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Abstract

Robotic solutions have garnered increased attention from the construction industry as an effective
means of improving construction safety and productivity. However, in deploying such robots to real
fields many safety concerns have remained untackled, particularly contact-driven accidents that can be
potentially escalated by mobile robots. To address this issue, the authors develop a fully automated
framework that enables predicting the proximity between mobile objects, leveraging a camera-mounted
unmanned aerial vehicle (UAV), computer vision, and deep neural networks, and conduct a field test to
evaluate its validity. In the test, the framework showed a promising result: it achieved average proximity
error of 0.95 meters in predicting 5.28 seconds future proximity between a worker and a truck. The
major contribution of this study is in predicting the risk of impending collision in advance, thereby
making pro-active interventions possible. Computationally, the predictive functionality based on
computer vision and deep neural network including convolutional neural network and generative
adversarial network would allow robots to examine alternative multiple paths beforehand and enable
providing advance alerts to workers. These pro-active interventions would effectively reduce the

chances of impending collisions between mobile robots and construction workers.

Keywords: Autonomous robot; Contact-driven accident;, Proximity prediction;, Unmanned aerial

vehicle;, Deep neural network.
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Introduction

Construction industries around the world are gradually gearing up for robotic automation (Tsuruta et al.
2019; Lattanzi and Miller 2017; Veha et al. 2013). A growing number of construction companies are
embracing robotic solutions to reap the benefits of improved productivity and safety (Kim et al. 2019a;
Bock 2015). Notably, the global construction robot market is rapidly growing; it is expected to reach
around $190 million by 2025, at a compound annual growth rate (CAGR) of over 20% (Research and
Market 2019). According to a market report from Tractica, U.S., more than 7,000 autonomous (or semi-)
robots are expected to be deployed to construction fields in the U.S. between 2018 and 2025 (Tractica
2019).

A wide range of construction robots are under development or in the early stage of deployment:
for example, to name a few, there are structure robots for 3D printing (Liu and Li 2018), bricklaying
(Moon et al. 2018), welding (Tavares et al. 2019), modular building (Yang et al 2019), finishing robots
for drywall installation (Yu et al. 2016), fagade painting and cleaning (Vega-Heredia et al. 2019), and
infrastructure robots for demolition (Li et al. 2019; Zheng et al. 2018), and rebar tying (Cardno 2018).
Assisting physically demanding, highly repetitive, and hazardous tasks in construction, such robots are
expected to be the main driver that transforms future construction into a more productive and safer
industry.

However, in deploying such robots to real fields, many safety concerns have remained
untackled (Guiochet et al. 2017). The authors specifically cast light on the contact-driven hazards that
could be escalated by mobile robots. Construction generally takes place in a highly unstructured and
dynamic environment. Workspace (e.g., terrain and structure) evolves over time and multiple entities
(e.g., workers, equipment, and robots) are bound to share a limited workspace. In such a unstructured
and evolving space, the chances of contact-driven accidents (e.g., struck-by and caught-in/between) by
motorized resources can arise easily, frequently, and unexpectedly (Kim et al. 2019b; Teizer et al. 2010).

In co-robotic construction, where mobile robots are closely involved in the field built for
human labor, workers will be assuming greater risk for such accidents. Any movement caused by

misperception of a situation (e.g., approaching, deviating, and reversing) can pose a fatal threat to
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nearby workers. However, it is unknown how mobile robots’ situational intelligence—such as the
capacity for understanding, reasoning, and improvisational decision making—rises to the dynamically
evolving situations of construction. In mobile robots’ navigation and behavior in such uncertain
situations, there could be unexpected errors, which could pose a greater risk of forcible contact to nearby
workers.

A major research question for this problem has been attuned to the process of detecting the
proximity between workers and robots (or mobile equipment) in time (Kim et al. 2019b; Park et al.
2016; Teizer 2015; Teizer et al. 2010). Several collision avoidance technologies, such as those using
proximity sensors or computer vision methods, have been explored to this end. Most existing
technologies have been used to monitor or detect the proximity at a current time-step, relying upon
present sensory data. In many cases, however, prediction is far more important and effective for contact-
driven accident prevention (Kim et al. 2019c¢). This is principally because the sooner robot and worker
are informed of their proximity to each other, the more likely they are to avoid the potential collision.
Nevertheless, few studies have attempted to address it.

With this background, the authors develop deep neural networks (DNNs)-based framework
that enables proximity prediction of mobile objects. In this framework, a camera-mounted unmanned
aerial vehicle (UAV) monitors associated entities, serving as the third eye of robots and workers, which
has a wider line-of-sight (Figure 1). Inputting the UAV-captured imagery data, the framework powered
by DNNs for object detection (Figure 1-A) and trajectory prediction (Figure 1-B) performs proximity
prediction (Figure 1-C) in a fully automated way.

The major contribution of this work is to enable predicting the risk of impending collision in
advance, thereby making pro-active safety interventions possible. Specifically, the proximity prediction
would assist mobile robots’ predictive path planning and rerouting. Also, via wearable devices (e.g.,
wrist band and smart safety glasses), it would enable providing an advance alert to workers, helping
them to take timely evasive action. These pro-active interventions would effectively reduce the chances

of impending collisions between mobile robots (or mobile equipment) and construction workers.
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Moreover, the authors apply a generative adversarial network (GAN) to trajectory prediction, which

opens a new possibility of GAN for potential construction applications.

Existing Collision Avoidance Technologies and Challenges in Construction Applications

There has been a wide range of collision avoidance technologies, such as those based on proximity
sensors or computer vision methods. This section provides a holistic view of these technologies,
discussing their pros and cons. In addition, the authors detail a major challenge that the technologies

would have in construction field applications.

Collision Avoidance Technologies: Proximity Sensors

Based on operation principles, proximity sensors can be largely categorized into two types: (i) time-of-
flight (TOF)-based sensor and (ii) tag-based sensor. The TOF-based sensor, installed on a robot,
measures the distance of surroundings (e.g., geographic features, obstacles, and workers) by emitting a
certain form of energy and reading its time-of-flight. As well-recognized sensors, sound navigation and
ranging (SONAR), radio detection and ranging (RADAR), and light detection and ranging (LIDAR)
are included in this category.

SONAR (or ultrasonic sensor) measures distances to physical objects by transmitting a high-
frequency sound wave and measuring the TOF of its echo reflected from the target objects. A sound
wave requires a certain medium to travel. Its propagation, therefore, involves many disturbances by the
medium’s physical conditions (e.g., temperature and pressure), and it can be more so particularly in the
case of longer-range detection (Varghese and Boone 2015). Accordingly, the application of SONAR in
mobile robots has been limited to short-range detection—typically less than 3 meters (e.g., reverse
parking) (Ducarme 2019).

On the other hand, RADAR uses radio signal (300 MHz - 40 GHz), a kind of electromagnetic
wave, which does not require a certain medium to travel. It thus functions in many wild conditions (e.g.,
rain, fog, snow, and dust) and has a long-range of reading—generally more than 30 meters (Ducarme

2019). In addition, using Doppler Effect (Chen et al. 2006), it can also detect the speed of moving
4
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objects as well as its proximity (Varghese and Boone 2015). However, the performance of RADAR can
vary by reflectors. This is because the radio signal can be easily dispersed, particularly when
encountering unfavorable reflectors such as plastics, dry wood, or objects with large flat surfaces (Ruff
20006).

LIDAR also uses a kind of electromagnetic wave, the beam of light (or laser). It is able to not
only measure distances to objects but also scan 3D surroundings with multi-axis lasers. The more lasers
a LIDAR transmits, the denser 3D world can be reconstructed (Ducarme 2019; Varghese and Boone
2015). Of stand-alone sensors, LIDAR is often cited as the most accurate proximity sensor (Gargoum
et al. 2018). Also, the 3D readout is potentially used as the primary source for the path planning of many
autonomous navigating robots (Kim et al. 2018). However, LIDAR, as with other TOF-based sensors,
cannot distinguish what the detected objects are. To distinguish objects, it needs additional object
classification software (Ducarme 2019).

Distinctive to these TOF-based sensors, tag-based sensors utilize an energy field (e.g.,
electromagnetic field) and detect proximity via the signal communication between a reader mounted to
a robot and tags worn by workers. With this principle, many kinds of sensors have been devised,
including radio frequency identification (RFID), magnetic field (MF), and Bluetooth low energy (BLE).
As the tag-based sensors don’t rely on the TOF measurement, they are less affected by the line-of-sight
(Ducarme 2019). However, the tag-based sensors have hardly gained a competitive edge over the TOF-
based sensors in terms of accuracy and fidelity. According to a test conducted by Park et al. (2016), the
proximity errors of RFID, MF, and BLE sensors were up to 5.0, 3.4, and 2.6 meters, respectively, with
the standard deviation of 2.1, 0.3, and 1.8 meters. Although the tag-based sensors still have the potential
to complement other technologies (e.g., SONAR, RADAR, and LIDAR), the prerequisite that all targets
need to be attached with a tag hinders their application in construction (Memarzadeh et al. 2013; Park
etal. 2012).

The proximity sensors have been widely applied in robotics to assist the robots’ collision
avoidance (Cui et al. 2019). However, the effectiveness, availability, and functionality of the existing

proximity sensors could be challenged in a highly unstructured and dynamic construction site. For
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example, the TOF-based sensors (e.g., SONAR, RADAR, and LIDAR) could be frequently blinded by
physical barriers; while the performances of tag-based sensors (e.g., RFID, MF, and BLE) are
susceptible to deterioration due to the jamming caused by metallic or wooden objects, both of which
are common in construction sites.

Above all, this study highlights the existing technologies’ limited scope of application in
construction. The application of sensor-based technologies have been limited to detecting or monitoring
proximity at current time-step. However, it may not be as effective in many impending situations. In a
dynamic and unstructured construction site, contact-driven accidents occur spontaneously in
unexpected ways. In such an impending situation, mere detecting or monitoring proximity would not
be effective because the near-sighted measure wouldn’t allow enough time for the involved robot (and
equipment operator) and worker to take prompt evasive action. In this sense, to better prevent contact-
driven accidents in co-robotic construction, collision avoidance technology needs to be equipped with

the prediction functionality for potential accidents.

Collision Avoidance Technologies: Computer Vision-based Methods

Over recent years, computer vision-based methods have demonstrated great potential as a
supplementary technology to proximity sensors (Zhu et al. 2017; Park et al. 2016; Memarzadeh et al.
2013; Park et al. 2012; Brilakis et al. 2011). It uses one or more imaging devices (e.g., digital camera)
to capture multiple targets and stream the digital images to a computer. In turn, it utilizes the computing
power to conduct object detection and proximity measurement. With the improvement of computing
power, the potential of the computer vision continues to grow. This growth is evidenced by the number
of construction studies that have explored computer vision-based collision avoidance technologies. For
example, Memarzadeh et al. (2013) developed an algorithm to detect multi-class construction objects
by integrating histogram of oriented gradient (HOG) and histogram of hue-saturation-value (HSV);
Kim et al. (2016) proposed a proximity monitoring framework that employs Gaussian mixture model
(GMM)-based object detection; Kim et al. (2017) introduced another proximity monitoring framework

using multi-view cameras and object detection based on HOG and support vector machine (SVM). The
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previous studies have greatly contributed to examining the potential of computer vision-based collision
avoidance technologies. However, there are several drawbacks of the computer vision-based methods,
which need to be addressed for construction applications.

A major imaging device widely used is stationary cameras such as tripod-mounted or
surveillance cameras (Zhu et al. 2017; Park et al. 2016; Brilakis et al. 2011). These cameras are cheap,
readily available, and easy to apply. However, this technology can involve frequent occlusions of targets
(i.e., the situation that targets are occluded by physical barriers and so become invisible) particularly on
construction sites where a number of obstacles to the camera’s line-of-sight are scattered (Kim et al.
2019b). The problem is that such occlusions are fatal to any computer vision-based object detection
because the computer vision is bound to rely on the visible information of a target (e.g., the target’s
pixel values and configuration). Therefore, the application of mobile imaging devices which have a
wider line-of-sight and mobility, thereby reducing such occlusions (e.g., UAVs), must be considered.

Many earlier studies applied one or more hand-crafted features—such as HOG, HSV, scale
invariant feature transform (SIFT), and speeded-up robust features (SURF)—to object detection.
However, using such features naturally involves a heavy computation due to pre-processing and
multiple steps for feature extraction, resulting in slow processing speed (Kim et al. 2019b). Recently,
DNN-based object detection has made large progress in terms of speed and accuracy by leveraging
parallel computing and finer-level learned features. Accordingly, an increasing number of studies have
attempted to apply the DNN-based object detection framework for construction applications. For
example, Fang et al. (2018), Luo et al. (2018), Son et al. (2019), and Yan et al. (2019) applied faster
region-based convolutional neural network (Faster R-CNN, Ren et al. 2017) for construction objects
detection; Kim et al. (2018) and Alipour et al. (2019) applied region-based fully convolutional network
(R-FCN, Dai et al. 2016). The studies applying DNNs proved to greatly improve the speed and accuracy
of construction object detection. However, since the DNNs (i.e., Faster R-CNN and R-FCN) rely on
two-stage inferences (region proposal and classification) by two separated networks, they involve a

high computational cost and couldn’t achieve the real-time operation—30 frame per second (FPS). The
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real-time operation is definitely critical in assisting collision avoidance. Computer vision-based
methods, therefore, must demonstrate real-time operation for real-world applications.

Despite the drawbacks, computer vision-based methods have immense potential to supplement
sensor-based technologies. With increasingly published vision datasets, advanced DNN architectures,
and enhanced computing power, both speed and accuracy of computer vision-based methods continue
to improve. Also, it involves less hardware installation and enables classification as well as the detection
of multiple objects. However, its scope of application, as with the aforementioned sensor-based
technologies, has been limited to proximity monitoring at current time-step. To more pro-actively assist

collision avoidance, the prediction of future proximity and potential hazard needs to be addressed.

DNN-based Framework for Proximity Prediction

To address the above challenges, the authors develop a fully automated framework that enables real-
time proximity prediction of mobile objects, leveraging a camera-mounted UAV, object detection DNN
[you only look once-v3 (YOLO-V3, Redmon and Farhadi 2018)], and trajectory prediction DNN [social
GAN (S-GAN, Gupta et al. 2018)]. This framework consists of two main modules: (i) a trajectory
observation module that monitors targets’ locations and records their past trajectories and (ii) a
trajectory prediction module that predicts the target’s future trajectories and estimates their future
proximity. This section details each module’s functionality and development process as well as presents

its validation result.

Module 1: Trajectory Observation

The first module monitors targets’ locations and records their past trajectories, which are the primary
input for trajectory prediction (Figure 2). This module first detects targets on a UAV-captured input
image and estimates their center location as image coordinates (i.e., x-y pixel coordinates) using an
object detection model based on YOLO-V3 (Figure 2-A). In turn, this module rectifies the coordinates
to the world coordinates through geometric transformation using a reference object since the image

coordinates can neither reflect the true scene scale nor be accurate due to a projective distortion inherent
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on a 2D image captured by a UAV (Figure 2-B). This module runs the object detection and the
coordinate rectification at every input image, thereby continuing to update true-to-scale, distortion-free
locations of targets. Based on the location information, it records the targets’ past trajectories (from 3.96
seconds earlier to current, Figure 2-C) and streams those to the second module for trajectory prediction.

The primary role of Module 1 is the trajectory observation of mobile construction objects but
it can also conduct real-time proximity monitoring. In a prior study (Kim et al. 2019b), the authors
demonstrated this module’s performance on proximity monitoring—0.26 meters average displacement
error (i.e., average of Euclidean distance between a target’s ground truth and estimated positions) and
0.61 meters average proximity error (i.e., average of absolute difference between a pair of targets’
ground truth proximity and estimated proximity). The details of Module 1’s proximity monitoring

performance can be found in our prior study (Kim et al. 2019b).

Object Detection using YOLO-V3

To develop an object detection model, the authors leveraged YOLO-V3, which demonstrated
outstanding performances in terms of both speed and accuracy. The YOLO-V3 realizes a one-stage
operation by leveraging end-to-end convolutional layers and grid-based value encoding. As a result, it
could reduce the network complexity and computational cost, achieving real-time operation (35 FPS)
(Redmon and Farhadi 2018). Also, taking advantage of multi-scale inference, the YOLO-V3 improves
reasoning capability. Consequently, it could show superior accuracy on common objects in context
(COCO) object detection challenge [55.3% mean average precision (mAP)] over other one-stage object
detection DNNs [e.g., single shot multibox detector (SSD, Liu et al. 2016): 45.4% mAP and
deconvolutional single shot detector (DSSD, Fu et al. 2017): 46.1% mAP] (Redmon and Farhadi 2018).

In this work, the authors started from a YOLO-V3 model developed in our prior study (Kim
et al. 2019b) which was trained with COCO (Lin et al. 2014) and construction dataset (N=4,114) and
updated through additional fine-tuning with larger construction dataset (N=13,147). As a result, the
updated model demonstrated a promising detection performance on a test dataset (N=547): it showed

97.23% mAP (Equation 1) and 83.54% average intersection over union (Avg. loU, Equation 2) for

9
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excavator, wheel loader, truck, worker, and reference objects (e.g., square, rectangular, and pentagonal
concrete footings).

While it would have been ideal to train this model with a mobile construction robots dataset
as well, the lack of imagery data for mobile construction robots made such work impossible to complete
at this time. This model would have another chance to fine-tune its process once sufficient datasets for

mobile construction robots become available.

n
1 1
mAP = —x Z (— * Z MPr> Equation 1
g o 1,.,1.0

Note: n=the total number of object classes; MP,=maximum precision at a certain recall value r (i.e.,

0,0.1, 0.2, ..., 1.0) on precision-recall curve of 50% IloU.

Avg. loU ! i(AOO> Equation 2
. = —x — u
BT = 20w d

Note: k=the total number of detected objects;, AoO=area of overlap;, AoU=area of union.

Coordinate Rectification using Geometric Transformation

While a camera maps a 3D world onto a 2D image, the real scene scale is lost and a projective distortion
arises (Figure 2-B). Therefore, the image coordinates of an object can neither reflect the true scene scale
nor be accurate. Module 1 thus performs coordinate rectification following the object detection, thereby
recording true-to-scale, distortion-free coordinates of objects. To this end, this module uses a geometric
transformation algorithm using a reference object, which was developed in our prior study (Kim et al.
2019b). This algorithm detects a reference object’s edges, contours, and four vertexes and estimates the
transformation matrix by matching the vertexes to the known reference dimensions (Figure 2-B). In
turn, it converts image coordinates to true-to-scale, distortion-free world coordinates using the

transformation matrix. In a prior study (Kim et al. 2019b), the authors validated the effect of the
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geometric transformation algorithm on improving distance measurement accuracy: in a lab test, the
algorithm improved the percentage accuracy of proximity measurement from 68.32% to 93.33% at the
maximum. The details of the geometric transformation algorithm and its evaluation result can be found
in our prior study (Kim et al. 2019b).

Figure 2 illustrates an example of the geometric transformation where a square concrete
footing is used as a reference object (Figure 2-B). However, any objects having four or more vertexes—
such as quadrangle, pentagonal, or hexagonal objects—can be used as a reference object if its

dimensions are known.

Module 2: Trajectory Prediction
The second module (i.e., trajectory prediction) takes a set of target’s past trajectories as input (from
3.96 seconds earlier to current, Figure 3-A) and predicts their future trajectories for up to 5.28 seconds
(Figure 3-B), using a trajectory prediction model based on S-GAN. The set of future trajectories informs
where the targets will be located for the next 5.28 seconds at an interval of 0.66 seconds. Lastly, based
on the targets’ predicted locations, this module estimates the targets’ proximity for the next 5.28
seconds—the proximity after 0.66, 1.32, 1.98, 2.64, 3.30, 3.96, 4.62, and 5.28 seconds (Figure 3-C).
Trajectory prediction studies have been dominated by data-driven learning approaches. This
is basically because the movement of an entity (e.g., people) is so diverse and uncertain that it is
extremely challenging to model through hand engineering. In an early stage, there are several studies
to use hand-crafted features-based learning (Yamaguchi et al. 2011; Antonini et al. 2006; Helbing and
Molnar 1995) or statistical learning such as polynomial regression (Rashid and Behzadan 2017),
Gaussian process (Trautman et al. 2015; Tay and Laugier 2008), and hidden Markov model (Rashid
and Behzadan 2017). However, many contemporary studies are motivated to use a DNN, following the
trajectory of many other data-driven studies. In recent years, several DNN architectures for trajectory
prediction have been released: for example, there are social long short-term memory (S-LSTM, Alahi
et al. 2016), crowd interaction DNN (Xu et al. 2018), interaction aware DNN (Pfeiffer et al. 2018), and
S-GAN (Gupta et al. 2018). Of these, the S-GAN, incorporating several distinctive features,
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demonstrated a state-of-the-art performance over others (Gupta et al. 2018). It enables a model to learn
social behavior (e.g., collision avoidance) as well as an entity’s moving pattern by integrating an LSTM
encoder-decoder and a social pooling layer (Gupta et al. 2018). By realizing GAN architecture (i.e.,
coupling discriminator to generator) and adversarial training, it enhances the capability to learn
complicated distributions of mobile objects’ trajectories and improves reliability of prediction output.
For this reason, this study applied the S-GAN and developed a trajectory prediction model through

transfer learning.

Network Architecture of S-GAN

The S-GAN has two main components: (i) generator that predicts targets’ future trajectories (Figure 4-

A) and (ii) discriminator that inspects the quality of the predictions (Figure 4-B).

o Generator (Figure 4-A): the generator takes past trajectories of targets as input and predicts their
future trajectories through network integrating social pooling layer into the middle of LSTM
encoder-decoder. The generator first converts the input trajectories to fixed-length vectors via
multilayer perceptron (MLP, Figure 4-AA) and feeds it to LSTM units of encoder (figure 4-AB).
The LSTM units then encode the targets’ movement patterns individually and forward the encoded
features to social pooling layer which infers the targets’ social interactions and generates pooled
tensor for each target (Figure 4-AC). Lastly, the decoder interprets the interconnected hidden state
of input trajectories with multiple LSTM units and generates socially plausible future trajectories
of the targets (Figure 4-AD). Here, the decoder initializes itself with input trajectories so that it can
generate future trajectories that better conform to the past ones.

e Discriminator (Figure 4-B): the discriminator inspects the predicted trajectories’ quality and
conformity to the past trajectories. It takes both of past and future trajectories together as input and
encodes their conformity features through LSTM units (Figure 4-BA). In turn, it calculates the
predicted trajectories’ conformity score via MLP (Figure 4-BB) and inspects them whether they are
plausible or not (i.e., classifies whether real or fake). The prediction that successfully fools the

discriminator is selected as the final outcome.
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Transfer Learning of S-GAN

The authors developed a trajectory prediction model through transfer learning of the S-GAN. The
following details were specifically considered: (i) parameter initialization, (ii) fine-tuning, and (iii)
hyper-parameter tuning. This work started from the S-GAN model, which is pre-trained with the two
benchmark datasets: (i) Eidgenossische Technische Hochschule Zurich (ETH, Pellegrini et al. 2010)
and (ii) University of Cyprus (UCY, Leal-Taixe et al. 2014). As the most widely benchmarked datasets
in trajectory prediction studies, the two datasets in total contain 1,536 human trajectories. They reflect
various movement patterns such as crossing each other, collision avoidance, group forming, and
dispersing (Alahi et al. 2016). Having such diverse data in pre-training was intended to prevent
overfitting in the following fine-tuning process.

From that starting point (i.e., pre-learned weights), the fine-tuning with construction dataset
was conducted to better fit the pre-trained model to construction settings. Specifically, the authors fine-
tuned it with the integrated dataset (i.e., ETH + UCY + the construction dataset), rather than only with
the construction dataset, so as to minimize the possibility of overfitting. In this tuning, the trajectories
of construction mobile resources (e.g., worker, wheel loader, and excavator), annotated from 916 UAV-
captured images, were used.

The farther prediction is achieved, the earlier safety intervention can be made. The authors
thus modified the original prediction length (3.96 seconds=12 time-steps x 0.33 seconds) to 5.28
seconds (16 time-steps x 0.33 seconds) and particularly examined how observation-related hyper-
parameters affects the model’s final performance. Trajectory prediction is primarily based on the
interpretation of targets’ previous movement patterns. Thus, the properties of past trajectory must have
a significant impact on the model’s final performance. In this sense, this task additionally tuned the two
observation-related hyper-parameters (i.e., observation length and sampling interval) with the following
reasons.

e Observation length: a target’s future trajectory is highly attributed to its previous movement pattern.
The length of observation (i.e., how long observation the model will consume) must thus have a

significant impact on a model’s prediction performance. Thus, three different observation lengths
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were considered in this work: (i) 2.64 seconds (80 frames), (ii) 3.96 seconds (120 frames), and (iii)
5.28 seconds (160 frames).

e Sampling interval: the other hyper-parameter selected was sampling interval. This is because it
controls the minuteness of input and output trajectories. With a denser sampling interval, the model
can have finer input, but should take the burden of outputting denser prediction as well. On the
other hand, with a sparser sampling interval, the model should have coarser input but can avoid
such complexity. To examine which level of sampling interval would better fit for our problem, the
authors considered four different sampling intervals: (i) 0.17 seconds (5 frames), (ii) 0.33 seconds

(10 frames), (iii) 0.66 seconds (20 frames), and (iv) 1.33 seconds (40 frames).

Test Result

For comparative evaluation of the twelve tuned models, the test on a construction dataset was followed.
In this test, a total of 397 UAV-captured images was used and the trajectories of three object classes
were considered: (i) worker, (ii) wheel loader, and (iii) excavator (Figure 5). As evaluation metrics,
average displacement error (ADE) and final displacement error (FDE), the typical two evaluation
metrics to access trajectory prediction accuracy, were applied (Alahi et al. 2016; Gupta et al. 2018). The
ADE is the average value of displacement errors (DEs, Euclidean distances) between ground truths and
predictions over all predicted time-steps (i.e., average of DE@I*~8", Figure 5) meanwhile the FDE is
the distance between the predicted final destination and the ground truth destination at the end of the
prediction period (i.e., DE@S8™, Figure 5). This test was intended to evaluate the pure performances of
the tuned models, so the authors fed the models the ground truth of observation trajectories.

Table 1 summarizes the ADE and FDE results. Overall, the tuned models showed a promising
prediction accuracy: all the ADEs were less than 0.9 meters and the FDEs were less than two meters. It
was shown that the model of 0.66 seconds (20 frames) sampling interval and 3.96 seconds (120 frames)
observation length has the highest accuracy in terms of both ADE and FDE: this model achieved the
ADE of 0.45 meters and the FDE of 0.79 meters in this test. Considering this result, the authors adopted

the model that showed the least error as the trajectory prediction module.
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Field Test

A field test was conducted to demonstrate the validity of the overall framework. It would have been
ideal to test the proposed framework with mobile construction robots, since the robots are hardly
available to date, this test employed a truck which is similar looking to an autonomous truck. Figure 6
illustrates the test environments and settings. In this test, the authors simulated the three types of
movement patterns between a worker and a truck: (i) moving forward side by side (movement pattern
#1); (ii) crossing each other side by side (movement pattern #2); and (iii) crossing each other in curves
(movement pattern #3), as shown in Figure 6. The worker and the truck set off at the same time at the
designated origins and followed the ground lines at a constant velocity (1.5 meters/second) until arriving
at the designated destinations. The movement patterns were simulated three times per each. During this
test, the authors flew a camera-mounted UAV over the testbed and ran the developed framework to
predict the proximity between the targets (i.e., the metric distance between the worker and the truck).
Lastly, the accuracy of the proximity outputs was evaluated by comparing it to the corresponding ground

truth proximity.

Measurement of Ground Truth Proximity

To measure the ground truth proximity over all time-steps, the authors intentionally used ground lines
and markers (Figure 6). The targets were ordered to follow a reference line at a constant velocity.
Therefore, the origin-destination locations and times of a target were known so that the target’s in-
between locations and times could be measured by interpolation. In doing so, the authors measured all

the ground truth locations of the targets over all time-steps and their ground truth proximity accordingly.

Evaluation Metrics

To evaluate the accuracy of targets’ predicted locations, the two displacement errors, average
displacement error (4DE) and final displacement error (FDE), were applied. While the ADE and FDE
represent the accuracy of predicted trajectory for each individual target, it does not directly represent

the accuracy of predicted proximity between a pair of targets. Thus, in addition to the ADE and FDE,
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this test also evaluated average proximity error (4PFE) and final proximity error (FPE). The APE is the
average value of the absolute differences between predicted proximity and ground truth proximity over
all time-steps (Equation 3). Meanwhile, the FDE is the absolute difference between predicted proximity
and ground truth proximity at the end of the prediction period (Equation 4). Lastly, this test also

measured each module’s operating time to evaluate its computational efficiency:.

n
1
APEz—ZP—P Equation 3
n*, 1| r p| quation
1=

Note: n=the number of cases, P,=ground truth proximity, P,=predicted proximity.
FPE = |Pys — Py Equation 4
Note: Pg=ground truth proximity at the end of prediction period (i.e., after 5.28 seconds),

Py=predicted proximity at the end of prediction period (i.e., after 5.28 seconds).

Proximity Prediction Result

In terms of ADE and FDE, the developed framework showed promising results. Overall it achieved the
ADEs for both the worker and the truck less than two meters, the FDEs less than 3.5 meters (Table 2).
The ADE and FDE for the worker were 1.64 and 3.39 meters overall and those for the truck were 1.99
and 2.99 meters (Table 2). In line with the ADE and FDE results, the APE and FPE results were also
promising. Overall the framework achieved 0.95 meters APE and 1.71 meters FPE between the worker
and the truck (Table 3). Also, the APEs between the worker and the truck for all three movement patterns
were less than 1.5 meters, the FPEs less than 2.5 meters (Table 3).

Notably, it was determined that to predict farther time-step is more challenging. Figure 7
illustrates the trend of proximity error (i.e., absolute difference between predicted proximity and ground
truth proximity) as prediction time-step increases. As shown in Figure 7, for all movement patterns, the
proximity errors continued to rise as the prediction time-step increases: on average, the framework

showed the proximity error of 0.53 meters at 0.66 seconds prediction, but the error continued to climb
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as prediction time-step went farther, reaching to 1.71 meters (=the overall FPE, Table 3) at 5.28 seconds

prediction (Figure 7).

Operating Time

Figure 8 illustrates the operating time of Modules 1 and 2. With a single graphic processing unit (GPU,
NVIDIA Tesla K40), Module 1 (i.e., trajectory observation) spent 0.28 seconds per a frame (Figure 8-
A) and Module 2 (i.e., trajectory prediction) spent 0.12 seconds per a cycle (i.e., from taking a set of
past trajectories to generating a set of future trajectories, Figure 8-B). Given that this framework runs
Module 1 at every 0.66 seconds (i.e., at 20 frames interval), it was able to perform trajectory observation
with zero time-lag in computation. And overall, the framework demonstrated that it can update the
future proximity for the next 5.28 seconds at every 0.66 seconds with 0.40 seconds time-lag in
computation (i.e., 0.28 seconds for Module 1 + 0.12 seconds for Module 2, Figure 8-C). It means that
the framework can update future proximity for the next 4.88 seconds at every 0.66 seconds continuously

(i.e., 5.28 seconds prediction — 0.40 seconds time-lag in computation).

Discussions

As shown in the field test, the developed framework demonstrated a promising performance of
proximity prediction in terms of both accuracy and speed. On the basis of the result, in this section, the
authors present how this framework can better assist the collision avoidance between workers and
mobile robots (or mobile equipment) at unstructured and dynamic construction sites. In addition, the
authors discuss the implication of using GAN-based trajectory prediction DNN and lastly present

potential improvement points for future studies.

Real-World Applications to Prevent Contact-driven Accidents by Mobile Objects
The framework showed that it can continuously update future proximity for the next 5.28 seconds at
every 0.66 seconds within one-meter proximity error on average (computing time per update=0.40

seconds). This prediction performance can have a far-reaching significance beyond the detection of
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current proximity in accident prevention in that it enables pro-active safety interventions. For example,
if a robot can be informed of whether a worker will be on the path or inside the action radius of itself in
the future, the robot can make pro-active path planning and rerouting in advance. Likewise, it is also
possible to provide an advance alert to workers via wearable devices (e.g., wrist band and smart safety
glasses) so that the workers can take timely evasive action. Assuming that an autonomous truck is
approaching a worker at five meters per second, the framework can inform the worker and the
autonomous truck of their potential collision 5.28 seconds before it happens. The worker then has
around 25 meters of physical distance from the autonomous truck to easily avoid the collision without
strain. These pro-active interventions would effectively reduce the chances of an impending collision
between mobile robots and construction workers.

In addition, the developed framework also can be readily applied to other mobile objects such
as motorized equipment and vehicle. This framework can detect mobile objects, such as excavator,
wheel loader, and truck, and also, the scope of targets can be easily expanded through tuning of the
object detection model with the additional training dataset. The framework can thus provide equipment
operators and vehicle drivers with an alert in advance as well, helping to avoid a potential collision with
workers and mobile robots.

In real-world applications, however, the quality and speed of network connection need to be
further investigated and improved. The developed framework uses a camera-mounted UAV (or UAVs)
to stream imagery input data to a computing device (e.g., a cloud server). Also, it needs wireless
communication with robots and wearable devices to timely feedback. Therefore, in real-world
applications, it is critical to ensure rapid data transmission from a computing device to a UAV (or UAVs),
wearable devices, and robots. Leveraging 5G wireless network and internet of thing (IoT) cloud
platform can be a promising solution to this end. The 5G wireless network would support real-time data
transmission at data transfer rate of several gigabytes per second. Also, with the high-speed network
connection, an IoT cloud platform could connect multiple UAVs, robots, and wearable devices to a
cloud server, which would enable near real-time operation of proximity prediction as well as rapid

communication with workers and robots.
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To the fully automated operation of the proposed framework, the strategies for UAV operations
need to be further studied. In the framework, UAV (or UAVs) plays a vital role in tracking target and
reference objects. Therefore, future studies on how to capture mobile target objects and a stationary
reference object simultaneously and continuously must be done. To this end, operating multiple UAVs
and realizing real-time image stitching could be considered as a possible solution. Also, thorough field
experiments need to be conducted in order to investigate how the elevation of UAV can impact
proximity monitoring and prediction performance. The higher elevation a UAV flies at, the wider the
scene can be monitored. However, it can cause target objects to be seen too small, which can affect

object detection performance and accordingly proximity monitoring and prediction accuracy.

Implications of Using GAN-based DNN for Trajectory Prediction

GAN is basically an unsupervised generative model that makes plausible data from a noise input (e.g.,
Gaussian noise) based on probability distribution learned from real data (Goodfellow et al. 2014). The
uniqueness of GAN that yields a highly competitive edge over other generative models (e.g., naive
Bayes, hidden Markov model, and Markov random fields) is the adversarial training between generator
and discriminator. In GAN training, the generator tries to minimize min-max loss whereas the
discriminator counteracts to maximize it (Equation 5). In this min-max game, both generator and
discriminator get to improve while competing with each other. This adversarial training is known to
better fit to understanding complex distributions of real data (e.g., images and speeches) than using a

certain loss (objective) function manually devised.

Min — Max Loss = E,[logD(x)] + E,[log(1 — D(G(2)))] Equation 5
Note: D(x)=discriminator s estimate of the probability that real data instance x is real; E.=expected
value over all real data instances; G(z)=generator’s output when given input z;
D(G(z))=discriminators estimate of the probability that a fake instance is real; E.=expected value

over all inputs to the generator.
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The interesting fact is that the GAN can also be used for trajectory prediction which is basically
a supervised learning problem. The S-GAN incorporates the GAN architecture and uses adversarial
training so that it can enhance the capability to learn hidden distribution of mobile objects’ diverse
trajectories. More noticeably, the S-GAN leverages the GAN architecture in a conditional way such that
it can still take prior information (i.e., past trajectory) as input and consume ground truth for network
supervision. That is, instead of using noise input, it takes past trajectories and initializes the decoder
with the prior information, thereby generating future trajectories more conformed to the past. Moreover,
it uses L loss (Equation 6) in addition to the min-max loss so that it can condition the decoder to
generate the prediction closer to the ground truth. In these ways, the S-GAN could take advantage of
both adversarial training and supervised learning, consequently resulting in a promising performance

of trajectory prediction.

n
L, Loss = Z(Yg —Y,)? Equation 6
i=1

Note: n=dimension of output vector; Y,=ground truth trajectory, Y,=predicted trajectory.

However, the application of S-GAN presents several challenges, particularly in training. The
adversarial training between generator and discriminator can be often stuck at local minima and in
general takes a longer period than the training of normal DNNs. The single most important reason
behind such challenges is the imbalance between generator and discriminator. For example, if the
discriminator is too strong, then the generator training can easily fail due to vanishing gradients. On the
other hand, if the generator easily defeats the discriminator, it tends to produce the most plausible output
repeatedly, which can make the discriminator permanently trapped (called mode collapse).

Compared to dominant DNN architectures such as convolutional neural network (CNN) and
recurrent neural network (RNN), GAN is a new kind of DNN. Certainly, there are still many chances
to improve its trainability, which may include regularization using noise addition (Arjovsky and Bottou

2017), penalization of discriminator weights (Roth et al. 2017), and the use of advanced min-max loss
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(e.g., Wasserstein loss). The application of such advanced techniques would provide us with a better
chance to leverage S-GAN (or other GAN-based DNNs) and to have a higher accuracy of proximity
prediction thereby:.

Another way to improve the prediction accuracy would include post-processing incorporating
construction-specific knowledge. The S-GAN showed a promising accuracy of trajectory prediction in
this study; however, it would not cover all the possible scenarios that can happen on construction sites
and the prediction accuracy can deteriorate in those cases. The post-processing incorporating
construction-specific knowledge, such as the average or maximum velocity of each robot (or
equipment), construction robots’ pre-programmed collision avoidance behavior, and construction
workers’ collision avoidance behavior, can likely be used to refine predicted trajectory’s velocity and

direction, which could improve the overall accuracy of proximity prediction.

Conclusions

In this study, the authors developed a DNN-based framework for proximity prediction, leveraging a
camera-mounted UAV, object detection DNN (YOLO-V3) and trajectory prediction DNN (S-GAN).
Also, the authors demonstrated the framework’s validity in a field test: the framework achieved 0.95
meters average proximity error (APE) and 1.71 meters final proximity error (#PE) in predicting 5.28
seconds future proximity. During construction operations, contact-driven hazards by mobile robots (or
mobile equipment and vehicle) can easily arise in various scenarios: for example, a navigating robot
suddenly change in direction or an autonomous vehicle could reverse into a blind spot. In such
unpredictable situations, the proximity prediction would enable advance detection of impending
collisions, thereby making pro-active interventions possible. Specifically, the predictive functionality
would allow robots to make alternative path planning and rerouting beforehand and enable providing
advance alerts to workers via wearable devices. These pro-active interventions would contribute to
mitigating the chances of impending collisions between mobile robots (or mobile equipment and vehicle)
and construction workers. Moreover, the authors apply GAN to trajectory prediction, which opens a

new possibility of GAN for potential construction applications.
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Table 1. ADE/FDE of tuned trajectory prediction models (unit: meters)

Sampling interval Observation length (unit: seconds)
(unit: seconds) 2.64 3.96 5.28
0.17 0.85/1.70 0.76/1.63 0.87/1.93
0.33 0.88/1.83 0.45/0.88 0.55/1.14
0.66 0.67/1.38 0.45/0.79 0.45/0.81
1.33 0.80/1.59 0.68/1.07 0.56/0.89

Note: left/right values are ADE/FDE, respectively; ADE/FDE in this table are average values of worker,
wheel loader, and excavator; prediction lengths of all the models are 5.28 seconds.

Table 2. ADE and FDE for truck and worker (unit: meters)

ADE FDE
Category
Worker Truck Worker Truck
Movement pattern #1 1.76 1.84 3.06 2.32
Movement pattern #2 1.44 1.58 2.42 2.21
Movement pattern #3 1.73 2.54 4.68 4.45
Overall 1.64 1.99 3.39 2.99

Note: prediction length=>5.28 seconds; ADEs and FDEs in this table are the average values for the three
trials; overall values are the average for three movement patterns.

Table 3. APE and FPE between truck and worker (unit: meters)

Category APE FPE
Movement pattern #1 0.44 0.81
Movement pattern #2 1.23 1.94
Movement pattern #3 1.18 2.37

Overall 0.95 1.71

Note: prediction length=5.28 seconds; APEs and FPEs in this table are the average values for the three
trials; overall values are the average for three movement patterns.
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726  Figure Captions

727  Figure 1. Proximity prediction using a camera-mounted UAV and DNNs

728  Figure 2. Module 1: trajectory observation via object detection and coordinate rectification

729  Figure 3. Module 2: trajectory prediction using S-GAN

730  Figure 4. Network architecture of S-GAN

731 Figure 5. Trajectory prediction models’ test dataset and evaluation metric (DE: displacement error, unit:
732 meters)

733 Figure 6. Field test settings

734 Figure 7. Trend of proximity error as prediction time-step increases

735  Figure 8. Operating time of Modules 1 and 2

29



Click here to access/download;Figure;Figure 1.tif

g e ; h . Illl-.:
A Object detection & J

WhEEI IDadEt i - o
| “ = m oS



https://www.editorialmanager.com/jrncpeng/download.aspx?id=187609&guid=88bd7a40-2e4d-4452-8d9d-6d7d161d6b93&scheme=1
https://www.editorialmanager.com/jrncpeng/download.aspx?id=187609&guid=88bd7a40-2e4d-4452-8d9d-6d7d161d6b93&scheme=1

Click here to access/download;Figure;Figure 2.tif %

Module 1: Trajectory Observation

Object detaction Coondinate rectification
{YOLO-V3) {Geometric transformation)

® - =

T . Worker

“
SN
A
/
ar
P
_,.,-‘"-.
“HH‘

(Before 3.96 s ~ Current!ﬁ °

WheShgs der e®
Au Object detection ol C]O

O'\_x:'

Wheel loader



https://www.editorialmanager.com/jrncpeng/download.aspx?id=187610&guid=51b2d08a-9bbe-49f6-b246-09fd39091c73&scheme=1
https://www.editorialmanager.com/jrncpeng/download.aspx?id=187610&guid=51b2d08a-9bbe-49f6-b246-09fd39091c73&scheme=1

Click here to access/download;Figure;Figure 3.tif =

Module 2: Trajectory Prediction

Trajectory prediction I Worker - Proximity after 2.64 s @
(S-GAN) S [/ « Proximity after 3.30 s -

Ji_.. vl R rﬁ
-u;-_'.'.'_""f ‘t?. Future

@ trajectories
(Before 3.96 s ~ Current) \ Q{Current ~ Next 5.28 s)

&
=7
@

oy l
.;’l) " Wheel loader 2igo s


https://www.editorialmanager.com/jrncpeng/download.aspx?id=187611&guid=deeeb84b-2958-4501-907c-23d433fc888f&scheme=1
https://www.editorialmanager.com/jrncpeng/download.aspx?id=187611&guid=deeeb84b-2958-4501-907c-23d433fc888f&scheme=1

Click here to access/download;Figure;Figure 4.tif

- © 0 0 o

] - -
- —|-)| LSTM LSTM [~

w
i 8
= : m
: - g [\
H : = {E !
- : | ., . ! A
i
Decodar



https://www.editorialmanager.com/jrncpeng/download.aspx?id=187612&guid=d862eb05-26ca-474a-9978-12fb1b79b7ed&scheme=1
https://www.editorialmanager.com/jrncpeng/download.aspx?id=187612&guid=d862eb05-26ca-474a-9978-12fb1b79b7ed&scheme=1

Click here to access/download;Figure;Figure 5.tif

Evaluation metrics |

R — T'-T—.-"___--

\ Worker
Observation

il

s

L 2]

. Wheel loader

L i e

6._ Excavator

[
I
I
&



https://www.editorialmanager.com/jrncpeng/download.aspx?id=187613&guid=240c903c-3b0c-4c8c-9a5a-7452faeeb545&scheme=1
https://www.editorialmanager.com/jrncpeng/download.aspx?id=187613&guid=240c903c-3b0c-4c8c-9a5a-7452faeeb545&scheme=1

Click here to access/download;Figure;Figure 6.tif

Real testbed ement pallerﬁ #1

6.1 meters 14.63 meters i ."ﬂ'"’-ﬁr

.

6.1 meters

6.1 meters

Worker | MD‘JIEH'IEN pattern #2

6.1 meters I' ' = - ‘ .
_il =il —_—
6.1 meters 6.1 meters | *

.-fi {4 AERTOREE T l Movement pattern #3
. Reference object ' S [ |
(container) e MEeLers ; _

o

14 .63 meters



https://www.editorialmanager.com/jrncpeng/download.aspx?id=187614&guid=0771259c-eb27-4e8a-8d94-6ba6453eb1fb&scheme=1
https://www.editorialmanager.com/jrncpeng/download.aspx?id=187614&guid=0771259c-eb27-4e8a-8d94-6ba6453eb1fb&scheme=1

Click here to access/download;Figure;Figure 7.tif

nity armor (jpredicéed proximiy-ground truth procdmity] unit: meters)
260 - . _ | Voveren
2.26 /'
i .y pattern #2
= e .71
1.60
100 e 1,30
s Movement

Jos— pattern #1

0.75 = -9 0.65 1.
0.50 ¢ 0.53~—#0.57 . ___._..___.____“_.."“m_.__‘____.
u'ﬁ s '“‘“ll".'“-lnl-lvlil"'l-l-l l-l-l-'l.—l'll-

0.66 132 1.88 2.64 3.30 3.96 482 528


https://www.editorialmanager.com/jrncpeng/download.aspx?id=187615&guid=0e201833-4ea4-49b2-8210-6b986dfeaa3e&scheme=1
https://www.editorialmanager.com/jrncpeng/download.aspx?id=187615&guid=0e201833-4ea4-49b2-8210-6b986dfeaa3e&scheme=1

Click here to access/download;Figure;Figure 8.tif

Sampling interval: 0.66 s (20 frames) 0.40sin tniag
W

0.28 s for Module 1 uperatinno

_3.3

_2* _‘;_ = ‘. 4]

L The first observation (Before 3.96 s ~ Current) I ! L
i X-axis: time

L The second observation .l (unit: seconds)



https://www.editorialmanager.com/jrncpeng/download.aspx?id=187616&guid=e3078673-0a41-40c7-a246-9d1c7bccb1f0&scheme=1
https://www.editorialmanager.com/jrncpeng/download.aspx?id=187616&guid=e3078673-0a41-40c7-a246-9d1c7bccb1f0&scheme=1

