)A(t)/C(t) , (14)

where F(t) is the force on the axon, C(t) is the circum-
ference, and A(t) is the cross-sectional area. T0 is the rest
tension for which we used a value of 7.5e−4Nm−1 [32].
Equation (14) simplifies to

T (t) = 1

4
σ(t) d(t) + T0 , (15)

where d(t) is the current axon diameter. Table 1 summa-
rizes the parameter values of axonal growth, viscosity, and
disconnection.
It has been observed in experiments that membrane strength
is time dependent; lower tension levels can be sustained for
longer periods, but higher tension levels can only be sustained
for a few seconds [19]. We therefore introduce two levels
of critical membrane tension. The higher threshold predicts
disconnection if exceeded by the peak tension, which would
be sustained for a few seconds, and the lower threshold pre-
dicts disconnection if exceeded by the time-averaged tension,
whichwould be sustained for hours. To evaluate the ability of
our model to predict axonal disconnection, we use displace-
ment histories from elongation experiments as input to our
model [31].We then compare the resultingmodel predictions
to the experimental observations.

2.4 Computational model

To solve the equations for axonal growth, viscosity, and dis-
connection for a given stretch history, λ(t), we discretize the
time interval of interest into discrete time steps andmarch for-
ward incrementally in time. Since the evolution of the growth
multiplier (7) depends nonlinearly on the growth multiplier
itself, we perform a Newton Raphson iteration. To move for-
ward from time tn to time tn+1 at an incrementΔt = tn+1−tn ,

123



590 Computational Mechanics (2020) 65:587–595

at the beginning of the time step,we initialize the growthmul-
tiplier ϑn+1 and the stress σn+1 with their known values from
the previous time step and evaluate the time-discrete growth
equation,

ϑn+1 = ϑn+(G∞−G exp(−tn+1/τg ))〈 σn−σc 〉Δt . (16)

Using this result and the knownprescribed total stretch,λn+1,
we update the viscoelastic stretch,

λvn+1 = λn+1/ϑn+1 , (17)

the initial Cauchy stress,

σ 0 n+1 = μ ( (λvn+1)
2 − 1/λvn+1 ) . (18)

the value of h,

hn+1 = exp(−Δt/τv)hn + exp(−Δt/2τv)(σ 0 n+1 − σ 0 n) ,

(19)

and the Cauchy stress,

σn+1 = γ∞ σ 0 n+1 + γ hn+1 . (20)

Finally, for the Newton Raphson iteration, we calculate the
residual R,

R = ϑn+1 − ϑn − (G∞ −G exp(−tn+1/τg))(σn+1 − σc)Δt,

(21)

and K, its linearization with respect to ϑn+1,

K = dR
dϑn+1

= 1 − (G∞ − G exp(−tn+1/τg) )
dσn+1

dϑn+1
Δt ,

(22)

with

dσn+1

dϑn+1
= −μ (γ∞ + γ exp(−Δt/2τv))

2λ3v n+1 + 1

λn+1
. (23)

We update the incremental growth multiplier,

ϑn+1 ← ϑn+1 − R/K , (24)

and iterate until the residual R falls below a user-defined
threshold. We then move to the next time step, and the itera-
tion begins again.
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Fig. 2 Effects of displacement increment on stress. A net elongation
rate of 1mm/day can be achieved using different displacement incre-
ments, here 0.5µm and 3.0 µm (top). At the same net elongation rate,
the axon experiences different stresses depending on the step size (bot-
tom). Larger displacement increments cause higher peak stresses

3 Results

3.1 Effects of displacement increment

In axon stretching experiments, a micro stepper motor is
often used to control elongation [31]. A desired net elon-
gation rate can be achieved using many small displacement
steps or fewer larger steps. For an elastic material, the maxi-
mumstress simplydepends on theoverall displacement and is
independent of the displacement increment. For a viscoelas-
ticmaterial, however, a larger displacement increment results
in higher peak stresses.

Figure 2 displays the prescribed axonal stretch and the
resulting stress for a 1mm/day elongation rate using two dif-
ferent step sizes, 0.5 µm and 3.0 µm. While the mean stress
is the same for both step sizes, the larger step size results
in larger oscillations with respect to the mean. While Fig. 2
demonstrates the stress response over a short time period
of 15min, Fig. 3 illustrates the behavior over a longer time
period of 1day.At this longer time scale, the effects of growth
become apparent. Initially, the average stress increases along
with the increasing elongation. However, as time passes,
growth occurs, and the average stress begins to decrease.
Two modes of stress relaxation are observed in the model:
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Fig. 3 Effects of displacement increment on average and peak stress.
Over the course of a day, the average stress decreases as growth occurs.
Larger displacement increments cause higher peak stresses, but do not
affect the average stress
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Fig. 4 Effects of displacement increment on axondiameter.On the short
time scale, the axon diameter decreases with each applied displacement
increment in accordance with the incompressibility assumption (top).
On the long time scale, axon diameter decreases at first as applied elon-
gation outpaces growth. As time progresses and growth increases, the
diameter begins to recover (bottom)

Relaxation due to viscoelasticity occurs on a short time scale,
and relaxation due to growth occurs on a longer time scale.

Figure 4 shows the effects of growth on the evolution of
the axon diameter at short and long time scales. On short
time scales (top), decreases in axon diameter closely follow
the applied increase in axon length. On the long time scales
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Fig. 5 Effects of net elongation rate. For a step size of 0.5µm, the
stretch rate can be adjusted by changing the length of the rest period
between the displacements (top). Larger net elongation rates cause
larger peak and average stresses (bottom)

(bottom), the axon diameter begins to recover as growth
increases.

3.2 Effects of net elongation rate

For a given step size, we can achieve different net elongation
rates by adjusting the length of the rest periods. Shortening
the rest periods results in a faster elongation rate. Figure 5
illustrates that a shorter rest period gives the stress less time
to decay, so increasing the elongation rate raises the average
and peak stresses. We can see the effects of growth in the
decay of the average stress over time: At faster elongation
rates, the stress reaches higher magnitudes before decaying
in response to growth. Themagnitude of the asymptotic stress
also increases with elongation rate.

3.3 Effects of accelerated stretch

To examine the ability of the axon to acclimate to increases
in elongation rate, we apply a systematic accelerating elon-
gation scheme. After the first 24h, we increase the stretch
rate from 1 to 2mm/day. After days 3 and 5, we increase
the rate again to 3 and 4mm/day. Figure 6 illustrates the
resulting stress response. Initially, the stress increases rapidly
in response to the applied elongation. As growth occurs,

123



592 Computational Mechanics (2020) 65:587–595

0 50 100 150
0

50

100

150

200

T
o

ta
l S

tr
et

ch
 (

-)

0 50 100 150
0.0

2.0

4.0

6.0

8.0

Time (hr)

S
tr

es
s 

(k
P

a)

Fig. 6 Effects of accelerated stretch The elongation rate is increased
gradually in increments of 1mm/day after days 1, 3, and 5 over a period
of 6days (top).After an initial rapid increase, the stress decays as growth
occurs (bottom)

the stress begins to decay. Every time the elongation rate
increases, there is a corresponding peak in stress followed
by a period of decay while the rate is held constant. Since the
growth is accelerating over time, the stress remains relatively
low despite the increasing elongation rate.

3.4 Predicting disconnection

Axonal stretch experiments show that for a 1mm/day elon-
gation rate, 2μm is the maximum step size that does not
lead to disconnection. Furthermore, 1mm/day is the maxi-
mum achievable elongation rate during the first 24h for any
step size. However, after the first day, the elongation rate can
be increased without causing disconnection [31]. Compar-
ing these observations to our model’s estimates of the axon
membrane tension, we deduce disconnection threshold val-
ues of 1.8mN/m for average tension and 2.1mN/m for peak
tension.

Figure 7 highlights the disconnection thresholds for our
two step sizes, 0.5µm and 3µm. Clearly, the lower thresh-
old, the solid line, does not predict disconnection for either
0.5µmor 3µm since the average tension is the same for both
and remains below the lower threshold. The higher threshold,
the dashed line, predicts that the 3µm step size would lead
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Fig. 7 Effects of displacement increment on disconnection. The lower
disconnection threshold for the average membrane tension (solid line)
does not predict disconnection for either displacement increment. The
higher disconnection threshold for the peak membrane tension (dashed
line) predicts that the 3µm displacement increment will lead to discon-
nection

0 5 10 15 20 25
0.6

1.0

1.4

1.8

2.2

Time (hr)

M
em

br
an

e 
Te

ns
io

n 
(m

N
/m

)

1.5 mm/day
1.0 mm/day
0.5 mm/day

Fig. 8 Effects of net elongation rate on disconnection. The 1.5mm/day
elongation rate will lead to disconnection, since the membrane tension
has exceeded both threshold for the average membrane tension (solid
line) and for the peak membrane tension (dashed line). Smaller net
elongation rates will not trigger disconnection

to disconnection, since the peak tension exceeds the higher
threshold.

Figure 8 shows the disconnection thresholds for our three
elongation rates, 0.5mm/day, 1.0mm/day, and 1.5mm/day.
The model predicts disconnection for the 1.5mm/day elon-
gation rate, but membrane tensions for the 1.0mm/day and
0.5mm/day rates remain below the disconnection thresholds.
Finally, for the case of accelerated stretching, in Fig. 9, the
accelerating growth rate keeps the tension values below the
disconnection threshold, and the model predicts no discon-
nection.

3.5 Maximizing growth

To obtain the optimal stretch history for maximum growth,
we fix the membrane tension at 1.8mN/m, the threshold
on average tension. We then solve for the stretch history
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Fig. 9 Effects of accelerated stretch on disconnection. As elongation
rate is increased, accelerated growth keeps themembrane tension below
the disconnection thresholds for the average membrane tension (solid
line) and for the peak membrane tension (dashed line)
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Fig. 10 Optimized stretch history. Tomaximize growth for a prescribed
tension threshold, the optimal stretch history displays a characteris-
tic S-shape form: initially, the stretch increases rapidly to maximize
the trigger for growth. Then, the stretch rate decreases to prevent ten-
sion from exceeding the tension threshold. With increasing growth, the
stretch rate can increase again

that will maintain this average tension. In this optimal case,
we increase the stretch continuously instead of discretely in
several steps. This minimizes the peak stresses and allows
disconnection to be governed solely by the average tension.
Figure 10 shows the optimal stretch history over the first
day. The stretch increases rapidly at first to maximize the
trigger for growth. The stretch rate must then decrease to
prevent tension from surpassing the threshold. Finally, as
growth increases, the stretch rate can be raised once again.

4 Discussion

Ourmodel predicts a disconnection behavior that agrees with
experimental observations [31]. At short time scales, our
model explains that large displacement increments result in
high peak membrane tensions, increasing the risk of axonal
disconnection. For a given displacement step size, increasing

the net elongation rate results in both higher average tensions
and higher peak tensions.An excessively high elongation rate
will naturally trigger disconnection. Interestingly, the accel-
erating growth evolution law allows increases in elongation
rate since stresses decrease as growth occurs.

Pfister et al. [31] observed that during the first 24h of
elongation, the step size was limited to 2μm, and the
net elongation rate could not exceed 1mm/day. To agree
with these values, our model requires a lower membrane
tension threshold of 1.8mN/m and a higher threshold of
2.1mN/m. The lower threshold governs disconnection based
on the time-averaged tension while the higher threshold
governs disconnection based on the peak tension. These
membrane tensions are slightly lower than the 5–12mN/m
range reported by Dai et al. for molluscan neurons [8]. This
discrepancy could be caused by the time-dependent nature of
the membrane strength. In red blood cells, Hategan et al. [19]
observed that tensions of 4–7mN/m led to rupture after only
a few seconds. However, tensions as low as 1mN/m could
also cause rupture if sustained for a time period on the order
of hours. Similarly, Evans et al. described the dependence
of rupture tension on loading rate. Increasing the loading
rate from 0.01 to 100mN/m/s, they observed the rupture ten-
sion to increase from 2 to 30mN/m [14]. In our model, the
lower tension threshold of 1.8mN/m governs the average
tension, which is sustained for several hours. This thresh-
old agrees with the observations of Hategan et al. [19]. The
higher threshold of 2.1mN/m is still in the lower range of the
reported rupture tensions. This threshold governs the peak
tension, which would only be sustained for a few seconds.
Based on reported rupture tensions, a value of 2.1mN/m
would likely not cause disconnection after only a few seconds
[14,19]. However, our 2.1mN/m threshold could be describ-
ing a cumulative effect of short term excursions to higher
tensions superposed on the baseline average tension.

In their model of axonal stretch growth, Purohit and Smith
suggest a single threshold value of 1mN/m to predict axonal
disconnection [32]. Using this threshold, they can reproduce
experimentally observed limits on net elongation rate. Their
model can also predict the accommodation of higher elonga-
tion rates after an acclimation period. However, Purohit and
Smith focus only on the effect of growth on membrane ten-
sion; they do not consider the effects of viscoelasticity. As a
result, their model is limited in its predictive ability at short
time scales and cannot prescribe limits on displacement step
size. By incorporating viscoelasticity and a second tension
threshold, we extend the model’s predictive ability to both
short and long time scales. As a result, we are able to predict
limits on both displacement step size and elongation rate.

While our results suggest that our model can predict opti-
mal displacement histories that avoid axonal disconnection,
we used and estimated our parameter values from different
studies and different cell types. Ideally,measurements should
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be taken on the particular cell type of interest, so that param-
eters can be optimized for the stretch growth behavior of
that specific cell type. Additionally, further experiments on
the limits of axonal stretch growth are needed to evaluate
both our choice of growth evolution law and the robustness
of our model predictions. Finally, we chose a phenomeno-
logical evolution law for the growth parameter that allows
growth to accelerate over time. While the phenomenologi-
cal model reproduces experimentally observed behavior, it
does not provide a mechanistic explanation for the observed
behavior. For example, the viscous relaxation time constant
we used here is several orders of magnitude larger than the
values reported for red blood cell and neuronal growth cone
membranes, which are on the order of 10−1s [7,21]. This
could be because the experimental measurements were taken
on the plasma membrane alone, whereas the viscosity in our
model characterizes the behavior of the entire axon includ-
ing the plasmamembrane, cytosol, and cytoskeleton. Amore
mechanistic model of the axon, with all its subcellular struc-
tures and organelles, could provide additional details about
the load transfer within the axon [11] and the biochemistry of
axonal failure [13,15]. However, the modular nature of our
model facilitates its implementation in finite element anal-
yses of axon elongation devices or other studies of axonal
growth.

In axonal stretching, growth occurs on the order of hours,
but applied deformations occur on the order of seconds. Lim-
itations on axonal stretch growth are found in both regimes.
By including both viscoelasticity and growth in a model
of stretch-mediated axonal growth, we were able to predict
disconnection behavior at both time scales. While growth
rate governs disconnection at long time scales, the viscoelas-
tic constitutive behavior of the axon governs disconnection
at short time scales. Accounting for both viscoelasticity
and growth provides more insight into the phenomenon of
stretch-mediated growth than the behavior at either time scale
alone.
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