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Abstract

Neurodegenerative diseases such as Alzheimer’s or Parkinson’s are associated with the
prion-like propagation and aggregation of toxic proteins. A long standing hypothesis that
amyloid-beta drives Alzheimer’s disease has proven the subject of contemporary contro-
versy; leading to new research in both the role of tau protein and its interaction with amyloid-
beta. Conversely, recent work in mathematical modeling has demonstrated the relevance of
nonlinear reaction-diffusion type equations to capture essential features of the disease.
Such approaches have been further simplified, to network-based models, and offer
researchers a powerful set of computationally tractable tools with which to investigate
neurodegenerative disease dynamics. Here, we propose a novel, coupled network-based
model for a two-protein system that includes an enzymatic interaction term alongside a sim-
ple model of aggregate transneuronal damage. We apply this theoretical model to test the
possible interactions between tau proteins and amyloid-beta and study the resulting coupled
behavior between toxic protein clearance and proteopathic phenomenology. Our analysis
reveals ways in which amyloid-beta and tau proteins may conspire with each other to
enhance the nucleation and propagation of different diseases, thus shedding new light on
the importance of protein clearance and protein interaction mechanisms in prion-like models
of neurodegenerative disease.

Author summary

In 1906 Dr. Alois Alzheimer presented the case of Ms. Auguste Deter; her symptoms
would help to define Alzheimer’s disease (AD). Over a century later, with an aging world
population, AD is at the fore of global neurodegenerative disease research. Previously,
toxic amyloid-beta protein (Af) was thought to be the primary driver of AD development.
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Recent research suggests that another protein, tau, plays a fundamental role. Toxic tau
protein contributes to cognitive decline and appears to interact with toxic Af; research
suggests that toxic AB may further increase the effects of toxic tau. Theoretical mathemati-
cal models are an important part of neurodegenerative disease research. Such models:
enable extensible computational exploration; illuminate emergent behavior; and reduce
research costs. We have developed a novel, theoretical mathematical model of two inter-
acting species of proteins within the brain. We analyze the mathematical model and dem-
onstrate a computational implementation in the context of Af-tau interaction in the
brain. Our model clearly suggests that: the removal rate of toxic protein plays a critical
role in AD; and the Af-tau ‘conspiracy theory’ is a nuanced, and exciting path forward for
Alzheimer’s disease research.

Introduction

Neurodegenerative diseases such as Alzheimer’s (AD) or Parkinson’s (AD) are associated with
the propagation and aggregation of toxic proteins. In the case of AD, it was Alzheimer himself
who showed the importance of both amyloid-f (Af) plaques and tau-protein (7P) neurofibril-
lary tangles (NFT) in what he called the “disease of forgetfulness” [1, 2]. These two proteins are
very different. AS forms extracellular aggregates and plaques whereas 7P are intracellular pro-
teins involved in the stabilization of axons by cross-linking microtubules that can form large
disorganized tangles [3, 4]. Since the early 90’s, when it was first formulated, the “amyloid cas-
cade hypothesis” has dominated the search for cures and treatments [5, 6]. According to this
hypothesis, an imbalance between production and clearance of A42 and other Af peptides is
not only an early indicator of the disease but the causing factor for its initiation, progression,
and pathogenesis [7]. However, the repeated failures of large clinical trials focussing on the
reduction of Af plaques has led many researchers to question the amyloid hypothesis and
argue for the possible importance of other mechanisms.

One obvious alternative is that 7P plays a more prominent role than the amyloid hypothesis
suggests. The 7P are usually considered as secondary agents in the disease despite the fact that
(1) other 7P-related diseases (tauopathies), such as frontotemporal lobar degeneration, are
mostly dominated by 7P spreading [8]; (2) brain atrophy in AD is directly correlated with
large concentrations of NFT [9, 10]; (3) 7P distribution determines disease staging [11]; (4)
lowering 7P levels prevent neuronal loss [12]; (5) 7P reduces neural activity and is the main fac-
tor associated with cognitive decline [13]. These findings may explain the relative lack of clini-
cal improvements after Af3 suppression and the debate between the relative importance of Aj
proteopathy and 7P tauopathy in AD [14]. Furthermore, the similarity in mechanism and pro-
gression between prion diseases [15] and classical neurodegenerative diseases led to the formu-
lation of the “prion-like hypothesis” [16, 17, 18, 19, 20, 21] stating that all these protein-related
degenerative diseases are characterized by the progressive spreading and autocatalytic amplifi-
cation of abnormal proteinaceous assemblies through axonal pathways [22].

Since so many cellular mechanisms are poorly understood in vivo, the relative importance
of different groups of toxic proteins and their possible interactions have not been established.
In particular, both 7P and Af depend upon and modify the cellular environment [16]. Yet, in
recent years a number of studies have linked these two anomalous proteins [23] and raised the
possibility that protein-protein interactions in neurodegenerative diseases are a key to under-
standing both spreading and toxicity [24, 25]. According to Walker, for AD “the amyloid-S-7
nexus is central to disease-specific diagnosis, prevention and treatment” [14].

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008267 October 13, 2020 2/41


https://doi.org/10.1371/journal.pcbi.1008267

PLOS COMPUTATIONAL BIOLOGY Protein-protein interactions in neurodegenerative diseases: A conspiracy theory

Specifically, the following crucial observations have been made in AD: (1) tangles in the
cortex rarely occur without Af plaques [12]; (2) the presence of Af3 plaques accelerates both
the formation of 7P aggregates [26] and the interneuronal transfer [27] of 7P; (3) the presence
of 7P induces blood vessel abnormalities [28] and induces neuroinflammation through micro-
and astro-glial activation [29]; (4) the presence of Af can induce the hyperphosphorylation of
7P and the creation of toxic 7P seeds by disturbing cell signaling via oxidative stress or through
plaque-associated cells (such as microglia) or molecules [30, 31, 32, 33]; (5) Af and toxic 7P
target different cellular components, and doing so amplify each other’s toxic effects [23]; (6)
7P mediates Af toxicity as a reduction of 7P prevents AS-induced defects in axonal transport
[23]; (7) perhaps more anecdotal, it has also been argued that the lack of clear evidence of
dementia in non-human primates, despite the presence of Af plaques, could be due to a differ-
ence in AS-7 interactions in these species [34].

From these observation, we extract three crucial modes of interaction:

M1: The seeding of new toxic 7P is enhanced by the presence of AS.
M2: The toxicity of A depends on the presence of 7P.
M3: Af and 7P enhance each other’s toxicity.

Here, our goal is twofold: first to develop modeling and computational tools to study pro-
tein-protein interactions at the brain-organ level and second to test the relative effect of these
interactions by direct simulation. Typical approaches for organ-size simulation of dementia
progression [35] take the form of either continuous models formulated in terms of anisotropic
reaction-diffusion equations [36, 37, 38], or discrete systems on the brain’s connectome net-
work. The discrete approach can be further divided into pure-diffusion linear models [39, 40,
41, 42, 43], probabilistic models [44, 45, 46], or deterministic models [47, 48].

A primary result, of interest to the computational biology community, for the current work
will be to show: that non-trivial interactions between Aff and 7P can be realized with relatively
simple deterministic models and couplings; and that these interactions can lead to effects with
physiological interpretations in neurological disease modeling. Moreover, the mathematical
analysis will highlight that clearance mechanisms play a key role in destabilizing the system
towards proteopathy. We will therefore select the simplest possible, deterministic, protein kinetic
model, including a bulk clearance term, that allows for the expression of both a healthy and toxic
regime for a single protein; the heterodimer model [49, 50]. One such system will be defined for
Ap, one for 7P and the two heterodimer systems are coupled with a single balanced interaction
term. We augment the model by adding an stand-alone, first order equation for damage evolu-
tion; this equation expresses the deleterious effects of Af, TP and their interactions. Our general
approach, following [48] is to study some of the key properties of this continuous model before
discretizing it on a network and solving it numerically on the brain’s connectome graph.

Results
Network model dynamics

We have established the properties of our system of equations in the homogeneous case and in
one-dimension (Methods, A network mathematical model). The study has lead to the identifi-
cation of two fundamental disease propagation modes depending on the parameters: the pri-
mary tauopathy where toxic 7P states can exist independently from the Af concentration, but
are enhanced by its presence; and the secondary tauopathy where the presence of toxic 7P is
slaved to the existence of toxic Af. We can use this analysis as a guide to the simulation of the
full network equation. Eqs (8)-(12) were discretized on the reference connectome [59]
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(Methods, A network mathematical model) using CVODE as part of the SUNDIALS nonlinear
ODE solver library [63] in addition to KLU [64] as part of the SuiteSparse [65] linear algebra
library. Snapshots of the dynamics are shown in subsequent figures, but full videos can be
found in the supplementary material.

As a way to systematically test the validity of our computational platform, we have per-
formed two main tests. First, we reproduced the homogeneous states in the full network and
second, we reproduce the transition between homogeneous states. Both tests are detailed in S1
Appendix in addition to a discussion regarding a choice of hypothetical, non-clinical parame-
ters for illustration purposes; S1 Appendix contains a full discussion on the specific numeric
values of the stationary states corresponding to the choices of of Table 1.

Front dynamics on networks. Propagating front solutions for the system of partial differ-
ential Eq (3) were considered, via linearization around the healthy state and reduction to one
spatial dimension, (c.f. Methods, Front propagation), Propagating fronts represent fundamen-
tal modes of disease pathology dynamics that can also be realized by the network model of
(8)-(12) as we now demonstrate. We consider two different network for front propagation.
First, a three-dimensional regular cubic lattice with n, = 30 nodes in the x-direction n, = 6
nodes in the y-direction and #, = 3 nodes in the z-direction, spaced equally at unit length. Sec-
ond, we use the physiological brain connectome domain discussed in the Methods section (A
network mathematical model), but we choose initial conditions on two sides of the brain to
illustrate the front dynamics. In the next section we will consider the same domain but with
realistic initial conditions.

The first example is that of primary tauopathy corresponding to the parameters of Table 1.
Formulas for the steady states, for primary tauopathy, are listed in the Methods (An Analysis
of the continuous model, Stationary points) section.

Primary tauopathy. Primary tauopathy, synthetic domain. We set all nodes to the
healthy state (u, i1, v, 7) = (0.75,0,0.5,0) and perturb the initial condition of the left-hand
nodes 0 < x < 4 by adding a 5% concentration (it = 0.05) of toxic Af. We perturb the initial
condition of the right-hand nodes 25 < x < 29 by adding a 5% concentration (v = 0.05) of
toxic 7P. As expected, we see the toxic Af concentration achieve the theoretical maximum,
permitted by the parameters, of # = 0.25 while toxic 7P first achieves the maximum associated
with v = v, = 0.25 and, upon mixing with Af, achieves the fully toxic state value
v = v, = 0.45. The color scale of Fig 1 was chosen to accentuate the interaction.

Primary tauopathy, brain connectome. Simulation of disease front propagation was
then carried out using the physiological connectome (Methods, A network mathematical
model). The seeding sites selected for toxic AS and toxic 7P are the right supramarginal gyrus
and left supramarginal gyrus respectively; these seeding sites provide a direct analogy, when
the brain connectome is viewed from the frontal lobe, with Fig 1. Fig 2 depicts time instances
qualitatively reflecting, in one-to-one correspondence, the stages of the synthetic domain com-
putation of Fig 1. A horizontal slice, at the plane of the supramarginal gyri, of the brain

Table 1. Primary tauopathy model parameters.

Ap system parameters 7P system parameters
ap=0.75 by=0.5
a;=1.0 b,=1.0
a,=1.0 b,=1.0
a, =06 b, =04
Coupling parameter: b;=1.0

https://doi.org/10.1371/journal.pcbi.1008267.t001
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Initial toxic wavefronts Toxic A and 7P wavefronts meet

Toxic 7P wave begins connection to 0 = 04 Toxic 7P state nears full connection to © = 04

Fig 1. Front propagation in primary tauopathy; synthetic rectangular domain. Each subfigure consists of a toxic AS
concentration distribution (top left), toxic 7P concentration distribution (bottom left) and a plot (solid line: Af, dashed
line: 7P) of the concentration level on the x—axis. Dark blue indicates the minimum concentration of ¢ = 0.0 while
bright red indicates the maximum of ¢ = 0.5. See the Methods section (Front propagation) for a comparison to theory.
(See also: supplementary S1 Video).

https://doi.org/10.1371/journal.pcbi.1008267.9001

connectome is used to maximally expose the front propagation dynamics. The impact of brain
connectome cross-connectivity is evident in the stages depicted in Fig 2. In particular, when
the Af and 7P wavefronts first meet they do so in several locations. This is due to the left-right
hemispheric connectivity; both direct nodal connectivity and vis-a-vis propagation in the cor-
onal plane.

Secondary tauopathy. The parameters for the at-risk secondary tauopathy patient are
those of Table 1 with two exceptions; first, as usual for secondary tauopathy, we take b, = 0.75
and second we take b; = 3.0. We have increased bj; to facilitate the comparison with front prop-
agation theory, for secondary tauopathy, discussed in the Methods section.

Secondary tauopathy, synthetic domain. Secondary tauopathy consists of all stationary
states except for the toxic 7P-healthy AS state; i.e. (us, #1;, v,, 7,) is not included. The

Initial toxic supramarginal wavefronts Toxic Af and 7P wavefronts meet

Toxic 7P wave begins connection to ¥ = 04 Toxic 7P state nears full connection to © = 04

Fig 2. Front propagation in primary tauopathy; brain connectome. Each subfigure consists of a toxic Af
concentration distribution (subfigure left) besides a toxic 7P concentration distribution (subfigure right). Dark blue
indicates the minimum concentration of ¢ = 0.0 while bright red indicates the maximum of ¢ = 0.5. (See also:
supplementary S2 Video and supplementary fle S2 Data).

https://doi.org/10.1371/journal.pcbi.1008267.9002
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Solo toxic AB wavefront

Toxic 7P early connection to @ = 04 Toxic 7P © = ¥4 connection catching Aj3

Fig 3. Front propagation in secondary tauopathy; rectangular domain. Each subfigure consists of a toxic Af
concentration distribution (top left), toxic 7P concentration distribution (bottom left) and a plot (solid line: Af, dashed
line: 7P) of the concentration level on the x—axis. Dark blue indicates the minimum concentration of ¢ = 0.0 while
bright red indicates the maximum of ¢ = 0.5 for toxic AB and ¢ = 0.583 = 7/12 for toxic 7P. See the Methods section
(Front propagation) for a comparison to theory. (See also: supplementary S3 Video).

https://doi.org/10.1371/journal.pchi.1008267.9003

stationary point (u,, #,, v,, 7,) depends on bs; with the parameters above we have

1.6  5b,—1 _ _
1 Uy v,)=0.6,025—— ) =(0.6,0.25,0.26,0.583 1
(u47u47v4ﬂv4) ( I 7[73 + 374[93 + 12) ( I I I )7 ( )

while the other two secondary tauopathy stationary points, c.f. (14) and (15), coincide with
their values for primary tauopathy. The initial value at all nodes are first set to the healthy
state. A 5% perturbation in concentration is then added to the toxic Af initial value for the
nodes 0 < x < 4 and a perturbation of 1 x 10™°%, i.e. 1 x 10", is added to the toxic 7P initial
value for the nodes 0 < x < 14.

As expected: the initial toxic A wavefront achieves its theoretical maximum of # = 0.25;
c.f. Fig 3 and the front propagation discussion, for secondary taopathy, in the Methods section.
The toxic 7P wave takes on detectable concentration levels at the point when the A wave
reaches the halfway mark in the rectangular domain. The toxic 7P state connects, immediately,
to the theoretical maximum of the toxic TP-toxic Af stationary state value of ¥, = 7/12 and
quickly proceeds to catch up to the A wavefront.

We tested the time of appearance and saturation of the toxic 7P wave front as a function of
the interaction parameter bs. Plots for four values of b5 are shown in Fig 4 where the y-axis sig-
nifies the maximal toxic 7P concentration obtained, over all nodes, with respect to the maxi-
mum concentration for that value of b; (c.f. (1)). Fig 4 highlights the important, and patient-
specific, role that b; may play in further efforts to deploy (8)-(11) for the modeling of Alzhei-
mer’s disease. In particular values of b; ~ 1 do lead to the development of tauopathy; however,
this development emerges significantly later than for higher values of this interaction parame-
ter. Clinically, such a value of b5 could correspond to a patient who, at the time of death, pres-
ents significant amyloid plaques but negligible, or undetectable, levels of neurofibrillary tau
tangles.

Secondary tauopathy, brain connectome. We also simulated secondary tauopathy
dynamics on the physiological brain connectome (Methods, A network mathematical model).
A 5% toxic Af perturbation from the healthy state was seeded at the site of the left supramargi-
nal gyrus; all nodes of the left hemisphere were then seeded with an additional 1 x 10™°% con-
centration of toxic 7P. Snapshots of the evolution is shown in Fig 5. As indicated above we
have b; = 3 for comparison with Fig 3 and the theory of propagating fronts as illustrated in the
Methods section. A detail of particular interest is that, even though the entire left hemisphere
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50% :
— B3=1
B3 =3
40% 1 ; B3=5
— B3=7
|
30% - *
|
1
20% 1
10% 1 |
|
|
0 50 100 150 200 250 300

Fig 4. The onset effect due to b; in secondary tauopathy. Saturation % (y-axis) vs Simulation time (x-axis).

https://doi.org/10.1371/journal.pcbi.1008267.9004

was seeded uniformly with toxic 7P, the toxic 7P wave follows the same anisotropic infection
pathway, from the left supramarginal gyrus, as the toxic Af front propagation. This implies
that latent development of tauopathy, in this regime, is heavily influenced by A pathology
history.

Application to neurodegenerative disease modeling

We have shown in the previous section that the overall phenomenology obtained from the
dynamic evolution of the continuous model in one-dimension (Methods, A network mathe-
matical model, Front Propagation) is recovered within the discrete network setting. We can

Solo toxic AS wavefront Toxic 7P (supramarginal) wavefront appears

Toxic 7P early connection to o = U4 Toxic 7P ¥ = 94 connection catching Af

Fig 5. Front propagation in secondary tauopathy; brain connectome. Each subfigure consists of a toxic A
concentration distribution (subfigure left) besides a toxic 7P concentration distribution (subfigure right). Dark blue
indicates the minimum concentration of ¢ = 0.0 while bright red indicates the maximum of ¢ = 0.5 for toxic Af and
¢ = 0.583 = 7/12 for toxic 7P. (See also: supplementary S4 Video and supplementary S2 Data).

https://doi.org/10.1371/journal.pcbi.1008267.g005
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therefore use the network model and our primary classification to study the interaction of pro-
teins in the brain. Here, we apply (8)-(11) to a computational case inspired by Alzheimer’s dis-
ease. In particular we consider seeding sites, for toxic Aff and toxic 7P, commensurate with [11,
66, 67, 47] Alzheimer’s disease staging. Alzheimer’s disease is a complex multiscale phenomena;
a uniform parameter regime, throughout all brain regions, is unlikely to accurately reflect a
patient’s real disease progression. Nevertheless, for this early investigation, we will first consider
the simple uniform parameters, of the model’s primary and secondary tauopathy regimes, as
discussed in the section on network model dynamics. In addition we briefly consider the evolu-
tion of the coupled neuronal damage term, given by (12), and the effect of the coefficients
therein. We shall also select the diffusion constants, p of (7), to be unity for (8)-(11).

A simplified model of Alzheimer’s disease proteopathy. Alzheimer’s associated amyloid
deposition begins [18, 47, 66, 67] in the temporobasal and frontomedial regions. Tau staging,
in Alzheimer’s disease, follows the Braak tau pathway [11] and begins in the locus coeruleus
and transentorhinal layer [18, 47, 67]. These seeding sites, used throughout this section, are
shown in Fig 6. The temporobasal and frontomedial regions for toxic Af seeding are
highlighted in red on the left while the locus coeruleus (in the brain stem) and transentorhinal
associated regions, for toxic 7P staging, are highlighted red on the right.

The regimes of primary and secondary tauopathy will first be considered on the whole
brain connectome with globally-constant synthetic parameters. We will observe several char-
acteristic traits of these modalities and also note the similarity between these pure states and to
a qualitative three-stage progression [18] of protein lesions, typical of Alzheimer’s disease, as
inferred from post-mortem analyses; the progression pattern is illustrated in Fig 7. In the sub-
section titled ‘a mixed model comparison to Alzheimer’s diseased patient data’ we consider the
case of mixed regional modalities; i.e. a mixture of primary and secondary tauopathy connec-
tome regions. We illustrate that the model can manifest canonical features of positron emis-
sion tomography (PET) SUVR intensities characteristic of Alzheimer’s disease (c.f. for
instance [68, 69]). In particular: we will compare the results of a mixed-mode simulation with
a cross sectional Alzheimer’s patient cohort dataset procured from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database.

Alzheimer’s disease, primary tauopathy. All nodes in the connectome were first set to
the healthy, but susceptible, primary tauopathy patient state

Fig 6. Simulated seeding sites for a model of Alzheimer’s disease. Toxic AS (left) and toxic 7P (right) seeding sites.
https://doi.org/10.1371/journal.pcbi.1008267.9006
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(a) Amyloid-f deposits

(b) Tau inclusions

Fig 7. Characteristic progression of of Af and 7P lesions. 3-stage Af (top) progression and 7P NFT (bottom)
progression.

https://doi.org/10.1371/journal.pcbi.1008267.9007

b
(4, i1,, vy, 7,) = <@,o,—°,o> = (0.75,0,0.5,0).
a, b,

The temporobasal and frontomedial Af seeding sites, consisting of fifty-three nodes, were
each seeded with a toxic amyloid concentration of 0.189%; thus the brain-wide toxic Af con-
centration represents a 1% concentration deviation from healthy. Similarly, the locus coeruleus
and transentorhinal nodes were seeded with an aggregate perturbation of 1% toxic 7P.

Fig 8a shows the average brain-wide concentration for all four protein populations for the
primary tauopathy patient (c.f. Table 1) with interaction term b5 = 1. As we observed previ-
ously, in (1), the value of b; directly informs the saturation 7P concentration, of (v, 7), for the
disease. Fig 8b shows the evolution of the toxic 7P burden for various b;. For each value of b,
the toxic 7P invasion window was computed as the difference in time between the appearance
of a global 1% toxic TP concentration to the simulation time where the maximum v was
reached. We performed a least squares fit and found that the invasion window, for primary
tauopathy, decreases exponentially with an increase in coupling strength (b;) between toxic Aj
and toxic 7P. Fig 8c shows the result.

This result suggests that the dynamics of toxic protein evolution is highly sensitive to the
coupling between Af and 7P: Toxic Af accelerates, in a nonlinear fashion, the way toxic 7P
emerges across the brain. Acceleration of toxic 7P progression due to the presence of toxic Af

1@ @ =0
oof yy 08 545 % . 83205
oY / 01— 83=10
06 06 PP - - (_— & ® B3=20
) /
i 83210 ® B3=40
04 Ny~ Vit 04 [/ 83=05
a / ~B3=025 13 \
/ /] .
02 / [0) 02 / n
/ / & - N
00 < o0 &
T % w B m & % 5 % % B @ & %™ o i 3 3 T 4
(a) Concentration vs. time (b) Toxic 7P vs. time (c) Invasion window vs. b3

Fig 8. Protein-protein interaction in primary tauopathy.

https://doi.org/10.1371/journal.pcbi.1008267.9008
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Fig 9. Toxic proteopathy progression dynamics in the primary tauopathy patient. Toxic Af (top row) and opacity
exaggerated toxic Af progression (second row); Toxic 7P (third row) and opacity exaggerated toxic 7P progression
(last row). Color scale is identical to Fig 1. (See also: supplementary S5 Video, supplementary S6 Video and
supplementary S2 Data).

https://doi.org/10.1371/journal.pcbi.1008267.g009

has also been observed in mouse models of Alzheimer’s disease [27]. Consulting longitudinal
tau PET studies, in combination with amyloid-beta data from a public database, could provide
an estimation of b in the primary tauopathy model.

The toxic load progression of the susceptible primary tauopathy patient is shown in Fig 9 at
five equidistant time points throughout the invasion window. To facilitate a comparison with
Fig 7: a sagittal view of the progression, of each toxic agent, is presented; directly below is an
opacity-exaggerated view wherein regional opacity is proportional to the agent’s regional toxic
load. Comparison with Fig 7 suggests reasonable qualitative agreement; thus warranting fur-
ther study of physically relevant parameters with a view towards real clinical applications.

Alzheimer’s disease, secondary tauopathy. All nodes were set to the healthy, but suscep-
tible, patient state corresponding to the susceptible secondary tauopathy patient parameters
(Table 1 with b, = 0.75). In addition, for a baseline secondary tauopathy case, we follow the
secondary tauopathy approach discussed previously and select the interaction parameter of
bs; = 3.0; the fully invaded secondary tauopathy state values are therefore (1). Seeding patterns
for both AB and 7P are identical to the case of primary tauopathy discussed above.

Fig 10a shows the average brain-wide concentration for all four protein populations of the
secondary tauopathy patient with baseline interaction term b; = 3. As in the case of primary
tauopathy we investigate the effect of b; on toxic load and invasion window by considering a
value range four times smaller to four times larger than the baseline b; = 3 case. Toxic load
curves are shown in Fig 10b while invasion windows are shown in Fig 10c.
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Fig 10. Protein-protein interaction in secondary tauopathy.
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Fig 11. Prodromal window variations with b, secondary tauopathy. Invasion starting (left) and ending (right) time

vs. bs.
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Fig 12. Toxic 7P progression dynamics in the secondary tauopathy patient. Toxic 7P (first row) and opacity
exaggerated toxic 7P progression (second row). Color scale is identical to the 7P case of Fig 3. (See also: supplementary
S5 Video, supplementary S7 Video and supplementary S2 Data).

https://doi.org/10.1371/journal.pcbi.1008267.9012

Interestingly, we see distinct differences in comparison with the primary tauopathy case
(c.f. Fig 8a-8c). More specifically, in primary tauopathy it is evident (Fig 8b) that the disease
onset is only slightly affected by varying the interaction parameter bs; for secondary tauopathy,
in contrast, b; has a profound effect on disease onset latency. Moreover, the invasion window
variation with b; for secondary tauopathy is more complex than that of primary tauopathy. Fig
10c shows that the invasion window duration initially decreases exponentially with b5 but then
appears to increase logarithmically for b; > 3. Analyzing the invasion window start time and
end time separately shows a clear, but separate, exponential decay pattern versus bs. Fig 11
shows the least-squares exponential fit to the invasion start and end times.

As in the primary tauopathy case we now consider characteristic toxic load progression for
secondary tauopathy. The AS progression is identical to that shown in Fig 9 (top two rows). This
is expected as only the 7P portion of the system has been modified with respect to the primary
tauopathy regime (S1 Appendix). The 7P secondary tauopathy progression is shown, in Fig 12,
at equally spaced simulation times through the invasion window. Qualitatively, the progression
of secondary tauopathy also reflects the characteristic post-mortem progression of Fig 7.

A mixed model comparison to Alzheimer’s diseased patient data. Thus far, we have
considered, respectively, the general features of the modalities of primary versus secondary
tauopathy; illustrated with synthetic, globally constant parameters. We have observed several
interesting facets of these two disease states. For instance, regions in a state of primary tauopa-
thy can develop Af and 7P proteopathy separately; the Af interaction parameter, b3, does not
alter the onset of tauopathy but does modulate the regional concentration. Conversely, in sec-
ondary tauopathy the presence of Af pathology is necessary for 7P pathology and the interac-
tion parameter, bs, modulates both the latency and the intensity of the regional pathology. We
have also seen that proteopathy progression in pure models, e.g. where all regions have the
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same primary or secondary tauopathy parameters, bears a notable resemblance (Fig 7) to post-
mortem progression of protein lesions [18]. However, PET imaging studies of A and 7P
radiotracer uptake tell a more nuanced story. For instance, in Alzheimer’s disease the distribu-
tion of (['®F]flortaucipir and ['*F]THK-5117, among others) PET-7P SUVR intensities are dis-
tinctly biased [68, 69] towards the temporal and parietal regions of the brain; a feature that we
do not see in Fig 9 or Fig 12.

In order to demonstrate that the model of (8)-(11) can reproduce salient features of A and
7P SUVR uptake in patients diagnosed with Alzheimer’s disease: we now compare a mixed-
modality simulation with a cross-sectional study of Alzheimer’s disease patient data. Sample
data for model comparison was procured from the the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database. We first queried the ADNI database to locate AD-diagnosed subjects
between the age of 70 and 90 who had at least one 7P PET (18F-AV 1451, flortaucipir) scan.
The returned results consisted of 41 patients. These initial patient candidate IDs were then
checked for a structural T1 weighted MRI within a maximum of one year of a tau PET scan;
patients without any sMRI, those with a poor quality sMRI, or those without an sMRI within a
year of the tau PET scan were discarded. The resulting cohort consisted of 38 patients (25 male
and 13 female) with mean age 78.4, a standard deviation of 5.14 years, and a male-to-female
ratio of 1.92. Patients who met the age, TP PET scan, and acceptable quality sMRI within one
year of the PET scan were not abundant in the ADNI database. Due to this the 7P group was
selected, first, to maximise the number of candidates in the group.

The ADNI database contains quite a generous number of patients with AS (18F-AV45, flor-
betapir) PET scans. We next queried the database to locate AD-diagnosed subjects between 70
and 90 who had an Af (18F-AV45) PET scan in addition to a structural T1 weighted MRI
within one year. The result of this search was in excess of 100 unique patient IDs; from these
results we selected an initial candidate group of 82 unique patients IDs. The 82-candidate
group was further pruned to create a list of 48 subjects whose age and sex characteristics closely
resembled that of the 7P PET group. Finally, the 48 candidate AS PET group was narrowed
down: first, subjects with an unacceptable or low-resolution sMRI were removed. We then
removed the minimum number of candidates required to provide as close a match as possible
to the mean age, standard deviation and male-to-female ratio of the TP PET group. The result-
ing AD cohort for AB consisted of 42 patients with mean age 78.4, a standard deviation of 5.1
years, and a male-to-female ratio of 2.0. The two groups are succinctly summarised in Table 2.

Patient data was then processed through a semi-automated, scripted software pipeline for
general connectome-graph based imaging and analysis of clinical patient data. Each of the 160
patient images, the PET and sMRI scan for each patient, were first manually analysed using
version 12 of the Statistical Parameteric Mapping [70] (SPM) software; the origin of the image
was set to coincide with the anterior commissure. Next, the sMRI images for each patient were
pre-processed for connectome-graph visualization. The SPM software was used, on each
patient sMRI, to perform a unified segmentation procedure [70]. The unified segmentation
procedure identifies grey matter, white matter, cerebrospinal fluid, skull, and exterior regions.

Table 2. Adni patient group statistics.

18F-AV1451 7P PET group 18F-AV45 Af PET group
Total patient count 38 42
Male patients 25 28
Female patients 13 14
Mean age + SD, years 784 +5.14 784+ 5.1

https://doi.org/10.1371/journal.pcbi.1008267.t002
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Following this, the grey and white matter segmentations served as input for spatial normalisa-
tion using the DARTEL [71] toolbox; the outputs of which were a composite template for the
Ap patient group and a separate composite template for the 7P patient group. All patient grey
matter images were then normalised to MNI-152 space using their group-specific optimised
DARTEL template.

The next step of the pipeline is to treat the PET images for both the AB and 7P groups. This
step relies on the fact that we have already manually relocated the origin of the PET images to
the approximate visual location of the anterior commissure as mentioned above. The first new
step for this portion of the pipeline is to use the SPM software to co-register the PET images to
their sMRI counterparts. This co-registration step is the genesis of the original data procure-
ment requirement that an sMRI scan is conducted no later than one year beyond the PET
image acquisition date. The coregistered PET images are then spatially normalised using the
DARTEL template and corresponding subject deformation fields derived from the sMRI pipe-
line (c.f. above). Finally, SUVR values were computed, using SPM, by means of a whole-cere-
bellar reference region; the skull was then stripped. A voxel-wise mean, across all subjects, was
taken to produce a representative SUVR map of both AD cohorts. This completes the first por-
tion of the connectome-graph based imaging analysis pipeline; the result of this step, for both
the A and 7P group, is shown in the top row of Fig 13.

The averaged SUVR data of Fig 13 (top row) reports a general view of uptake across the
whole brain. In order to visualize significant features of the data: the skull-stripped SUVR
image volumes, in NIfTI file format, are visualized using Paraview vis-a-vis the NIfTT Paraview
plugin. The volume opacity then set so that the top 30% of the SUVR intensity range in the
data is visible; c.f. Fig 13, middle row. Doing so: we immediately see notable features of signifi-
cance reported in previous radiotracer studies; in particular the familiar [68, 69] temporal and
parietal dominance of the 7P radiotracer uptake distribution (Fig 13, middle right) are visible.
In order to compare simulation results to the patient data of Fig 13 we now employ a connec-
tome-graph data visualization software process. This portion of the general pipeline uses func-
tionality from both SPM and the Nilearn [72] Python library. Regional masks were produced
using the Lausanne multiresolution atlas [73] parcellation to the MNI ICBM 152 non-linear
6th generation symmetric volume [74]; generating over 1000 distinct masks. The mask vol-
umes were then applied to isolate the SUVR values for each mask in the parcellation and a
regional average SUVR was computed. The computed values were then normalized to lie in
the interval [0, 1] by dividing all regional SUVR averages by the global maximum average

RGN g

Ap SUVR 7P SUVR

UL

Fig 13. Skull-stripped, cross-sectional Alzheimer’s patient cohort SUVR intensity. Top row: averaged SUVR data is
shown. Bottom row: top 30% of SUVR intensities are visible. For both rows: (left side) 18F-AV45 florbetapir AS
radiotracer SUVR and (right side) 18F-AV-1451 flortaucipir 7P radiotracer SUVR. Darker colors correspond to higher
SUVR values.

https://doi.org/10.1371/journal.pchi.1008267.9013

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008267 October 13, 2020 13/41


https://doi.org/10.1371/journal.pcbi.1008267.g013
https://doi.org/10.1371/journal.pcbi.1008267

PLOS COMPUTATIONAL BIOLOGY

Protein-protein interactions in neurodegenerative diseases: A conspiracy theory

Ap SUVR 7P SUVR

Fig 14. A connectome-graph view of the normalized patient SUVR data. The (left side) 18F-AV45 florbetapir Af
radiotracer SUVR and (right side) 18F-AV-1451 flortaucipir 7P radiotracer SUVR. Highest 30% of connectome
regional values are visible. Darker colors correspond to higher SUVR values.

https://doi.org/10.1371/journal.pcbi.1008267.9014

SUVR intensity; the normalized values, along with the MNI-space coordinates of the region’s
centroid were recorded as output. The regional normalised SUVR values and the MNI coordi-
nates were then used as input to the Python application programming interface of the Nilearn
[72] software. Using the connectome visualization capabilities of Nilearn we rendered this
information using a glass brain view with the highest 30% of values shown; see Fig 14. A com-
parison with Fig 13 (bottom row) shows that characteristic PET features associated with Alz-
heimer’s disease [68, 69] are once more prominent in the connectome view of the top 30% of
SUVR intensities.

Demonstrating that the mathematical model of (8)-(11) is capable of achieving distribu-
tions of toxic A and 7P that resemble the PET data of AD patients is a multi-step process. We
note that the demonstration endeavored here is illustrative and does not constitute a full vali-
dation of the model; it will, however, fully justify that the fitting of real-world data is within the
capacity of the model. First, we set all regions in the connectome to a state of secondary tauo-
pathy with the general synthetic parameters given by those in Table 3. The ABS-7P interaction
parameter, b;, was modified in several regions. All of the modifications to b; were symmetric;
that is, they were made in both the left and right hemispheres of the corresponding region.
The modified interaction parameters for connectome vertices in select secondary tauopathy
regions are shown in Table 4. Finally, the connectome vertices in a total of five brain regions,
in both hemispheres, were put into a state of primary tauopathy by changing the values of b,
and bs to correspond to states in this regime. The primary tauopathy regions, and their param-
eters, are listed in Table 5.

The connectome vertex parameters given by Table 3 and regional vertex parameter modifi-
cations pursuant to Tables 4 and 5 describe a mixed-modality mathematical model; the con-
nectome graph contains vertices in a state of primary tauopathy and vertices in a state of

Table 3. Comparison with ADNI Alzheimer’s patient PET data. General Synthetic parameters.

Parameter ‘ Value ‘ Parameter ‘ Value ‘ Parameter ‘ Value ‘ Parameter ‘ Value
Healthy amyloid-f population parameters
p \ 1.38 \ ao \ 1.035 \ a \ 138 \ a \ 138
Toxic amyloid-f population parameters
p \ 0.138 \ a, \ 0.828 \ a \ 1.38 \ |
Healthy 7P population parameters
p 1.38 by 0.69 b, 1.38 b, 1.035
b, 414
Toxic TP population parameters
P 0.014 l;] 0.552 b, 1.035 bs 4.14

https://doi.org/10.1371/journal.pchi.1008267.t003
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Table 4. Regional interaction parameter variation in secondary tauopathy.

Brain region ID and modified b; value

Pars Opercularis 7.452 Rostral middle frontal gyrus 6.707
Superior frontal gyrus 7.452 Caudal middle frontal gyrus 7.452
Precentral gyrus 5.589 Postcentral gyrus 3.726
Lateral orbitofrontal cortex 6.486 Medial orbitofrontal cortex 6.486
Pars triangularis 5.520e-6 Rostral anterior cingulate 6.210e-6
Posterior cingulate cortex 3.45 Inferior temporal cortex 13.11
Middle temporal gyrus 11.04 Superior temporal sulcus 8.97
Superior temporal gyrus 8.28 Superior parietal lobule 12.42
Cuneus 13.8 Pericalcarine cortex 13.8
Inferior parietal lobule 11.73 Lateral occipital sulcus 15.18
Lingual gyrus 13.8 Fusiform gyrus 7.59
Parahippocampal gyrus 11.04 Temporal pole 1.104e-5
https://doi.org/10.1371/journal.pcbi.1008267.t1004
Table 5. Primary tauopathy regions and parameters.
Brain region b, b; Brain region b, bs
Entorhinal cortex 3.125 1.104e-5 Putamen 3.795 3.795
Pallidum 2.76 2.76 Precuneus 3.105 3.105
Locus coeruleus 1.38 1.38

https://doi.org/10.1371/journal.pcbi.1008267.t005

secondary tauopathy. The model Eqs (8)-(11) were solved with the regional parameters, and
modifications, described above. Seeding patterns for both Af and 7P are identical to those dis-
cussed at the beginning of the Alzheimer’s application section. The patient SUVR data, visual-
ised on the conectome, is shown in Fig 14; the results of the simulation are shown in Fig 15 at
time ¢ = 78 in accordance with the mean age of the A and 7P cross-sectional study parameters
(c.f. Table 2); the highest 30% of values are visible. A comparison of Fig 13 (bottom row) and
Fig 14 to that of Fig 15 shows that the model can indeed capture salient characteristics of Alz-
heimer’s disease proteopathy as indicated by SUVR intensity.

Thus, this preliminary result clearly demonstrates that the model can recover primary fea-
tures of Alzheimer’s disease proteopathy and that more mathematically comprehensive analy-
ses are warranted; for instance, investigations using (variational) Bayesian methods [75, 76]
may be compelling for further study of the model alongside patient data for cognitively nor-
mal, mildly cognitively impaired, early and late onset Alzheimer’s disease cohorts.

YL XL L

Axial Sagittal Axial

Coronal Coronal Sagittal

Fig 15. Results of a mixed-modality simulation. (left) Toxic AS population and (right) toxic 7P population are shown
at time ¢ = 78. The top 30% of nodal values are visible; darker colors correspond to higher values.

https://doi.org/10.1371/journal.pcbi.1008267.9015
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A simple model of local and non-local neuronal damage

This section briefly examines the use a simple measure of neuronal damage with the minimal
level of complexity necessary to take into account both local and non-local effects. The intent
is to explore the qualitative differences between the primary and secondary tauopathy regimes
and the effect of varying: the toxification rate of A on 7P; and the rate of aggregation due to
non-local influence. The continuous Eq (3) were augmented (Methods, A continuous mathe-
matical model) with a coarse-grained damage model (4). We recall that g(x, t) represents a
first-order assessment for neuronal cell body damage vis-a-vis a, potentially variegated, set of
coupled mechanisms. These mechanisms are not individually differentiated; however, they are
assumed to be correlated with the presence of toxic Af, toxic 7P or with those mechanisms
requiring both (c.f. the discussion surrounding Eq (4)).

The damage model (4) has several coefficients: k; and k, mediate the damaging effect of
toxic A and 7P respectively. The rate coefficient k; reflects damage, such as the rate of neuro-
nal death following over-excitation, resulting from the combined presence of toxic Af and
toxic 7P. Finally, k4 determines the rate of transneuronal damage propagation; thus reflecting
aggregate neuronal death as a result of communication disruption to and from regional
neighbors.

In this illustrative example we consider the parameters

k,=1x10", k,=1x107 k,=1x10", k,=1x107 (2)

as a baseline from which to begin investigation. These parameters have been chosen to reflect a
few clinical observations. First, k; is chosen as significantly less than k, to reflect the correlation
[9, 10, 12, 13] of toxic 7P neurofibrillary tangles with various forms of neuronal damage (e.g.
intracellular NFT-induced neuron death, atrophy etc). Second, toxic effects of 7P are increased
in the presence of toxic AS [12, 26, 28, 29, 30, 31, 32, 33] thus, ks is taken larger than k,.

As a first point of enquiry: we consider our baseline tauopathy patient parameters (Table 1)
and vary the deafferentation parameter k4 across three orders of magnitude from the initial
value given in (2). Fig 16a and 16b show the results. Note that, in each subfigure, the dashed
lines correspond, from left to right, to monotonically decreasing values of ky4; the far left dashed
curve is k4 = 1.0, the next curve to the rightis ks = 1 x 107}, the next is ky = 1 x 1072, and so
forth, down to the final (rightmost) curve corresponding to k= 1 x 107°. In both figures the
baseline deafferentation curve, ks = 1 x 107, is instead solid (and red) for emphasis. Fig 16¢
and 16d show the effect of increasing bs; we have incremented b; by two, from baseline, for
each case. As expected an overall increase in toxic 7P, v,,,, = 0.679 for primary tauopathy and

Ve = 0.75 for secondary, is observed with the increase in b;. However, the limiting behavior
of the deafferentation baseline coefficient choice, k4 = 1 x 107, remains; which justifies our
choice of k4 in (2).

The staging of the damage is presented in two figures: primary tauopathy in Fig 17 and sec-
ondary tauopathy in Fig 18. Each set of figures includes an overhead horizontal plane view in
addition to a sagittal view of the right hemisphere. A visualization starting time was selected to
coincide with the first visibility of 5% damage, in any nodes, while an ending time was selected
such that the damage progression appeared qualitatively equal. Progression times are uni-

formly spaced within this interval to allow for a direct comparison between the damage distri-

max

bution within the two regimes. An immediate observation is that a 5% damage detection is
latent within the secondary model, starting at t = 95, compared to the primary tauopathy para-
digm at ¢ = 80.

It is challenging to discern differences between the fully opaque horizontal views of Fig 17
v.s. Fig 18; some discrepancies are apparent in the sagittal views, however. Relative opacity
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Fig 16. Aggregate damage in primary and secondary tauopathy. Aggregate damage (dashed; except k; = 1 x 107
solid, red) curves in the base primary (a) and secondary (b) tauopathy patients. Damage with increase toxic protein

interaction, b3, in primary (c) and secondary (d) tauopathy.

https://doi.org/10.1371/journal.pcbi.1008267.9016
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Fig 17. Damage progression in primary tauopathy. Horizontal plane view (top row) with opacity exaggerated
(second row) progression. sagittal view (third row) with opacity exaggerated (fourth row) progression. Dark blue
indicates the minimal damage value of g = 0.0; bright red indicates the maximum of g = 1.0. Intermediate values are:
purple (g = 0.14), sky blue (g = 0.29), green (g = 0.43), yellow (g = 0.57), orange (q = 0.71), and dark red (g = 0.86).

https://doi.org/10.1371/journal.pcbi.1008267.9017
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Fig 18. Damage progression in secondary tauopathy. Horizontal plane view (top row) with opacity exaggerated
(second row) progression. sagittal view (third row) with opacity exaggerated (fourth row) progression. The color scale
is identical to that of Fig 17.

https://doi.org/10.1371/journal.pcbi.1008267.9018

exaggeration is used to gain further insight. At each time the minimum and maximum dam-
age, denoted D,;, and D,y was computed across all regional nodes of the brain connectome;
opacity was then set to linearly increase from: fully transparent at the average ; (D, + D)
to fully opaque at the maximum value D,,,,. The resulting opacity exaggeration scheme shows,
at each time step, the relative distribution of the most damaged regions.

The aforementioned opacity scheme leads to a further observations. First, the distribution
of relative significant damage in primary tauopathy (Fig 17, second and fourth rows) is clus-
tered more centrally to the toxic 7P seeding site of the transentorhinal cortex. Conversely, the
distribution of relative significant damage in secondary tauopathy (Fig 18, second and fourth
rows) is distributed in the direction of the temporobasal region; a site associated with Af seed-
ing. As the disease progresses, t = 103 and t = 114 in Figs 17 and 18 respectively, we see two dis-
tinct differences: relative damage is more connected, in the horizontal plane, in addition to
more diffuse in the coronal direction, of the sagittal plane, for the case of primary tauopathy;
in secondary tauopathy the relative damage in the horizontal plane forms three distinct clus-
ters while severe damage in the sagittal plane is follows the temporobasal and frontomedial
directions.

It is increasingly difficult to visually detect qualitative patterns in later stages of significant
damage progression; that is, t > 125 for primary tauopathy and ¢ > 133 for secondary. Never-
theless it appears that late stages, t = 148 and t = 170, for primary tauopathy display a more dif-
fuse distribution of significant relative damage away from the transentorhinal region; whereas
late secondary tauopathy, t = 151 and ¢ = 170, show more comparative significant damage in
the areas associated with Af initial seeding.

Taken collectively: these observations suggest that damage onset and the relative distribu-
tion of severe damage may offer distinct points of view for application modelling to both typi-
cal Alzheimer’s disease along with its neuropathological subtypes [77, 78].
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Discussion

In this section we reflect on the analytic and computational results of the manuscript. We first
list some advantages and limitations of the current perspective; in we then discuss several
results in the context of the current literature and offer further questions and brief concluding
remarks. The proposed model is based on physical protein aggregation kinetics; the simplest
such two-famiy-two-species interacting protein model one could posit. Nevertheless, the
model is mathematically sophisticated enough to evince two distinct pathology regimes,
termed primary and secondary tauopathy, of potential clinical interest. After discretizing (3)
on a structural connectome: an approachable system of non-linear ordinary differential Eqs
(8)-(11), emerges which can be solved using standard mathematical software; such as Mathe-
matica or Matlab. As a result, we expect the model to be widely appealing to the computational
neurodegenerative disease community as a starting point for gaining further insight into pro-
tein-protein interactions in the context of Alzheimer’s disease.

Advantages and limitations

The deterministic nature of the model, c.f. (3), has at least three distinct advantages over com-
plex, stochastic models: first, the reaction terms of (3) represent simplified [49, 50], but physi-
cal, protein aggregation kinetics with a basis in experimental measurement [50, 52, 53, 54, 56];
second, the connectome-discretized Eqs (8)-(11), can also be readily implemented using off-
the-shelf mathematical software (e.g. Mathematica or Matlab, etc). Thus, (8)-(11) are easily
approachable and do not require probabilistic postulations, based on data or otherwise,
regarding underlying distributions. A third advantage is that (8)-(11) are amenable to an a-
priori mathematical analysis. This analysis is immutable in nature and much can be observed
as a result of using standard methods from the theory of ordinary differential equations and
non-linear diffusion-reaction systems. Conversely, probabilistic models may need extensive
tuning, reformulation or data curation in order to determine a model’s emergent properties.
An independent investigation, i.e. model fitting and application, founded on datasets with dif-
fering fidelity may produce divergent results. Such models essentially act in service to deeply
mine a set of data but are not always directly helpful to elucidate the impact of individual dis-
ease mechanisms.

Conversely, (8)-(11) has inherent limitations. As discussed in recent literature: [35, 79]
there are challenges surrounding the acquisition of the parameters in deterministic models
such as (8)-(11). In vitro kinetic parameters, regulating the multiplication and growth of sev-
eral proteins, have been ascertained for Af, 1P, a-synuclein and others; c.f. the citations in
[79]. If we disregard the clearance terms in the prototypical heterodimer model, (8) and (9),
then precisely two kinetic coefficients remain: source production (a,) and healthy-to-toxic
conversion (a,). The in-vitro experimental estimation of protein-specific aggregation kinetic
parameters, however, typically relies on more complex theoretical models: consisting of at
least five kinetic parameters; and an infinite number of equations (c.f. for instance [48, Sec.
3.2]). It is therefore not immediately clear how to obtain explicit values for the kinetic rate
parameters of (8)-(11). Asymptotic expansions have provided links between the rate coeffi-
cients of other more complex models and their simpler counterparts, c.f. [Sec. 2.2] [47], and
such approaches may provide insight into reducing experimental parameters from the five-
parameter models [79, 48] to those of (8)-(11). A further complication, though, is that even if
explicit, experimentally verified, in-vitro parameters were available for (8)-(11) these do not
necessarily translate into the correct parameters in vivo [79] where indirect, and locally vary-
ing, mechanisms (such as aggregates interacting with cells, or the effects of inflammation on
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aggregation dynamics) may play a role in altering the associated rates; either globally or
regionally.

Observations and open questions

Neurodegenerative diseases are complex and multi-scale processes. The point of view of (8)-
(11) is to reduce this complexity by considering a collection of aggregate mechanisms and
their implications. For instance (3) can be viewed, more conversationally, as the following col-
lection of general mechanisms: (a) there exists two protein families; (b) each family has a
healthy and toxic species; (c) these species are produced and cleared at some aggregate
(regional) rate (d) any movement of these species, within the brain, is primarily determined by
the macroscale axonal structure; (d) healthy proteins within a family can become toxic, at
some (regional) rate, based on the presence of other toxic proteins of that family; and (e) the
conversion of healthy-to-toxic proteins, for the second family, is further influenced by the
presence of the toxic population of the first family. The current literature suggests that this col-
lection of observations outlines a minimal prion-like model of Alzheimer’s disease
progression.

In section the discussion on advantages and limitations it was mentioned that one advan-
tage of simple deterministic models, such as (8)-(11), is that the impact of individual mecha-
nisms can be elucidated and several emergent behaviors can be ascertained a priori. Models
such as (3) therefore lead, naturally, to additional questions and serve as a trailhead for further
development. The first, and critical, observation is that: (8)-(11) implies that the local balance
of clearance, e.g. (23), plays a fundamental role in disease initiation. In light of the seminal
work of Braak and Braak [11] this leads naturally to the question: what are the local (toxic 7P)
clearance properties characterizing the transentorhinal region, (which defines the early Braak
stages) and how do these local properties differ from other regions? Aspects of the fine-scale
clearance mechanisms of toxic 7P remain unclear or are even controversial [80, 81, 82, 83].
Nevertheless, our simple framework reinforces the sentiment echoed by experimentalists: that
understanding these processes may be critical to a mechanistic understanding of the initiation
of the disease cascade.

A second observation emerging from (8)-(11) is that the progression of Alzheimer’s disease
may consist of a confluence of brain regions simultaneously in differing states characterized by
contrasting fundamental dynamics. In particular (Methods, Stability and Disease phenome-
nology) even our simple model of AD development suggests potentially complex disease phe-
nomenology; one where 7P can evolve independently of A (termed primary tauopathy) and
one where 7P depends intrinsically on the presence of Af. Furthermore, the line between these
two regimes is demarcated by: the balance of local clearance; and the degree of local influence
of AB on the toxification of 7P [12, 26, 30, 31, 32, 33] as expressed by the bulk parameter b;.
Depending on these local attributes we could have some areas of the brain in a state of primary
tauopathy and others in a state of secondary tauopathy; the latter regions having their tauopa-
thy delayed until a toxic Af population is established while the former regions are free to
develop toxic 7P and NFT independently. This leads naturally to another fundamental line of
further enquiry: what are the simplest additional relations, extended (8)-(11), needed to suit-
ably describe the evolution of clearance and toxicity rates alongside protein pathology?

Our simple mathematical model suggests, as a third observation, that the rate of toxic AS-
7P interaction (i.e. b3) is not a passive facet of disease phenomenology but, rather, may play a
much more integral role. We have already discussed, above, that b; plays a role in secondary
tauopathy; it can do this by lowering vy, in (17), thus ensuring that v, is an admissible state.
Other interesting observations regarding b; were discussed in the results section (c.f. A
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simplified model of Alzheimer’s disease proteopathy). The observation regarding the impact
of b5 in local and non-local neuronal damage formation is straightforward so we will mention
it first; namely, that transneuronal damage propagation in the model has a ‘minimum speed’
in both primary and secondary tauopathy; and that increasing b; has no effect. In particular
Fig 16, and the surrounding discussion, suggests that lowering the ‘transmission coefficient’,
reflected in k,, below a certain threshold does not lower transneuronal damage; and that
increasing bs, for a fixed choice of k4, does not increase the overall propagation of damage.
These details lead to a somewhat interesting observation: that the rate of neuronal damage
from the structural network topology of the brain may exhibit a baseline, or minimum, value;
independent of the details driving local damage (e.g. from local toxicity).

We also observed two features of tauopathy directly related to bs; the time of onset and the
7P ‘invasion window’. We recall that the time of onset is defined as the first appearance of
toxic 7P while the ‘invasion window’ is the timespan starting at a 1% toxic 7P concentration
and terminating when the asymptotic steady-state value is achieved. In primary tauopathy, dis-
ease onset time is virtually unaffected by varying b; whereas increasing levels of b5 shortens the
tauopathy invasion window. In addition, the asymptotic concentration value of toxic 7P
increases with b5 so that, overall, increasing b; implies that a more severe tauopathy will
develop, faster, at a similar starting point in time (c.f. Fig 8). The picture in secondary tauopa-
thy is different. We see, again, that increasing b; does increase the severity of the tauopathy
(Fig 10b); however, this is where the similarities with primary tauopathy end. First, as b;
increases the time of onset decreases (Fig 10b). Second, the invasion window in secondary
tauopathy does not decrease monotonically with decreasing b; (Fig 10c); rather, we see the
invasion window start time and end both decrease, with increasing b5, while the start time
decay and end time decay, relative to increasing bs, is different (Fig 11). This is the cause of the
initial drop, from b3 = 0.75 to b; = 3.0, of the invasion window in Fig 10c followed by an
increase to a steady invasion window length circa b; = 12. The observation that increased b;
can decrease the time of onset in secondary tauopathy, which requires the presence of AS,
while also impacting the invasion window time is reminiscent of the effects associated to the
presence of particular Apoliprotein E (APOE) allele configurations. For instance: APOE €4
carriers are more likely to develop AD; toxic A production and deposition is more abundant
in APOE €4 carriers; and APOE e4 exacerbates Af-related neurotoxicity [84].

In the results subsection ‘a mixed model comparison to Alzheimer’s diseased patient data’
we discussed a mixed-modality instantiation of the model (8)-(11), with some regions in a
state of primary tauopathy with all others in a state of secondary tauopathy, using hand-
selected synthetic parameters. It was demonstrated that such a mixture of states can reproduce
salient features seen in Alzheimer’s disease; in particular, the distinct distribution patterns [68,
69] of 18F-AV-1451 radiotracer are clearly observed. This observation suggests that the model
of (8)-(11) is sufficiently rich and implies that the undertaking of a comprehensive data fitting
and comparison study is both well warranted and an optimistic endeavor. It is interesting to
note, though, that the distinction between primary and secondary tauopathy is not simply one
of differently-valued parameters; in particular the two states are differentiated by the balance
of clearance inequalities (Methods, Stability). In particular, we have a,/a, < a,/a, and
b,/b, < b,/b, for primary tauopathy; for secondary tauopathy the latter inequality changes
sign to b, /b, < b, /b,. This observation implies that an arbitrary parameter fitting could pro-
duce accurate results, compared to data, while still being questionable since the fitting would
imply secondary characteristics regarding regional clearance attributes which may or may not
hold. It would therefore be beneficial to carefully consider a data-based measure of regional
clearance, for both Af and 7P, when selecting a data fitting method; possibly incorporated as a
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constraint or as part of a cost functional. Nevertheless, the dual regimes of primary and sec-
ondary tauopathy provide a verdant backdrop for further modelling endeavors; both in terms
of fitting to clinical imaging data and to probing and modelling possible ties between b,
APOE configuration, and secondary tauopathy.

In the introduction section we mentioned that the role of Tau in AD formation, and devel-
opment, is beginning to be recognized as a potentially significant factor. Despite this, open
questions about the nature of tau, and tauopathy, in AD remain. For instance: one could argue
that healthy 7P, being bound to microtubules, should not be diffusing at all. The literature sug-
gests that even healthy tau in healthy neurons exhibit mobility within the cell [85], is secreted
into the extracellular space [86, 87], and that extracellular tau is taken up by neighboring neu-
rons [88]; even in the absence of pathology. It is not entirely clear what the correct choice of p,
in (7), should then be. Despite the literature seeming to suggest that p > 0 one could still insist
that p < 1, or possibly even assert that p = 0, should be chosen in (7) for the graph Laplacian
of (10). Regarding impacts to the model: this perspective alone would not affect any of the ana-
lytic observations (Methods, An Analysis of the continuous model). Indeed, if v is the vector
whose j™ entry is the healthy tau concentration, vj, in node j then if v is constant, or nearly so,
then the graph Laplacian applied to v is zero, or nearly so, regardless of the value of p. Thus,
since all of the nodes in the computational investigations discussed in the results section had
their healthy tau populations set to the same constant value: the effect of any healthy tau diffu-
sion in the simulation results there would be expected to be entirely negligible as well.

The nature of the rates for healthy tau production and clearance, in the literature, are also
not fully understood. Indeed, the visual confirmation of the mRNA machinery for localized
transcription [89] of tau in axons, and growth cones, is less than two decades old; clarifying
important aspects of tau clearance, both healthy and diseased, is an ongoing process [80, 82,
83]. Our results indicate that violation of the balance of clearance inequalities, (23), is funda-
mental for disease initiation and phenomenology; for instance: if healthy tau were not regener-

ated, so that by = 0, then the regime of ‘primary tauopathy’ (which requires that b,/ b, < b,/b,)
would be an impossibility. This would imply that, in the context of our model, that the develop-
ment of all tauopathies would require an accompanying amyloidopathy and would seem to
preclude those tauopathies which are mostly dominated by toxic 7P spreading [8]. It has been
observed that: tau is expelled from neurons [86], including healthy ones, on a periodic basis
[87]; and that tau plays a role in cell signalling, cell polarity, synaptic plasticity and the regula-
tion of genomic stability [90, 91]. These observations, alongside recent work in adult neurogen-
esis [92], give good reason to suspect that both b, > 0 and b, > 0; at least in the healthy brain
and early in disease progression. An open question, though, is how these quantities may change
with disease progression. For instance, one could extend the current model by coupling b, with
the damage coefficient g; reflecting the fact decreased healthy tau synthesis could result from
neuronal loss, and the decline of neurogenesis [92], throughout AD progression.

The final observation we mention regards an open question surrounding the imaging, and
construction, of the structural connectomes used in such network models. We have used an
often cited connectome [58, 59]. This connectome is available in various resolutions; the low-
est of which consists of 83 vertices (regions of interest) while the highest resolution case, which
we have used here, consists of 1015 vertices. However, there are apparent differences in both
Ap and 7P staging when solving equations, such as (8)-(11), on the low versus high resolution
connectomes. We used the simple, illustrative parameters described for primary tauopathy
(Results, A simplified model of Alzheimer’s disease proteopathy) and recorded the average
regional tau concentration at six fixed time points; the time points were selected to span dis-
ease progression. Fig 19 shows the results of this tau staging experiment for nine regions.
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Fig 19. Toxic 7P average regional concentration; six fixed time points. 83 (left) versus 1015 (right) vertex
connectomes.

https://doi.org/10.1371/journal.pcbi.1008267.g019

In Fig 19, we can see that the two different resolutions of connectomes, derived from the
same set of patient data, offer distinct staging patterns for tau progression. This implies that
the connectome itself may play a significant role in retrieving results that match clinical data.
Since the parameters of (8)-(12) have a physiological interpretation a simple ‘fitting’ to avail-
able clinical data is not satisfactory. Fig 19 suggests that developing a more rigorous under-
standing of computational staging behavior should be endeavored seriously and from first
principles. Validating computational (tau) staging behavior, at different connectome resolu-
tions, against clinical standardized-uptake-value-ratio (SUVR) studies, e.g. [93], is an impor-
tant next step.

Concluding remarks

We have presented a novel, minimal, and deterministic theoretical mathematical model of
protein propagation that includes two interacting protein species. The model is motivated by
recent experimental evidence regarding the potential importance that interactions between Af
and 7P may play in the development of AD pathology [14, 16, 23, 24, 25]. The primary contri-
butions of the current manuscript are: clearly, and mathematically, establishing the intrinsic
dependence of the model on the balance of clearance inequality, (23), and the stability analysis
of the modes of primary and secondary tauopathy (Methods, Stability and Disease Phenome-
nology); and establishing the speed of propagation of toxic fronts (Methods, Front propaga-
tion). Further novel contributions of interest include: demonstrating qualitative properties of
disease propagation and damage, in primary and secondary tauopathy (Results, A simplified
model of Alzheimer’s disease proteopathy), using globally constant, but non-physical, parame-
ters; and demonstrating that the model can achieve tau distributions that reflect canonical pat-
terns in Alzheimer’s patient data (Results, A mixed model comparison to Alzheimer’s diseased
patient data). In particular, we have seen that the topology of the brain connectome leads to
complex behavior in both pathological regimes. Finally, we have contextualized numerous
analytic and computational observations with reference to the current literature and drawn
attention to open avenues of further research suggested by the current work.

Alzheimer’s disease is a complex and multi-scale disease. The need for mathematical mod-
els, presenting observed disease characteristics, that are computationally tractable is pressing.
Our findings suggest that further enquiry into both protein interaction and clearance processes
is an important path forward in elucidating key mechanisms in the progression of these
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diseases. Due to the ease of implementation of (8)-(12), and the widespread interest in compu-
tational neurodegenerative disease, we hope that this model will be appealing, to the commu-
nity, for probing the nuances of protein-protein interactions in neurodegenerative disease
development.

Methods
A continuous mathematical model

The simplest possible deterministic aggregation model accounting for the interaction of two
protein families, each consisting of a healthy and toxic population, is the heterodimer model
[49, 51, 50]. In the heterodimer model: a toxic, misfolded seed protein recruits a healthy
protein, induces misfolding, and then fragments; ultimately producing two copies of the
misfolded toxic variant. The heterodimer model views these three processes as a single step
and expresses this step as an overall mean rate of reaction; such rates can be determined
experimentally. Indeed, measuring the mean rates of protein self-aggregation mechanisms,
providing best-fit mean aggregation dynamics to deterministic models such as the heterodi-
mer model, is a thriving field of contemporary research [50, 52, 53, 54, 55, 56] and our
choice of a deterministic model is inspired by such work. Fig 20 demonstrates the primary
molecular mechanism of the heterodimer model; the healthy (blue) protein is approached
by the toxic (red) protein and undergoes three separate transitions (small arrows) which are
treated as a single transition (long arrow) taking a healthy protein to a misfolded, toxic
state.

We are interested in the interaction between two different protein families; motivated by
the AB and 7 interactions observed in AD. Towards this end we will consider two heterodimer
models: one for A and one for 7P. These two models will be coupled together by a single term
reflecting that the formation of new toxic 7P can be enhanced by the presence of AS. The het-
erodimer model was originally posed [49, 50] as a continuous, non-linear, partial differential
reaction-diffusion equation for a single protein. To define the model for our two protein fami-
lies: let Q C R® be a spatial domain of interest and, for x € Q and time ¢ € R*, we denote by u
= u(x, t), and v = ¥(x, t) the concentration of healthy Af and 7P. Similarly, we denote by
i = u(x,t),and ¥ = ¥(x, t), the concentration of toxic Af and 7P, respectively. Then, the

¢, K <
C C

>

Fig 20. Kinetics of the heterodimer model. Healthy protein (blue) and misfolded toxic protein (red) transition to two
toxic proteins (long arrow) via, from left to right, the kinetics of: recruitment, induced misfolding, and fragmentation.

https://doi.org/10.1371/journal.pchi.1008267.9020
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concentration evolution is governed by

0 N

8_1: = V(D1Vu) + a, — au—auu,

O .

a_ttl = V- (D, Vi) — au+a,uu,

) (3)
a_: = V-(D,VW) + b, — bv—byvi—bavy,

ov S = - _

5 = V- (D,V¥) — byv+byvv+buvy.

The first two equations, above, correspond to the usual heterodimer model for the healthy and
toxic variants of the protein u; note that the second heterodimer model, for the variants of pro-
tein v, deviates from the form of the first by a single balanced term with coefficient b;. The sys-
tem (3) could apply to any two families of interacting proteins; though the model is inspired
by AD. The parameters are as follows: (a,, b,) are the mean production rates of healthy pro-

teins, (a,, b,, d,, l;l) are the mean clearance rates of healthy and toxic proteins, and (a,, b,)
reflect the mean conversion rates of healthy proteins to toxic proteins. The coupling between
the two, otherwise separate, heterodimer models for AB and 7P, is realized via bs. The b; predi-
cated terms arise from the mode of interaction assumption, c.f. M1 above, dictating that the
presence of Aff augments the conversion process of healthy 7P to toxic 7P. We note that toxic
Ap acts as an enzyme in this process and is therefore not depleted. In the absence of produc-
tion and clearance maps, we assume that all these parameters are constant in space and time.
The symmetric diffusion tensors D, , and IN)L2 characterize the spreading of each proteins. For
isotropic diffusion, these tensors are a multiple of the identity, D, , =d;,1 and V - (D, -
V(u)) = dy 2A(u) is the usual Laplacian operator (similarly for u, v and v) For anisotropic diffu-
sion, the eigenvector with the largest eigenvalue describes the direction of faster diffusion
which is used to model preferential propagation along axonal pathways [37].

The coupled system of Eq (3) dictates the spread, genesis, and clearance of two healthy spe-
cies, u and v, and two toxic species, & and ¥, of proteins throughout the domain Q. The pres-
ence of toxic proteins near a point x € Q can disrupt the extracellular environment of neurons
near x and impair their intracellular function. A broad range of coupled effects can contribute
to neuronal impairment; including: chronic inflammation, erosion of the blood-brain barrier
surrounding vessels, accelerating tau hyperphosphorylation, disrupting normal synaptic effi-
cacy, and deafferentation, among others. A hallmark of neurodegenerative proteopathies is
cognitive decline; propelled by the various coupled effects induced by the presence of toxic
aggregates and the widespread erosion of neuronal integrity. The nuanced coupling between
these disparate deleterious effects is not well understood; nevertheless, we employ the observa-
tion that such effects are generally correlated with larger concentrations of misfolded aggre-
gates to define a gross measure of regional neuronal ‘damage’ denote by g(x, t) € [0, 1]. This
damage variable takes the perspective that g(x, t) = 0 signifies that the neurons in a neighbor-
hood of x € Q are functional and healthy whereas q(x, t) = 1 implies that neurons near x have
reached a fully-degenerate asymptotic state whereby they are either no longer functioning or
fully deceased. For the evolution of the damage we assume a simple, first-order rate model:

g = (ki + kv + kv + k. A(g)(1 —q), q(x,0)=0. (4)

When k,4 = 0: the evolution Eq (4) can be seen as a first order reaction model, i.e. exponential
decay, for the transformed variable § = (1 — g); the associated rate of decay is then dependent
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on the deposition concentration of pattern of z and v. The first two parameters in (4) denote
contributions to neuronal dysfunction, near x, due to presence of isolated toxic aggregates;
while the third term accounts for contributions requiring, or accelerated by, the presence of
both toxic species aggregate species together. Thus, the third term engenders both toxic effects
M2 and M3; c.f. the introduction section. The first three terms of (4) account for neuronal dys-
function in a neighborhood of the point x while the last term, .A(g), incorporates non-local
contributions, such as transneuronal degeneration, whereby the impairment, or death, of
neighboring neurons can increase [57] the probability of impairment near x; thus leading to
an increased mean rate of local decline. This nonlocal term does not have a simple representa-
tion within the continuous framework as the positions of neuronal bodies is not explicitly
encoded. However, we will see that in the discrete case, there is a natural way to take this effect
into account and we will delay the discussion of this term until the next section.

A network mathematical model

A simple coarse-grain model of the continuous system can be obtained by building a network
from brain data. The construction is obtained by defining nodes of the network to be regions
of interest in the domain Q, typically associated with well-known areas from a brain atlas. The
edges of this network represent axonal bundles in white-matter tracts. The brain connectome
is then modeled as a weighted graph G with V nodes and E edges obtained from diffusion ten-
sor imaging and tractography. A network approximation of the diffusion terms, having the
general form V - (DVu) or similar, in the system (3) will be constructed by means of a
weighted graph Laplacian. The weights of the weighted adjacency matrix W, used to construct
the graph Laplacian, are selected as the ratio of mean fiber number 7;; by mean length squared,
I}, between node i and node j. That is:
n..
W, =-2 ij=1,...,V. (5)

i~ o
lij
The choice of weights, above, are consistent with the inverse length-squared dependence

incurred by canonical discretizations of the continuous Laplace (diffusion) operator appearing
in (3). The weighted degree matrix is the diagonal matrix with elements

14
D,=> W, ij=1,...,V. (6)
=1

Additionally, we define the graph Laplacian L as
L,=p(D,~W,), ij=1,...,V, (7)

where p is an overall effective diffusion constant. The adjacency matrix for the simulation is
derived from the tractography of diffusion tensor magnetic resonance images corresponding
to 418 healthy subjects of the Human Connectome Project [58] given by Budapest Reference
Connectome v3.0 [59]. The graph contains V' = 1015 nodes and E = 70,892 edges and is shown
in Fig 21.

Let (u;, ;) be the concentration of healthy and toxic A and (v}, ¥;) denote the concentra-
tion of healthy and toxic 7P at node j. The network equations corresponding to the continuous
model then take the form of a system of first-order ordinary differential equations. There are

four such equations, ( w, U, v, 17j), for each of the 1,015 vertices in the system; these four nodal
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Fig 21. A high-resolution brain structural connectome graph. (Bottom left) The average of 419 brain connectomes
with V' =1, 015 vertices spanning (bottom right) 49 associated brain regions; the strongest 2,773 edge connections are

shown. The weighted adjacency matrix (top) corresponding to the averaged connectome (bottom).
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equations are:

du, v _
Frinie g Lyu, +a, —a, u; — a, u; u;,
k=1

di; Yoo N
T E Lyw, —a,u; +ayuu,
k=1

dv. v
- ~ -
@ = e b= by = by = by,

(10)
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dv, Yoo - . L
d_t]: _kZLikvk_bi Vi +byv v+ by vy, (11)
=1
wherej=1,..., V=1,015. Similarly, for the damage model we define a damage variable g; at

each node j and assume the same law
\4
‘.L' = (ki’:‘j + k2‘~’j + kiiaj ‘7]' + k4ZAjqu> (1- %)7 %(0) =0, j=1,...,V, (12)
k=1

where Aj is the weighted network adjacency matrix Aj = nj/ly if j # k (and nj > 0) and 0 oth-
erwise. Thus k, has the interpretation of a ‘transmission speed’; the time it takes for the effects
of degeneracy in cell k to reach cell j. The weighting chosen in the adjacency matrix term is
inspired by the propagation of transneuronal degeneration from a node to its neighbors.

An analysis of the continuous model

Homogeneous system. It is instructive to start with an analysis of the homogeneous sys-
tem obtained by assuming that there is no spatial dependence. This analysis applies to both
network and continuous models. In this case, both systems reduce to the dynamical system

du _ a,—a, u—a,ui

E - 0~ 1Y% T W )

W Ghtaui

E - 4 2 )

: (13)
d—: = by, —bv—byvi—b v,

dv ~

d—: = b i+ byvitbave,

where all variables and initial conditions are assumed to be positive and all parameters are
strictly positive.

Damage evolution. For the homogeneous system above the concentrations remain
homogeneous for all time. Damage, in contrast, is node-dependent and expressed by the
(nodal) variable g; € [0, 1]. Indeed, in this case, the non-local term associated with transneuro-
nal degeneration, commensurate with the tensor Aj; in Eq (12), cannot be homogeneous. Nev-
ertheless, the damage dynamics are simple enough to describe. Damage will initially increases
linearly in time, homogeneously, from the initial value g; = 0. The increase will then trend
exponentially at each node, with node-dependent time scales depending on the local node’s
degree, and saturate to the value g; = 1 asymptotically in time at each node.

Stationary points. The stationary points and stability of the homogeneous system (13) are
instructive; they inform the disease dynamics implied by the local model. The system (13) can
exhibit one, two, three, or four stationary points depending on the parameters; these are:

1. Healthy 7P-healthy AS: This stationary state is always a solution to (13) and is descriptive of
an individual with zero toxic load; no amyloid plaques or neurofibrillary tau tangles. The
state is given by:

b
(u1»ﬁ1>V1a1~’1): (%70717_070)- (14)
1 1

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008267 October 13, 2020 28/41


https://doi.org/10.1371/journal.pcbi.1008267

PLOS COMPUTATIONAL BIOLOGY Protein-protein interactions in neurodegenerative diseases: A conspiracy theory

2. Healthy 7P-toxic Af: This state describes a diseased brain wherein some Af plaques exist
but the tau fibril (NFT) concentration or that of hyperphosphorylated tau is non-existent or
negligible. A description of this stationary state in terms of the base problem parameters is:

a, a,a,—a,a, b
~ ~ 1 072 1%1 0
(uzauzavz7v2) = <_a a_a())'

a, sy b,

In terms of u; = ag/a,, from (14), and u, = a,/a, it is given by

(s, 8y, v3. ) = (“—MZ—O)

) a,

(15)

Since the concentrations must be non-negative: the form of #,, above, implies that u; > u,.
This results in the condition of a, /a, < g,/a,. In other words either the clearance term of
toxic Aff must be sufficiently small, the conversion term must be sufficiently large, or a ratio
of the two, to allow for the existence of a toxic state.

3. Toxic 7P-healthy Af: This stationary state is a conceptual dual to the previous state above;
granted, toxic 7P does not influence the A population whereas Aff does induce additional
7P formation. As in (15) we express this state, immediately here, in terms of u; = ag/a; and
v1 = by/b, as

- - b, b (v, —v
(Ug, Uy, Vs, V3) = ul,O,—l,M . (16)
b, b,

Requiring v; > v; implies that b, /b, < b, /b,.

4. Toxic TP-toxic Af: This stationary state reflects the invasion of a patient’s brain by both
toxic amyloid beta and toxic tau. As in (14)-(16) we write the state in terms of the previous

state variables u; = ap/ay, u, = a,/a,, it, = a,(u, — 4,)/a,, v, = b, /b, and v,, defined

below, as:
~ ~ ~ a2b2“2v3 blal(v;i — V4)(V1 V4)
49 V4 = ) 9 5 . 17
(u4 ot V4) <u2 “ albs(ul - ”2) +512%721"2 a1b3(”1 - uz)V3V4 ( )
Introducing
b,
H=a,—, (18)
0 b2
into (17) gives
. . . au,v. bau(vi—v,)(v, —v
(u4au4av4av4) = | Uy, Uy, Lt ) i ]~( ’ 1)( : '1) . (19)
Wy, —uy) +a,u, ,Ub1(”1 - uz)vq

Stability. We briefly discuss the stability of the stationary points. In addition we distin-
guish between the two possible ‘disease’ phenomena of (13): the case of a disease system char-
acterized by the dynamics of a four-stationary-point model and the case of a disease system
characterized by three fixed points.
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Eigenvalues of the linearized system. The linearization of (13) about any fixed point
(u, 1, v, ) is governed by the Jacobian matrix

[ —(a,i +a,) —au 0 0 i
a,u a,u — a, 0 0
(20)
0 b,y —(byy+ b, +byuv) —b,y—byuv
.0 R b,v + b,iv b,y — b, + byiv |

The first two eigenvalues of (20) correspond to the Af subsystem, e.g. (u, i), of (13). Since the
coupling of (13) is a one-way coupling these eigenvalues are given by the corresponding eigen-
values of the uncoupled heterodimer model:

1 1
Mg = =5 (B+ VB —1C), hy = —5(B- VB —1C), (21)
where B(u, it,a,,d,,u,) = a, + a, + a,(ii — u) and

Clu,it,a,,a,5,u,) = a,(a,i — a,u) + a,a,. The third and fourth eigenvalues of (20), corre-
sponding to the coupled (v, ¥) tau system of (13), can be written as

7\‘1P.1 = -

% (B+ VB —4C), iy = _% (B VB —4c), (22)
with B = B(v, 7, b,, b,, b,) + b,it(v — v) and C = C(v,#,b,, b,, b,) + b,ii(b,7 — b,v). The
form of the tau eigenvalues coincides with those for A when b; = 0 or when # vanishes.

Disease phenomenology. We can interpret the different stationary states in terms of dis-
ease dynamics and define, accordingly, different disease states.

The healthy brain. A healthy patient represents an instantiation of the healthy stationary
state whereby # = v = 0. For the Healthy 1P-healthy Ap state to exist we must have ay < a;
and by < by, ie., (4, v) € [0, 1] x [0, 1] are valid concentrations. A failure in healthy clearance,
either with an amyloid clearance value satisfying 0 < a; < a, or with a tau clearance of 0 < b,
< by, implies the non-existence of a physically relevant healthy state (c.f. (14). It is instructive

to note that the expressions a/a; and a,/a, (respectively by/b; and b, /b,) express a balance of
healthy Af production to clearance and toxic A production to clearance (respectively healthy
7P and toxic 7P production to clearance). Consider the following balance of clearance inequali-
ties:

> . (23)

A patient satisfying (23) enjoys full stability to perturbations while in the healthy state (14).
That is: if (23) holds with (u, &1, v, 7) given by (14) then the real parts of the eigenvalues (21)
and (22) are negative and the production of small amounts of toxic Af, or of toxic tau, or the
excess production of healthy Af, or healthy tau, results in a quick return to the healthy homeo-
static baseline state of (14). The above implies that the model (8)-(11) recognizes the critical
role that clearance plays in neurodegenerative diseases. A low value of toxic clearance 4,

respectfully b,, with sustained healthy clearance or a low value of healthy clearance a;, respect-
fully b,, with sustained toxic clearance is enough to trigger an instability capable of driving the
system away from the healthy state.

The susceptible brain. From the previous discussion, we conclude that an unfavorable
alteration in clearance mechanisms not only renders the healthy state unstable to perturbations
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but brings into existence the other stationary points characterizing various pathological
conditions.

Indeed, a well established clinical biomarker for Alzheimer’s disease is a drop in soluble
amyloid concentration in the cerebrospinal fluid; directly suggesting a decrease in a,. Recent
evidence also suggest [60] that toxic tau filaments in chronic traumatic encephalopathy
patients enclose hydrophobic molecules which may contain blood-born pathogens; a possible
result of vascular damage from an impact. Such a finding could imply, for instance, that
repeated traumatic injury causes vessel rupture and a subsequent proclivity for this unique
form of toxic tau production. The stage is then set to trigger a pathological decline when the
critical relation (23), corresponding to tau, is violated due to a balance of increased toxic load
and age-induced clearance deficit.

The moment of susceptibility occurs when the inequality of (23) becomes an equality.
Mathematically, this parameter configuration is a transcritical bifurcation for the homoge-
neous system (13) at the coincidence of a combination of the states (14)-(16). Clinically, this is
the point whereby additional stationary states are physically meaningful and pathology devel-
opment becomes a possibility.

The proteopathic brain. The proteopathic brain has suffered a perturbation from the
healthy stationary state; due to the instability in the system this patient is progressing towards
a diseased state. The potential pathology phenotypes depend on the patient’s individual param-
eter values. In particular, if a,/a, > a,/a, holds then the existence of (15) is physically mean-

ingful and if b, /b, > b, /b, holds then the same is true of (16). It may be the case, depending
on the combination of failed clearance subsystems and specific predisposition for toxic load-
ing, that both relations hold simultaneously. A necessary (clinical) existence criterion for the
proteopathic stationary point (17) can be observed directly from the equation for v, in (19):
namely

.Ubl(”l - u2)v4 7£ 0. (24)

This implies that the parameter bs, defining y in (18), cannot vanish.

Finally since b3 # 0 and the numerator of of v, in (19), is always non-negative we see that
(17) always exists when u; > u, and when both vs, v; > v, or when both v3, v; < v4. An impor-
tant observation is that, though the modeling of the pathology of (17) is tied to that of (15) it is
not inextricably tied to (16); this is due to the fact that we may always choose bs, c.f. (18), such
v, is smaller than both v; and v;. Thus, with a suitably strong AS tau-toxification interaction
the state (16) is not needed in order to produce tau proteopathy; that is, the model admits a
pathology whereby toxic tau is created solely by the presence of toxic AS. Therefore, there are
two clinically interesting patient proteopathies for our analysis: the case where the patient
model consists of all four disease state equilibria, (14)-(17), and the case where the patient
model has the three equilibria (14), (15) and (17).

Primary tauopathy. In this case, all four equilibria exist which requires both a,/a, <

a,/a, and b, /b, < b,/b,. An example of this dynamic is shown in Fig 22. We see that the pres-
ence of toxic Af always implies a higher level of 7 P. Indeed, we have

aleaIB%(ul — u,)
b2(a1b3(”1 - ”2) + anl)

Vy—Vy =

> 0. (25)

We refer to this case as primary tauopathy as the invasion due to 7P exists independently of
Ap. The effect of Af is to increase the concentration of toxic 7P and, possibly, increase the
associated damage.
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Fig 22. Patient pathology dynamics in primary tauopathy. (Left) Phase plane (i1, 7) with four equilibria.
Homogeneous dynamics of the toxic states. Note that this is a two-dimensional slice of the four-dimensional phase
space. (Right) When four different states co-exist, only the fully toxic state is stable as shown by the time-dynamics

plot. (Parameters: ag=by=a; =a,=b;=b,=1,a, = [71 =3/4,b;=1/2).
https://doi.org/10.1371/journal.pcbi.1008267.9022

Secondary tauopathy. In secondary tauopathy the evolution of 7P depends on the pri-
mary invasion of Af. Parameters corresponding to secondary tauopathy can be obtained by
choosing @, /a, < a,/a, and b, /b, > b,/b, (hence, 7, < 0) while taking bs large enough so
that v, > 0.

It is useful to outline key observations, explored further in the manuscript, regarding the
nature of the dependence of 7P pathology (V) on the presence of Af pathology (i) in this
regime. We will see (Front propagation, secondary tauopathy) that the onset of toxic 7P follows
from the presence of toxic Af. We will also see that the speed of toxic 7P propagation appears
to be limited by the speed of propagation of toxic AS. This is distinctly different than the case
of primary tauopathy where toxic 7P and toxic Af can evolve separately. Indeed, Fig 22 (left)
shows a stationary point of the form (i1, ¥) = (0, ¥,) and the fully invaded asymptotic states,
Fig 22 (right), satisfy u, < v,; clearly indicating that the additional coupling of # to v, in (11)
does not limit tau pathology expression, in primary tauopathy, to that of Af pathology. In light
of the apparent dependence of toxic 7P spreading on toxic Af propagation in secondary tauo-
pathy it is instructive to enquire whether the asymptotic level of toxic 7P pathology concentra-
tion be limited by the asymptotic concentration of toxic AS? Fig 23 (right) seems to indicate
that this is the case.

However, as discussed in the results section (c.f. secondary tauopathy in ‘A simplified
model of Alzheimer’s disease proteopathy’), the asymptotic state value of v, is not limited by

025“ /\7 (174 ’VJ) 1.A —
0.9 \
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Fig 23. Patient pathology dynamics in secondary tauopathy. (Left) Phase plane (i1, 7) with three equilibria. (Right)
When three different states co-exist, only the fully toxic state is stable as shown by the time-dynamics plot.
(Parameters: ag=bo=a,=a,=b,=b,=1,a, = 3/4, I;l = 4/3, b = 3). Note that trajectories are initialized by taking
the initial condition € = 0.005 away from an equilibrium point.

https://doi.org/10.1371/journal.pchi.1008267.9023
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that of #,. Fig 10a shows that v, > u, is possible depending on the parameter selection. This
observation leads naturally to a further question: is it a strict requirement of secondary tauopa-
thy to have a toxic Af concentration at all? That is: can we have (i1,,7,) = (0, ¥,)? Suppose
this is the case: then, according to (14) and (17), we have @, = &1, = 0 so that u; = u,. When u,
= u, we have, again from (17), that v, = v; this leaves ¥,, in (17), in an indeterminate form.

Thus, to understand ¥, when u, = 0, we use that a, = a,u;*, c.f. (14), and consider:

~ ba(vi—v)(v,—v
lim v, = lim 1 1<13 ) (v, 4)
Uy —uy up—uy Aol bs(”1 — uQ)V3V4

Due to the indeterminate form of the limit above: we apply L'Hospital’s rule and compute,
after simplifying, that

(26)

As discussed above: the regime of secondary tauopathy occurs when v, < 0; resulting in (16)
being an invalid steady state. This directly implies that v; — v; < 0 so that the expression (26) is
negative. The above shows that if the asymptotic toxic A concentration, #,, vanishes in the
case of secondary tauopathy then the asymptotic toxic tau concentration, v, is necessarily neg-
ative; this cannot occur in a physical system. To summarize: the sustained presence of a toxic
7P population, in secondary tauopathy, requires the presence of toxic AS; this implies that the
computational observations, for secondary tauopathy, regarding the reliance of toxic 7P devel-
opment and perpetuation, on the presence of Aff are strict and not merely one possible method
of toxic 7P development.

Front propagation. We can explore the spatio-temporal behavior of the system by first
considering a reduction to one dimension (Q = R) and subsequently analyzing the spread of
toxic protein via the study of traveling waves. From the theory of nonlinear parabolic partial
differential equations, we expect pulled fronts that connect one equilibrium state to a different
homogeneous state [49].

First, consider the two uncoupled fronts emanating from the healthy state (u,, it,, v, ¥,)
and connecting either to (u,, ity, v,, V,) or (us, i1y, v5, ;). To obtain these fronts, we linearize
(3) around the healthy state (u,, %, v,, #,) and obtain the decoupled system

ou N,

E:(%ul_%)‘i'dl?a (27)
oz - - O 28
E: (b2v1_b1)+d2% (28)

Starting with initial positive data, the system will develop fronts and the asymptotic selected
speed is the minimum possible speed for this linear system [61, 62]. Traveling wave solutions
to (27) and (28) are obtained explicitly by first performing a traveling wave reduction (u

(%, t) — u(z) with z = x — ct and so on for the other variables) and then looking for linear solu-
tions of the form u = C exp(Az) which leads to a family of possible solution with speeds ¢ = ¢
(A). The smallest such speed is the selected speed for the asymptotic dynamics. In our case, the

front speeds are
¢ =2/d(aya,/a, —a,), P =0, (29)

gj) and ¢!V denote the speeds of the front from state i to state j (whenever such a front

where ¢
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exists) for the AS fields (u, i) and 7P fields (v, ¥), respectively. The front speeds for the second

transition are
Cﬁfm) =0, 5513) =2 \V Zi2(b2bo/b1 - Bl) (30)

Similarly, if both fields are seeded initially, we have

6214) _ C;}H), C£14) _ 6513). (31)
We see that these fronts only exist if a,a, > @,a, and/or b,b, > b,b, which are the conditions
for the existence of toxic states found in the previous section. Trivially, a front between two
states can only develop if such states exist.

Second, we consider the possibility of fronts propagating from equilibrium state 2 to state 4.
To do so, we linearize the equations around (u,, i1, v,, 7,) and repeat the previous steps to

find
V=0, =2 P \/& (ay(byb, — b,b,) — a,b,by) + a,a,b,b,. (32)
I G a,b,a, VB0 191 19093 042993

Primary tauopathy. As an example of the interactions between the two fronts, we con-
sider a toxic AS front on the real axis x propagating to the right interacting with a 7P front
propagating to the left (see Fig 24). They evolve initially with constant speeds c;;m and ¢
respectively (Fig 24 top). However, when they overlap, the interaction creates an increase in
the concentration of 7P (Fig 24 top) which both boosts the front to speed c** > ¢!'¥) and initi-
ates a new front propagating backward to fill the interval to the global stable equilibrium v,
with speed ¢{*¥) = c;}z). The Ap front is never affected by the presence of toxic 7P.

In Fig 24, an Af front propagating to the right travels towards a 7P front propagating to the
left (Fig 24a). The interaction (Fig 24b) increases the toxic level of 7P and creates a second front
propagating to the right connecting v, to v, (Fig 24c). The front profiles are shown at time
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Fig 24. Front dynamics, primary tauopathy.
https://doi.org/10.1371/journal.pcbi.1008267.9024
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Fig 25. Front dynamics, secondary tauopathy.
https://doi.org/10.1371/journal.pcbi.1008267.9025

t =30, 200, 250, 310. Parameters are as in Fig 22: ag=by=a,=a,=b;=b,=1,a, = l;l =3/4,
by = 1/2, which leads to ¢} = ¥ = ¢ = 0.1 and ¢® = 1/(2v/15) ~ 0.13. Neumann
boundary conditions were used on both sides of the finite interval for all variables.

Secondary tauopathy. As a second example, we consider the case where the Af front
causes the creation of a non-zero toxic 7P state (see Fig 25). Fig 25 depicts the toxic front dynam-
ics of 71 (x, t) and ¥(x, t); an AS front (&1) propagating to the right in a domain with negligible
toxic 7P (but with a healthy 7 population). The passage of the front leads to the rapid expansion

(12)

of toxic 7P (Fig 25b) which evolves at a speed close to ¢/**) > ¢y (Fig 25c). Hence, it eventually

catches up with the front (d) and matches its speed. The front profiles are shown at time ¢ = 180,
200, 215, 300. Parameters as in Fig 23: ag=by=a,=a,=b,=b,=1,a, = 3/4, l~71 =4/3,b3=
3, which leads to ¢ = ¢™ = 0.1 and ¢* = ,/2/3/5 ~ 0.1633. Homogeneous Neumann
boundary conditions are used on both sides of the finite interval for all variables. Initial seeding
of toxic 7P on the positive interval only with 7(x,0) = 10~ for x > 0 and 0 otherwise.

Finally, the front propagating from equilibrium state 3 to state 4 is constrained by the evolu-
tion of the u and u fields. Therefore, we find

(34) __ (34)

(12)
o =c .

=¢ (33)

Supporting information

S1 Video. Front dynamics in primary tauopathy, synthetic. Visualization of an illustrative
primary tauopathy model simulation using a synthetic channel domain.
(MP4)

$2 Video. Front dynamics in primary tauopathy, connectome. Visualization of an illustra-
tive primary tauopathy model simulation using a high-resolution structural brain connectome
domain.

(MP4)
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$3 Video. Front dynamics in secondary tauopathy, synthetic. Visualization of an illustrative
secondary tauopathy model simulation using a synthetic channel domain.
(MP4)

$4 Video. Front dynamics in secondary tauopathy, connectome. Visualization of an illustra-
tive secondary tauopathy model simulation using a high-resolution structural brain connec-
tome domain.

(MP4)

S5 Video. Toxic Af in primary and secondary tauopathy. Visualization of the toxic AS spe-
cies in an illustrative model simulation using a high-resolution structural brain connectome
domain. Qualitative propagation of the Af} species was identical in both primary and second-
ary tauopathy.

(MP4)

$6 Video. Toxic 7P in primary tauopathy, connectome. Visualization of the toxic 7P species
in an illustrative model simulation of primary tauopathy using a high-resolution structural
brain connectome domain.

(MP4)

$7 Video. Toxic 7P in secondary tauopathy, connectome. Visualization of the toxic 7P spe-
cies in an illustrative model simulation of secondary tauopathy using a high-resolution struc-
tural brain connectome domain.

(MP4)

S1 Data. Structural brain connectome, low-resolution. A low-resolution graph of the struc-
tural brain connectome. The graph is expressed in a standard format (graphml) based on the
human-readable XML markup language. This graph consists of 83 vertices (anatomical regions
of interest) and 1,654 edges; data for the graph was sourced from freely-available patient con-
nectome data (https://braingraph.org).

(GRAPHML)

$2 Data. Structural brain connectome, high-resolution. A high-resolution graph of the
structural brain connectome. The graph is expressed in a standard format (graphml) based on
the human-readable XML markup language. This graph consists of 1,015 vertices (anatomical
regions of interest) and 70,892 edges; data for the graph was sourced from freely-available
patient connectome data (https://braingraph.org).

(GRAPHML)

S1 Appendix. Additional detail and solver verification. This appendix contains additional
detail regarding the expected behaviour of the network dynamics for specific choices of syn-
thetic parameters. This appendix refers to the equations, and figures, in the main manuscript
and is intended to provide a set of verification cases for use in implementing solvers.

(PDF)

Acknowledgments

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the progression of mild cognitive impairment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008267 October 13, 2020 36/41


http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008267.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008267.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008267.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008267.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008267.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008267.s008
https://braingraph.org
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008267.s009
https://braingraph.org
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008267.s010
https://doi.org/10.1371/journal.pcbi.1008267

PLOS COMPUTATIONAL BIOLOGY Protein-protein interactions in neurodegenerative diseases: A conspiracy theory

(MCI) and early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.
org. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Author Contributions

Conceptualization: Travis B. Thompson, Ellen Kuhl, Alain Goriely.
Data curation: Pavanjit Chaggar, Alain Goriely.

Formal analysis: Travis B. Thompson, Alain Goriely.

Funding acquisition: Ellen Kuhl, Alain Goriely.

Investigation: Travis B. Thompson, Pavanjit Chaggar, Alain Goriely.
Methodology: Travis B. Thompson, Alain Goriely.

Project administration: Alain Goriely.

Resources: Alain Goriely.

Software: Travis B. Thompson, Pavanjit Chaggar, Alain Goriely.
Supervision: Ellen Kuhl, Alain Goriely.

Visualization: Travis B. Thompson, Pavanjit Chaggar, Alain Goriely.
Writing - original draft: Travis B. Thompson, Pavanjit Chaggar, Alain Goriely.

Writing - review & editing: Travis B. Thompson, Pavanjit Chaggar, Ellen Kuhl, Alain
Goriely.

References

1. Alzheimer A. Uber eine eigenartige Erkrankung der Hirnrinde. Zentralbl Nervenh Psych. 1907; 18:177—
179.

2. Stelzmann RA, Norman Schnitzlein H, Reed Murtagh F. An English translation of Alzheimer’s 1907
paper,“Uber eine eigenartige Erkankung der Hirrinde”. Clinical Anatomy: The Official Journal of the
American Association of Clinical Anatomists and the British Association of Clinical Anatomists. 1995; 8
(6):429—431. https://doi.org/10.1002/ca.980080612

3. Walker LC, Jucker M. Neurodegenerative diseases: expanding the prion concept. Annual review of neu-
roscience. 2015; 38:87—103. https://doi.org/10.1146/annurev-neuro-071714-033828 PMID: 25840008

4. Goedert M, Masuda-Suzukake M, Falcon B. Like prions: the propagation of aggregated tau and a-synu-
clein in neurodegeneration. Brain. 2017; 140(2):266—278. https://doi.org/10.1093/brain/aww230 PMID:
27658420

5. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992; 256
(5054):184—-186. https://doi.org/10.1126/science.1566067 PMID: 1566067

6. Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease.
Trends in pharmacological sciences. 1991; 12:383-388. https://doi.org/10.1016/0165-6147(91)
90609-V

7. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO molecular med-
icine. 2016; 8(6):595-608. https://doi.org/10.15252/emmm.201606210 PMID: 27025652

8. Goétz J, Halliday G, Nisbet RM. Molecular pathogenesis of the tauopathies. Annual Review of Pathology:
Mechanisms of Disease. 2019; 14:239-261. https://doi.org/10.1146/annurev-pathmechdis-012418-
012936

9. ChoH, ChoiJY, Hwang MS, Kim YJ, Lee HM, Lee HS, et al. In vivo cortical spreading pattern of tau and
amyloid in the Alzheimer disease spectrum. Annals of neurology. 2016; 80(2):247-258. https://doi.org/
10.1002/ana.24711 PMID: 27323247

10. Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Frame-
work: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia. 2018; 14(4):535—
562. https://doi.org/10.1016/j.jalz.2018.02.018

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008267 October 13, 2020 37/41


http://www.adni-info.org
http://www.adni-info.org
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1002/ca.980080612
https://doi.org/10.1146/annurev-neuro-071714-033828
http://www.ncbi.nlm.nih.gov/pubmed/25840008
https://doi.org/10.1093/brain/aww230
http://www.ncbi.nlm.nih.gov/pubmed/27658420
https://doi.org/10.1126/science.1566067
http://www.ncbi.nlm.nih.gov/pubmed/1566067
https://doi.org/10.1016/0165-6147(91)90609-V
https://doi.org/10.1016/0165-6147(91)90609-V
https://doi.org/10.15252/emmm.201606210
http://www.ncbi.nlm.nih.gov/pubmed/27025652
https://doi.org/10.1146/annurev-pathmechdis-012418-012936
https://doi.org/10.1146/annurev-pathmechdis-012418-012936
https://doi.org/10.1002/ana.24711
https://doi.org/10.1002/ana.24711
http://www.ncbi.nlm.nih.gov/pubmed/27323247
https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.1371/journal.pcbi.1008267

PLOS COMPUTATIONAL BIOLOGY Protein-protein interactions in neurodegenerative diseases: A conspiracy theory

11. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta neuropathologica.
1991; 82(4):239-259. https://doi.org/10.1007/BF00308809 PMID: 1759558

12. DeVos SL, Corjuc BT, Commins C, Dujardin S, Bannon RN, Corjuc D, et al. Tau reduction in the pres-
ence of amyloid-B prevents tau pathology and neuronal death in vivo. Brain. 2018; 141(7):2194—2212.
https://doi.org/10.1093/brain/awy117 PMID: 29733334

13. Busche MA, Wegmann S, Dujardin S, Commins C, Schiantarelli J, Klickstein N, et al. Tau impairs neural
circuits, dominating amyloid-g effects, in Alzheimer models in vivo. Threshold. 2019; 30(40):50.

14. Walker LC, Lynn DG, Chernoff YO. A standard model of Alzheimer’s disease? Prion. 2018; 12(5-
6):261-265. https://doi.org/10.1080/19336896.2018.1525256 PMID: 30220236

15. Prusiner SB. Prions. Proceedings of the National Academy of Sciences. 1998; 95(23):13363-13383.
https://doi.org/10.1073/pnas.95.23.13363

16. Jucker M, Walker LC. Propagation and spread of pathogenic protein assemblies in neurodegenerative
diseases. Nature neuroscience. 2018; 21(10):1341. https://doi.org/10.1038/s41593-018-0238-6 PMID:
30258241

17. Olsson TT, Klementieva O, Gouras GK. Prion-like seeding and nucleation of intracellular amyloid-.
Neurobiology of disease. 2018; 113:1-10. https://doi.org/10.1016/j.nbd.2018.01.015 PMID: 29414379

18. Jucker M, Walker LC. Self-propagation of pathogenic protein aggregates in neurodegenerative dis-
eases. Nature. 2013; 501(7465):45-51. https://doi.org/10.1038/nature 12481 PMID: 24005412

19. ClavagueraF, Lavenir |, Falcon B, Frank S, Goedert M, Tolnay M. “Prion-like” templated misfolding
in tauopathies. Brain Pathology. 2013; 23(3):342-349. https://doi.org/10.1111/bpa.12044 PMID:
23587140

20. Goedert M. Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled AB, tau,
and a-synuclein. Science. 2015; 349(6248):1255555. https://doi.org/10.1126/science. 1255555

21. Mudher A, Colin M, Dujardin S, Medina M, Dewachter |, Naini SMA, et al. What is the evidence that tau
pathology spreads through prion-like propagation? Acta neuropathologica communications. 2017; 5
(1):99. https://doi.org/10.1186/s40478-017-0488-7 PMID: 29258615

22. DeVos SL, Corjuc BT, Oakley DH, Nobuhara CK, Bannon RN, Chase A, et al. Synaptic tau seeding pre-
cedes tau pathology in human Alzheimer’s disease brain. Frontiers in neuroscience. 2018; 12:267.
https://doi.org/10.3389/fnins.2018.00267 PMID: 29740275

23. Ittner LM, Gétz J. Amyloid-B and tau—a toxic pas de deux in Alzheimer’s disease. Nature Reviews Neu-
roscience. 2011; 12(2):67. https://doi.org/10.1038/nr2967

24. Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysi-
ological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. The
Lancet Neurology. 2013; 12(2):207-216. https://doi.org/10.1016/S1474-4422(12)70291-0

25. KaraE, Marks JD, Aguzzi A. Toxic protein spread in neurodegeneration: reality versus fantasy. Trends
in molecular medicine. 2018.

26. Bennett RE, DeVos SL, Dujardin S, Corjuc B, Gor R, Gonzalez J, et al. Enhanced tau aggregation in the
presence of amyloid 8. The American journal of pathology. 2017; 187(7):1601-1612. https://doi.org/10.
1016/j.ajpath.2017.03.011 PMID: 28500862

27. Pooler AM, Hyman BTea. Amyloid accelerates tau propagation and toxicity in a model of early Alzhei-
mer’s disease. Acta Neuropathologica Communications. 2015; 3(1):14. https://doi.org/10.1186/
s40478-015-0199-x PMID: 25853174

28. Bennett RE, Robbins AB, Hu M, Cao X, Betensky RA, Clark T, et al. Tau induces blood vessel abnor-
malities and angiogenesis-related gene expression in P301L transgenic mice and human Alzheimer’s
disease. Proceedings of the National Academy of Sciences. 2018; 115(6):E1289—E1298. https://doi.
org/10.1073/pnas.1710329115

29. Laurent C, Buée L, Blum D. Tau and neuroinflammation: what impact for Alzheimer’s disease and tauo-
pathies? Biomedical journal. 2018; 41(1):21-33. https://doi.org/10.1016/.b}.2018.01.003 PMID:
29673549

30. Small SA, Duff K. Linking AB and tau in late-onset Alzheimer’s disease: a dual pathway hypothesis.
Neuron. 2008; 60(4):534-542. https://doi.org/10.1016/j.neuron.2008.11.007 PMID: 19038212

31. Lloret A, Badia MC, Giraldo E, Ermak G, Alonso MD, Pallardé FV, et al. Amyloid- toxicity and tau
hyperphosphorylation are linked via RCAN1 in Alzheimer’s disease. Journal of Alzheimer’s Disease.
2011;27(4):701-709. https://doi.org/10.3233/JAD-2011-110890 PMID: 21876249

32. GiraldoE, Lloret A, Fuchsberger T, Vifia J. AB and tau toxicities in Alzheimer’s are linked via oxidative
stress-induced p38 activation: protective role of vitamin E. Redox biology. 2014; 2:873-877. https://doi.
org/10.1016/j.redox.2014.03.002 PMID: 25061569

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008267 October 13, 2020 38/41


https://doi.org/10.1007/BF00308809
http://www.ncbi.nlm.nih.gov/pubmed/1759558
https://doi.org/10.1093/brain/awy117
http://www.ncbi.nlm.nih.gov/pubmed/29733334
https://doi.org/10.1080/19336896.2018.1525256
http://www.ncbi.nlm.nih.gov/pubmed/30220236
https://doi.org/10.1073/pnas.95.23.13363
https://doi.org/10.1038/s41593-018-0238-6
http://www.ncbi.nlm.nih.gov/pubmed/30258241
https://doi.org/10.1016/j.nbd.2018.01.015
http://www.ncbi.nlm.nih.gov/pubmed/29414379
https://doi.org/10.1038/nature12481
http://www.ncbi.nlm.nih.gov/pubmed/24005412
https://doi.org/10.1111/bpa.12044
http://www.ncbi.nlm.nih.gov/pubmed/23587140
https://doi.org/10.1126/science.1255555
https://doi.org/10.1186/s40478-017-0488-7
http://www.ncbi.nlm.nih.gov/pubmed/29258615
https://doi.org/10.3389/fnins.2018.00267
http://www.ncbi.nlm.nih.gov/pubmed/29740275
https://doi.org/10.1038/nrn2967
https://doi.org/10.1016/S1474-4422(12)70291-0
https://doi.org/10.1016/j.ajpath.2017.03.011
https://doi.org/10.1016/j.ajpath.2017.03.011
http://www.ncbi.nlm.nih.gov/pubmed/28500862
https://doi.org/10.1186/s40478-015-0199-x
https://doi.org/10.1186/s40478-015-0199-x
http://www.ncbi.nlm.nih.gov/pubmed/25853174
https://doi.org/10.1073/pnas.1710329115
https://doi.org/10.1073/pnas.1710329115
https://doi.org/10.1016/j.bj.2018.01.003
http://www.ncbi.nlm.nih.gov/pubmed/29673549
https://doi.org/10.1016/j.neuron.2008.11.007
http://www.ncbi.nlm.nih.gov/pubmed/19038212
https://doi.org/10.3233/JAD-2011-110890
http://www.ncbi.nlm.nih.gov/pubmed/21876249
https://doi.org/10.1016/j.redox.2014.03.002
https://doi.org/10.1016/j.redox.2014.03.002
http://www.ncbi.nlm.nih.gov/pubmed/25061569
https://doi.org/10.1371/journal.pcbi.1008267

PLOS COMPUTATIONAL BIOLOGY Protein-protein interactions in neurodegenerative diseases: A conspiracy theory

33. HeZ, Guo JL, McBride JD, Narasimhan S, Kim H, Changolkar L, et al. Amyloid-8 plaques enhance Alz-
heimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nature medicine.
2018; 24(1):29. https://doi.org/10.1038/nm.4443 PMID: 29200205

34. Walker LC, Jucker M. The exceptional vulnerability of humans to Alzheimer’s disease. Trends in molec-
ular medicine. 2017; 23(6):534-545. https://doi.org/10.1016/j.molmed.2017.04.001 PMID: 28483344

35. Carbonell F, lturria-Medina Y, Evans AC. Mathematical modeling of protein misfolding mechanisms in
neurological diseases: a historical overview. Frontiers in Neurology. 2018; 9:37. https://doi.org/10.3389/
fneur.2018.00037 PMID: 29456521

36. Bertsch M, Franchi B, Marcello N, Tesi MC, Tosin A. Alzheimer’s disease: a mathematical model for
onset and progression. Mathematical Medicine and Biology. 2016; p. dqw003.

37. Weickenmeier J, Kuhl E, Goriely A. The multiphysics of prion-like diseases: progression and atrophy.
Phys Rev Lett. 2018; 121(158101).

38. Weickenmeier J, Jucker M, Goriely A, Kuhl E. A physics-based model explains the prion-like features of
neurodegeneration in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis.
Journal of the Mechanics and Physics of Solids. 2019; 124:264—281. https://doi.org/10.1016/j.jmps.
2018.10.013

39. RajA, Kuceyeski A, Weiner M. A network diffusion model of disease progression in dementia. Neuron.
2012; 73(6):1204—1215. https://doi.org/10.1016/j.neuron.2011.12.040 PMID: 22445347

40. RajA, LoCastro E, Kuceyeski A, Tosun D, Relkin N, Weiner M, et al. Network diffusion model of pro-
gression predicts longitudinal patterns of atrophy and metabolism in Alzheimer’s disease. Cell reports.
2015; 10(3):359-369. https://doi.org/10.1016/j.celrep.2014.12.034 PMID: 25600871

41. Abdelnour F, Voss HU, Raj A. Network diffusion accurately models the relationship between structural
and functional brain connectivity networks. Neuroimage. 2014; 90:335-347. https://doi.org/10.1016/].
neuroimage.2013.12.039 PMID: 24384152

42. Pandya S, Mezias C, Raj A. Predictive model of spread of progressive supranuclear palsy using direc-
tional network diffusion. Frontiers in neurology. 2017; 8:692. https://doi.org/10.3389/fneur.2017.00692
PMID: 29312121

43. Poudel GR, Harding IH, Egan GF, Georgiou-Karistianis N. Network spread determines severity of
degeneration and disconnection in Huntington’s disease. Human brain mapping. 2019.

44. lturria-Medina Y, Sotero RC, Toussaint PJ, Evans AC, Initiative ADN. Epidemic spreading model to
characterize misfolded proteins propagation in aging and associated neurodegenerative disorders.
PLoS computational biology. 2014; 10(11):e1003956. https://doi.org/10.1371/journal.pcbi.1003956
PMID: 25412207

45. Henderson MX, Cornblath EJ, Darwich A, Zhang B, Brown H, Gathagan RJ, et al. Spread of a-synuclein
pathology through the brain connectome is modulated by selective vulnerability and predicted by net-
work analysis. Nature neuroscience. 2019; 22(8):1248. hitps://doi.org/10.1038/s41593-019-0457-5
PMID: 31346295

46. ZhengYQ, Zhang, Yau YH, ZeighamiY, Larcher K, Misic B, et al. Connectome architecture, gene
expression and functional co-activation shape the propagation of misfolded proteins in neurodegenera-
tive disease. bioRxiv. 2018; p. 449199.

47. SF,AS, AG, Kuhl E. Prion-like spreading of Alzheimer’s disease within the brain’s connectome. Inter-
face R Society. 2019.

48. SF,AS, AG, Kuhl E. Spatially-extended nucleation-aggregation-fragmentation models for the dynamics
of prion-like neurodegenerative protein-spreading in the brain and its connectome. J Theor Biol. 2019.

49. Bressloff PC. Waves in neural media. Lecture Notes on Mathematical Modelling in the Life Sciences.
2014.

50. Matthdus F. A comparison of modeling approaches for the spread of prion diseases in the brain. In:
Modelling Dynamics in Processes and Systems. Springer; 2009. p. 109-117.

51. F M. The spread of prion diseases in the brain—models of reaction and transport on networks. J Biol
Syst. 2009; 17:623-641. https://doi.org/10.1142/S0218339009003010

52. Cohen SI, Linse S, Luheshi LM, Hellstrand E, White DA, Rajah L, et al. Proliferation of amyloid-342
aggregates occurs through a secondary nucleation mechanism. Proceedings of the National Academy
of Sciences. 2013; 110(24):9758-9763. https://doi.org/10.1073/pnas.1218402110

53. Kundel F, Hong L, Falcon B, McEwan WA, Michaels TC, Meis| G, et al. Measurement of tau filament
fragmentation provides insights into prion-like spreading. ACS chemical neuroscience. 2018; 9
(6):1276-1282. https://doi.org/10.1021/acschemneuro.8b00094 PMID: 29590529

54. Meisl G, Yang X, Hellstrand E, Frohm B, Kirkegaard J, Cohen S, et al. Differences in nucleation behav-
ior underlie the contrasting aggregation kinetics of the AB40 and AB42 peptides. Proceedings of the
National Academy of Sciences. 2014; 111(26):9384—9389. https://doi.org/10.1073/pnas. 1401564111

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008267 October 13, 2020 39/41


https://doi.org/10.1038/nm.4443
http://www.ncbi.nlm.nih.gov/pubmed/29200205
https://doi.org/10.1016/j.molmed.2017.04.001
http://www.ncbi.nlm.nih.gov/pubmed/28483344
https://doi.org/10.3389/fneur.2018.00037
https://doi.org/10.3389/fneur.2018.00037
http://www.ncbi.nlm.nih.gov/pubmed/29456521
https://doi.org/10.1016/j.jmps.2018.10.013
https://doi.org/10.1016/j.jmps.2018.10.013
https://doi.org/10.1016/j.neuron.2011.12.040
http://www.ncbi.nlm.nih.gov/pubmed/22445347
https://doi.org/10.1016/j.celrep.2014.12.034
http://www.ncbi.nlm.nih.gov/pubmed/25600871
https://doi.org/10.1016/j.neuroimage.2013.12.039
https://doi.org/10.1016/j.neuroimage.2013.12.039
http://www.ncbi.nlm.nih.gov/pubmed/24384152
https://doi.org/10.3389/fneur.2017.00692
http://www.ncbi.nlm.nih.gov/pubmed/29312121
https://doi.org/10.1371/journal.pcbi.1003956
http://www.ncbi.nlm.nih.gov/pubmed/25412207
https://doi.org/10.1038/s41593-019-0457-5
http://www.ncbi.nlm.nih.gov/pubmed/31346295
https://doi.org/10.1142/S0218339009003010
https://doi.org/10.1073/pnas.1218402110
https://doi.org/10.1021/acschemneuro.8b00094
http://www.ncbi.nlm.nih.gov/pubmed/29590529
https://doi.org/10.1073/pnas.1401564111
https://doi.org/10.1371/journal.pcbi.1008267

PLOS COMPUTATIONAL BIOLOGY Protein-protein interactions in neurodegenerative diseases: A conspiracy theory

55. Meisl G, Kirkegaard J, Arosio P, Michaels T, Vendruscolo M, Dobson C, et al. Molecular mechanisms of
protein aggregation from global fitting of kinetic models. Nat Protoc. 2016; 11:252-272. https://doi.org/
10.1038/nprot.2016.010 PMID: 26741409

56. Frankel R, Térnquist M, Meisl G, Hansson O, Andreasson U, Zetterberg H, et al. Autocatalytic amplifica-
tion of Alzheimer-associated AB42 peptide aggregation in human cerebrospinal fluid. Communications
biology. 2019; 2(1):1—11. https://doi.org/10.1038/s42003-019-0612-2

57. ZhengYQ, Zhang, YauY, Zeighami Y, Larcher K, Misic B, et al. Local vulnerability and global connec-
tivity jointly shape neurodegenerative disease propagation. bioRxiv. 2019; p. 449199.

58. McNab JA, Edlow BL, Witzel T, Huang SY, Bhat H, Heberlein K, et al. The Human Connectome Project
and beyond: initial applications of 300 mT/m gradients. Neuroimage. 2013; 80:234-245. https://doi.org/
10.1016/j.neuroimage.2013.05.074 PMID: 23711537

59. SzalkaiB, Kerepesi C, Varga B, Grolmusz V. Parameterizable consensus connectomes from the
human connectome project: The budapest reference connectome server v3. 0. Cognitive neurody-
namics. 2017; 11(1):113-116. https://doi.org/10.1007/s11571-016-9407-z PMID: 28174617

60. Falcon B, Zivanov J, Zhang Wea. Novel tau filament fold in chronic traumatic encephalopathy encloses
hydrophobic molecules. Nature. 2019; 568:420—423. https://doi.org/10.1038/s41586-019-1026-5
PMID: 30894745

61. Goriely A. A simple solution to the nonlinear front problem. Phys Rev Lett. 1995; 75:2047—2050. https://
doi.org/10.1103/PhysRevLett.75.2047

62. Van Saarloos W. Front propagation into unstable states. Physics reports. 2003; 386(2-6):29-222.
https://doi.org/10.1016/j.physrep.2003.08.001

63. Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, et al. SUNDIALS: Suite of non-
linear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software
(TOMS). 2005; 31(3):363-396. https://doi.org/10.1145/1089014.1089020

64. Davis TA, Natarajan EP. Algorithm 907: KLU, A Direct Sparse Solver for Circuit Simulation Problems.
ACM Trans Math Softw. 2010; 37:36:1-36:17. https://doi.org/10.1145/1824801.1824814

65. Davis TA. Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factori-
zation. ACM Trans Math Softw. 2011; 38:8:1-8:22. https://doi.org/10.1145/2049662.2049670

66. Grothe MJ, Barthel H, Sepulcre J, Dyrba M, Sabri O, Teipel SJ, et al. In vivo staging of regional amyloid
deposition. Neurology. 2017; 89(20):2031-2038. https://doi.org/10.1212/WNL.0000000000004643
PMID: 29046362

67. Jucker M, Walker LC. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative
disorders. Annals of Neurology. 2011; 70:532-540. https://doi.org/10.1002/ana.22615 PMID:
22028219

68. Ossenkoppele R, Rabinovici GD, Smith R, Miller BLea. Discriminative Accuracy of [18F]flortaucipir Pos-
itron Emission Tomography for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA.
2018; 320(11):1151-1162. https://doi.org/10.1001/jama.2018.12917 PMID: 30326496

69. Okamura N, Harada R, Furumoto Sea. Tau PET Imaging in Alzheimer’s Disease. Curr Neurol Neurosci
Rep. 2014; 14(500). PMID: 25239654

70. Ashburner J, Friston KJ. Unified segmentation. Neurolmage. 2005; 26(3):839-851. https://doi.org/10.
1016/j.neuroimage.2005.02.018 PMID: 15955494

71. Ashburner J. A fast diffeomorphic image registration algorithm. Neurolmage. 2007; 38(1):95-113.
https://doi.org/10.1016/j.neuroimage.2007.07.007 PMID: 17761438

72. Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, et al. Machine learning for
neuroimaging with scikit-learn. Frontiers in Neuroinformatics. 2014; 8:14. https://doi.org/10.3389/fninf.
2014.00014 PMID: 24600388

73. Daducci A, Gerhard S, Griffa A, Lemkaddem A, Cammoun L, Gigandet X, et al. The Connectome Map-
per: An Open-Source Processing Pipeline to Map Connectomes with MRI. PLOS ONE. 2012; 7(12):1—
9. https://doi.org/10.1371/journal.pone.0048121

74. Grabner G, Janke A, Budge M, Smith D, Pruessner J, Collins D. Symmetric Atlasing and Model Based
Segmentation: An Application to the Hippocampus in Older Adults. In: Larsen R, Nielsen M, Sporring J,
editors. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2006. Berlin, Heidel-
berg: Springer Berlin Heidelberg; 2006. p. 58—66.

75. Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage. 2003; 19(4):1273—1302.
https://doi.org/10.1016/S1053-8119(03)00202-7 PMID: 12948688

76. Friston KJ, Preller KH, Mathys C, Cagnan H, Heinzle J, Razi A, et al. Dynamic causal modelling revis-
ited. Neurolmage. 2017; 199. https://doi.org/10.1016/j.neuroimage.2017.02.045 PMID: 28219774

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008267 October 13, 2020 40/ 41


https://doi.org/10.1038/nprot.2016.010
https://doi.org/10.1038/nprot.2016.010
http://www.ncbi.nlm.nih.gov/pubmed/26741409
https://doi.org/10.1038/s42003-019-0612-2
https://doi.org/10.1016/j.neuroimage.2013.05.074
https://doi.org/10.1016/j.neuroimage.2013.05.074
http://www.ncbi.nlm.nih.gov/pubmed/23711537
https://doi.org/10.1007/s11571-016-9407-z
http://www.ncbi.nlm.nih.gov/pubmed/28174617
https://doi.org/10.1038/s41586-019-1026-5
http://www.ncbi.nlm.nih.gov/pubmed/30894745
https://doi.org/10.1103/PhysRevLett.75.2047
https://doi.org/10.1103/PhysRevLett.75.2047
https://doi.org/10.1016/j.physrep.2003.08.001
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.1145/1824801.1824814
https://doi.org/10.1145/2049662.2049670
https://doi.org/10.1212/WNL.0000000000004643
http://www.ncbi.nlm.nih.gov/pubmed/29046362
https://doi.org/10.1002/ana.22615
http://www.ncbi.nlm.nih.gov/pubmed/22028219
https://doi.org/10.1001/jama.2018.12917
http://www.ncbi.nlm.nih.gov/pubmed/30326496
http://www.ncbi.nlm.nih.gov/pubmed/25239654
https://doi.org/10.1016/j.neuroimage.2005.02.018
https://doi.org/10.1016/j.neuroimage.2005.02.018
http://www.ncbi.nlm.nih.gov/pubmed/15955494
https://doi.org/10.1016/j.neuroimage.2007.07.007
http://www.ncbi.nlm.nih.gov/pubmed/17761438
https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.3389/fninf.2014.00014
http://www.ncbi.nlm.nih.gov/pubmed/24600388
https://doi.org/10.1371/journal.pone.0048121
https://doi.org/10.1016/S1053-8119(03)00202-7
http://www.ncbi.nlm.nih.gov/pubmed/12948688
https://doi.org/10.1016/j.neuroimage.2017.02.045
http://www.ncbi.nlm.nih.gov/pubmed/28219774
https://doi.org/10.1371/journal.pcbi.1008267

PLOS COMPUTATIONAL BIOLOGY Protein-protein interactions in neurodegenerative diseases: A conspiracy theory

77. Ferreira D, Westman ea Eric. Distinct subtypes of Alzheimer’s disease based on patterns of brain atro-
phy: longitudinal trajectories and clinical applications. Scientific Reports. 2017; 7(1):2045-2322. https://
doi.org/10.1038/srep46263

78. Jellinger KA. Neuropathological subtypes of Alzheimer’s disease. Acta Neuropathologica. 2012; 123
(1):153-154. https://doi.org/10.1007/s00401-011-0889-9 PMID: 22009303

79. Meisl G, Knowles T, Klenerman D. The molecular processes underpinning prion-like spreading and
seed amplification in protein aggregation. Current Opinion in Neurobiology. 2020; 61:58—64. https://doi.
org/10.1016/j.conb.2020.01.010 PMID: 32092527

80. Tarasoff-Conway J, Carare R, de Leon MJea. Clearance systems in the brain—implications for Alzhei-
mer disease. Nat Rev Neurol. 2015; 11(8):457—470. https://doi.org/10.1038/nrneurol.2015.119 PMID:
26195256

81. lliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates
CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid 3.
Science translational medicine. 2012; 4(147):147ra111-147ra111. https://doi.org/10.1126/
scitransimed.3003748 PMID: 22896675

82. Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG. The role of brain barriers in fluid movementin
the CNS: is there a ‘glymphatic’ system? Acta Neuropathologica. 2019; 136(4):388—407.

83. Benveniste H, Liu X, Koundal S, Sanggaard S, Lee H, Wardlaw J. The Glymphatic System and Waste
Clearance with Brain Aging: A Review. Gerontology. 2019; 65:106—119. https://doi.org/10.1159/
000490349 PMID: 29996134

84. CLC, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms, and ther-
apy. Nat Rev Neurol. 2013; 2(9):106-118.

85. Konzak S, Thies E, Marx A, Mandelkow EM, Mandelkow E. Swimming against the Tide: Mobility of the
Microtubule-Associated Protein Tau in Neurons. J Neurosci. 2017; 27(37):9916-9927. https://doi.org/
10.1523/JNEUROSCI.0927-07.2007

86. Pooler A, Phillips E, Lau D, Noble W, Hanger D. Physiological release of endogenous tau is stimulated
by neuronal activity. Embo Reports. 2013; 14(4). https://doi.org/10.1038/embor.2013.15 PMID:
23412472

87. Sato C, Barthelemy N, Bateman Rea. Tau Kinetics in Neurons and the Human Central Nervous Sys-
tem. Neuron. 2018; 97(6):P1284—1298. https://doi.org/10.1016/j.neuron.2018.02.015

88. Pooler A, Polydoro M, Wegmann S, Nicholls S, Spires-Jones T, Hyman B. Propagation of tau pathology
in Alzheimer’s disease: identification of novel therapeutic targets. Alzheimers Res Ther. 2013; 5(49).
https://doi.org/10.1186/alzrt214 PMID: 24152385

89. Aronov S, Aranda G, Behar L, Ginzburg |. Visualization of translated tau protein in the axons of neuronal
P19 cells and characterization of tau RNP granules. J Cell Sci. 2002; 115:3817-3827. https://doi.org/
10.1242/jcs.00058 PMID: 12235292

90. Morita J, Sobue K. Specification of Neuronal Polarity Regulated by Local Translation of CRMP2 and
Tau via the mTOR-p70S6K Pathway. J Biol Chem. 2009; 284(40):27734—27745. https://doi.org/10.
1074/jbc.M109.008177 PMID: 19648118

91. Guo T, Noble W, Hanger D. Roles of Tau protein in health and disease. Acta Neuropathol. 2017;
133:665-704. https://doi.org/10.1007/s00401-017-1707-9 PMID: 28386764

92. Moreno-Jimenez E, Flor-Garcia M, Llorens-Martin Mea. Adult Hippocampal Neurogenesis Is Abundant
in Neurologically Healthy Subjects and Drops Sharply in Patients With Alzheimer’s Disease. Nat Med.
2019; 25(4):554-560. https://doi.org/10.1038/s41591-019-0375-9 PMID: 30911133

93. Insel P, Mormino E, Aisen P, Thompson W, Donahue M. Neuroanatomical spread of amyloid 8 and tau
in Alzheimer’s disease: implications for primary prevention. Brain Commun. 2020; 2(1):1-11. hitps://
doi.org/10.1093/braincomms/fcaa007

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008267 October 13, 2020 41/41


https://doi.org/10.1038/srep46263
https://doi.org/10.1038/srep46263
https://doi.org/10.1007/s00401-011-0889-9
http://www.ncbi.nlm.nih.gov/pubmed/22009303
https://doi.org/10.1016/j.conb.2020.01.010
https://doi.org/10.1016/j.conb.2020.01.010
http://www.ncbi.nlm.nih.gov/pubmed/32092527
https://doi.org/10.1038/nrneurol.2015.119
http://www.ncbi.nlm.nih.gov/pubmed/26195256
https://doi.org/10.1126/scitranslmed.3003748
https://doi.org/10.1126/scitranslmed.3003748
http://www.ncbi.nlm.nih.gov/pubmed/22896675
https://doi.org/10.1159/000490349
https://doi.org/10.1159/000490349
http://www.ncbi.nlm.nih.gov/pubmed/29996134
https://doi.org/10.1523/JNEUROSCI.0927-07.2007
https://doi.org/10.1523/JNEUROSCI.0927-07.2007
https://doi.org/10.1038/embor.2013.15
http://www.ncbi.nlm.nih.gov/pubmed/23412472
https://doi.org/10.1016/j.neuron.2018.02.015
https://doi.org/10.1186/alzrt214
http://www.ncbi.nlm.nih.gov/pubmed/24152385
https://doi.org/10.1242/jcs.00058
https://doi.org/10.1242/jcs.00058
http://www.ncbi.nlm.nih.gov/pubmed/12235292
https://doi.org/10.1074/jbc.M109.008177
https://doi.org/10.1074/jbc.M109.008177
http://www.ncbi.nlm.nih.gov/pubmed/19648118
https://doi.org/10.1007/s00401-017-1707-9
http://www.ncbi.nlm.nih.gov/pubmed/28386764
https://doi.org/10.1038/s41591-019-0375-9
http://www.ncbi.nlm.nih.gov/pubmed/30911133
https://doi.org/10.1093/braincomms/fcaa007
https://doi.org/10.1093/braincomms/fcaa007
https://doi.org/10.1371/journal.pcbi.1008267

