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Abstract 6 

Robotic solutions have garnered increased attention from the construction industry as an effective 7 

means of improving construction safety and productivity. However, in deploying such robots to real 8 

fields many safety concerns have remained untackled, particularly contact-driven accidents that can be 9 

potentially escalated by mobile robots. To address this issue, the authors develop a fully automated 10 

framework that enables predicting the proximity between mobile objects, leveraging a camera-mounted 11 

unmanned aerial vehicle (UAV), computer vision, and deep neural networks, and conduct a field test to 12 

evaluate its validity. In the test, the framework showed a promising result: it achieved average proximity 13 

error of 0.95 meters in predicting 5.28 seconds future proximity between a worker and a truck. The 14 

major contribution of this study is in predicting the risk of impending collision in advance, thereby 15 

making pro-active interventions possible. Computationally, the predictive functionality based on 16 

computer vision and deep neural network including convolutional neural network and generative 17 

adversarial network would allow robots to examine alternative multiple paths beforehand and enable 18 

providing advance alerts to workers. These pro-active interventions would effectively reduce the 19 

chances of impending collisions between mobile robots and construction workers. 20 
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Introduction 24 

Construction industries around the world are gradually gearing up for robotic automation (Tsuruta et al. 25 

2019; Lattanzi and Miller 2017; Veha et al. 2013). A growing number of construction companies are 26 

embracing robotic solutions to reap the benefits of improved productivity and safety (Kim et al. 2019a; 27 

Bock 2015). Notably, the global construction robot market is rapidly growing; it is expected to reach 28 

around $190 million by 2025, at a compound annual growth rate (CAGR) of over 20% (Research and 29 

Market 2019). According to a market report from Tractica, U.S., more than 7,000 autonomous (or semi-) 30 

robots are expected to be deployed to construction fields in the U.S. between 2018 and 2025 (Tractica 31 

2019). 32 

A wide range of construction robots are under development or in the early stage of deployment: 33 

for example, to name a few, there are structure robots for 3D printing (Liu and Li 2018), bricklaying 34 

(Moon et al. 2018), welding (Tavares et al. 2019), modular building (Yang et al 2019), finishing robots 35 

for drywall installation (Yu et al. 2016), façade painting and cleaning (Vega-Heredia et al. 2019), and 36 

infrastructure robots for demolition (Li et al. 2019; Zheng et al. 2018), and rebar tying (Cardno 2018). 37 

Assisting physically demanding, highly repetitive, and hazardous tasks in construction, such robots are 38 

expected to be the main driver that transforms future construction into a more productive and safer 39 

industry.  40 

However, in deploying such robots to real fields, many safety concerns have remained 41 

untackled (Guiochet et al. 2017). The authors specifically cast light on the contact-driven hazards that 42 

could be escalated by mobile robots. Construction generally takes place in a highly unstructured and 43 

dynamic environment. Workspace (e.g., terrain and structure) evolves over time and multiple entities 44 

(e.g., workers, equipment, and robots) are bound to share a limited workspace. In such a unstructured 45 

and evolving space, the chances of contact-driven accidents (e.g., struck-by and caught-in/between) by 46 

motorized resources can arise easily, frequently, and unexpectedly (Kim et al. 2019b; Teizer et al. 2010). 47 

In co-robotic construction, where mobile robots are closely involved in the field built for 48 

human labor, workers will be assuming greater risk for such accidents. Any movement caused by 49 

misperception of a situation (e.g., approaching, deviating, and reversing) can pose a fatal threat to 50 
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nearby workers. However, it is unknown how mobile robots’ situational intelligence—such as the 51 

capacity for understanding, reasoning, and improvisational decision making—rises to the dynamically 52 

evolving situations of construction. In mobile robots’ navigation and behavior in such uncertain 53 

situations, there could be unexpected errors, which could pose a greater risk of forcible contact to nearby 54 

workers. 55 

A major research question for this problem has been attuned to the process of detecting the 56 

proximity between workers and robots (or mobile equipment) in time (Kim et al. 2019b; Park et al. 57 

2016; Teizer 2015; Teizer et al. 2010). Several collision avoidance technologies, such as those using 58 

proximity sensors or computer vision methods, have been explored to this end. Most existing 59 

technologies have been used to monitor or detect the proximity at a current time-step, relying upon 60 

present sensory data. In many cases, however, prediction is far more important and effective for contact-61 

driven accident prevention (Kim et al. 2019c). This is principally because the sooner robot and worker 62 

are informed of their proximity to each other, the more likely they are to avoid the potential collision. 63 

Nevertheless, few studies have attempted to address it. 64 

With this background, the authors develop deep neural networks (DNNs)-based framework 65 

that enables proximity prediction of mobile objects. In this framework, a camera-mounted unmanned 66 

aerial vehicle (UAV) monitors associated entities, serving as the third eye of robots and workers, which 67 

has a wider line-of-sight (Figure 1). Inputting the UAV-captured imagery data, the framework powered 68 

by DNNs for object detection (Figure 1-A) and trajectory prediction (Figure 1-B) performs proximity 69 

prediction (Figure 1-C) in a fully automated way. 70 

The major contribution of this work is to enable predicting the risk of impending collision in 71 

advance, thereby making pro-active safety interventions possible. Specifically, the proximity prediction 72 

would assist mobile robots’ predictive path planning and rerouting. Also, via wearable devices (e.g., 73 

wrist band and smart safety glasses), it would enable providing an advance alert to workers, helping 74 

them to take timely evasive action. These pro-active interventions would effectively reduce the chances 75 

of impending collisions between mobile robots (or mobile equipment) and construction workers. 76 
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Moreover, the authors apply a generative adversarial network (GAN) to trajectory prediction, which 77 

opens a new possibility of GAN for potential construction applications. 78 

 79 

Existing Collision Avoidance Technologies and Challenges in Construction Applications 80 

There has been a wide range of collision avoidance technologies, such as those based on proximity 81 

sensors or computer vision methods. This section provides a holistic view of these technologies, 82 

discussing their pros and cons. In addition, the authors detail a major challenge that the technologies 83 

would have in construction field applications. 84 

 85 

Collision Avoidance Technologies: Proximity Sensors 86 

Based on operation principles, proximity sensors can be largely categorized into two types: (i) time-of-87 

flight (TOF)-based sensor and (ii) tag-based sensor. The TOF-based sensor, installed on a robot, 88 

measures the distance of surroundings (e.g., geographic features, obstacles, and workers) by emitting a 89 

certain form of energy and reading its time-of-flight. As well-recognized sensors, sound navigation and 90 

ranging (SONAR), radio detection and ranging (RADAR), and light detection and ranging (LIDAR) 91 

are included in this category.  92 

SONAR (or ultrasonic sensor) measures distances to physical objects by transmitting a high-93 

frequency sound wave and measuring the TOF of its echo reflected from the target objects. A sound 94 

wave requires a certain medium to travel. Its propagation, therefore, involves many disturbances by the 95 

medium’s physical conditions (e.g., temperature and pressure), and it can be more so particularly in the 96 

case of longer-range detection (Varghese and Boone 2015). Accordingly, the application of SONAR in 97 

mobile robots has been limited to short-range detection—typically less than 3 meters (e.g., reverse 98 

parking) (Ducarme 2019).  99 

On the other hand, RADAR uses radio signal (300 MHz - 40 GHz), a kind of electromagnetic 100 

wave, which does not require a certain medium to travel. It thus functions in many wild conditions (e.g., 101 

rain, fog, snow, and dust) and has a long-range of reading—generally more than 30 meters (Ducarme 102 

2019). In addition, using Doppler Effect (Chen et al. 2006), it can also detect the speed of moving 103 
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objects as well as its proximity (Varghese and Boone 2015). However, the performance of RADAR can 104 

vary by reflectors. This is because the radio signal can be easily dispersed, particularly when 105 

encountering unfavorable reflectors such as plastics, dry wood, or objects with large flat surfaces (Ruff 106 

2006).  107 

LIDAR also uses a kind of electromagnetic wave, the beam of light (or laser). It is able to not 108 

only measure distances to objects but also scan 3D surroundings with multi-axis lasers. The more lasers 109 

a LIDAR transmits, the denser 3D world can be reconstructed (Ducarme 2019; Varghese and Boone 110 

2015). Of stand-alone sensors, LIDAR is often cited as the most accurate proximity sensor (Gargoum 111 

et al. 2018). Also, the 3D readout is potentially used as the primary source for the path planning of many 112 

autonomous navigating robots (Kim et al. 2018). However, LIDAR, as with other TOF-based sensors, 113 

cannot distinguish what the detected objects are. To distinguish objects, it needs additional object 114 

classification software (Ducarme 2019).  115 

Distinctive to these TOF-based sensors, tag-based sensors utilize an energy field (e.g., 116 

electromagnetic field) and detect proximity via the signal communication between a reader mounted to 117 

a robot and tags worn by workers. With this principle, many kinds of sensors have been devised, 118 

including radio frequency identification (RFID), magnetic field (MF), and Bluetooth low energy (BLE). 119 

As the tag-based sensors don’t rely on the TOF measurement, they are less affected by the line-of-sight 120 

(Ducarme 2019). However, the tag-based sensors have hardly gained a competitive edge over the TOF-121 

based sensors in terms of accuracy and fidelity. According to a test conducted by Park et al. (2016), the 122 

proximity errors of RFID, MF, and BLE sensors were up to 5.0, 3.4, and 2.6 meters, respectively, with 123 

the standard deviation of 2.1, 0.3, and 1.8 meters. Although the tag-based sensors still have the potential 124 

to complement other technologies (e.g., SONAR, RADAR, and LIDAR), the prerequisite that all targets 125 

need to be attached with a tag hinders their application in construction (Memarzadeh et al. 2013; Park 126 

et al. 2012).  127 

The proximity sensors have been widely applied in robotics to assist the robots’ collision 128 

avoidance (Cui et al. 2019). However, the effectiveness, availability, and functionality of the existing 129 

proximity sensors could be challenged in a highly unstructured and dynamic construction site. For 130 
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example, the TOF-based sensors (e.g., SONAR, RADAR, and LIDAR) could be frequently blinded by 131 

physical barriers; while the performances of tag-based sensors (e.g., RFID, MF, and BLE) are 132 

susceptible to deterioration due to the jamming caused by metallic or wooden objects, both of which 133 

are common in construction sites. 134 

Above all, this study highlights the existing technologies’ limited scope of application in 135 

construction. The application of sensor-based technologies have been limited to detecting or monitoring 136 

proximity at current time-step. However, it may not be as effective in many impending situations. In a 137 

dynamic and unstructured construction site, contact-driven accidents occur spontaneously in 138 

unexpected ways. In such an impending situation, mere detecting or monitoring proximity would not 139 

be effective because the near-sighted measure wouldn’t allow enough time for the involved robot (and 140 

equipment operator) and worker to take prompt evasive action. In this sense, to better prevent contact-141 

driven accidents in co-robotic construction, collision avoidance technology needs to be equipped with 142 

the prediction functionality for potential accidents. 143 

 144 

Collision Avoidance Technologies: Computer Vision-based Methods 145 

Over recent years, computer vision-based methods have demonstrated great potential as a 146 

supplementary technology to proximity sensors (Zhu et al. 2017; Park et al. 2016; Memarzadeh et al. 147 

2013; Park et al. 2012; Brilakis et al. 2011). It uses one or more imaging devices (e.g., digital camera) 148 

to capture multiple targets and stream the digital images to a computer. In turn, it utilizes the computing 149 

power to conduct object detection and proximity measurement. With the improvement of computing 150 

power, the potential of the computer vision continues to grow. This growth is evidenced by the number 151 

of construction studies that have explored computer vision-based collision avoidance technologies. For 152 

example, Memarzadeh et al. (2013) developed an algorithm to detect multi-class construction objects 153 

by integrating histogram of oriented gradient (HOG) and histogram of hue-saturation-value (HSV); 154 

Kim et al. (2016) proposed a proximity monitoring framework that employs Gaussian mixture model 155 

(GMM)-based object detection; Kim et al. (2017) introduced another proximity monitoring framework 156 

using multi-view cameras and object detection based on HOG and support vector machine (SVM). The 157 
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previous studies have greatly contributed to examining the potential of computer vision-based collision 158 

avoidance technologies. However, there are several drawbacks of the computer vision-based methods, 159 

which need to be addressed for construction applications. 160 

A major imaging device widely used is stationary cameras such as tripod-mounted or 161 

surveillance cameras (Zhu et al. 2017; Park et al. 2016; Brilakis et al. 2011). These cameras are cheap, 162 

readily available, and easy to apply. However, this technology can involve frequent occlusions of targets 163 

(i.e., the situation that targets are occluded by physical barriers and so become invisible) particularly on 164 

construction sites where a number of obstacles to the camera’s line-of-sight are scattered (Kim et al. 165 

2019b). The problem is that such occlusions are fatal to any computer vision-based object detection 166 

because the computer vision is bound to rely on the visible information of a target (e.g., the target’s 167 

pixel values and configuration). Therefore, the application of mobile imaging devices which have a 168 

wider line-of-sight and mobility, thereby reducing such occlusions (e.g., UAVs), must be considered. 169 

Many earlier studies applied one or more hand-crafted features—such as HOG, HSV, scale 170 

invariant feature transform (SIFT), and speeded-up robust features (SURF)—to object detection. 171 

However, using such features naturally involves a heavy computation due to pre-processing and 172 

multiple steps for feature extraction, resulting in slow processing speed (Kim et al. 2019b). Recently, 173 

DNN-based object detection has made large progress in terms of speed and accuracy by leveraging 174 

parallel computing and finer-level learned features. Accordingly, an increasing number of studies have 175 

attempted to apply the DNN-based object detection framework for construction applications. For 176 

example, Fang et al. (2018), Luo et al. (2018), Son et al. (2019), and Yan et al. (2019) applied faster 177 

region-based convolutional neural network (Faster R-CNN, Ren et al. 2017) for construction objects 178 

detection; Kim et al. (2018) and Alipour et al. (2019) applied region-based fully convolutional network 179 

(R-FCN, Dai et al. 2016). The studies applying DNNs proved to greatly improve the speed and accuracy 180 

of construction object detection. However, since the DNNs (i.e., Faster R-CNN and R-FCN) rely on 181 

two-stage inferences (region proposal and classification) by two separated networks, they involve a 182 

high computational cost and couldn’t achieve the real-time operation—30 frame per second (FPS). The 183 
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real-time operation is definitely critical in assisting collision avoidance. Computer vision-based 184 

methods, therefore, must demonstrate real-time operation for real-world applications. 185 

Despite the drawbacks, computer vision-based methods have immense potential to supplement 186 

sensor-based technologies. With increasingly published vision datasets, advanced DNN architectures, 187 

and enhanced computing power, both speed and accuracy of computer vision-based methods continue 188 

to improve. Also, it involves less hardware installation and enables classification as well as the detection 189 

of multiple objects. However, its scope of application, as with the aforementioned sensor-based 190 

technologies, has been limited to proximity monitoring at current time-step. To more pro-actively assist 191 

collision avoidance, the prediction of future proximity and potential hazard needs to be addressed. 192 

 193 

DNN-based Framework for Proximity Prediction 194 

To address the above challenges, the authors develop a fully automated framework that enables real-195 

time proximity prediction of mobile objects, leveraging a camera-mounted UAV, object detection DNN 196 

[you only look once-v3 (YOLO-V3, Redmon and Farhadi 2018)], and trajectory prediction DNN [social 197 

GAN (S-GAN, Gupta et al. 2018)]. This framework consists of two main modules: (i) a trajectory 198 

observation module that monitors targets’ locations and records their past trajectories and (ii) a 199 

trajectory prediction module that predicts the target’s future trajectories and estimates their future 200 

proximity. This section details each module’s functionality and development process as well as presents 201 

its validation result. 202 

 203 

Module 1: Trajectory Observation 204 

The first module monitors targets’ locations and records their past trajectories, which are the primary 205 

input for trajectory prediction (Figure 2). This module first detects targets on a UAV-captured input 206 

image and estimates their center location as image coordinates (i.e., x-y pixel coordinates) using an 207 

object detection model based on YOLO-V3 (Figure 2-A). In turn, this module rectifies the coordinates 208 

to the world coordinates through geometric transformation using a reference object since the image 209 

coordinates can neither reflect the true scene scale nor be accurate due to a projective distortion inherent 210 
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on a 2D image captured by a UAV (Figure 2-B). This module runs the object detection and the 211 

coordinate rectification at every input image, thereby continuing to update true-to-scale, distortion-free 212 

locations of targets. Based on the location information, it records the targets’ past trajectories (from 3.96 213 

seconds earlier to current, Figure 2-C) and streams those to the second module for trajectory prediction.  214 

 The primary role of Module 1 is the trajectory observation of mobile construction objects but 215 

it can also conduct real-time proximity monitoring. In a prior study (Kim et al. 2019b), the authors 216 

demonstrated this module’s performance on proximity monitoring—0.26 meters average displacement 217 

error (i.e., average of Euclidean distance between a target’s ground truth and estimated positions) and 218 

0.61 meters average proximity error (i.e., average of absolute difference between a pair of targets’ 219 

ground truth proximity and estimated proximity). The details of Module 1’s proximity monitoring 220 

performance can be found in our prior study (Kim et al. 2019b). 221 

 222 

Object Detection using YOLO-V3 223 

To develop an object detection model, the authors leveraged YOLO-V3, which demonstrated 224 

outstanding performances in terms of both speed and accuracy. The YOLO-V3 realizes a one-stage 225 

operation by leveraging end-to-end convolutional layers and grid-based value encoding. As a result, it 226 

could reduce the network complexity and computational cost, achieving real-time operation (35 FPS) 227 

(Redmon and Farhadi 2018). Also, taking advantage of multi-scale inference, the YOLO-V3 improves 228 

reasoning capability. Consequently, it could show superior accuracy on common objects in context 229 

(COCO) object detection challenge [55.3% mean average precision (mAP)] over other one-stage object 230 

detection DNNs [e.g., single shot multibox detector (SSD, Liu et al. 2016): 45.4% mAP and 231 

deconvolutional single shot detector (DSSD, Fu et al. 2017): 46.1% mAP] (Redmon and Farhadi 2018). 232 

In this work, the authors started from a YOLO-V3 model developed in our prior study (Kim 233 

et al. 2019b) which was trained with COCO (Lin et al. 2014) and construction dataset (N=4,114) and 234 

updated through additional fine-tuning with larger construction dataset (N=13,147). As a result, the 235 

updated model demonstrated a promising detection performance on a test dataset (N=547): it showed 236 

97.23% mAP (Equation 1) and 83.54% average intersection over union (Avg. IoU, Equation 2) for 237 
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excavator, wheel loader, truck, worker, and reference objects (e.g., square, rectangular, and pentagonal 238 

concrete footings). 239 

While it would have been ideal to train this model with a mobile construction robots dataset 240 

as well, the lack of imagery data for mobile construction robots made such work impossible to complete 241 

at this time. This model would have another chance to fine-tune its process once sufficient datasets for 242 

mobile construction robots become available. 243 

 244 

𝑚𝐴𝑃 =  
1

𝑛
∗ ∑ (

1

11
∗ ∑ 𝑀𝑃𝑟
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)

𝑛

1

 Equation 1 

Note: n=the total number of object classes; MPr=maximum precision at a certain recall value r (i.e., 

0, 0.1, 0.2, …, 1.0) on precision-recall curve of 50% IoU. 

 245 

Avg. 𝐼𝑜𝑈 =  
1

𝑘
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)
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 Equation 2 

Note: k=the total number of detected objects; AoO=area of overlap; AoU=area of union. 

 246 

Coordinate Rectification using Geometric Transformation 247 

While a camera maps a 3D world onto a 2D image, the real scene scale is lost and a projective distortion 248 

arises (Figure 2-B). Therefore, the image coordinates of an object can neither reflect the true scene scale 249 

nor be accurate. Module 1 thus performs coordinate rectification following the object detection, thereby 250 

recording true-to-scale, distortion-free coordinates of objects. To this end, this module uses a geometric 251 

transformation algorithm using a reference object, which was developed in our prior study (Kim et al. 252 

2019b). This algorithm detects a reference object’s edges, contours, and four vertexes and estimates the 253 

transformation matrix by matching the vertexes to the known reference dimensions (Figure 2-B). In 254 

turn, it converts image coordinates to true-to-scale, distortion-free world coordinates using the 255 

transformation matrix. In a prior study (Kim et al. 2019b), the authors validated the effect of the 256 
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geometric transformation algorithm on improving distance measurement accuracy: in a lab test, the 257 

algorithm improved the percentage accuracy of proximity measurement from 68.32% to 93.33% at the 258 

maximum. The details of the geometric transformation algorithm and its evaluation result can be found 259 

in our prior study (Kim et al. 2019b). 260 

 Figure 2 illustrates an example of the geometric transformation where a square concrete 261 

footing is used as a reference object (Figure 2-B). However, any objects having four or more vertexes—262 

such as quadrangle, pentagonal, or hexagonal objects—can be used as a reference object if its 263 

dimensions are known.     264 

 265 

Module 2: Trajectory Prediction 266 

The second module (i.e., trajectory prediction) takes a set of target’s past trajectories as input (from 267 

3.96 seconds earlier to current, Figure 3-A) and predicts their future trajectories for up to 5.28 seconds 268 

(Figure 3-B), using a trajectory prediction model based on S-GAN. The set of future trajectories informs 269 

where the targets will be located for the next 5.28 seconds at an interval of 0.66 seconds. Lastly, based 270 

on the targets’ predicted locations, this module estimates the targets’ proximity for the next 5.28 271 

seconds—the proximity after 0.66, 1.32, 1.98, 2.64, 3.30, 3.96, 4.62, and 5.28 seconds (Figure 3-C). 272 

Trajectory prediction studies have been dominated by data-driven learning approaches. This 273 

is basically because the movement of an entity (e.g., people) is so diverse and uncertain that it is 274 

extremely challenging to model through hand engineering. In an early stage, there are several studies 275 

to use hand-crafted features-based learning (Yamaguchi et al. 2011; Antonini et al. 2006; Helbing and 276 

Molnar 1995) or statistical learning such as polynomial regression (Rashid and Behzadan 2017), 277 

Gaussian process (Trautman et al. 2015; Tay and Laugier 2008), and hidden Markov model (Rashid 278 

and Behzadan 2017). However, many contemporary studies are motivated to use a DNN, following the 279 

trajectory of many other data-driven studies. In recent years, several DNN architectures for trajectory 280 

prediction have been released: for example, there are social long short-term memory (S-LSTM, Alahi 281 

et al. 2016), crowd interaction DNN (Xu et al. 2018), interaction aware DNN (Pfeiffer et al. 2018), and 282 

S-GAN (Gupta et al. 2018). Of these, the S-GAN, incorporating several distinctive features, 283 
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demonstrated a state-of-the-art performance over others (Gupta et al. 2018). It enables a model to learn 284 

social behavior (e.g., collision avoidance) as well as an entity’s moving pattern by integrating an LSTM 285 

encoder-decoder and a social pooling layer (Gupta et al. 2018). By realizing GAN architecture (i.e., 286 

coupling discriminator to generator) and adversarial training, it enhances the capability to learn 287 

complicated distributions of mobile objects’ trajectories and improves reliability of prediction output. 288 

For this reason, this study applied the S-GAN and developed a trajectory prediction model through 289 

transfer learning. 290 

 291 

Network Architecture of S-GAN 292 

The S-GAN has two main components: (i) generator that predicts targets’ future trajectories (Figure 4-293 

A) and (ii) discriminator that inspects the quality of the predictions (Figure 4-B). 294 

 Generator (Figure 4-A): the generator takes past trajectories of targets as input and predicts their 295 

future trajectories through network integrating social pooling layer into the middle of LSTM 296 

encoder-decoder. The generator first converts the input trajectories to fixed-length vectors via 297 

multilayer perceptron (MLP, Figure 4-AA) and feeds it to LSTM units of encoder (figure 4-AB). 298 

The LSTM units then encode the targets’ movement patterns individually and forward the encoded 299 

features to social pooling layer which infers the targets’ social interactions and generates pooled 300 

tensor for each target (Figure 4-AC). Lastly, the decoder interprets the interconnected hidden state 301 

of input trajectories with multiple LSTM units and generates socially plausible future trajectories 302 

of the targets (Figure 4-AD). Here, the decoder initializes itself with input trajectories so that it can 303 

generate future trajectories that better conform to the past ones. 304 

 Discriminator (Figure 4-B): the discriminator inspects the predicted trajectories’ quality and 305 

conformity to the past trajectories. It takes both of past and future trajectories together as input and 306 

encodes their conformity features through LSTM units (Figure 4-BA). In turn, it calculates the 307 

predicted trajectories’ conformity score via MLP (Figure 4-BB) and inspects them whether they are 308 

plausible or not (i.e., classifies whether real or fake). The prediction that successfully fools the 309 

discriminator is selected as the final outcome. 310 
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Transfer Learning of S-GAN 311 

The authors developed a trajectory prediction model through transfer learning of the S-GAN. The 312 

following details were specifically considered: (i) parameter initialization, (ii) fine-tuning, and (iii) 313 

hyper-parameter tuning. This work started from the S-GAN model, which is pre-trained with the two 314 

benchmark datasets: (i) Eidgenossische Technische Hochschule Zurich (ETH, Pellegrini et al. 2010) 315 

and (ii) University of Cyprus (UCY, Leal-Taixe et al. 2014). As the most widely benchmarked datasets 316 

in trajectory prediction studies, the two datasets in total contain 1,536 human trajectories. They reflect 317 

various movement patterns such as crossing each other, collision avoidance, group forming, and 318 

dispersing (Alahi et al. 2016). Having such diverse data in pre-training was intended to prevent 319 

overfitting in the following fine-tuning process.  320 

From that starting point (i.e., pre-learned weights), the fine-tuning with construction dataset 321 

was conducted to better fit the pre-trained model to construction settings. Specifically, the authors fine-322 

tuned it with the integrated dataset (i.e., ETH + UCY + the construction dataset), rather than only with 323 

the construction dataset, so as to minimize the possibility of overfitting. In this tuning, the trajectories 324 

of construction mobile resources (e.g., worker, wheel loader, and excavator), annotated from 916 UAV-325 

captured images, were used. 326 

The farther prediction is achieved, the earlier safety intervention can be made. The authors 327 

thus modified the original prediction length (3.96 seconds=12 time-steps x 0.33 seconds) to 5.28 328 

seconds (16 time-steps x 0.33 seconds) and particularly examined how observation-related hyper-329 

parameters affects the model’s final performance. Trajectory prediction is primarily based on the 330 

interpretation of targets’ previous movement patterns. Thus, the properties of past trajectory must have 331 

a significant impact on the model’s final performance. In this sense, this task additionally tuned the two 332 

observation-related hyper-parameters (i.e., observation length and sampling interval) with the following 333 

reasons. 334 

 Observation length: a target’s future trajectory is highly attributed to its previous movement pattern. 335 

The length of observation (i.e., how long observation the model will consume) must thus have a 336 

significant impact on a model’s prediction performance. Thus, three different observation lengths 337 
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were considered in this work: (i) 2.64 seconds (80 frames), (ii) 3.96 seconds (120 frames), and (iii) 338 

5.28 seconds (160 frames). 339 

 Sampling interval: the other hyper-parameter selected was sampling interval. This is because it 340 

controls the minuteness of input and output trajectories. With a denser sampling interval, the model 341 

can have finer input, but should take the burden of outputting denser prediction as well. On the 342 

other hand, with a sparser sampling interval, the model should have coarser input but can avoid 343 

such complexity. To examine which level of sampling interval would better fit for our problem, the 344 

authors considered four different sampling intervals: (i) 0.17 seconds (5 frames), (ii) 0.33 seconds 345 

(10 frames), (iii) 0.66 seconds (20 frames), and (iv) 1.33 seconds (40 frames).    346 

 347 

Test Result 348 

For comparative evaluation of the twelve tuned models, the test on a construction dataset was followed. 349 

In this test, a total of 397 UAV-captured images was used and the trajectories of three object classes 350 

were considered: (i) worker, (ii) wheel loader, and (iii) excavator (Figure 5). As evaluation metrics, 351 

average displacement error (ADE) and final displacement error (FDE), the typical two evaluation 352 

metrics to access trajectory prediction accuracy, were applied (Alahi et al. 2016; Gupta et al. 2018). The 353 

ADE is the average value of displacement errors (DEs, Euclidean distances) between ground truths and 354 

predictions over all predicted time-steps (i.e., average of DE@1st~8th, Figure 5) meanwhile the FDE is 355 

the distance between the predicted final destination and the ground truth destination at the end of the 356 

prediction period (i.e., DE@8th, Figure 5). This test was intended to evaluate the pure performances of 357 

the tuned models, so the authors fed the models the ground truth of observation trajectories.  358 

Table 1 summarizes the ADE and FDE results. Overall, the tuned models showed a promising 359 

prediction accuracy: all the ADEs were less than 0.9 meters and the FDEs were less than two meters. It 360 

was shown that the model of 0.66 seconds (20 frames) sampling interval and 3.96 seconds (120 frames) 361 

observation length has the highest accuracy in terms of both ADE and FDE: this model achieved the 362 

ADE of 0.45 meters and the FDE of 0.79 meters in this test. Considering this result, the authors adopted 363 

the model that showed the least error as the trajectory prediction module.  364 
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Field Test 365 

A field test was conducted to demonstrate the validity of the overall framework. It would have been 366 

ideal to test the proposed framework with mobile construction robots, since the robots are hardly 367 

available to date, this test employed a truck which is similar looking to an autonomous truck. Figure 6 368 

illustrates the test environments and settings. In this test, the authors simulated the three types of 369 

movement patterns between a worker and a truck: (i) moving forward side by side (movement pattern 370 

#1); (ii) crossing each other side by side (movement pattern #2); and (iii) crossing each other in curves 371 

(movement pattern #3), as shown in Figure 6. The worker and the truck set off at the same time at the 372 

designated origins and followed the ground lines at a constant velocity (1.5 meters/second) until arriving 373 

at the designated destinations. The movement patterns were simulated three times per each. During this 374 

test, the authors flew a camera-mounted UAV over the testbed and ran the developed framework to 375 

predict the proximity between the targets (i.e., the metric distance between the worker and the truck). 376 

Lastly, the accuracy of the proximity outputs was evaluated by comparing it to the corresponding ground 377 

truth proximity. 378 

  379 

Measurement of Ground Truth Proximity 380 

To measure the ground truth proximity over all time-steps, the authors intentionally used ground lines 381 

and markers (Figure 6). The targets were ordered to follow a reference line at a constant velocity. 382 

Therefore, the origin-destination locations and times of a target were known so that the target’s in-383 

between locations and times could be measured by interpolation. In doing so, the authors measured all 384 

the ground truth locations of the targets over all time-steps and their ground truth proximity accordingly. 385 

 386 

Evaluation Metrics 387 

To evaluate the accuracy of targets’ predicted locations, the two displacement errors, average 388 

displacement error (ADE) and final displacement error (FDE), were applied. While the ADE and FDE 389 

represent the accuracy of predicted trajectory for each individual target, it does not directly represent 390 

the accuracy of predicted proximity between a pair of targets. Thus, in addition to the ADE and FDE, 391 
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this test also evaluated average proximity error (APE) and final proximity error (FPE). The APE is the 392 

average value of the absolute differences between predicted proximity and ground truth proximity over 393 

all time-steps (Equation 3). Meanwhile, the FDE is the absolute difference between predicted proximity 394 

and ground truth proximity at the end of the prediction period (Equation 4). Lastly, this test also 395 

measured each module’s operating time to evaluate its computational efficiency. 396 

 397 

  𝐴𝑃𝐸 =  
1

𝑛
∗ ∑|𝑃𝑔 − 𝑃𝑝|

𝑛

𝑖=1

 Equation 3 

Note: n=the number of cases; Pg=ground truth proximity; Pp=predicted proximity. 

 

  𝐹𝑃𝐸 =  |𝑃𝑔𝑓 − 𝑃𝑝𝑓| Equation 4 

Note: Pgf=ground truth proximity at the end of prediction period (i.e., after 5.28 seconds); 

Ppf=predicted proximity at the end of prediction period (i.e., after 5.28 seconds). 

 398 

Proximity Prediction Result 399 

In terms of ADE and FDE, the developed framework showed promising results. Overall it achieved the 400 

ADEs for both the worker and the truck less than two meters, the FDEs less than 3.5 meters (Table 2). 401 

The ADE and FDE for the worker were 1.64 and 3.39 meters overall and those for the truck were 1.99 402 

and 2.99 meters (Table 2). In line with the ADE and FDE results, the APE and FPE results were also 403 

promising. Overall the framework achieved 0.95 meters APE and 1.71 meters FPE between the worker 404 

and the truck (Table 3). Also, the APEs between the worker and the truck for all three movement patterns 405 

were less than 1.5 meters, the FPEs less than 2.5 meters (Table 3). 406 

 Notably, it was determined that to predict farther time-step is more challenging. Figure 7 407 

illustrates the trend of proximity error (i.e., absolute difference between predicted proximity and ground 408 

truth proximity) as prediction time-step increases. As shown in Figure 7, for all movement patterns, the 409 

proximity errors continued to rise as the prediction time-step increases: on average, the framework 410 

showed the proximity error of 0.53 meters at 0.66 seconds prediction, but the error continued to climb 411 
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as prediction time-step went farther, reaching to 1.71 meters (=the overall FPE, Table 3) at 5.28 seconds 412 

prediction (Figure 7). 413 

  414 

Operating Time  415 

Figure 8 illustrates the operating time of Modules 1 and 2. With a single graphic processing unit (GPU, 416 

NVIDIA Tesla K40), Module 1 (i.e., trajectory observation) spent 0.28 seconds per a frame (Figure 8-417 

A) and Module 2 (i.e., trajectory prediction) spent 0.12 seconds per a cycle (i.e., from taking a set of 418 

past trajectories to generating a set of future trajectories, Figure 8-B). Given that this framework runs 419 

Module 1 at every 0.66 seconds (i.e., at 20 frames interval), it was able to perform trajectory observation 420 

with zero time-lag in computation. And overall, the framework demonstrated that it can update the 421 

future proximity for the next 5.28 seconds at every 0.66 seconds with 0.40 seconds time-lag in 422 

computation (i.e., 0.28 seconds for Module 1 + 0.12 seconds for Module 2, Figure 8-C). It means that 423 

the framework can update future proximity for the next 4.88 seconds at every 0.66 seconds continuously 424 

(i.e., 5.28 seconds prediction – 0.40 seconds time-lag in computation).   425 

 426 

Discussions 427 

As shown in the field test, the developed framework demonstrated a promising performance of 428 

proximity prediction in terms of both accuracy and speed. On the basis of the result, in this section, the 429 

authors present how this framework can better assist the collision avoidance between workers and 430 

mobile robots (or mobile equipment) at unstructured and dynamic construction sites. In addition, the 431 

authors discuss the implication of using GAN-based trajectory prediction DNN and lastly present 432 

potential improvement points for future studies. 433 

 434 

Real-World Applications to Prevent Contact-driven Accidents by Mobile Objects 435 

The framework showed that it can continuously update future proximity for the next 5.28 seconds at 436 

every 0.66 seconds within one-meter proximity error on average (computing time per update=0.40 437 

seconds). This prediction performance can have a far-reaching significance beyond the detection of 438 
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current proximity in accident prevention in that it enables pro-active safety interventions. For example, 439 

if a robot can be informed of whether a worker will be on the path or inside the action radius of itself in 440 

the future, the robot can make pro-active path planning and rerouting in advance. Likewise, it is also 441 

possible to provide an advance alert to workers via wearable devices (e.g., wrist band and smart safety 442 

glasses) so that the workers can take timely evasive action. Assuming that an autonomous truck is 443 

approaching a worker at five meters per second, the framework can inform the worker and the 444 

autonomous truck of their potential collision 5.28 seconds before it happens. The worker then has 445 

around 25 meters of physical distance from the autonomous truck to easily avoid the collision without 446 

strain. These pro-active interventions would effectively reduce the chances of an impending collision 447 

between mobile robots and construction workers. 448 

 In addition, the developed framework also can be readily applied to other mobile objects such 449 

as motorized equipment and vehicle. This framework can detect mobile objects, such as excavator, 450 

wheel loader, and truck, and also, the scope of targets can be easily expanded through tuning of the 451 

object detection model with the additional training dataset. The framework can thus provide equipment 452 

operators and vehicle drivers with an alert in advance as well, helping to avoid a potential collision with 453 

workers and mobile robots. 454 

 In real-world applications, however, the quality and speed of network connection need to be 455 

further investigated and improved. The developed framework uses a camera-mounted UAV (or UAVs) 456 

to stream imagery input data to a computing device (e.g., a cloud server). Also, it needs wireless 457 

communication with robots and wearable devices to timely feedback. Therefore, in real-world 458 

applications, it is critical to ensure rapid data transmission from a computing device to a UAV (or UAVs), 459 

wearable devices, and robots. Leveraging 5G wireless network and internet of thing (IoT) cloud 460 

platform can be a promising solution to this end. The 5G wireless network would support real-time data 461 

transmission at data transfer rate of several gigabytes per second. Also, with the high-speed network 462 

connection, an IoT cloud platform could connect multiple UAVs, robots, and wearable devices to a 463 

cloud server, which would enable near real-time operation of proximity prediction as well as rapid 464 

communication with workers and robots. 465 
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 To the fully automated operation of the proposed framework, the strategies for UAV operations 466 

need to be further studied. In the framework, UAV (or UAVs) plays a vital role in tracking target and 467 

reference objects. Therefore, future studies on how to capture mobile target objects and a stationary 468 

reference object simultaneously and continuously must be done. To this end, operating multiple UAVs 469 

and realizing real-time image stitching could be considered as a possible solution. Also, thorough field 470 

experiments need to be conducted in order to investigate how the elevation of UAV can impact 471 

proximity monitoring and prediction performance. The higher elevation a UAV flies at, the wider the 472 

scene can be monitored. However, it can cause target objects to be seen too small, which can affect 473 

object detection performance and accordingly proximity monitoring and prediction accuracy.  474 

 475 

Implications of Using GAN-based DNN for Trajectory Prediction 476 

GAN is basically an unsupervised generative model that makes plausible data from a noise input (e.g., 477 

Gaussian noise) based on probability distribution learned from real data (Goodfellow et al. 2014). The 478 

uniqueness of GAN that yields a highly competitive edge over other generative models (e.g., naïve 479 

Bayes, hidden Markov model, and Markov random fields) is the adversarial training between generator 480 

and discriminator. In GAN training, the generator tries to minimize min-max loss whereas the 481 

discriminator counteracts to maximize it (Equation 5). In this min-max game, both generator and 482 

discriminator get to improve while competing with each other. This adversarial training is known to 483 

better fit to understanding complex distributions of real data (e.g., images and speeches) than using a 484 

certain loss (objective) function manually devised. 485 

 486 

Min − Max Loss = 𝐸𝑥[log 𝐷(𝑥)] + 𝐸𝑧[log(1 − 𝐷(𝐺(𝑧)))] Equation 5 

Note: D(x)=discriminator’s estimate of the probability that real data instance x is real; Ex=expected 

value over all real data instances; G(z)=generator’s output when given input z; 

D(G(z))=discriminator’s estimate of the probability that a fake instance is real; Ez=expected value 

over all inputs to the generator. 

 487 
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The interesting fact is that the GAN can also be used for trajectory prediction which is basically 488 

a supervised learning problem. The S-GAN incorporates the GAN architecture and uses adversarial 489 

training so that it can enhance the capability to learn hidden distribution of mobile objects’ diverse 490 

trajectories. More noticeably, the S-GAN leverages the GAN architecture in a conditional way such that 491 

it can still take prior information (i.e., past trajectory) as input and consume ground truth for network 492 

supervision. That is, instead of using noise input, it takes past trajectories and initializes the decoder 493 

with the prior information, thereby generating future trajectories more conformed to the past. Moreover, 494 

it uses L2 loss (Equation 6) in addition to the min-max loss so that it can condition the decoder to 495 

generate the prediction closer to the ground truth. In these ways, the S-GAN could take advantage of 496 

both adversarial training and supervised learning, consequently resulting in a promising performance 497 

of trajectory prediction. 498 

 499 

 𝐿2 Loss = ∑(𝑌𝑔 − 𝑌𝑝)2

𝑛

𝑖=1

 Equation 6 

Note: n=dimension of output vector; Yg=ground truth trajectory; Yp=predicted trajectory. 

 500 

However, the application of S-GAN presents several challenges, particularly in training. The 501 

adversarial training between generator and discriminator can be often stuck at local minima and in 502 

general takes a longer period than the training of normal DNNs. The single most important reason 503 

behind such challenges is the imbalance between generator and discriminator. For example, if the 504 

discriminator is too strong, then the generator training can easily fail due to vanishing gradients. On the 505 

other hand, if the generator easily defeats the discriminator, it tends to produce the most plausible output 506 

repeatedly, which can make the discriminator permanently trapped (called mode collapse). 507 

Compared to dominant DNN architectures such as convolutional neural network (CNN) and 508 

recurrent neural network (RNN), GAN is a new kind of DNN. Certainly, there are still many chances 509 

to improve its trainability, which may include regularization using noise addition (Arjovsky and Bottou 510 

2017), penalization of discriminator weights (Roth et al. 2017), and the use of advanced min-max loss 511 
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(e.g., Wasserstein loss). The application of such advanced techniques would provide us with a better 512 

chance to leverage S-GAN (or other GAN-based DNNs) and to have a higher accuracy of proximity 513 

prediction thereby. 514 

Another way to improve the prediction accuracy would include post-processing incorporating 515 

construction-specific knowledge. The S-GAN showed a promising accuracy of trajectory prediction in 516 

this study; however, it would not cover all the possible scenarios that can happen on construction sites 517 

and the prediction accuracy can deteriorate in those cases. The post-processing incorporating 518 

construction-specific knowledge, such as the average or maximum velocity of each robot (or 519 

equipment), construction robots’ pre-programmed collision avoidance behavior, and construction 520 

workers’ collision avoidance behavior, can likely be used to refine predicted trajectory’s velocity and 521 

direction, which could improve the overall accuracy of proximity prediction. 522 

 523 

Conclusions 524 

In this study, the authors developed a DNN-based framework for proximity prediction, leveraging a 525 

camera-mounted UAV, object detection DNN (YOLO-V3) and trajectory prediction DNN (S-GAN). 526 

Also, the authors demonstrated the framework’s validity in a field test: the framework achieved 0.95 527 

meters average proximity error (APE) and 1.71 meters final proximity error (FPE) in predicting 5.28 528 

seconds future proximity. During construction operations, contact-driven hazards by mobile robots (or 529 

mobile equipment and vehicle) can easily arise in various scenarios: for example, a navigating robot 530 

suddenly change in direction or an autonomous vehicle could reverse into a blind spot. In such 531 

unpredictable situations, the proximity prediction would enable advance detection of impending 532 

collisions, thereby making pro-active interventions possible. Specifically, the predictive functionality 533 

would allow robots to make alternative path planning and rerouting beforehand and enable providing 534 

advance alerts to workers via wearable devices. These pro-active interventions would contribute to 535 

mitigating the chances of impending collisions between mobile robots (or mobile equipment and vehicle) 536 

and construction workers. Moreover, the authors apply GAN to trajectory prediction, which opens a 537 

new possibility of GAN for potential construction applications. 538 
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Some or all data, models, or code that support the findings of this study are available from the 540 

corresponding author upon reasonable request. 541 

 542 

Acknowledgments 543 

The work presented in this paper was supported financially by a National Science Foundation Award 544 

(No. IIS-1734266, ‘Scene Understanding and Predictive Monitoring for Safe Human-Robot 545 

Collaboration in Unstructured and Dynamic Construction Environments’). Any opinions, findings, and 546 

conclusions or recommendations expressed in this paper are those of the authors and do not necessarily 547 

reflect the views of the National Science Foundation. Lastly, the authors wish to specially thank Weston 548 

Tanner, John McGlennon, and Chris Klaft from WALSH Construction Co. and Steve La Cava and 549 

Andy Thelen from TOEBE Construction LLC. for their considerate assistance in collecting onsite data. 550 

 551 

References 552 

Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., and Savarese, S. 2016. "Social lstm: 553 

Human trajectory prediction in crowded spaces." In Proc., 2016 IEEE Conference on Computer 554 

Vision and Pattern Recognition., 961-971. Las Vegas, NV: IEEE. 555 

Antonini, G., Bierlaire, M., and Weber, M. 2006. "Discrete choice models of pedestrian walking 556 

behavior." Transportation Research Part B: Methodological. 40 (8): 667-687. 557 

https://doi.org/10.1016/j.trb.2005.09.006. 558 

Arjovsky, M., and Bottou, L. 2017. "Towards principled methods for training generative adversarial 559 

networks." In Proc., 5th Internaltional Conference on Learning Representations. Toulon, France. 560 

arXiv:1701.04862. 561 

Awolusi, I., Marks, E., and Hallowell, M. 2018. "Wearable technology for personalized construction 562 

safety monitoring and trending: Review of applicable devices." Automation in construction, 85 563 

(Jan): 96-106. https://doi.org/10.1016/j.autcon.2017.10.010. 564 

Bock, T. 2015. "The future of construction automation: Technological disruption and the upcoming 565 



23 

ubiquity of robotics." Automation in Construction. 59 (Nov): 113-121. 566 

https://doi.org/10.1016/j.autcon.2015.07.022. 567 

Cardno, C. A. 2018. "Robotic Rebar-Tying System Uses Artificial Intelligence." Civil Engineering 568 

Magazine Archive. 88 (1): 38-39. https://doi.org/10.1061/ciegag.0001260. 569 

Chen, V. C., Li, F., Ho, S.-S., and Wechsler, H. 2006. "Micro-Doppler effect in radar: phenomenon, 570 

model, and simulation study." IEEE Transactions on Aerospace and electronic systems. 42 (1): 571 

2-21. https://doi.org/10.1109/TAES.2006.1603402. 572 

Cui, J., Liew, L. S., Sabaliauskaite, G., and Zhou, F. 2019. "A review on safety failures, security attacks, 573 

and available countermeasures for autonomous vehicles." Ad Hoc Networks, 90 (Jul): 101823. 574 

https://doi.org/10.1016/j.adhoc.2018.12.006. 575 

DuCarme, J. 2019. "Developing effective proximity detection systems for underground coal mines." 576 

Advances in Productive, Safe, and Responsible Coal Mining. 101-119. 577 

https://doi.org/10.1016/B978-0-08-101288-8.00003-1. 578 

Gargoum, S. A., Karsten, L., El-Basyouny, K., and Koch, J. C. 2018. "Automated assessment of vertical 579 

clearance on highways scanned using mobile LiDAR technology." Automation in Construction. 580 

95 (Nov): 260-274. https://doi.org/10.1016/j.autcon.2018.08.015. 581 

Guiochet, J., Machin, M., and Waeselynck, H. 2017. "Safety-critical advanced robots: A survey." 582 

Robotics and Autonomous Systems. 94 (Aug): 43-52. 583 

https://doi.org/10.1016/j.robot.2017.04.004. 584 

Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., and Alahi, A. 2018. "Social gan: Socially acceptable 585 

trajectories with generative adversarial networks." In Proc., 2018 IEEE Conference on 586 

Computer Vision and Pattern Recognition., 2255-2264. Salt Lake City, UT: IEEE. 587 

Helbing, D., and Molnar, P. 1995. "Social force model for pedestrian dynamics." Physical review E, 51 588 

(5): 4282. https://doi.org/10.1103/PhysRevE.51.4282. 589 

Kim, D., Goyal, A., Newell, A., Lee, S., Deng, J., and Kamat, V. R. 2019a. "Semantic relation detection 590 

between construction entities to support safe human-robot collaboration in construction." 2019 591 

ASCE International Conference on Computing in Civil Engineering., 265-272. Atlanta, GA: 592 



24 

ASCE. 593 

Kim, D., Liu, M., Lee, S., and Kamat, V. R. 2019b. "Remote proximity monitoring between mobile 594 

construction resources using camera-mounted UAVs." Automation in Construction. 99 (Mar): 595 

168-182. https://doi.org/10.1016/j.autcon.2018.12.014. 596 

Kim, D., Liu, M., Lee, S., and Kamat, V. R. 2019. "Trajectory prediction of mobile construction 597 

resources toward pro-active struck-by hazard detection." In Proc., International Symposium on 598 

Automation and Robotics in Construction., 982-988. Banff, AB, Canada.   599 

Kim, P., Chen, J., and Cho, Y. K. 2018. "SLAM-driven robotic mapping and registration of 3D point 600 

clouds." Automation in Construction. 89 (May): 38-48. 601 

https://doi.org/10.1016/j.autcon.2018.01.009. 602 

Lattanzi, D., and Miller, G. 2017. "Review of robotic infrastructure inspection systems." Journal of 603 

Infrastructure Systems. 23 (3): 04017004. https://doi.org/10.1061/(ASCE)IS.1943-604 

555X.0000353. 605 

Leal-Taixé, L., Fenzi, M., Kuznetsova, A., Rosenhahn, B., and Savarese, S. 2014. "Learning an image-606 

based motion context for multiple people tracking." In Proc., 2016 IEEE Conference on 607 

Computer Vision and Pattern Recognition., 3542-3549. Las Vegas, NV: IEEE. 608 

Li, J., Wang, Y., Zhang, K., Wang, Z., and Lu, J. 2019. "Design and analysis of demolition robot arm 609 

based on finite element method." Advances in Mechanical Engineering. 11 (6): 610 

1687814019853964. https://doi.org/10.1177/1687814019853964. 611 

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L. 612 

2014. "Microsoft coco: Common objects in context." In Proc., European conference on 613 

computer vision., 740-755. Zurich, Swiss: Springer 614 

Liu, J., and Li, G. 2018. "Research on the development of 3D printing construction industry based on 615 

diamond model." Innovative Technology and Intelligent Construction., 164-176. Reston, VA: 616 

ASCE. 617 

Loop, C., and Zhang, Z. 1999. "Computing rectifying homographies for stereo vision." In Proc., 1999 618 

IEEE Computer Society Conference on Computer Vision and Pattern Recognition., 125-131. 619 



25 

Fort Collins, CO: IEEE. 620 

Memarzadeh, M., Golparvar-Fard, M., and Niebles, J. C. 2013. "Automated 2D detection of 621 

construction equipment and workers from site video streams using histograms of oriented 622 

gradients and colors." Automation in Construction. 32 (Jul): 24-37. 623 

https://doi.org/10.1016/j.autcon.2012.12.002. 624 

Moon, S., Becerik-Gerber, B., and Soibelman, L. 2019. "Virtual Learning for Workers in Robot 625 

Deployed Construction Sites." Advances in Informatics and Computing in Civil and 626 

Construction Engineering., 889-895.  627 

Park, J., Marks, E., Cho, Y. K., and Suryanto, W. 2015. "Performance test of wireless technologies for 628 

personnel and equipment proximity sensing in work zones." Journal of Construction 629 

Engineering and Management. 142 (1): 04015049. https://doi.org/10.1061/(ASCE)CO.1943-630 

7862.0001031. 631 

Park, M.-W., and Brilakis, I. 2012. "Construction worker detection in video frames for initializing vision 632 

trackers." Automation in Construction. 28 (Dec): 15-25. 633 

https://doi.org/10.1016/j.autcon.2012.06.001. 634 

Pellegrini, S., Ess, A., and Van Gool, L. 2010. "Improving data association by joint modeling of 635 

pedestrian trajectories and groupings." In Proc., European conference on computer vision. 452-636 

465. Crete, Greece: Springer. 637 

Pfeiffer, M., Paolo, G., Sommer, H., Nieto, J., Siegwart, R., and Cadena, C. 2018. "A data-driven model 638 

for interaction-aware pedestrian motion prediction in object cluttered environments." In Proc., 639 

2014 IEEE International Conference on Robotics and Automation., 1-8. Brisbane, QLD, 640 

Australia: IEEE. 641 

Redmon, J., and Farhadi, A. 2018. "Yolov3: An incremental improvement." arXiv preprint 642 

arXiv:1804.02767. 643 

Research and Markets. 2019. "Global construction robot market - drivers, restraints, opportunities, 644 

trends, and forecast up to 2025." (URL: https://www.researchandmarkets.com, accessed on 645 

Sept. 08 2019) 646 



26 

Ruff, T. 2006. "Evaluation of a radar-based proximity warning system for off-highway dump trucks." 647 

Accident Analysis & Prevention. 38 (1): 92-98. https://doi.org/10.1016/j.aap.2005.07.006. 648 

Salimans, T., and Kingma, D. P. 2016. "Weight normalization: A simple reparameterization to accelerate 649 

training of deep neural networks." In Proc., 30th Conference on Neural Information Processing 650 

Systems., 901-909. Barcelona, Spain: NIPS. 651 

Tavares, P., Costa, C. M., Rocha, L., Malaca, P., Costa, P., Moreira, A. P., Sousa, A., and Veiga, G. .2019. 652 

"Collaborative Welding System using BIM for Robotic Reprogramming and Spatial 653 

Augmented Reality." Automation in Construction. 106 (Oct): 102825. 654 

https://doi.org/10.1016/j.autcon.2019.04.020. 655 

Tay, M. K. C., and Laugier, C. 2008. "Modelling smooth paths using gaussian processes." In Proc., 656 

Field and Service Robotics., 381-390. 657 

Teizer, J. 2015. "Wearable, wireless identification sensing platform: self-monitoring alert and reporting 658 

technology for hazard avoidance and training (SmartHat)." Journal of Information Technology 659 

in Construction. 20 (19): 295-312. 660 

Teizer, J., Allread, B. S., Fullerton, C. E., and Hinze, J. 2010. "Autonomous pro-active real-time 661 

construction worker and equipment operator proximity safety alert system." Automation in 662 

construction. 19 (5): 630-640. https://doi.org/10.1016/j.autcon.2010.02.009. 663 

Tractica. 2019. "Construction & demolition robots - robot assistants and structure, finishing, and 664 

infrastructure robots: global market analysis and forecast." (URL: 665 

https://www.tractica.com/research/construction-demolition-robots, accessed on Sept. 08 2019) 666 

Trautman, P., Ma, J., Murray, R. M., and Krause, A. 2015. "Robot navigation in dense human crowds: 667 

Statistical models and experimental studies of human–robot cooperation." The International 668 

Journal of Robotics Research. 34 (3): 335-356. https://doi.org/10.1177/0278364914557874. 669 

Tsuruta, T., Miura, K., and Miyaguchi, M. 2019. "Mobile robot for marking free access floors at 670 

construction sites." Automation in Construction. 107 (Nov): 102912. 671 

https://doi.org/10.1016/j.autcon.2019.102912. 672 

Vähä, P., Heikkilä, T., Kilpeläinen, P., Järviluoma, M., and Gambao, E. 2013. "Extending automation 673 



27 

of building construction—Survey on potential sensor technologies and robotic applications." 674 

Automation in Construction. 36 (Dec): 168-178. https://doi.org/10.1016/j.autcon.2013.08.002. 675 

Varghese, J. Z., and Boone, R. G. 2015. "Overview of autonomous vehicle sensors and systems." In 676 

Proc., International Conference on Operations Excellence and Service Engineering., 178-191. 677 

Vega-Heredia, M., Mohan, R. E., Wen, T. Y., Siti'Aisyah, J., Vengadesh, A., Ghanta, S., and Vinu, S. 678 

2019. "Design and modelling of a modular window cleaning robot." Automation in 679 

Construction. 103 (Jul): 268-278. https://doi.org/10.1016/j.autcon.2019.01.025. 680 

Wang, M.-z., Luo, M., Cen, Y.-w., and Huang, J.-z. 2018. "Research on Space Pose and Hydraulic 681 

System Stability of Remote-Controlled Demolition Robot." In Proc., 5th International 682 

Conference on Information Science and Control Engineering., 962-967. 683 

Więckowski, A. 2017. "“JA-WA”-A wall construction system using unilateral material application with 684 

a mobile robot." Automation in Construction. 83 (Nov): 19-28. 685 

https://doi.org/10.1016/j.autcon.2017.02.005. 686 

Xu, Y., Piao, Z., and Gao, S. 2018. "Encoding crowd interaction with deep neural network for pedestrian 687 

trajectory prediction." In Proc., IEEE Conference on Computer Vision and Pattern Recognition., 688 

5275-5284. Salt Lake City, UT: IEEE. 689 

Yamaguchi, K., Berg, A. C., Ortiz, L. E., and Berg, T. L. 2011. "Who are you with and where are you 690 

going?" In Proc., IEEE Conference on Computer Vision and Pattern Recognition., 1345-1352. 691 

Colorado Springs, CO: IEEE. 692 

Yang, Y., Pan, M., and Pan, W. 2019. "Co-evolution through interaction’of innovative building 693 

technologies: The case of modular integrated construction and robotics." Automation in 694 

Construction. 107 (Nov): 102932. https://doi.org/10.1016/j.autcon.2019.102932. 695 

Yu, S. N., Lee, S. Y., Han, C. S., Lee, K. Y., and Lee, S. H. 2007. "Development of the curtain wall 696 

installation robot: Performance and efficiency tests at a construction site." Autonomous Robots. 697 

22 (3): 281-291. 698 

 699 

 700 
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Table 1. ADE/FDE of tuned trajectory prediction models (unit: meters) 701 

Sampling interval 
(unit: seconds) 

Observation length (unit: seconds) 
2.64 3.96 5.28 

0.17 0.85/1.70 0.76/1.63 0.87/1.93 
0.33 0.88/1.83 0.45/0.88 0.55/1.14 
0.66 0.67/1.38 0.45/0.79 0.45/0.81 
1.33 0.80/1.59 0.68/1.07 0.56/0.89 

Note: left/right values are ADE/FDE, respectively; ADE/FDE in this table are average values of worker, 702 

wheel loader, and excavator; prediction lengths of all the models are 5.28 seconds. 703 

 704 

Table 2. ADE and FDE for truck and worker (unit: meters) 705 

Category 
ADE FDE 

Worker Truck Worker Truck 

Movement pattern #1 1.76 1.84 3.06 2.32 
Movement pattern #2 1.44 1.58 2.42 2.21 
Movement pattern #3 1.73 2.54 4.68 4.45 

     
Overall 1.64 1.99 3.39 2.99 

Note: prediction length=5.28 seconds; ADEs and FDEs in this table are the average values for the three 706 

trials; overall values are the average for three movement patterns. 707 

 708 

Table 3. APE and FPE between truck and worker (unit: meters) 709 

Category APE FPE 

Movement pattern #1 0.44 0.81 
Movement pattern #2 1.23 1.94 
Movement pattern #3 1.18 2.37 

   
Overall 0.95 1.71 

Note: prediction length=5.28 seconds; APEs and FPEs in this table are the average values for the three 710 

trials; overall values are the average for three movement patterns. 711 
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Figure Captions 726 

Figure 1. Proximity prediction using a camera-mounted UAV and DNNs 727 

Figure 2. Module 1: trajectory observation via object detection and coordinate rectification 728 

Figure 3. Module 2: trajectory prediction using S-GAN 729 

Figure 4. Network architecture of S-GAN 730 

Figure 5. Trajectory prediction models’ test dataset and evaluation metric (DE: displacement error, unit: 731 

meters) 732 

Figure 6. Field test settings 733 

Figure 7. Trend of proximity error as prediction time-step increases 734 

Figure 8. Operating time of Modules 1 and 2 735 
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