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Abstract

Neurodegenerative diseases such as Alzheimer’s or Parkinson’s are associated with the

prion-like propagation and aggregation of toxic proteins. A long standing hypothesis that

amyloid-beta drives Alzheimer’s disease has proven the subject of contemporary contro-

versy; leading to new research in both the role of tau protein and its interaction with amyloid-

beta. Conversely, recent work in mathematical modeling has demonstrated the relevance of

nonlinear reaction-diffusion type equations to capture essential features of the disease.

Such approaches have been further simplified, to network-based models, and offer

researchers a powerful set of computationally tractable tools with which to investigate

neurodegenerative disease dynamics. Here, we propose a novel, coupled network-based

model for a two-protein system that includes an enzymatic interaction term alongside a sim-

ple model of aggregate transneuronal damage. We apply this theoretical model to test the

possible interactions between tau proteins and amyloid-beta and study the resulting coupled

behavior between toxic protein clearance and proteopathic phenomenology. Our analysis

reveals ways in which amyloid-beta and tau proteins may conspire with each other to

enhance the nucleation and propagation of different diseases, thus shedding new light on

the importance of protein clearance and protein interaction mechanisms in prion-like models

of neurodegenerative disease.

Author summary

In 1906 Dr. Alois Alzheimer presented the case of Ms. Auguste Deter; her symptoms

would help to define Alzheimer’s disease (AD). Over a century later, with an aging world

population, AD is at the fore of global neurodegenerative disease research. Previously,

toxic amyloid-beta protein (Aβ) was thought to be the primary driver of AD development.
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Recent research suggests that another protein, tau, plays a fundamental role. Toxic tau

protein contributes to cognitive decline and appears to interact with toxic Aβ; research

suggests that toxic Aβmay further increase the effects of toxic tau. Theoretical mathemati-

cal models are an important part of neurodegenerative disease research. Such models:

enable extensible computational exploration; illuminate emergent behavior; and reduce

research costs. We have developed a novel, theoretical mathematical model of two inter-

acting species of proteins within the brain. We analyze the mathematical model and dem-

onstrate a computational implementation in the context of Aβ-tau interaction in the

brain. Our model clearly suggests that: the removal rate of toxic protein plays a critical

role in AD; and the Aβ-tau ‘conspiracy theory’ is a nuanced, and exciting path forward for

Alzheimer’s disease research.

Introduction

Neurodegenerative diseases such as Alzheimer’s (AD) or Parkinson’s (AD) are associated with

the propagation and aggregation of toxic proteins. In the case of AD, it was Alzheimer himself

who showed the importance of both amyloid-β (Aβ) plaques and tau-protein (τP) neurofibril-

lary tangles (NFT) in what he called the “disease of forgetfulness” [1, 2]. These two proteins are

very different. Aβ forms extracellular aggregates and plaques whereas τP are intracellular pro-

teins involved in the stabilization of axons by cross-linking microtubules that can form large

disorganized tangles [3, 4]. Since the early 90’s, when it was first formulated, the “amyloid cas-

cade hypothesis” has dominated the search for cures and treatments [5, 6]. According to this

hypothesis, an imbalance between production and clearance of Aβ42 and other Aβ peptides is

not only an early indicator of the disease but the causing factor for its initiation, progression,

and pathogenesis [7]. However, the repeated failures of large clinical trials focussing on the

reduction of Aβ plaques has led many researchers to question the amyloid hypothesis and

argue for the possible importance of other mechanisms.

One obvious alternative is that τP plays a more prominent role than the amyloid hypothesis

suggests. The τP are usually considered as secondary agents in the disease despite the fact that

(1) other τP-related diseases (tauopathies), such as frontotemporal lobar degeneration, are

mostly dominated by τP spreading [8]; (2) brain atrophy in AD is directly correlated with

large concentrations of NFT [9, 10]; (3) τP distribution determines disease staging [11]; (4)

lowering τP levels prevent neuronal loss [12]; (5) τP reduces neural activity and is the main fac-

tor associated with cognitive decline [13]. These findings may explain the relative lack of clini-

cal improvements after Aβ suppression and the debate between the relative importance of Aβ
proteopathy and τP tauopathy in AD [14]. Furthermore, the similarity in mechanism and pro-

gression between prion diseases [15] and classical neurodegenerative diseases led to the formu-

lation of the “prion-like hypothesis” [16, 17, 18, 19, 20, 21] stating that all these protein-related

degenerative diseases are characterized by the progressive spreading and autocatalytic amplifi-

cation of abnormal proteinaceous assemblies through axonal pathways [22].

Since so many cellular mechanisms are poorly understood in vivo, the relative importance

of different groups of toxic proteins and their possible interactions have not been established.

In particular, both τP and Aβ depend upon and modify the cellular environment [16]. Yet, in

recent years a number of studies have linked these two anomalous proteins [23] and raised the

possibility that protein-protein interactions in neurodegenerative diseases are a key to under-

standing both spreading and toxicity [24, 25]. According to Walker, for AD “the amyloid-β-τ
nexus is central to disease-specific diagnosis, prevention and treatment” [14].
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Specifically, the following crucial observations have been made in AD: (1) tangles in the

cortex rarely occur without Aβ plaques [12]; (2) the presence of Aβ plaques accelerates both

the formation of τP aggregates [26] and the interneuronal transfer [27] of τP; (3) the presence

of τP induces blood vessel abnormalities [28] and induces neuroinflammation through micro-

and astro-glial activation [29]; (4) the presence of Aβ can induce the hyperphosphorylation of

τP and the creation of toxic τP seeds by disturbing cell signaling via oxidative stress or through

plaque-associated cells (such as microglia) or molecules [30, 31, 32, 33]; (5) Aβ and toxic τP

target different cellular components, and doing so amplify each other’s toxic effects [23]; (6)

τP mediates Aβ toxicity as a reduction of τP prevents Aβ-induced defects in axonal transport

[23]; (7) perhaps more anecdotal, it has also been argued that the lack of clear evidence of

dementia in non-human primates, despite the presence of Aβ plaques, could be due to a differ-

ence in Aβ-τ interactions in these species [34].

From these observation, we extract three crucial modes of interaction:

M1: The seeding of new toxic τP is enhanced by the presence of Aβ.

M2: The toxicity of Aβ depends on the presence of τP.

M3: Aβ and τP enhance each other’s toxicity.

Here, our goal is twofold: first to develop modeling and computational tools to study pro-

tein-protein interactions at the brain-organ level and second to test the relative effect of these

interactions by direct simulation. Typical approaches for organ-size simulation of dementia

progression [35] take the form of either continuous models formulated in terms of anisotropic

reaction-diffusion equations [36, 37, 38], or discrete systems on the brain’s connectome net-

work. The discrete approach can be further divided into pure-diffusion linear models [39, 40,

41, 42, 43], probabilistic models [44, 45, 46], or deterministic models [47, 48].

A primary result, of interest to the computational biology community, for the current work

will be to show: that non-trivial interactions between Aβ and τP can be realized with relatively

simple deterministic models and couplings; and that these interactions can lead to effects with

physiological interpretations in neurological disease modeling. Moreover, the mathematical

analysis will highlight that clearance mechanisms play a key role in destabilizing the system

towards proteopathy. We will therefore select the simplest possible, deterministic, protein kinetic

model, including a bulk clearance term, that allows for the expression of both a healthy and toxic

regime for a single protein; the heterodimer model [49, 50]. One such system will be defined for

Aβ, one for τP and the two heterodimer systems are coupled with a single balanced interaction

term. We augment the model by adding an stand-alone, first order equation for damage evolu-

tion; this equation expresses the deleterious effects of Aβ, τP and their interactions. Our general

approach, following [48] is to study some of the key properties of this continuous model before

discretizing it on a network and solving it numerically on the brain’s connectome graph.

Results

Network model dynamics

We have established the properties of our system of equations in the homogeneous case and in

one-dimension (Methods, A network mathematical model). The study has lead to the identifi-

cation of two fundamental disease propagation modes depending on the parameters: the pri-

mary tauopathy where toxic τP states can exist independently from the Aβ concentration, but

are enhanced by its presence; and the secondary tauopathy where the presence of toxic τP is

slaved to the existence of toxic Aβ. We can use this analysis as a guide to the simulation of the

full network equation. Eqs (8)–(12) were discretized on the reference connectome [59]
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(Methods, A network mathematical model) using CVODE as part of the SUNDIALS nonlinear

ODE solver library [63] in addition to KLU [64] as part of the SuiteSparse [65] linear algebra

library. Snapshots of the dynamics are shown in subsequent figures, but full videos can be

found in the supplementary material.

As a way to systematically test the validity of our computational platform, we have per-

formed two main tests. First, we reproduced the homogeneous states in the full network and

second, we reproduce the transition between homogeneous states. Both tests are detailed in S1

Appendix in addition to a discussion regarding a choice of hypothetical, non-clinical parame-

ters for illustration purposes; S1 Appendix contains a full discussion on the specific numeric

values of the stationary states corresponding to the choices of of Table 1.

Front dynamics on networks. Propagating front solutions for the system of partial differ-

ential Eq (3) were considered, via linearization around the healthy state and reduction to one

spatial dimension, (c.f. Methods, Front propagation), Propagating fronts represent fundamen-

tal modes of disease pathology dynamics that can also be realized by the network model of

(8)–(12) as we now demonstrate. We consider two different network for front propagation.

First, a three-dimensional regular cubic lattice with nx = 30 nodes in the x-direction ny = 6

nodes in the y-direction and nz = 3 nodes in the z-direction, spaced equally at unit length. Sec-

ond, we use the physiological brain connectome domain discussed in the Methods section (A

network mathematical model), but we choose initial conditions on two sides of the brain to

illustrate the front dynamics. In the next section we will consider the same domain but with

realistic initial conditions.

The first example is that of primary tauopathy corresponding to the parameters of Table 1.

Formulas for the steady states, for primary tauopathy, are listed in the Methods (An Analysis

of the continuous model, Stationary points) section.

Primary tauopathy. Primary tauopathy, synthetic domain. We set all nodes to the

healthy state ðu; ~u; v; ~vÞ ¼ ð0:75; 0; 0:5; 0Þ and perturb the initial condition of the left-hand

nodes 0 � x � 4 by adding a 5% concentration (~u ¼ 0:05) of toxic Aβ. We perturb the initial

condition of the right-hand nodes 25 � x � 29 by adding a 5% concentration (~v ¼ 0:05) of

toxic τP. As expected, we see the toxic Aβ concentration achieve the theoretical maximum,

permitted by the parameters, of ~u ¼ 0:25 while toxic τP first achieves the maximum associated

with ~v ¼ v3 ¼ 0:25 and, upon mixing with Aβ, achieves the fully toxic state value

~v ¼ v4 ¼ 0:45. The color scale of Fig 1 was chosen to accentuate the interaction.

Primary tauopathy, brain connectome. Simulation of disease front propagation was

then carried out using the physiological connectome (Methods, A network mathematical

model). The seeding sites selected for toxic Aβ and toxic τP are the right supramarginal gyrus

and left supramarginal gyrus respectively; these seeding sites provide a direct analogy, when

the brain connectome is viewed from the frontal lobe, with Fig 1. Fig 2 depicts time instances

qualitatively reflecting, in one-to-one correspondence, the stages of the synthetic domain com-

putation of Fig 1. A horizontal slice, at the plane of the supramarginal gyri, of the brain

Table 1. Primary tauopathy model parameters.

Aβ system parameters τP system parameters

a0 = 0.75 b0 = 0.5

a1 = 1.0 b1 = 1.0

a2 = 1.0 b2 = 1.0

~a1 ¼ 0:6 ~b1 ¼ 0:4

Coupling parameter: b3 = 1.0

https://doi.org/10.1371/journal.pcbi.1008267.t001
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connectome is used to maximally expose the front propagation dynamics. The impact of brain

connectome cross-connectivity is evident in the stages depicted in Fig 2. In particular, when

the Aβ and τP wavefronts first meet they do so in several locations. This is due to the left-right

hemispheric connectivity; both direct nodal connectivity and vis-a-vis propagation in the cor-

onal plane.

Secondary tauopathy. The parameters for the at-risk secondary tauopathy patient are

those of Table 1 with two exceptions; first, as usual for secondary tauopathy, we take b2 = 0.75

and second we take b3 = 3.0. We have increased b3 to facilitate the comparison with front prop-

agation theory, for secondary tauopathy, discussed in the Methods section.

Secondary tauopathy, synthetic domain. Secondary tauopathy consists of all stationary

states except for the toxic τP–healthy Aβ state; i.e. ðu3; ~u3; v3; ~v3Þ is not included. The

Fig 1. Front propagation in primary tauopathy; synthetic rectangular domain. Each subfigure consists of a toxic Aβ
concentration distribution (top left), toxic τP concentration distribution (bottom left) and a plot (solid line: Aβ, dashed

line: τP) of the concentration level on the x−axis. Dark blue indicates the minimum concentration of c = 0.0 while

bright red indicates the maximum of c = 0.5. See the Methods section (Front propagation) for a comparison to theory.

(See also: supplementary S1 Video).

https://doi.org/10.1371/journal.pcbi.1008267.g001

Fig 2. Front propagation in primary tauopathy; brain connectome. Each subfigure consists of a toxic Aβ
concentration distribution (subfigure left) besides a toxic τP concentration distribution (subfigure right). Dark blue

indicates the minimum concentration of c = 0.0 while bright red indicates the maximum of c = 0.5. (See also:

supplementary S2 Video and supplementary fle S2 Data).

https://doi.org/10.1371/journal.pcbi.1008267.g002
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stationary point ðu4; ~u4; v4; ~v4Þ depends on b3; with the parameters above we have

ðu4; ~u4; v4; ~v4Þ ¼ 0:6; 0:25;
1:6

b3 þ 3
;

5b3 � 1

4b3 þ 12

� �

¼ ð0:6; 0:25; 0:2�6; 0:58�3Þ; ð1Þ

while the other two secondary tauopathy stationary points, c.f. (14) and (15), coincide with

their values for primary tauopathy. The initial value at all nodes are first set to the healthy

state. A 5% perturbation in concentration is then added to the toxic Aβ initial value for the

nodes 0 � x � 4 and a perturbation of 1 × 10−9%, i.e. 1 × 10−11, is added to the toxic τP initial

value for the nodes 0 � x � 14.

As expected: the initial toxic Aβ wavefront achieves its theoretical maximum of ~u ¼ 0:25;

c.f. Fig 3 and the front propagation discussion, for secondary taopathy, in the Methods section.

The toxic τP wave takes on detectable concentration levels at the point when the Aβ wave

reaches the halfway mark in the rectangular domain. The toxic τP state connects, immediately,

to the theoretical maximum of the toxic τP–toxic Aβ stationary state value of ~v4 ¼ 7=12 and

quickly proceeds to catch up to the Aβ wavefront.

We tested the time of appearance and saturation of the toxic τP wave front as a function of

the interaction parameter b3. Plots for four values of b3 are shown in Fig 4 where the y-axis sig-

nifies the maximal toxic τP concentration obtained, over all nodes, with respect to the maxi-

mum concentration for that value of b3 (c.f. (1)). Fig 4 highlights the important, and patient-

specific, role that b3 may play in further efforts to deploy (8)–(11) for the modeling of Alzhei-

mer’s disease. In particular values of b3 � 1 do lead to the development of tauopathy; however,

this development emerges significantly later than for higher values of this interaction parame-

ter. Clinically, such a value of b3 could correspond to a patient who, at the time of death, pres-

ents significant amyloid plaques but negligible, or undetectable, levels of neurofibrillary tau

tangles.

Secondary tauopathy, brain connectome. We also simulated secondary tauopathy

dynamics on the physiological brain connectome (Methods, A network mathematical model).

A 5% toxic Aβ perturbation from the healthy state was seeded at the site of the left supramargi-

nal gyrus; all nodes of the left hemisphere were then seeded with an additional 1 × 10−9% con-

centration of toxic τP. Snapshots of the evolution is shown in Fig 5. As indicated above we

have b3 = 3 for comparison with Fig 3 and the theory of propagating fronts as illustrated in the

Methods section. A detail of particular interest is that, even though the entire left hemisphere

Fig 3. Front propagation in secondary tauopathy; rectangular domain. Each subfigure consists of a toxic Aβ
concentration distribution (top left), toxic τP concentration distribution (bottom left) and a plot (solid line: Aβ, dashed

line: τP) of the concentration level on the x−axis. Dark blue indicates the minimum concentration of c = 0.0 while

bright red indicates the maximum of c = 0.5 for toxic Aβ and c ¼ 0:58�3 ¼ 7=12 for toxic τP. See the Methods section

(Front propagation) for a comparison to theory. (See also: supplementary S3 Video).

https://doi.org/10.1371/journal.pcbi.1008267.g003
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was seeded uniformly with toxic τP, the toxic τP wave follows the same anisotropic infection

pathway, from the left supramarginal gyrus, as the toxic Aβ front propagation. This implies

that latent development of tauopathy, in this regime, is heavily influenced by Aβ pathology

history.

Application to neurodegenerative disease modeling

We have shown in the previous section that the overall phenomenology obtained from the

dynamic evolution of the continuous model in one-dimension (Methods, A network mathe-

matical model, Front Propagation) is recovered within the discrete network setting. We can

Fig 4. The onset effect due to b3 in secondary tauopathy. Saturation % (y-axis) vs Simulation time (x-axis).

https://doi.org/10.1371/journal.pcbi.1008267.g004

Fig 5. Front propagation in secondary tauopathy; brain connectome. Each subfigure consists of a toxic Aβ
concentration distribution (subfigure left) besides a toxic τP concentration distribution (subfigure right). Dark blue

indicates the minimum concentration of c = 0.0 while bright red indicates the maximum of c = 0.5 for toxic Aβ and

c ¼ 0:58�3 ¼ 7=12 for toxic τP. (See also: supplementary S4 Video and supplementary S2 Data).

https://doi.org/10.1371/journal.pcbi.1008267.g005
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therefore use the network model and our primary classification to study the interaction of pro-

teins in the brain. Here, we apply (8)–(11) to a computational case inspired by Alzheimer’s dis-

ease. In particular we consider seeding sites, for toxic Aβ and toxic τP, commensurate with [11,

66, 67, 47] Alzheimer’s disease staging. Alzheimer’s disease is a complex multiscale phenomena;

a uniform parameter regime, throughout all brain regions, is unlikely to accurately reflect a

patient’s real disease progression. Nevertheless, for this early investigation, we will first consider

the simple uniform parameters, of the model’s primary and secondary tauopathy regimes, as

discussed in the section on network model dynamics. In addition we briefly consider the evolu-

tion of the coupled neuronal damage term, given by (12), and the effect of the coefficients

therein. We shall also select the diffusion constants, ρ of (7), to be unity for (8)–(11).

A simplified model of Alzheimer’s disease proteopathy. Alzheimer’s associated amyloid

deposition begins [18, 47, 66, 67] in the temporobasal and frontomedial regions. Tau staging,

in Alzheimer’s disease, follows the Braak tau pathway [11] and begins in the locus coeruleus

and transentorhinal layer [18, 47, 67]. These seeding sites, used throughout this section, are

shown in Fig 6. The temporobasal and frontomedial regions for toxic Aβ seeding are

highlighted in red on the left while the locus coeruleus (in the brain stem) and transentorhinal

associated regions, for toxic τP staging, are highlighted red on the right.

The regimes of primary and secondary tauopathy will first be considered on the whole

brain connectome with globally-constant synthetic parameters. We will observe several char-

acteristic traits of these modalities and also note the similarity between these pure states and to

a qualitative three-stage progression [18] of protein lesions, typical of Alzheimer’s disease, as

inferred from post-mortem analyses; the progression pattern is illustrated in Fig 7. In the sub-

section titled ‘a mixed model comparison to Alzheimer’s diseased patient data’ we consider the

case of mixed regional modalities; i.e. a mixture of primary and secondary tauopathy connec-

tome regions. We illustrate that the model can manifest canonical features of positron emis-

sion tomography (PET) SUVR intensities characteristic of Alzheimer’s disease (c.f. for

instance [68, 69]). In particular: we will compare the results of a mixed-mode simulation with

a cross sectional Alzheimer’s patient cohort dataset procured from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database.

Alzheimer’s disease, primary tauopathy. All nodes in the connectome were first set to

the healthy, but susceptible, primary tauopathy patient state

Fig 6. Simulated seeding sites for a model of Alzheimer’s disease. Toxic Aβ (left) and toxic τP (right) seeding sites.

https://doi.org/10.1371/journal.pcbi.1008267.g006
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ðu1; ~u1; v1; ~v1Þ ¼
a0

a1

; 0;
b0

b1

; 0

� �

¼ ð0:75; 0; 0:5; 0Þ:

The temporobasal and frontomedial Aβ seeding sites, consisting of fifty-three nodes, were

each seeded with a toxic amyloid concentration of 0.189%; thus the brain-wide toxic Aβ con-

centration represents a 1% concentration deviation from healthy. Similarly, the locus coeruleus

and transentorhinal nodes were seeded with an aggregate perturbation of 1% toxic τP.

Fig 8a shows the average brain-wide concentration for all four protein populations for the

primary tauopathy patient (c.f. Table 1) with interaction term b3 = 1. As we observed previ-

ously, in (1), the value of b3 directly informs the saturation τP concentration, of ðv; ~vÞ, for the

disease. Fig 8b shows the evolution of the toxic τP burden for various b3. For each value of b3

the toxic τP invasion window was computed as the difference in time between the appearance

of a global 1% toxic τP concentration to the simulation time where the maximum ~v was

reached. We performed a least squares fit and found that the invasion window, for primary

tauopathy, decreases exponentially with an increase in coupling strength (b3) between toxic Aβ
and toxic τP. Fig 8c shows the result.

This result suggests that the dynamics of toxic protein evolution is highly sensitive to the

coupling between Aβ and τP: Toxic Aβ accelerates, in a nonlinear fashion, the way toxic τP

emerges across the brain. Acceleration of toxic τP progression due to the presence of toxic Aβ

Fig 7. Characteristic progression of of Aβ and τP lesions. 3-stage Aβ (top) progression and τP NFT (bottom)

progression.

https://doi.org/10.1371/journal.pcbi.1008267.g007

Fig 8. Protein-protein interaction in primary tauopathy.

https://doi.org/10.1371/journal.pcbi.1008267.g008
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has also been observed in mouse models of Alzheimer’s disease [27]. Consulting longitudinal

tau PET studies, in combination with amyloid-beta data from a public database, could provide

an estimation of b3 in the primary tauopathy model.

The toxic load progression of the susceptible primary tauopathy patient is shown in Fig 9 at

five equidistant time points throughout the invasion window. To facilitate a comparison with

Fig 7: a sagittal view of the progression, of each toxic agent, is presented; directly below is an

opacity-exaggerated view wherein regional opacity is proportional to the agent’s regional toxic

load. Comparison with Fig 7 suggests reasonable qualitative agreement; thus warranting fur-

ther study of physically relevant parameters with a view towards real clinical applications.

Alzheimer’s disease, secondary tauopathy. All nodes were set to the healthy, but suscep-

tible, patient state corresponding to the susceptible secondary tauopathy patient parameters

(Table 1 with b2 = 0.75). In addition, for a baseline secondary tauopathy case, we follow the

secondary tauopathy approach discussed previously and select the interaction parameter of

b3 = 3.0; the fully invaded secondary tauopathy state values are therefore (1). Seeding patterns

for both Aβ and τP are identical to the case of primary tauopathy discussed above.

Fig 10a shows the average brain-wide concentration for all four protein populations of the

secondary tauopathy patient with baseline interaction term b3 = 3. As in the case of primary

tauopathy we investigate the effect of b3 on toxic load and invasion window by considering a

value range four times smaller to four times larger than the baseline b3 = 3 case. Toxic load

curves are shown in Fig 10b while invasion windows are shown in Fig 10c.

Fig 9. Toxic proteopathy progression dynamics in the primary tauopathy patient. Toxic Aβ (top row) and opacity

exaggerated toxic Aβ progression (second row); Toxic τP (third row) and opacity exaggerated toxic τP progression

(last row). Color scale is identical to Fig 1. (See also: supplementary S5 Video, supplementary S6 Video and

supplementary S2 Data).

https://doi.org/10.1371/journal.pcbi.1008267.g009

Fig 10. Protein-protein interaction in secondary tauopathy.

https://doi.org/10.1371/journal.pcbi.1008267.g010
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Interestingly, we see distinct differences in comparison with the primary tauopathy case

(c.f. Fig 8a–8c). More specifically, in primary tauopathy it is evident (Fig 8b) that the disease

onset is only slightly affected by varying the interaction parameter b3; for secondary tauopathy,

in contrast, b3 has a profound effect on disease onset latency. Moreover, the invasion window

variation with b3 for secondary tauopathy is more complex than that of primary tauopathy. Fig

10c shows that the invasion window duration initially decreases exponentially with b3 but then

appears to increase logarithmically for b3 � 3. Analyzing the invasion window start time and

end time separately shows a clear, but separate, exponential decay pattern versus b3. Fig 11

shows the least-squares exponential fit to the invasion start and end times.

As in the primary tauopathy case we now consider characteristic toxic load progression for

secondary tauopathy. The Aβ progression is identical to that shown in Fig 9 (top two rows). This

is expected as only the τP portion of the system has been modified with respect to the primary

tauopathy regime (S1 Appendix). The τP secondary tauopathy progression is shown, in Fig 12,

at equally spaced simulation times through the invasion window. Qualitatively, the progression

of secondary tauopathy also reflects the characteristic post-mortem progression of Fig 7.

A mixed model comparison to Alzheimer’s diseased patient data. Thus far, we have

considered, respectively, the general features of the modalities of primary versus secondary

tauopathy; illustrated with synthetic, globally constant parameters. We have observed several

interesting facets of these two disease states. For instance, regions in a state of primary tauopa-

thy can develop Aβ and τP proteopathy separately; the Aβ interaction parameter, b3, does not

alter the onset of tauopathy but does modulate the regional concentration. Conversely, in sec-

ondary tauopathy the presence of Aβ pathology is necessary for τP pathology and the interac-

tion parameter, b3, modulates both the latency and the intensity of the regional pathology. We

have also seen that proteopathy progression in pure models, e.g. where all regions have the

Fig 11. Prodromal window variations with b3, secondary tauopathy. Invasion starting (left) and ending (right) time

vs. b3.

https://doi.org/10.1371/journal.pcbi.1008267.g011

Fig 12. Toxic τP progression dynamics in the secondary tauopathy patient. Toxic τP (first row) and opacity

exaggerated toxic τP progression (second row). Color scale is identical to the τP case of Fig 3. (See also: supplementary

S5 Video, supplementary S7 Video and supplementary S2 Data).

https://doi.org/10.1371/journal.pcbi.1008267.g012
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same primary or secondary tauopathy parameters, bears a notable resemblance (Fig 7) to post-

mortem progression of protein lesions [18]. However, PET imaging studies of Aβ and τP

radiotracer uptake tell a more nuanced story. For instance, in Alzheimer’s disease the distribu-

tion of ([18F]flortaucipir and [18F]THK-5117, among others) PET-τP SUVR intensities are dis-

tinctly biased [68, 69] towards the temporal and parietal regions of the brain; a feature that we

do not see in Fig 9 or Fig 12.

In order to demonstrate that the model of (8)–(11) can reproduce salient features of Aβ and

τP SUVR uptake in patients diagnosed with Alzheimer’s disease: we now compare a mixed-

modality simulation with a cross-sectional study of Alzheimer’s disease patient data. Sample

data for model comparison was procured from the the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI) database. We first queried the ADNI database to locate AD-diagnosed subjects

between the age of 70 and 90 who had at least one τP PET (18F-AV1451, flortaucipir) scan.

The returned results consisted of 41 patients. These initial patient candidate IDs were then

checked for a structural T1 weighted MRI within a maximum of one year of a tau PET scan;

patients without any sMRI, those with a poor quality sMRI, or those without an sMRI within a

year of the tau PET scan were discarded. The resulting cohort consisted of 38 patients (25 male

and 13 female) with mean age 78.4, a standard deviation of 5.14 years, and a male-to-female

ratio of 1.92. Patients who met the age, τP PET scan, and acceptable quality sMRI within one

year of the PET scan were not abundant in the ADNI database. Due to this the τP group was

selected, first, to maximise the number of candidates in the group.

The ADNI database contains quite a generous number of patients with Aβ (18F-AV45, flor-

betapir) PET scans. We next queried the database to locate AD-diagnosed subjects between 70

and 90 who had an Aβ (18F-AV45) PET scan in addition to a structural T1 weighted MRI

within one year. The result of this search was in excess of 100 unique patient IDs; from these

results we selected an initial candidate group of 82 unique patients IDs. The 82-candidate

group was further pruned to create a list of 48 subjects whose age and sex characteristics closely

resembled that of the τP PET group. Finally, the 48 candidate Aβ PET group was narrowed

down: first, subjects with an unacceptable or low-resolution sMRI were removed. We then

removed the minimum number of candidates required to provide as close a match as possible

to the mean age, standard deviation and male-to-female ratio of the τP PET group. The result-

ing AD cohort for AB consisted of 42 patients with mean age 78.4, a standard deviation of 5.1

years, and a male-to-female ratio of 2.0. The two groups are succinctly summarised in Table 2.

Patient data was then processed through a semi-automated, scripted software pipeline for

general connectome-graph based imaging and analysis of clinical patient data. Each of the 160

patient images, the PET and sMRI scan for each patient, were first manually analysed using

version 12 of the Statistical Parameteric Mapping [70] (SPM) software; the origin of the image

was set to coincide with the anterior commissure. Next, the sMRI images for each patient were

pre-processed for connectome-graph visualization. The SPM software was used, on each

patient sMRI, to perform a unified segmentation procedure [70]. The unified segmentation

procedure identifies grey matter, white matter, cerebrospinal fluid, skull, and exterior regions.

Table 2. Adni patient group statistics.

18F-AV1451 τP PET group 18F-AV45 Aβ PET group

Total patient count 38 42

Male patients 25 28

Female patients 13 14

Mean age ± SD, years 78.4 ± 5.14 78.4 ± 5.1

https://doi.org/10.1371/journal.pcbi.1008267.t002
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Following this, the grey and white matter segmentations served as input for spatial normalisa-

tion using the DARTEL [71] toolbox; the outputs of which were a composite template for the

Aβ patient group and a separate composite template for the τP patient group. All patient grey

matter images were then normalised to MNI-152 space using their group-specific optimised

DARTEL template.

The next step of the pipeline is to treat the PET images for both the Aβ and τP groups. This

step relies on the fact that we have already manually relocated the origin of the PET images to

the approximate visual location of the anterior commissure as mentioned above. The first new

step for this portion of the pipeline is to use the SPM software to co-register the PET images to

their sMRI counterparts. This co-registration step is the genesis of the original data procure-

ment requirement that an sMRI scan is conducted no later than one year beyond the PET

image acquisition date. The coregistered PET images are then spatially normalised using the

DARTEL template and corresponding subject deformation fields derived from the sMRI pipe-

line (c.f. above). Finally, SUVR values were computed, using SPM, by means of a whole-cere-

bellar reference region; the skull was then stripped. A voxel-wise mean, across all subjects, was

taken to produce a representative SUVR map of both AD cohorts. This completes the first por-

tion of the connectome-graph based imaging analysis pipeline; the result of this step, for both

the Aβ and τP group, is shown in the top row of Fig 13.

The averaged SUVR data of Fig 13 (top row) reports a general view of uptake across the

whole brain. In order to visualize significant features of the data: the skull-stripped SUVR

image volumes, in NIfTI file format, are visualized using Paraview vis-a-vis the NIfTI Paraview

plugin. The volume opacity then set so that the top 30% of the SUVR intensity range in the

data is visible; c.f. Fig 13, middle row. Doing so: we immediately see notable features of signifi-

cance reported in previous radiotracer studies; in particular the familiar [68, 69] temporal and

parietal dominance of the τP radiotracer uptake distribution (Fig 13, middle right) are visible.

In order to compare simulation results to the patient data of Fig 13 we now employ a connec-

tome-graph data visualization software process. This portion of the general pipeline uses func-

tionality from both SPM and the Nilearn [72] Python library. Regional masks were produced

using the Lausanne multiresolution atlas [73] parcellation to the MNI ICBM 152 non-linear

6th generation symmetric volume [74]; generating over 1000 distinct masks. The mask vol-

umes were then applied to isolate the SUVR values for each mask in the parcellation and a

regional average SUVR was computed. The computed values were then normalized to lie in

the interval [0, 1] by dividing all regional SUVR averages by the global maximum average

Fig 13. Skull-stripped, cross-sectional Alzheimer’s patient cohort SUVR intensity. Top row: averaged SUVR data is

shown. Bottom row: top 30% of SUVR intensities are visible. For both rows: (left side) 18F-AV45 florbetapir Aβ
radiotracer SUVR and (right side) 18F-AV-1451 flortaucipir τP radiotracer SUVR. Darker colors correspond to higher

SUVR values.

https://doi.org/10.1371/journal.pcbi.1008267.g013
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SUVR intensity; the normalized values, along with the MNI-space coordinates of the region’s

centroid were recorded as output. The regional normalised SUVR values and the MNI coordi-

nates were then used as input to the Python application programming interface of the Nilearn

[72] software. Using the connectome visualization capabilities of Nilearn we rendered this

information using a glass brain view with the highest 30% of values shown; see Fig 14. A com-

parison with Fig 13 (bottom row) shows that characteristic PET features associated with Alz-

heimer’s disease [68, 69] are once more prominent in the connectome view of the top 30% of

SUVR intensities.

Demonstrating that the mathematical model of (8)–(11) is capable of achieving distribu-

tions of toxic Aβ and τP that resemble the PET data of AD patients is a multi-step process. We

note that the demonstration endeavored here is illustrative and does not constitute a full vali-

dation of the model; it will, however, fully justify that the fitting of real-world data is within the

capacity of the model. First, we set all regions in the connectome to a state of secondary tauo-

pathy with the general synthetic parameters given by those in Table 3. The Aβ–τP interaction

parameter, b3, was modified in several regions. All of the modifications to b3 were symmetric;

that is, they were made in both the left and right hemispheres of the corresponding region.

The modified interaction parameters for connectome vertices in select secondary tauopathy

regions are shown in Table 4. Finally, the connectome vertices in a total of five brain regions,

in both hemispheres, were put into a state of primary tauopathy by changing the values of b2

and b3 to correspond to states in this regime. The primary tauopathy regions, and their param-

eters, are listed in Table 5.

The connectome vertex parameters given by Table 3 and regional vertex parameter modifi-

cations pursuant to Tables 4 and 5 describe a mixed-modality mathematical model; the con-

nectome graph contains vertices in a state of primary tauopathy and vertices in a state of

Fig 14. A connectome-graph view of the normalized patient SUVR data. The (left side) 18F-AV45 florbetapir Aβ
radiotracer SUVR and (right side) 18F-AV-1451 flortaucipir τP radiotracer SUVR. Highest 30% of connectome

regional values are visible. Darker colors correspond to higher SUVR values.

https://doi.org/10.1371/journal.pcbi.1008267.g014

Table 3. Comparison with ADNI Alzheimer’s patient PET data. General Synthetic parameters.

Parameter Value Parameter Value Parameter Value Parameter Value

Healthy amyloid-β population parameters

ρ 1.38 a0 1.035 a1 1.38 a2 1.38

Toxic amyloid-β population parameters

ρ 0.138 ~a1 0.828 a2 1.38

Healthy τP population parameters

ρ 1.38 b0 0.69 b1 1.38 b2 1.035

b3 4.14

Toxic τP population parameters

ρ 0.014 ~b1
0.552 b2 1.035 b3 4.14

https://doi.org/10.1371/journal.pcbi.1008267.t003
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secondary tauopathy. The model Eqs (8)–(11) were solved with the regional parameters, and

modifications, described above. Seeding patterns for both Aβ and τP are identical to those dis-

cussed at the beginning of the Alzheimer’s application section. The patient SUVR data, visual-

ised on the conectome, is shown in Fig 14; the results of the simulation are shown in Fig 15 at

time t = 78 in accordance with the mean age of the Aβ and τP cross-sectional study parameters

(c.f. Table 2); the highest 30% of values are visible. A comparison of Fig 13 (bottom row) and

Fig 14 to that of Fig 15 shows that the model can indeed capture salient characteristics of Alz-

heimer’s disease proteopathy as indicated by SUVR intensity.

Thus, this preliminary result clearly demonstrates that the model can recover primary fea-

tures of Alzheimer’s disease proteopathy and that more mathematically comprehensive analy-

ses are warranted; for instance, investigations using (variational) Bayesian methods [75, 76]

may be compelling for further study of the model alongside patient data for cognitively nor-

mal, mildly cognitively impaired, early and late onset Alzheimer’s disease cohorts.

Table 4. Regional interaction parameter variation in secondary tauopathy.

Brain region ID and modified b3 value

Pars Opercularis 7.452 Rostral middle frontal gyrus 6.707

Superior frontal gyrus 7.452 Caudal middle frontal gyrus 7.452

Precentral gyrus 5.589 Postcentral gyrus 3.726

Lateral orbitofrontal cortex 6.486 Medial orbitofrontal cortex 6.486

Pars triangularis 5.520e-6 Rostral anterior cingulate 6.210e-6

Posterior cingulate cortex 3.45 Inferior temporal cortex 13.11

Middle temporal gyrus 11.04 Superior temporal sulcus 8.97

Superior temporal gyrus 8.28 Superior parietal lobule 12.42

Cuneus 13.8 Pericalcarine cortex 13.8

Inferior parietal lobule 11.73 Lateral occipital sulcus 15.18

Lingual gyrus 13.8 Fusiform gyrus 7.59

Parahippocampal gyrus 11.04 Temporal pole 1.104e-5

https://doi.org/10.1371/journal.pcbi.1008267.t004

Table 5. Primary tauopathy regions and parameters.

Brain region b2 b3 Brain region b2 b3

Entorhinal cortex 3.125 1.104e-5 Putamen 3.795 3.795

Pallidum 2.76 2.76 Precuneus 3.105 3.105

Locus coeruleus 1.38 1.38

https://doi.org/10.1371/journal.pcbi.1008267.t005

Fig 15. Results of a mixed-modality simulation. (left) Toxic Aβ population and (right) toxic τP population are shown

at time t = 78. The top 30% of nodal values are visible; darker colors correspond to higher values.

https://doi.org/10.1371/journal.pcbi.1008267.g015
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A simple model of local and non-local neuronal damage

This section briefly examines the use a simple measure of neuronal damage with the minimal

level of complexity necessary to take into account both local and non-local effects. The intent

is to explore the qualitative differences between the primary and secondary tauopathy regimes

and the effect of varying: the toxification rate of Aβ on τP; and the rate of aggregation due to

non-local influence. The continuous Eq (3) were augmented (Methods, A continuous mathe-

matical model) with a coarse-grained damage model (4). We recall that q(x, t) represents a

first-order assessment for neuronal cell body damage vis-a-vis a, potentially variegated, set of

coupled mechanisms. These mechanisms are not individually differentiated; however, they are

assumed to be correlated with the presence of toxic Aβ, toxic τP or with those mechanisms

requiring both (c.f. the discussion surrounding Eq (4)).

The damage model (4) has several coefficients: k1 and k2 mediate the damaging effect of

toxic Aβ and τP respectively. The rate coefficient k3 reflects damage, such as the rate of neuro-

nal death following over-excitation, resulting from the combined presence of toxic Aβ and

toxic τP. Finally, k4 determines the rate of transneuronal damage propagation; thus reflecting

aggregate neuronal death as a result of communication disruption to and from regional

neighbors.

In this illustrative example we consider the parameters

k1 ¼ 1 � 10� 4; k2 ¼ 1 � 10� 2; k3 ¼ 1 � 10� 1; k4 ¼ 1 � 10� 3; ð2Þ

as a baseline from which to begin investigation. These parameters have been chosen to reflect a

few clinical observations. First, k1 is chosen as significantly less than k2 to reflect the correlation

[9, 10, 12, 13] of toxic τP neurofibrillary tangles with various forms of neuronal damage (e.g.

intracellular NFT-induced neuron death, atrophy etc). Second, toxic effects of τP are increased

in the presence of toxic Aβ [12, 26, 28, 29, 30, 31, 32, 33] thus, k3 is taken larger than k2.

As a first point of enquiry: we consider our baseline tauopathy patient parameters (Table 1)

and vary the deafferentation parameter k4 across three orders of magnitude from the initial

value given in (2). Fig 16a and 16b show the results. Note that, in each subfigure, the dashed

lines correspond, from left to right, to monotonically decreasing values of k4; the far left dashed

curve is k4 = 1.0, the next curve to the right is k4 = 1 × 10−1, the next is k4 = 1 × 10−2, and so

forth, down to the final (rightmost) curve corresponding to k4 = 1 × 10−6. In both figures the

baseline deafferentation curve, k4 = 1 × 10−3, is instead solid (and red) for emphasis. Fig 16c

and 16d show the effect of increasing b3; we have incremented b3 by two, from baseline, for

each case. As expected an overall increase in toxic τP, ~vmax ¼ 0:679 for primary tauopathy and

~vmax ¼ 0:75 for secondary, is observed with the increase in b3. However, the limiting behavior

of the deafferentation baseline coefficient choice, k4 = 1 × 10−3, remains; which justifies our

choice of k4 in (2).

The staging of the damage is presented in two figures: primary tauopathy in Fig 17 and sec-

ondary tauopathy in Fig 18. Each set of figures includes an overhead horizontal plane view in

addition to a sagittal view of the right hemisphere. A visualization starting time was selected to

coincide with the first visibility of 5% damage, in any nodes, while an ending time was selected

such that the damage progression appeared qualitatively equal. Progression times are uni-

formly spaced within this interval to allow for a direct comparison between the damage distri-

bution within the two regimes. An immediate observation is that a 5% damage detection is

latent within the secondary model, starting at t = 95, compared to the primary tauopathy para-

digm at t = 80.

It is challenging to discern differences between the fully opaque horizontal views of Fig 17

v.s. Fig 18; some discrepancies are apparent in the sagittal views, however. Relative opacity
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Fig 16. Aggregate damage in primary and secondary tauopathy. Aggregate damage (dashed; except k4 = 1 × 10−3

solid, red) curves in the base primary (a) and secondary (b) tauopathy patients. Damage with increase toxic protein

interaction, b3, in primary (c) and secondary (d) tauopathy.

https://doi.org/10.1371/journal.pcbi.1008267.g016

Fig 17. Damage progression in primary tauopathy. Horizontal plane view (top row) with opacity exaggerated

(second row) progression. sagittal view (third row) with opacity exaggerated (fourth row) progression. Dark blue

indicates the minimal damage value of q = 0.0; bright red indicates the maximum of q = 1.0. Intermediate values are:

purple (q = 0.14), sky blue (q = 0.29), green (q = 0.43), yellow (q = 0.57), orange (q = 0.71), and dark red (q = 0.86).

https://doi.org/10.1371/journal.pcbi.1008267.g017
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exaggeration is used to gain further insight. At each time the minimum and maximum dam-

age, denoted Dmin and Dmax, was computed across all regional nodes of the brain connectome;

opacity was then set to linearly increase from: fully transparent at the average 1

2
ðDmin þ DmaxÞ;

to fully opaque at the maximum value Dmax. The resulting opacity exaggeration scheme shows,

at each time step, the relative distribution of the most damaged regions.

The aforementioned opacity scheme leads to a further observations. First, the distribution

of relative significant damage in primary tauopathy (Fig 17, second and fourth rows) is clus-

tered more centrally to the toxic τP seeding site of the transentorhinal cortex. Conversely, the

distribution of relative significant damage in secondary tauopathy (Fig 18, second and fourth

rows) is distributed in the direction of the temporobasal region; a site associated with Aβ seed-

ing. As the disease progresses, t = 103 and t = 114 in Figs 17 and 18 respectively, we see two dis-

tinct differences: relative damage is more connected, in the horizontal plane, in addition to

more diffuse in the coronal direction, of the sagittal plane, for the case of primary tauopathy;

in secondary tauopathy the relative damage in the horizontal plane forms three distinct clus-

ters while severe damage in the sagittal plane is follows the temporobasal and frontomedial

directions.

It is increasingly difficult to visually detect qualitative patterns in later stages of significant

damage progression; that is, t � 125 for primary tauopathy and t � 133 for secondary. Never-

theless it appears that late stages, t = 148 and t = 170, for primary tauopathy display a more dif-

fuse distribution of significant relative damage away from the transentorhinal region; whereas

late secondary tauopathy, t = 151 and t = 170, show more comparative significant damage in

the areas associated with Aβ initial seeding.

Taken collectively: these observations suggest that damage onset and the relative distribu-

tion of severe damage may offer distinct points of view for application modelling to both typi-

cal Alzheimer’s disease along with its neuropathological subtypes [77, 78].

Fig 18. Damage progression in secondary tauopathy. Horizontal plane view (top row) with opacity exaggerated

(second row) progression. sagittal view (third row) with opacity exaggerated (fourth row) progression. The color scale

is identical to that of Fig 17.

https://doi.org/10.1371/journal.pcbi.1008267.g018
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Discussion

In this section we reflect on the analytic and computational results of the manuscript. We first

list some advantages and limitations of the current perspective; in we then discuss several

results in the context of the current literature and offer further questions and brief concluding

remarks. The proposed model is based on physical protein aggregation kinetics; the simplest

such two-famiy-two-species interacting protein model one could posit. Nevertheless, the

model is mathematically sophisticated enough to evince two distinct pathology regimes,

termed primary and secondary tauopathy, of potential clinical interest. After discretizing (3)

on a structural connectome: an approachable system of non-linear ordinary differential Eqs

(8)–(11), emerges which can be solved using standard mathematical software; such as Mathe-

matica or Matlab. As a result, we expect the model to be widely appealing to the computational

neurodegenerative disease community as a starting point for gaining further insight into pro-

tein-protein interactions in the context of Alzheimer’s disease.

Advantages and limitations

The deterministic nature of the model, c.f. (3), has at least three distinct advantages over com-

plex, stochastic models: first, the reaction terms of (3) represent simplified [49, 50], but physi-

cal, protein aggregation kinetics with a basis in experimental measurement [50, 52, 53, 54, 56];

second, the connectome-discretized Eqs (8)–(11), can also be readily implemented using off-

the-shelf mathematical software (e.g. Mathematica or Matlab, etc). Thus, (8)–(11) are easily

approachable and do not require probabilistic postulations, based on data or otherwise,

regarding underlying distributions. A third advantage is that (8)–(11) are amenable to an a-

priori mathematical analysis. This analysis is immutable in nature and much can be observed

as a result of using standard methods from the theory of ordinary differential equations and

non-linear diffusion-reaction systems. Conversely, probabilistic models may need extensive

tuning, reformulation or data curation in order to determine a model’s emergent properties.

An independent investigation, i.e. model fitting and application, founded on datasets with dif-

fering fidelity may produce divergent results. Such models essentially act in service to deeply

mine a set of data but are not always directly helpful to elucidate the impact of individual dis-

ease mechanisms.

Conversely, (8)–(11) has inherent limitations. As discussed in recent literature: [35, 79]

there are challenges surrounding the acquisition of the parameters in deterministic models

such as (8)–(11). In vitro kinetic parameters, regulating the multiplication and growth of sev-

eral proteins, have been ascertained for Aβ, τP, α-synuclein and others; c.f. the citations in

[79]. If we disregard the clearance terms in the prototypical heterodimer model, (8) and (9),

then precisely two kinetic coefficients remain: source production (a0) and healthy-to-toxic

conversion (a2). The in-vitro experimental estimation of protein-specific aggregation kinetic

parameters, however, typically relies on more complex theoretical models: consisting of at

least five kinetic parameters; and an infinite number of equations (c.f. for instance [48, Sec.

3.2]). It is therefore not immediately clear how to obtain explicit values for the kinetic rate

parameters of (8)–(11). Asymptotic expansions have provided links between the rate coeffi-

cients of other more complex models and their simpler counterparts, c.f. [Sec. 2.2] [47], and

such approaches may provide insight into reducing experimental parameters from the five-

parameter models [79, 48] to those of (8)–(11). A further complication, though, is that even if

explicit, experimentally verified, in-vitro parameters were available for (8)–(11) these do not

necessarily translate into the correct parameters in vivo [79] where indirect, and locally vary-

ing, mechanisms (such as aggregates interacting with cells, or the effects of inflammation on
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aggregation dynamics) may play a role in altering the associated rates; either globally or

regionally.

Observations and open questions

Neurodegenerative diseases are complex and multi-scale processes. The point of view of (8)–

(11) is to reduce this complexity by considering a collection of aggregate mechanisms and

their implications. For instance (3) can be viewed, more conversationally, as the following col-

lection of general mechanisms: (a) there exists two protein families; (b) each family has a

healthy and toxic species; (c) these species are produced and cleared at some aggregate

(regional) rate (d) any movement of these species, within the brain, is primarily determined by

the macroscale axonal structure; (d) healthy proteins within a family can become toxic, at

some (regional) rate, based on the presence of other toxic proteins of that family; and (e) the

conversion of healthy-to-toxic proteins, for the second family, is further influenced by the

presence of the toxic population of the first family. The current literature suggests that this col-

lection of observations outlines a minimal prion-like model of Alzheimer’s disease

progression.

In section the discussion on advantages and limitations it was mentioned that one advan-

tage of simple deterministic models, such as (8)–(11), is that the impact of individual mecha-

nisms can be elucidated and several emergent behaviors can be ascertained a priori. Models

such as (3) therefore lead, naturally, to additional questions and serve as a trailhead for further

development. The first, and critical, observation is that: (8)–(11) implies that the local balance

of clearance, e.g. (23), plays a fundamental role in disease initiation. In light of the seminal

work of Braak and Braak [11] this leads naturally to the question: what are the local (toxic τP)

clearance properties characterizing the transentorhinal region, (which defines the early Braak

stages) and how do these local properties differ from other regions? Aspects of the fine-scale

clearance mechanisms of toxic τP remain unclear or are even controversial [80, 81, 82, 83].

Nevertheless, our simple framework reinforces the sentiment echoed by experimentalists: that

understanding these processes may be critical to a mechanistic understanding of the initiation

of the disease cascade.

A second observation emerging from (8)–(11) is that the progression of Alzheimer’s disease

may consist of a confluence of brain regions simultaneously in differing states characterized by

contrasting fundamental dynamics. In particular (Methods, Stability and Disease phenome-

nology) even our simple model of AD development suggests potentially complex disease phe-

nomenology; one where τP can evolve independently of Aβ (termed primary tauopathy) and

one where τP depends intrinsically on the presence of Aβ. Furthermore, the line between these

two regimes is demarcated by: the balance of local clearance; and the degree of local influence

of Aβ on the toxification of τP [12, 26, 30, 31, 32, 33] as expressed by the bulk parameter b3.

Depending on these local attributes we could have some areas of the brain in a state of primary

tauopathy and others in a state of secondary tauopathy; the latter regions having their tauopa-

thy delayed until a toxic Aβ population is established while the former regions are free to

develop toxic τP and NFT independently. This leads naturally to another fundamental line of

further enquiry: what are the simplest additional relations, extended (8)–(11), needed to suit-

ably describe the evolution of clearance and toxicity rates alongside protein pathology?

Our simple mathematical model suggests, as a third observation, that the rate of toxic Aβ-

τP interaction (i.e. b3) is not a passive facet of disease phenomenology but, rather, may play a

much more integral role. We have already discussed, above, that b3 plays a role in secondary

tauopathy; it can do this by lowering v4, in (17), thus ensuring that ~v4 is an admissible state.

Other interesting observations regarding b3 were discussed in the results section (c.f. A
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simplified model of Alzheimer’s disease proteopathy). The observation regarding the impact

of b3 in local and non-local neuronal damage formation is straightforward so we will mention

it first; namely, that transneuronal damage propagation in the model has a ‘minimum speed’

in both primary and secondary tauopathy; and that increasing b3 has no effect. In particular

Fig 16, and the surrounding discussion, suggests that lowering the ‘transmission coefficient’,

reflected in k4, below a certain threshold does not lower transneuronal damage; and that

increasing b3, for a fixed choice of k4, does not increase the overall propagation of damage.

These details lead to a somewhat interesting observation: that the rate of neuronal damage

from the structural network topology of the brain may exhibit a baseline, or minimum, value;

independent of the details driving local damage (e.g. from local toxicity).

We also observed two features of tauopathy directly related to b3; the time of onset and the

τP ‘invasion window’. We recall that the time of onset is defined as the first appearance of

toxic τP while the ‘invasion window’ is the timespan starting at a 1% toxic τP concentration

and terminating when the asymptotic steady-state value is achieved. In primary tauopathy, dis-

ease onset time is virtually unaffected by varying b3 whereas increasing levels of b3 shortens the

tauopathy invasion window. In addition, the asymptotic concentration value of toxic τP

increases with b3 so that, overall, increasing b3 implies that a more severe tauopathy will

develop, faster, at a similar starting point in time (c.f. Fig 8). The picture in secondary tauopa-

thy is different. We see, again, that increasing b3 does increase the severity of the tauopathy

(Fig 10b); however, this is where the similarities with primary tauopathy end. First, as b3

increases the time of onset decreases (Fig 10b). Second, the invasion window in secondary

tauopathy does not decrease monotonically with decreasing b3 (Fig 10c); rather, we see the

invasion window start time and end both decrease, with increasing b3, while the start time

decay and end time decay, relative to increasing b3, is different (Fig 11). This is the cause of the

initial drop, from b3 = 0.75 to b3 = 3.0, of the invasion window in Fig 10c followed by an

increase to a steady invasion window length circa b3 = 12. The observation that increased b3

can decrease the time of onset in secondary tauopathy, which requires the presence of Aβ,

while also impacting the invasion window time is reminiscent of the effects associated to the

presence of particular Apoliprotein E (APOE) allele configurations. For instance: APOE �4

carriers are more likely to develop AD; toxic Aβ production and deposition is more abundant

in APOE �4 carriers; and APOE �4 exacerbates Aβ-related neurotoxicity [84].

In the results subsection ‘a mixed model comparison to Alzheimer’s diseased patient data’

we discussed a mixed-modality instantiation of the model (8)–(11), with some regions in a

state of primary tauopathy with all others in a state of secondary tauopathy, using hand-

selected synthetic parameters. It was demonstrated that such a mixture of states can reproduce

salient features seen in Alzheimer’s disease; in particular, the distinct distribution patterns [68,

69] of 18F-AV-1451 radiotracer are clearly observed. This observation suggests that the model

of (8)–(11) is sufficiently rich and implies that the undertaking of a comprehensive data fitting

and comparison study is both well warranted and an optimistic endeavor. It is interesting to

note, though, that the distinction between primary and secondary tauopathy is not simply one

of differently-valued parameters; in particular the two states are differentiated by the balance

of clearance inequalities (Methods, Stability). In particular, we have ~a1=a2 < a0=a1 and

~b1=b2 < b0=b1 for primary tauopathy; for secondary tauopathy the latter inequality changes

sign to b0=b1 <
~b1=b2. This observation implies that an arbitrary parameter fitting could pro-

duce accurate results, compared to data, while still being questionable since the fitting would

imply secondary characteristics regarding regional clearance attributes which may or may not

hold. It would therefore be beneficial to carefully consider a data-based measure of regional

clearance, for both Aβ and τP, when selecting a data fitting method; possibly incorporated as a

PLOS COMPUTATIONAL BIOLOGY Protein-protein interactions in neurodegenerative diseases: A conspiracy theory

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008267 October 13, 2020 21 / 41

https://doi.org/10.1371/journal.pcbi.1008267


constraint or as part of a cost functional. Nevertheless, the dual regimes of primary and sec-

ondary tauopathy provide a verdant backdrop for further modelling endeavors; both in terms

of fitting to clinical imaging data and to probing and modelling possible ties between b3,

APOE configuration, and secondary tauopathy.

In the introduction section we mentioned that the role of Tau in AD formation, and devel-

opment, is beginning to be recognized as a potentially significant factor. Despite this, open

questions about the nature of tau, and tauopathy, in AD remain. For instance: one could argue

that healthy τP, being bound to microtubules, should not be diffusing at all. The literature sug-

gests that even healthy tau in healthy neurons exhibit mobility within the cell [85], is secreted

into the extracellular space [86, 87], and that extracellular tau is taken up by neighboring neu-

rons [88]; even in the absence of pathology. It is not entirely clear what the correct choice of ρ,

in (7), should then be. Despite the literature seeming to suggest that ρ> 0 one could still insist

that ρ � 1, or possibly even assert that ρ = 0, should be chosen in (7) for the graph Laplacian

of (10). Regarding impacts to the model: this perspective alone would not affect any of the ana-

lytic observations (Methods, An Analysis of the continuous model). Indeed, if v is the vector

whose jth entry is the healthy tau concentration, vj, in node j then if v is constant, or nearly so,

then the graph Laplacian applied to v is zero, or nearly so, regardless of the value of ρ. Thus,

since all of the nodes in the computational investigations discussed in the results section had

their healthy tau populations set to the same constant value: the effect of any healthy tau diffu-

sion in the simulation results there would be expected to be entirely negligible as well.

The nature of the rates for healthy tau production and clearance, in the literature, are also

not fully understood. Indeed, the visual confirmation of the mRNA machinery for localized

transcription [89] of tau in axons, and growth cones, is less than two decades old; clarifying

important aspects of tau clearance, both healthy and diseased, is an ongoing process [80, 82,

83]. Our results indicate that violation of the balance of clearance inequalities, (23), is funda-

mental for disease initiation and phenomenology; for instance: if healthy tau were not regener-

ated, so that b0 = 0, then the regime of ‘primary tauopathy’ (which requires that ~b1=b2 < b0=b1)

would be an impossibility. This would imply that, in the context of our model, that the develop-

ment of all tauopathies would require an accompanying amyloidopathy and would seem to

preclude those tauopathies which are mostly dominated by toxic τP spreading [8]. It has been

observed that: tau is expelled from neurons [86], including healthy ones, on a periodic basis

[87]; and that tau plays a role in cell signalling, cell polarity, synaptic plasticity and the regula-

tion of genomic stability [90, 91]. These observations, alongside recent work in adult neurogen-

esis [92], give good reason to suspect that both b0 > 0 and b1 > 0; at least in the healthy brain

and early in disease progression. An open question, though, is how these quantities may change

with disease progression. For instance, one could extend the current model by coupling b0 with

the damage coefficient q; reflecting the fact decreased healthy tau synthesis could result from

neuronal loss, and the decline of neurogenesis [92], throughout AD progression.

The final observation we mention regards an open question surrounding the imaging, and

construction, of the structural connectomes used in such network models. We have used an

often cited connectome [58, 59]. This connectome is available in various resolutions; the low-

est of which consists of 83 vertices (regions of interest) while the highest resolution case, which

we have used here, consists of 1015 vertices. However, there are apparent differences in both

Aβ and τP staging when solving equations, such as (8)–(11), on the low versus high resolution

connectomes. We used the simple, illustrative parameters described for primary tauopathy

(Results, A simplified model of Alzheimer’s disease proteopathy) and recorded the average

regional tau concentration at six fixed time points; the time points were selected to span dis-

ease progression. Fig 19 shows the results of this tau staging experiment for nine regions.
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In Fig 19, we can see that the two different resolutions of connectomes, derived from the

same set of patient data, offer distinct staging patterns for tau progression. This implies that

the connectome itself may play a significant role in retrieving results that match clinical data.

Since the parameters of (8)–(12) have a physiological interpretation a simple ‘fitting’ to avail-

able clinical data is not satisfactory. Fig 19 suggests that developing a more rigorous under-

standing of computational staging behavior should be endeavored seriously and from first

principles. Validating computational (tau) staging behavior, at different connectome resolu-

tions, against clinical standardized-uptake-value-ratio (SUVR) studies, e.g. [93], is an impor-

tant next step.

Concluding remarks

We have presented a novel, minimal, and deterministic theoretical mathematical model of

protein propagation that includes two interacting protein species. The model is motivated by

recent experimental evidence regarding the potential importance that interactions between Aβ
and τP may play in the development of AD pathology [14, 16, 23, 24, 25]. The primary contri-

butions of the current manuscript are: clearly, and mathematically, establishing the intrinsic

dependence of the model on the balance of clearance inequality, (23), and the stability analysis

of the modes of primary and secondary tauopathy (Methods, Stability and Disease Phenome-

nology); and establishing the speed of propagation of toxic fronts (Methods, Front propaga-

tion). Further novel contributions of interest include: demonstrating qualitative properties of

disease propagation and damage, in primary and secondary tauopathy (Results, A simplified

model of Alzheimer’s disease proteopathy), using globally constant, but non-physical, parame-

ters; and demonstrating that the model can achieve tau distributions that reflect canonical pat-

terns in Alzheimer’s patient data (Results, A mixed model comparison to Alzheimer’s diseased

patient data). In particular, we have seen that the topology of the brain connectome leads to

complex behavior in both pathological regimes. Finally, we have contextualized numerous

analytic and computational observations with reference to the current literature and drawn

attention to open avenues of further research suggested by the current work.

Alzheimer’s disease is a complex and multi-scale disease. The need for mathematical mod-

els, presenting observed disease characteristics, that are computationally tractable is pressing.

Our findings suggest that further enquiry into both protein interaction and clearance processes

is an important path forward in elucidating key mechanisms in the progression of these

Fig 19. Toxic τP average regional concentration; six fixed time points. 83 (left) versus 1015 (right) vertex

connectomes.

https://doi.org/10.1371/journal.pcbi.1008267.g019
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diseases. Due to the ease of implementation of (8)–(12), and the widespread interest in compu-

tational neurodegenerative disease, we hope that this model will be appealing, to the commu-

nity, for probing the nuances of protein-protein interactions in neurodegenerative disease

development.

Methods

A continuous mathematical model

The simplest possible deterministic aggregation model accounting for the interaction of two

protein families, each consisting of a healthy and toxic population, is the heterodimer model

[49, 51, 50]. In the heterodimer model: a toxic, misfolded seed protein recruits a healthy

protein, induces misfolding, and then fragments; ultimately producing two copies of the

misfolded toxic variant. The heterodimer model views these three processes as a single step

and expresses this step as an overall mean rate of reaction; such rates can be determined

experimentally. Indeed, measuring the mean rates of protein self-aggregation mechanisms,

providing best-fit mean aggregation dynamics to deterministic models such as the heterodi-

mer model, is a thriving field of contemporary research [50, 52, 53, 54, 55, 56] and our

choice of a deterministic model is inspired by such work. Fig 20 demonstrates the primary

molecular mechanism of the heterodimer model; the healthy (blue) protein is approached

by the toxic (red) protein and undergoes three separate transitions (small arrows) which are

treated as a single transition (long arrow) taking a healthy protein to a misfolded, toxic

state.

We are interested in the interaction between two different protein families; motivated by

the Aβ and τ interactions observed in AD. Towards this end we will consider two heterodimer

models: one for Aβ and one for τP. These two models will be coupled together by a single term

reflecting that the formation of new toxic τP can be enhanced by the presence of Aβ. The het-

erodimer model was originally posed [49, 50] as a continuous, non-linear, partial differential

reaction-diffusion equation for a single protein. To define the model for our two protein fami-

lies: let O � R3 be a spatial domain of interest and, for x 2 O and time t 2 Rþ, we denote by u
= u(x, t), and v = v(x, t) the concentration of healthy Aβ and τP. Similarly, we denote by

~u ¼ ~uðx; tÞ, and ~v ¼ ~vðx; tÞ, the concentration of toxic Aβ and τP, respectively. Then, the

Fig 20. Kinetics of the heterodimer model. Healthy protein (blue) and misfolded toxic protein (red) transition to two

toxic proteins (long arrow) via, from left to right, the kinetics of: recruitment, induced misfolding, and fragmentation.

https://doi.org/10.1371/journal.pcbi.1008267.g020

PLOS COMPUTATIONAL BIOLOGY Protein-protein interactions in neurodegenerative diseases: A conspiracy theory

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008267 October 13, 2020 24 / 41

https://doi.org/10.1371/journal.pcbi.1008267.g020
https://doi.org/10.1371/journal.pcbi.1008267


concentration evolution is governed by

@u
@t

¼ r � ðD1 ruÞ þ a0 � a1 u � a2 u ~u;

@~u
@t

¼ r � ð ~D1 r~uÞ � ~a1 ~u þ a2 u ~u;

@v
@t

¼ r � ðD2 rvÞ þ b0 � b1 v � b2 v ~v � b3 ~u v ~v;

@~v
@t

¼ r � ð ~D2 r~vÞ � ~b1 ~v þ b2 v ~v þ b3 ~u v ~v:

ð3Þ

The first two equations, above, correspond to the usual heterodimer model for the healthy and

toxic variants of the protein u; note that the second heterodimer model, for the variants of pro-

tein v, deviates from the form of the first by a single balanced term with coefficient b3. The sys-

tem (3) could apply to any two families of interacting proteins; though the model is inspired

by AD. The parameters are as follows: (a0, b0) are the mean production rates of healthy pro-

teins, (a1; b1; ~a1;
~b1) are the mean clearance rates of healthy and toxic proteins, and (a2, b2)

reflect the mean conversion rates of healthy proteins to toxic proteins. The coupling between

the two, otherwise separate, heterodimer models for Aβ and τP, is realized via b3. The b3 predi-

cated terms arise from the mode of interaction assumption, c.f. M1 above, dictating that the

presence of Aβ augments the conversion process of healthy τP to toxic τP. We note that toxic

Aβ acts as an enzyme in this process and is therefore not depleted. In the absence of produc-

tion and clearance maps, we assume that all these parameters are constant in space and time.

The symmetric diffusion tensors D1,2 and ~D1;2 characterize the spreading of each proteins. For

isotropic diffusion, these tensors are a multiple of the identity, D1,2 = d1,21 and r � (D1,2 �

r(u)) = d1,2Δ(u) is the usual Laplacian operator (similarly for ~u, v and ~v) For anisotropic diffu-

sion, the eigenvector with the largest eigenvalue describes the direction of faster diffusion

which is used to model preferential propagation along axonal pathways [37].

The coupled system of Eq (3) dictates the spread, genesis, and clearance of two healthy spe-

cies, u and v, and two toxic species, ~u and ~v, of proteins throughout the domain O. The pres-

ence of toxic proteins near a point x 2 O can disrupt the extracellular environment of neurons

near x and impair their intracellular function. A broad range of coupled effects can contribute

to neuronal impairment; including: chronic inflammation, erosion of the blood-brain barrier

surrounding vessels, accelerating tau hyperphosphorylation, disrupting normal synaptic effi-

cacy, and deafferentation, among others. A hallmark of neurodegenerative proteopathies is

cognitive decline; propelled by the various coupled effects induced by the presence of toxic

aggregates and the widespread erosion of neuronal integrity. The nuanced coupling between

these disparate deleterious effects is not well understood; nevertheless, we employ the observa-

tion that such effects are generally correlated with larger concentrations of misfolded aggre-

gates to define a gross measure of regional neuronal ‘damage’ denote by q(x, t) 2 [0, 1]. This

damage variable takes the perspective that q(x, t) = 0 signifies that the neurons in a neighbor-

hood of x 2 O are functional and healthy whereas q(x, t) = 1 implies that neurons near x have

reached a fully-degenerate asymptotic state whereby they are either no longer functioning or

fully deceased. For the evolution of the damage we assume a simple, first-order rate model:

_q ¼ ðk1~u þ k2~v þ k3~u ~v þ k4AðqÞÞð1 � qÞ; qðx; 0Þ ¼ 0: ð4Þ

When k4 = 0: the evolution Eq (4) can be seen as a first order reaction model, i.e. exponential

decay, for the transformed variable q̂ ¼ ð1 � qÞ; the associated rate of decay is then dependent

PLOS COMPUTATIONAL BIOLOGY Protein-protein interactions in neurodegenerative diseases: A conspiracy theory

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008267 October 13, 2020 25 / 41

https://doi.org/10.1371/journal.pcbi.1008267


on the deposition concentration of pattern of ~u and ~v. The first two parameters in (4) denote

contributions to neuronal dysfunction, near x, due to presence of isolated toxic aggregates;

while the third term accounts for contributions requiring, or accelerated by, the presence of

both toxic species aggregate species together. Thus, the third term engenders both toxic effects

M2 and M3; c.f. the introduction section. The first three terms of (4) account for neuronal dys-

function in a neighborhood of the point x while the last term, AðqÞ, incorporates non-local

contributions, such as transneuronal degeneration, whereby the impairment, or death, of

neighboring neurons can increase [57] the probability of impairment near x; thus leading to

an increased mean rate of local decline. This nonlocal term does not have a simple representa-

tion within the continuous framework as the positions of neuronal bodies is not explicitly

encoded. However, we will see that in the discrete case, there is a natural way to take this effect

into account and we will delay the discussion of this term until the next section.

A network mathematical model

A simple coarse-grain model of the continuous system can be obtained by building a network

from brain data. The construction is obtained by defining nodes of the network to be regions

of interest in the domain O, typically associated with well-known areas from a brain atlas. The

edges of this network represent axonal bundles in white-matter tracts. The brain connectome

is then modeled as a weighted graph G with V nodes and E edges obtained from diffusion ten-

sor imaging and tractography. A network approximation of the diffusion terms, having the

general form r � (Dru) or similar, in the system (3) will be constructed by means of a

weighted graph Laplacian. The weights of the weighted adjacency matrix W, used to construct

the graph Laplacian, are selected as the ratio of mean fiber number nij by mean length squared,

l2ij, between node i and node j. That is:

Wij ¼
nij

l2ij
; i; j ¼ 1; . . . ;V: ð5Þ

The choice of weights, above, are consistent with the inverse length-squared dependence

incurred by canonical discretizations of the continuous Laplace (diffusion) operator appearing

in (3). The weighted degree matrix is the diagonal matrix with elements

Dii ¼
XV

j¼1

Wij; i; j ¼ 1; . . . ;V: ð6Þ

Additionally, we define the graph Laplacian L as

Lij ¼ rðDij � WijÞ; i; j ¼ 1; . . . ;V; ð7Þ

where ρ is an overall effective diffusion constant. The adjacency matrix for the simulation is

derived from the tractography of diffusion tensor magnetic resonance images corresponding

to 418 healthy subjects of the Human Connectome Project [58] given by Budapest Reference

Connectome v3.0 [59]. The graph contains V = 1015 nodes and E = 70,892 edges and is shown

in Fig 21.

Let ðuj; ~ujÞ be the concentration of healthy and toxic Aβ and ðvj; ~vjÞ denote the concentra-

tion of healthy and toxic τP at node j. The network equations corresponding to the continuous

model then take the form of a system of first-order ordinary differential equations. There are

four such equations, ðuj; ~uj; vj; ~vjÞ, for each of the 1,015 vertices in the system; these four nodal
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equations are:

duj

dt
¼ �

XV

k¼1

Ljkuk þ a0 � a1 uj � a2 uj ~uj; ð8Þ

d~uj

dt
¼ �

XV

k¼1

Ljk~uk � ~a1 uj þ a2 uj ~uj; ð9Þ

dvj
dt

¼ �
XV

k¼1

Ljkvk þ b0 � b1 vj � b2 vj ~vj � b3 ~uj vj~vj; ð10Þ

Fig 21. A high-resolution brain structural connectome graph. (Bottom left) The average of 419 brain connectomes

with V = 1, 015 vertices spanning (bottom right) 49 associated brain regions; the strongest 2,773 edge connections are

shown. The weighted adjacency matrix (top) corresponding to the averaged connectome (bottom).

https://doi.org/10.1371/journal.pcbi.1008267.g021
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d~vj
dt

¼ �
XV

k¼1

Ljk~vk � ~b1 ~vj þ b2 vj ~vj þ b3 ~uj vj~vj; ð11Þ

where j = 1, . . ., V = 1, 015. Similarly, for the damage model we define a damage variable qj at

each node j and assume the same law

_qj ¼ k1~uj þ k2~vj þ k3~uj ~vj þ k4

XV

k¼1

Ajkqk

 !

ð1 � qjÞ; qjð0Þ ¼ 0; j ¼ 1; . . . ;V; ð12Þ

where Ajk is the weighted network adjacency matrix Ajk = njk/ljk if j 6¼ k (and njk> 0) and 0 oth-

erwise. Thus k4 has the interpretation of a ‘transmission speed’; the time it takes for the effects

of degeneracy in cell k to reach cell j. The weighting chosen in the adjacency matrix term is

inspired by the propagation of transneuronal degeneration from a node to its neighbors.

An analysis of the continuous model

Homogeneous system. It is instructive to start with an analysis of the homogeneous sys-

tem obtained by assuming that there is no spatial dependence. This analysis applies to both

network and continuous models. In this case, both systems reduce to the dynamical system

du
dt

¼ a0 � a1 u � a2 u ~u;

d~u
dt

¼ � ~a1 ~u þ a2 u ~u;

dv
dt

¼ b0 � b1 v � b2 v ~v � b3 ~u v ~v;

d~v
dt

¼ � ~b1 ~v þ b2 v ~v þ b3 ~u v ~v;

ð13Þ

where all variables and initial conditions are assumed to be positive and all parameters are

strictly positive.

Damage evolution. For the homogeneous system above the concentrations remain

homogeneous for all time. Damage, in contrast, is node-dependent and expressed by the

(nodal) variable qj 2 [0, 1]. Indeed, in this case, the non-local term associated with transneuro-

nal degeneration, commensurate with the tensor Ajk in Eq (12), cannot be homogeneous. Nev-

ertheless, the damage dynamics are simple enough to describe. Damage will initially increases

linearly in time, homogeneously, from the initial value qj = 0. The increase will then trend

exponentially at each node, with node-dependent time scales depending on the local node’s

degree, and saturate to the value qj = 1 asymptotically in time at each node.

Stationary points. The stationary points and stability of the homogeneous system (13) are

instructive; they inform the disease dynamics implied by the local model. The system (13) can

exhibit one, two, three, or four stationary points depending on the parameters; these are:

1. Healthy τP-healthy Aβ: This stationary state is always a solution to (13) and is descriptive of

an individual with zero toxic load; no amyloid plaques or neurofibrillary tau tangles. The

state is given by:

ðu1; ~u1; v1; ~v1Þ ¼
a0

a1

; 0;
b0

b1

; 0

� �

: ð14Þ
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2. Healthy τP–toxic Aβ: This state describes a diseased brain wherein some Aβ plaques exist

but the tau fibril (NFT) concentration or that of hyperphosphorylated tau is non-existent or

negligible. A description of this stationary state in terms of the base problem parameters is:

ðu2; ~u2; v2; ~v2Þ ¼
~a1

a2

;
a0a2 � a1~a1

a2~a1

;
b0

b1

; 0

� �

:

In terms of u1 = a0/a1, from (14), and u2 ¼ ~a1=a2 it is given by

ðu2; ~u2; v2; ~v2Þ ¼
~a1

a2

;
a1ðu1 � u2Þ

~a1

;
b0

b1

; 0

� �

: ð15Þ

Since the concentrations must be non-negative: the form of ~u2, above, implies that u1 � u2.

This results in the condition of ~a1=a2 � a0=a1. In other words either the clearance term of

toxic Aβmust be sufficiently small, the conversion term must be sufficiently large, or a ratio

of the two, to allow for the existence of a toxic state.

3. Toxic τP–healthy Aβ: This stationary state is a conceptual dual to the previous state above;

granted, toxic τP does not influence the Aβ population whereas Aβ does induce additional

τP formation. As in (15) we express this state, immediately here, in terms of u1 = a0/a1 and

v1 = b0/b1 as

ðu3; ~u3; v3; ~v3Þ ¼ u1; 0;
~b1

b2

;
b1ðv1 � v3Þ

~b1

 !

: ð16Þ

Requiring v1 � v3 implies that ~b1=b2 � b0=b1.

4. Toxic τP–toxic Aβ: This stationary state reflects the invasion of a patient’s brain by both

toxic amyloid beta and toxic tau. As in (14)–(16) we write the state in terms of the previous

state variables u1 = a0/a1, u2 ¼ ~a1=a2, ~u2 ¼ a1ðu1 � u2Þ=~a1, v3 ¼ ~b1=b2 and v4, defined

below, as:

u4; ~u4; v4; ~v4ð Þ ¼ u2; ~u2;
a2b2u2v3

a1b3ðu1 � u2Þ þ a2b2u2

;
b1~a1ðv3 � v4Þðv1 � v4Þ

a1b3ðu1 � u2Þv3v4

� �

: ð17Þ

Introducing

m ¼ a0

b3

b2

; ð18Þ

into (17) gives

u4; ~u4; v4; ~v4ð Þ ¼ u2; ~u2;
~a1u1v3

mðu1 � u2Þ þ ~a1u1

;
b1~a1u1ðv3 � v4Þðv1 � v4Þ

m~b1ðu1 � u2Þv4

 !

: ð19Þ

Stability. We briefly discuss the stability of the stationary points. In addition we distin-

guish between the two possible ‘disease’ phenomena of (13): the case of a disease system char-

acterized by the dynamics of a four-stationary-point model and the case of a disease system

characterized by three fixed points.
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Eigenvalues of the linearized system. The linearization of (13) about any fixed point

ðu; ~u; v; ~vÞ is governed by the Jacobian matrix

� ða2~u þ a1Þ � a2u 0 0

a2~u a2u � ~a1 0 0

0 � b3v~v � ðb2~v þ b1 þ b3~u~vÞ � b2v � b3~uv

0 b3v~v b2~v þ b3~u~v b2v � ~b1 þ b3~uv

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

: ð20Þ

The first two eigenvalues of (20) correspond to the Aβ subsystem, e.g. ðu; ~uÞ, of (13). Since the

coupling of (13) is a one-way coupling these eigenvalues are given by the corresponding eigen-

values of the uncoupled heterodimer model:

lAb;1 ¼ �
1

2
B þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4C

p� �
; lAb;2 ¼ �

1

2
B �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4C

p� �
; ð21Þ

where Bðu; ~u; a1; a2; u2Þ ¼ a1 þ ~a1 þ a2ð~u � uÞ and

Cðu; ~u; a1; a2; u2Þ ¼ a2ð~a1~u � a1uÞ þ ~a1a1. The third and fourth eigenvalues of (20), corre-

sponding to the coupled ðv; ~vÞ tau system of (13), can be written as

ltP;1 ¼ �
1

2
B̂ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̂2 � 4Ĉ

p� �
; ltP;2 ¼ �

1

2
B̂ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̂2 � 4Ĉ

p� �
; ð22Þ

with B̂ ¼ Bðv; ~v; b1;
~b1; b2Þ þ b3~uð~v � vÞ and Ĉ ¼ Cðv; ~v; b1;

~b1; b2Þ þ b3~uð~b1~v � b1vÞ. The

form of the tau eigenvalues coincides with those for Aβ when b3 = 0 or when ~u vanishes.

Disease phenomenology. We can interpret the different stationary states in terms of dis-

ease dynamics and define, accordingly, different disease states.

The healthy brain. A healthy patient represents an instantiation of the healthy stationary

state whereby ~u ¼ ~v ¼ 0. For the Healthy τP-healthy Aβ state to exist we must have a0 � a1

and b0 � b1, i.e., (u, v) 2 [0, 1] × [0, 1] are valid concentrations. A failure in healthy clearance,

either with an amyloid clearance value satisfying 0 � a1 < a0 or with a tau clearance of 0 � b1

< b0, implies the non-existence of a physically relevant healthy state (c.f. (14). It is instructive

to note that the expressions a0/a1 and a2=~a1 (respectively b0/b1 and b2=
~b1) express a balance of

healthy Aβ production to clearance and toxic Aβ production to clearance (respectively healthy

τP and toxic τP production to clearance). Consider the following balance of clearance inequali-

ties:

~a1

a2

>
a0

a1

;
~b1

b2

>
b0

b1

: ð23Þ

A patient satisfying (23) enjoys full stability to perturbations while in the healthy state (14).

That is: if (23) holds with ðu; ~u; v; ~vÞ given by (14) then the real parts of the eigenvalues (21)

and (22) are negative and the production of small amounts of toxic Aβ, or of toxic tau, or the

excess production of healthy Aβ, or healthy tau, results in a quick return to the healthy homeo-

static baseline state of (14). The above implies that the model (8)–(11) recognizes the critical

role that clearance plays in neurodegenerative diseases. A low value of toxic clearance ~a1,

respectfully ~b1, with sustained healthy clearance or a low value of healthy clearance a1, respect-

fully b1, with sustained toxic clearance is enough to trigger an instability capable of driving the

system away from the healthy state.

The susceptible brain. From the previous discussion, we conclude that an unfavorable

alteration in clearance mechanisms not only renders the healthy state unstable to perturbations
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but brings into existence the other stationary points characterizing various pathological

conditions.

Indeed, a well established clinical biomarker for Alzheimer’s disease is a drop in soluble

amyloid concentration in the cerebrospinal fluid; directly suggesting a decrease in a1. Recent

evidence also suggest [60] that toxic tau filaments in chronic traumatic encephalopathy

patients enclose hydrophobic molecules which may contain blood-born pathogens; a possible

result of vascular damage from an impact. Such a finding could imply, for instance, that

repeated traumatic injury causes vessel rupture and a subsequent proclivity for this unique

form of toxic tau production. The stage is then set to trigger a pathological decline when the

critical relation (23), corresponding to tau, is violated due to a balance of increased toxic load

and age-induced clearance deficit.

The moment of susceptibility occurs when the inequality of (23) becomes an equality.

Mathematically, this parameter configuration is a transcritical bifurcation for the homoge-

neous system (13) at the coincidence of a combination of the states (14)–(16). Clinically, this is

the point whereby additional stationary states are physically meaningful and pathology devel-

opment becomes a possibility.

The proteopathic brain. The proteopathic brain has suffered a perturbation from the

healthy stationary state; due to the instability in the system this patient is progressing towards

a diseased state. The potential pathology phenotypes depend on the patient’s individual param-

eter values. In particular, if ~a0=a1 � a1=a2 holds then the existence of (15) is physically mean-

ingful and if ~b0=b1 � b1=b2 holds then the same is true of (16). It may be the case, depending

on the combination of failed clearance subsystems and specific predisposition for toxic load-

ing, that both relations hold simultaneously. A necessary (clinical) existence criterion for the

proteopathic stationary point (17) can be observed directly from the equation for ~v4 in (19):

namely

m~b1ðu1 � u2Þv4 6¼ 0: ð24Þ

This implies that the parameter b3, defining μ in (18), cannot vanish.

Finally since b3 6¼ 0 and the numerator of of v4, in (19), is always non-negative we see that

(17) always exists when u1 > u2 and when both v3, v1 � v4 or when both v3, v1 � v4. An impor-

tant observation is that, though the modeling of the pathology of (17) is tied to that of (15) it is

not inextricably tied to (16); this is due to the fact that we may always choose b3, c.f. (18), such

v4 is smaller than both v3 and v1. Thus, with a suitably strong Aβ tau-toxification interaction

the state (16) is not needed in order to produce tau proteopathy; that is, the model admits a

pathology whereby toxic tau is created solely by the presence of toxic Aβ. Therefore, there are

two clinically interesting patient proteopathies for our analysis: the case where the patient

model consists of all four disease state equilibria, (14)–(17), and the case where the patient

model has the three equilibria (14), (15) and (17).

Primary tauopathy. In this case, all four equilibria exist which requires both ~a1=a2 <

a0=a1 and ~b1=b2 < b0=b1. An example of this dynamic is shown in Fig 22. We see that the pres-

ence of toxic Aβ always implies a higher level of τ P. Indeed, we have

~v4 � ~v3 ¼
a1b3~a1

~b2
1
ðu1 � u2Þ

b2ða1b3ðu1 � u2Þ þ b2~a1Þ
> 0: ð25Þ

We refer to this case as primary tauopathy as the invasion due to τP exists independently of

Aβ. The effect of Aβ is to increase the concentration of toxic τP and, possibly, increase the

associated damage.
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Secondary tauopathy. In secondary tauopathy the evolution of τP depends on the pri-

mary invasion of Aβ. Parameters corresponding to secondary tauopathy can be obtained by

choosing ~a1=a2 < a0=a1 and ~b1=b2 > b0=b1 (hence, ~v3 < 0) while taking b3 large enough so

that ~v4 > 0.

It is useful to outline key observations, explored further in the manuscript, regarding the

nature of the dependence of τP pathology (~v) on the presence of Aβ pathology (~u) in this

regime. We will see (Front propagation, secondary tauopathy) that the onset of toxic τP follows

from the presence of toxic Aβ. We will also see that the speed of toxic τP propagation appears

to be limited by the speed of propagation of toxic Aβ. This is distinctly different than the case

of primary tauopathy where toxic τP and toxic Aβ can evolve separately. Indeed, Fig 22 (left)

shows a stationary point of the form ð~u; ~vÞ ¼ ð0; ~v3Þ and the fully invaded asymptotic states,

Fig 22 (right), satisfy ~u4 < ~v4; clearly indicating that the additional coupling of ~u to ~v, in (11)

does not limit tau pathology expression, in primary tauopathy, to that of Aβ pathology. In light

of the apparent dependence of toxic τP spreading on toxic Aβ propagation in secondary tauo-

pathy it is instructive to enquire whether the asymptotic level of toxic τP pathology concentra-

tion be limited by the asymptotic concentration of toxic Aβ? Fig 23 (right) seems to indicate

that this is the case.

However, as discussed in the results section (c.f. secondary tauopathy in ‘A simplified

model of Alzheimer’s disease proteopathy’), the asymptotic state value of ~v4 is not limited by

Fig 22. Patient pathology dynamics in primary tauopathy. (Left) Phase plane ð~u; ~vÞ with four equilibria.

Homogeneous dynamics of the toxic states. Note that this is a two-dimensional slice of the four-dimensional phase

space. (Right) When four different states co-exist, only the fully toxic state is stable as shown by the time-dynamics

plot. (Parameters: a0 = b0 = a1 = a2 = b1 = b2 = 1, ~a1 ¼ ~b1 ¼ 3=4, b3 = 1/2).

https://doi.org/10.1371/journal.pcbi.1008267.g022

Fig 23. Patient pathology dynamics in secondary tauopathy. (Left) Phase plane ð~u; ~vÞ with three equilibria. (Right)

When three different states co-exist, only the fully toxic state is stable as shown by the time-dynamics plot.

(Parameters: a0 = b0 = a1 = a2 = b1 = b2 = 1, ~a1 ¼ 3=4, ~b1 ¼ 4=3, b3 = 3). Note that trajectories are initialized by taking

the initial condition � = 0.005 away from an equilibrium point.

https://doi.org/10.1371/journal.pcbi.1008267.g023
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that of ~u4. Fig 10a shows that ~v4 > ~u4 is possible depending on the parameter selection. This

observation leads naturally to a further question: is it a strict requirement of secondary tauopa-

thy to have a toxic Aβ concentration at all? That is: can we have ð~u4; ~v4Þ ¼ ð0; ~v4Þ? Suppose

this is the case: then, according to (14) and (17), we have ~u4 ¼ ~u2 ¼ 0 so that u1 = u2. When u1

= u2 we have, again from (17), that v4 = v3; this leaves ~v4, in (17), in an indeterminate form.

Thus, to understand ~v4 when u4 = 0, we use that a1 ¼ a0u� 1
1

, c.f. (14), and consider:

lim
u1!u2

~v4 ¼ lim
u1!u2

b1~a1ðv3 � v4Þðv1 � v4Þ

a0u� 1
1
b3ðu1 � u2Þv3v4

:

Due to the indeterminate form of the limit above: we apply L’Hôspital’s rule and compute,

after simplifying, that

lim
u1!u2

~v4 ¼
b1ðv1 � v3Þ

~b1

: ð26Þ

As discussed above: the regime of secondary tauopathy occurs when ~v3 < 0; resulting in (16)

being an invalid steady state. This directly implies that v1 − v3 < 0 so that the expression (26) is

negative. The above shows that if the asymptotic toxic Aβ concentration, ~u4, vanishes in the

case of secondary tauopathy then the asymptotic toxic tau concentration, ~v4 is necessarily neg-

ative; this cannot occur in a physical system. To summarize: the sustained presence of a toxic

τP population, in secondary tauopathy, requires the presence of toxic Aβ; this implies that the

computational observations, for secondary tauopathy, regarding the reliance of toxic τP devel-

opment and perpetuation, on the presence of Aβ are strict and not merely one possible method

of toxic τP development.

Front propagation. We can explore the spatio-temporal behavior of the system by first

considering a reduction to one dimension (O ¼ R) and subsequently analyzing the spread of

toxic protein via the study of traveling waves. From the theory of nonlinear parabolic partial

differential equations, we expect pulled fronts that connect one equilibrium state to a different

homogeneous state [49].

First, consider the two uncoupled fronts emanating from the healthy state ðu1; ~u1; v1; ~v1Þ

and connecting either to ðu2; ~u2; v2; ~v2Þ or ðu3; ~u3; v3; ~v3Þ. To obtain these fronts, we linearize

(3) around the healthy state ðu1; ~u1; v1; ~v1Þ and obtain the decoupled system

@~u
@t

¼ ða2u1 � ~a1Þ þ ~d1

@
2
~u

@x2
; ð27Þ

@~v
@t

¼ ðb2v1 � ~b1Þ þ ~d2

@
2
~v

@x2
: ð28Þ

Starting with initial positive data, the system will develop fronts and the asymptotic selected

speed is the minimum possible speed for this linear system [61, 62]. Traveling wave solutions

to (27) and (28) are obtained explicitly by first performing a traveling wave reduction (u
(x, t) ! u(z) with z = x − ct and so on for the other variables) and then looking for linear solu-

tions of the form u = C exp(λz) which leads to a family of possible solution with speeds c = c
(λ). The smallest such speed is the selected speed for the asymptotic dynamics. In our case, the

front speeds are

cð12Þ

b ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d1ða2a0=a1 � ~a1Þ

q

; cð12Þ
t

¼ 0; ð29Þ

where cðijÞ
b and cðijÞ

t
denote the speeds of the front from state i to state j (whenever such a front
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exists) for the Aβ fields ðu; ~uÞ and τP fields ðv; ~vÞ, respectively. The front speeds for the second

transition are

cð13Þ

b ¼ 0; cð13Þ
t

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d2ðb2b0=b1 � ~b1Þ

q

: ð30Þ

Similarly, if both fields are seeded initially, we have

cð14Þ

b ¼ cð12Þ

b ; cð14Þ
t

¼ cð13Þ
t
: ð31Þ

We see that these fronts only exist if a2a0 > ~a1a1 and/or b2b0 >
~b1b1 which are the conditions

for the existence of toxic states found in the previous section. Trivially, a front between two

states can only develop if such states exist.

Second, we consider the possibility of fronts propagating from equilibrium state 2 to state 4.

To do so, we linearize the equations around ðu2; ~u2; v2; ~v2Þ and repeat the previous steps to

find

cð24Þ

b ¼ 0; cð24Þ
t

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2

a2b1~a1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~a1ða2ðb0b2 � b1
~b1Þ � a1b0b3Þ þ a0a2b0b3

q

: ð32Þ

Primary tauopathy. As an example of the interactions between the two fronts, we con-

sider a toxic Aβ front on the real axis x propagating to the right interacting with a τP front

propagating to the left (see Fig 24). They evolve initially with constant speeds cð12Þ

b and cð13Þ
t

respectively (Fig 24 top). However, when they overlap, the interaction creates an increase in

the concentration of τP (Fig 24 top) which both boosts the front to speed cð24Þ
t

> cð13Þ
t

and initi-

ates a new front propagating backward to fill the interval to the global stable equilibrium ~v4

with speed cð13Þ
t

¼ cð12Þ

b . The Aβ front is never affected by the presence of toxic τP.

In Fig 24, an Aβ front propagating to the right travels towards a τP front propagating to the

left (Fig 24a). The interaction (Fig 24b) increases the toxic level of τP and creates a second front

propagating to the right connecting ~v4 to ~v3 (Fig 24c). The front profiles are shown at time

Fig 24. Front dynamics, primary tauopathy.

https://doi.org/10.1371/journal.pcbi.1008267.g024
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t = 30, 200, 250, 310. Parameters are as in Fig 22: a0 = b0 = a1 = a2 = b1 = b2 = 1, ~a1 ¼ ~b1 ¼ 3=4,

b3 = 1/2, which leads to cð12Þ

b ¼ cð13Þ
t

¼ cð34Þ
t

¼ 0:1 and cð24Þ
t

¼ 1=ð2
ffiffiffiffiffi
15

p
Þ � 0:13. Neumann

boundary conditions were used on both sides of the finite interval for all variables.

Secondary tauopathy. As a second example, we consider the case where the Aβ front

causes the creation of a non-zero toxic τP state (see Fig 25). Fig 25 depicts the toxic front dynam-

ics of ~uðx; tÞ and ~vðx; tÞ; an Aβ front (~u) propagating to the right in a domain with negligible

toxic τP (but with a healthy τ population). The passage of the front leads to the rapid expansion

of toxic τP (Fig 25b) which evolves at a speed close to cð23Þ
t

> cð12Þ

b (Fig 25c). Hence, it eventually

catches up with the front (d) and matches its speed. The front profiles are shown at time t = 180,

200, 215, 300. Parameters as in Fig 23: a0 = b0 = a1 = a2 = b1 = b2 = 1, ~a1 ¼ 3=4, ~b1 ¼ 4=3, b3 =

3, which leads to cð12Þ

b ¼ cð13Þ
t

¼ 0:1 and cð24Þ
t

¼
ffiffiffiffiffiffiffiffi
2=3

p
=5 � 0:1633. Homogeneous Neumann

boundary conditions are used on both sides of the finite interval for all variables. Initial seeding

of toxic τP on the positive interval only with ~vðx; 0Þ ¼ 10� 11 for x> 0 and 0 otherwise.

Finally, the front propagating from equilibrium state 3 to state 4 is constrained by the evolu-

tion of the u and ~u fields. Therefore, we find

cð34Þ

b ¼ cð34Þ
t

¼ cð12Þ

b : ð33Þ

Supporting information

S1 Video. Front dynamics in primary tauopathy, synthetic. Visualization of an illustrative

primary tauopathy model simulation using a synthetic channel domain.

(MP4)

S2 Video. Front dynamics in primary tauopathy, connectome. Visualization of an illustra-

tive primary tauopathy model simulation using a high-resolution structural brain connectome

domain.

(MP4)

Fig 25. Front dynamics, secondary tauopathy.

https://doi.org/10.1371/journal.pcbi.1008267.g025

PLOS COMPUTATIONAL BIOLOGY Protein-protein interactions in neurodegenerative diseases: A conspiracy theory

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008267 October 13, 2020 35 / 41

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008267.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008267.s002
https://doi.org/10.1371/journal.pcbi.1008267.g025
https://doi.org/10.1371/journal.pcbi.1008267


S3 Video. Front dynamics in secondary tauopathy, synthetic. Visualization of an illustrative

secondary tauopathy model simulation using a synthetic channel domain.

(MP4)

S4 Video. Front dynamics in secondary tauopathy, connectome. Visualization of an illustra-

tive secondary tauopathy model simulation using a high-resolution structural brain connec-

tome domain.

(MP4)

S5 Video. Toxic Aβ in primary and secondary tauopathy. Visualization of the toxic Aβ spe-

cies in an illustrative model simulation using a high-resolution structural brain connectome

domain. Qualitative propagation of the Aβ species was identical in both primary and second-

ary tauopathy.

(MP4)

S6 Video. Toxic τP in primary tauopathy, connectome. Visualization of the toxic τP species

in an illustrative model simulation of primary tauopathy using a high-resolution structural

brain connectome domain.

(MP4)

S7 Video. Toxic τP in secondary tauopathy, connectome. Visualization of the toxic τP spe-

cies in an illustrative model simulation of secondary tauopathy using a high-resolution struc-

tural brain connectome domain.

(MP4)

S1 Data. Structural brain connectome, low-resolution. A low-resolution graph of the struc-

tural brain connectome. The graph is expressed in a standard format (graphml) based on the

human-readable XML markup language. This graph consists of 83 vertices (anatomical regions

of interest) and 1,654 edges; data for the graph was sourced from freely-available patient con-

nectome data (https://braingraph.org).

(GRAPHML)

S2 Data. Structural brain connectome, high-resolution. A high-resolution graph of the

structural brain connectome. The graph is expressed in a standard format (graphml) based on

the human-readable XML markup language. This graph consists of 1,015 vertices (anatomical

regions of interest) and 70,892 edges; data for the graph was sourced from freely-available

patient connectome data (https://braingraph.org).

(GRAPHML)

S1 Appendix. Additional detail and solver verification. This appendix contains additional

detail regarding the expected behaviour of the network dynamics for specific choices of syn-

thetic parameters. This appendix refers to the equations, and figures, in the main manuscript

and is intended to provide a set of verification cases for use in implementing solvers.

(PDF)
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