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ABSTRACT

As a proactive means of preventing struck-by accidents in construction, many
studies have presented proximity monitoring applications using wireless sensors (e.g.,
RFID, UWB, and GPS) or computer vision methods. Most prior research has
emphasized proximity detection rather than prediction. However, prediction can be
more effective and important for contact-driven accident prevention, particularly given
that the sooner workers (e.g., equipment operators and workers on foot) are informed
of their proximity to each other, the more likely they are to avoid the impending
collision. In earlier studies, the authors presented a trajectory prediction method
leveraging a deep neural network to examine the feasibility of proximity prediction in
real-world applications. In this study, we enhance the existing trajectory prediction
accuracy. Specifically, we improve the trajectory prediction model by tuning its pre-
trained weight parameters with construction data. Moreover, inherent movement -
driven post-processing algorithm is developed to refine the trajectory prediction of a
target in accordance with its inherent movement patterns such as the final position,
predominant direction, and average velocity. In a test on real-site operations data, the
proposed approach demonstrates the improvement in accuracy: for 5.28 seconds’
prediction, it achieves 0.39 meter average displacement error, improved by 51.43% as
compared with the previous one (0.84 meters). The improved trajectory prediction
method can support to predict potential contact-driven hazards in advance, which can
allow for prompt feedback (e.g., visible, acoustic, and vibration alarms) to equipment
operators and workers on foot. The proactive intervention can lead the workers to take
prompt evasive action, thereby reducing the chance of an impending collision.



INTRODUCTION

At the construction site where every circumstance dynamically evolves,
contact-driven accidents often happen in various forms, resulting in a significant
number of construction fatalities. According to The Center for Construction Research
and Training, the U.S., from 2011 to 2015, a total of 1,079 construction workers died
due to the forcible contact or impact by a mobile vehicle or a piece of equipment [# of
struck-by = 804 (CPWR 2017a) and # of caught-in/between = 275 (CPWR 2017b)].
The figure accounted for 24% of overall contact-driven fatalities in the U.S. and was
unmatched by other U.S. industries (CPWR 2017a; CPWR 2017b). Notably, such
fatalities continue to rise annually; it reached to 367 in 2017, accounting for 37% of
the overall construction fatalities during that year (BLS 2019).

A major research area for this issue has been attuned to automating onsite
proximity monitoring. And, various technologies—such as radio frequency
identification (Teizer et al. 2010; Marks et al. 2012), magnetic field (Teizer et al. 2015),
global positioning system (Ruff 2001), bluetooth low energy (Park et al. 2016), or
computer vision (Kim et al. 2019a; Kim et al. 2017; Kim et al. 2016)—have been
considered in many previous studies to this end. They proved the great potential of such
technologies, demonstrating a high accuracy of proximity monitoring in onsite
applications.

Most previous studies to date have been dominated by proximity detection or
monitoring. In many cases, however, prediction can be more effective and important
for contact-driven accident prevention. This is because the sooner workers (e.g.,
equipment operators and workers on foot) are informed of their proximity to each other,
the more likely they are to avoid the impending collision. Nevertheless, few studies
have attempted to address it.

To address the proximity prediction, our earlier study developed a trajectory
prediction model for mobile construction resources (Kim et al. 2019b). We applied an
established deep neural network (DNN) for trajectory prediction, called Social GAN
(Gupta et al. 2018), and particularly tuned its hyper-parameters and network
architecture so that we can make a longer prediction (5.24 seconds) than the original
one (3.96 seconds).

Based on this prior work, this round of study focuses on enhancing the model’s
prediction accuracy. To this end, we conduct fine-tuning of the pre-trained model with
construction data and develop a post-processing algorithm that can automatically refine
the trajectory prediction of each target. In addition, a test on construction operations
data follows so as to demonstrate the effect of the fine-tuning and post-processing on
prediction accuracy improvement.

PRIOR WORK: TRAJECTORY PREDICTION USING A DNN

Trajectory prediction studies have been led by data-driven learning approaches.
This is because the movement of an entity is so diverse and uncertain that it is more
viable to predict it based on what can be observed from given data, rather than by a
standardized algorithm. Traditionally, it often adopted hand-crafted feature-based
methods (Helbing et al. 1995; Antonini et al. 2006; Yamaguchi. Et al. 2011) or
statistical learning methods (Tay and Laugier 2008; Trautman et al. 2015). However,
nowadays, many studies for trajectory prediction are motivated to use a DNN since it



is more suitable for the task that requires learning complex and intractable probability
distribution.

In recent years, a number of DNN architectures for trajectory prediction have
been proposed: to name a few, Social LSTM (Alahi et al.2016), Crowd Interaction
DNN (Xu et al. 2018), Interaction Aware DNN (Pfeiffer et al. 2018), and Social GAN
(Gupta et al. 2018). Enjoying the support of an increased dataset, stronger computing
power, and advanced learning algorithms, such DNNs continue to improve the
performance of trajectory prediction.

Among such DNNs, Social GAN (Gupta et al. 2018) shows several distinctive
features. It enables to learn social behavior (e.g., collision avoidance) as well as an
entity’s moving pattern by integrating a social pooling layer and an LSTM encoder-
decoder. In addition, by realizing generative adversarial network (GAN), it enhances
intractable probabilistic computation and accordingly behavioral inference of which
other DNNSs are incapable. The original work (Gupta et al. 2018) used Social GAN for
2.6/4.0 seconds prediction and showed its superior performance over other DNNSs.

In this regard, we applied Social GAN (Gupta et al. 2018) to address the
trajectory prediction of mobile construction resources and thereby pro-active detection
of contact-driven hazards (e.g., struck-by or caught-in/between). Figure 1 illustrates
how the trajectory prediction can address the pro-active hazard detection. Moreover,
our earlier study tuned its architecture and hyper-parameters (e.g., prediction and
observation lengths) so that it can make longer, yet valid prediction. Note that longer
prediction and thereby earlier notice are needed to provide a worker in a danger with
enough time for evasive action.

To this end, we modified two major hyper-parameters—observation and
prediction lengths—and trained it with two benchmark dataset of pedestrian
trajectories [ETH (Pellegrini et al. 2010) and UCY (Leal-Taixe et al. 2014)]. As a
result, we developed several models to have different observation length (from 2.64
seconds to 6.60 seconds at every 0.66 seconds), but be capable of predicting 5.28
seconds. Overall, all the models demonstrated a promising accuracy in a test; they
achieved the displacement error of 0.88 meters on average.
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| Figure 1. Trajectory Prediction and Pro-active Hazard Detection
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RESEARCH OBJECTIVE: ENHANCING PREDICTION ACCURACY

While the earlier study focused on the architecture modification of Social GAN
(Gupta et al. 2018) to achieve longer prediction length, this study put major emphasis
on enhancing the accuracy of trajectory prediction. To this end, we conduct fine-tuning
of the prior trajectory prediction model and further adds a post-processing algorithm.
In addition, a new test on real construction operations data follows so as to validate the
effect of fine-tuning and post-processing on prediction accuracy improvement.

IMPROVEMENT #1: FINE-TUNING WITH CONSTRUCTION DATA

In the prior study, we already pre-trained the empty architecture of Social GAN
(Gupta et al. 2018) with the two benchmark dataset, taking into account several
different sets of hyper-parameters such as observation and prediction length (Kim et
al. 2019b). At this round, we further fine-tune the pre-trained model with additional
construction data, thereby better fitting it to construction settings.

We first collected and annotated a real construction video that captures human-
equipment interaction for the purposes of testing as well as fine-tuning. Specifically,
several UAV-captured construction site videos were collected, of which 916 sequential
frames were used for fine-tuning, and 398 frames for test. Each trajectory (i.e., a set of
x-y coordinates) of targets—a worker, a wheel loader, and an excavator—were
manually annotated over the whole frames and a complete inspection followed to
ensure the annotation validity.

We fine-tuned the weights of the pre-trained model by continuing training with
the integrated dataset of ETH (Pellegrini et al. 2010), UCY (Leal-Taixe et al. 2014),
and the construction data. We considered the below details in this task:

e Number of epoch: to avoid under-fitting, the number of epoch was
increased to 400 from the prior default value of 200.

e Batch size: considering the limit of hardware support (e.g., memory
capacity), it the batch size was set to 16.

e Parallel computing: to accelerate the tuning process, we used a graphical
processing unit (GPU, NVIDIA TITAN V) as well as a central processing
unit. The tuning was continued for four days in our setting until reaching to
the number of epoch.

e Architecture-related hyper-parameters: the Social GAN consists of three
components—generator, pooling module, and discriminator—and there are
many architecture-related hyper-parameters, which need to be considered
for successful training. Table 1 summarizes the value of hyper-parameters
that we actually applied in the tuning process.



Table 1. Examples of Architecture-related Hyper-Parameters

Component Hyper-parameter Description Value
encoder h dim g Dimensions of the hidden layer in the encoder 32
decoder h dim g Dimensions of the hidden layer in the decoder 32

. . Dimensions of the noise added to the input of
Generator noise_dim the decoder 8
noise_type Type of noise to be added Gaussian

clipping_threshold Threshold at which the gradients is clipped 2

g learning rate Learning rate for generator 0.0001
bottleneck dim Output dimension of pooled vector 8
Pooling neighborhood size neighborhood size for social pooling 2
gird_size the size of grid to determine neighborhood 8
encoder h dim d Dimensions of the hidden layer in the encoder 48

Discriminator d_learning_rate Learning rate for discriminator 0.001
clipping_threshold Threshold at which the gradient is clipped 0

IMPROVEMENT #2:

INHERENT MOVEMENT-DRIVEN POST-PROCESSING

The fine-tuned model is designed to output a sixteen time-steps future trajectory
[16x2, x-y coordinates of 16 time-steps (equivalent to 160 frames or 5.24 seconds)] for
an observation input [12x2, x-y coordinates of 12 time-steps (equivalent to 120 frames
or 4.00 seconds)]. We devised a post-processing algorithm that extracts an individual
entity’s inherent movement attributes from the observation input and reuse it to refine
the prediction output.

An entity (e.g., construction worker) tends to keep its own inherent movement
attributes such as predominant direction and average velocity, and more so if it does
not sense a situational change (e.g., vehicle coming closer) and thereby does not have
a sudden motivation. The developed algorithm utilizes such constancy underlying each
individual entity. Specifically, it considers the three inherent movement attributes: the
final position, predominant direction, and average velocity. The details are as below:

e Inspection of starting position (Figure 2): this algorithm first examines the
validity of the predicted trajectory’s starting position. Specifically, it
updates the starting position to the extrapolated coordinates of the last two
observed positions if the starting position of prediction is far from the final
position of observation over a certain threshold. We used the distance
between the last two observed positions as the threshold value.
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Figure 2. Post-processing: Inspection of Starting Position

e Correction of predominant direction (Figure 3): second, the algorithm
updates predicted trajectory’s predominant direction. It refines the direction
to the observed one if the direction vector of the predicted trajectory is
warped to that of observed trajectory over a certain threshold (8 degrees).
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Figure 3. Post-processing: Correction of Direction

e Correction of average velocity (Figure 4): lastly, the algorithm corrects the
predicted trajectory’s average velocity. It adjusts the predicted trajectory’s



average velocity to the original one and accordingly refines trajectory
prediction if it exceeds the original average velocity more than 20%.
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Figure 4. Post-processing: Correction of Average Velocity

TEST RESULT AND DISCUSSION
To demonstrate the effect of fine-tuning and inherent movement -driven post-
processing on the improvement of prediction accuracy, a test on real construction data
was conducted. As evaluation metrics, we applied average displacement error (ADE)
and final displacement error (FDE) that were used in our earlier study (Kim et al.
2019b).
e ADE: average Euclidean distance (i.e., mean square error) between ground
truth and prediction over all predicted time-steps.
e FDE: the distance between the predicted final destination and the ground
truth destination at the end of the prediction period.

Table 2. Test Result

Metric Pre- Fine-tuned Fine-tuned
trained (w/o post-processing) (W/ post-processing)
Average displacement error  0.84 m 0.45m 0.38 m
Final displacement error 1.42 m 0.87 m 0.75 m

Table 2 summarizes the ADE and FDE of the original pre-trained model and
fine-tuned models without and with the post-processing. Overall, all three cases
showed a promising accuracy in this test: the ADEs and FDEs for all cases were less
than one meter and 1.5 meters, respectively.

It turned out that the fine-tuning was highly effective in improving trajectory
prediction accuracy. Compared to the original pre-trained model, it reduced ADE and



FDE by 46% and 38%, reaching down to 0.4498 m and 0.8761 m, respectively.
Notably, the fine-tuned network also showed a good performance on the original
benchmark test dataset (i.e., ETH): the ADE and FDE were 0.40 m and 0.58 m,
respectively.

The post-processing algorithm also improved the trajectory prediction
accuracy: both the ADE and FDE was further reduced by 13% and consequently
achieved 0.3894 m ADE and 0.7571 m FDE. The fine-tuned Social GAN itself showed
promising performance in this test; however, the limitation of learning with a limited
amount of data was certain. The developed post-processing algorithm showed it can
help to offset the limitation by reusing the inherent movement attributes underlying
each individual’s movement history.

CONCLUSION

To enhance the performance of trajectory prediction, this study conducted fine-
tuning of a pre-trained trajectory prediction model and developed a post-processing
algorithm that can automatically refine the trajectory prediction of each target. As a
result, we achieved 0.39 meters ADE in a 5.28 seconds prediction task, improved by
51% as compared with the previous one (0.84 meters).

During construction operations, contact-driven hazards can easily arise in
various scenarios. In the unpredictable situations, the presented method will enable the
advanced detection of a potential hazard, thereby making timely intervention possible.
The proactive intervention will save construction workers from potentially fatal
hazards and ultimately help to promote safer work environments in construction
projects.
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