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PALLAS: Penalized mAximum LikeLihood and
pArticle Swarms for Inference of Gene
Regulatory Networks from Time Series Data

Yukun Tan, Fernando B. Lima Neto, and Ulisses Braga Neto

Abstract—We present PALLAS, a practical method for gene regulatory network (GRN) inference from time series data, whic
employs penalized maximum likelihood and particle swarms for optimization. PALLAS is based on the Partially-Observable |
Dynamical System (POBDS) model and thus does not require ad-hoc binarization of the data. The penalty in the likelihood is
LASSO regularization term, which encourages the resulting network to be sparse. PALLAS is able to scale to networks of re
under no prior knowledge, by virtue of a novel continuous-discrete Fish School Search particle swarm algorithm for efficien
simultaneous maximization of the penalized likelihood over the discrete space of networks and the continuous space of ob:
parameters. The performance of PALLAS is demonstrated by a comprehensive set of experiments using synthetic data gend
from real and artificial networks, as well as real time series microarray and RNA-seq data, where it is compared to several «
well-known methods for gene regulatory network inference. The results show that PALLAS can infer GRNs more accurately
other methods, while being capable of working directly on gene expression data, without need of ad-hoc binarization. PALL.
fully-fledged program, written in python, and available on GitHub (https://github.com/yukuntan92/PALLAS).

Index Terms—Gene regulatory network, partially-observable Boolean dynamical system, penalized maximum likelihood, par
swarms, PALLAS.

F

1 INTRODUCTION

NFERENCE of gene regulatory networks (GRN) fromogdtiA-seq datds modeled by the observation process,
Iexpression time-series data is a probleritichim- while the Boolean states are hidden. This allows the optin
portance in Bioinformaticdlfhjy mathematical moddiference of the sequence of Boolean states, as well as s)
have been proposed in the literature to address thipgmainletars, from the time series data.
including lineamodels|[2], [3], Bayesian network4é], In this paperye present PALLAS practicahethod
[5],neuraihetworks [6differentialquations [JI] and for parametric gene network inference based on the POBI
information theory based approachi3] [Bje Booleanmodelusing penalized maximum likelihood and particle
network (BN) modE10],is an effective modet GRNs swarms for optimizatiBALLAS is a sophisticated state-
due to its ability to describe tempqgratterns ofjene space method thain deteatdge directionality and ac-
activation and inactivation and its comparatively shiaditvbatinhibition statuwsithoutany priorknowledge,
requirement for inference [13}{13][14][15] Several in addition to being capablenafrking directly on gene
extensions of the BN model have been proposed, inolpdéisgion dataithout the need for ad-hoc binarization.
Random Boolean Networks [B@hlean Networks withe penalty in the likelihood scorelis-morm LASSO
perturbation (BNH}16],and ProbabilistiBoolean Net- regularization term [2&]hich encourages the resulting
works (PBN]17],and Boolean ContrNietworks (BCN) network to be sparse, i.e., contain a small number of edge
[18],[19].-Howeverall of those models assume ttiat between gends$s value can be adjusted by the user to
system Boolean states are completely obsdilvislile. obtain a desired leved sparsityThe likelihood itsalf
a significant drawbasikgce alpracticahethods for thecalculated efficiently by an auxiliary particle filter (APF)
inference of Boolean networks must include a stepionfpdeéimentation dhe Boolean Kalman Filt20],[22].
hoc binarization of the gene expression data. The Partilibpnovelfeature ofPALLAS isthe application to
observed Boolean dynaméyaktem (POBDS)odel[20] Boolean models of a particle swarm netiemdmixed
addresses this problem in a principleblyvpmstulatingcontinuous-discrete version of the Fish School Search alg
separate Boolean state and gasiesadvation processeithm [23]24] for efficient simultaneous maximization of
The time-series gene expressionnduatther microarrayhe penalized likelihood over the discrete space of netwo
and the continuous space of observational pasameters.
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likelihood function by exhaustive search over the sisaxssafmed here to be edoal with a smagirobability
networks and expectation maximization over the spaheidfindependently dhe othersThe user can select
parameters of the observatinndklfor each candidata fixed value foP or allow the algorithm to tréatis
networkldt is well suited if there is prior knowledge aljparameter to be estimated from theRéatdts in the

the networle,g.most of the edges are known and orfSypplementary Materinllicate thathere is nota big

few putative edges are being sgigiu, the prohibitivelifference between using a small fixed valOde and
computationabst of exhaustively searching the spasstisiating in an interval0.01, 0.1] for the p53-MDM2

all networksAAs shown in Section 2ifi,the absence ofNegative-Feedback Loop Gene Regulatory Network.

prior knowledge abothie gene interacticiiss number We assume a specific mddelthe network function

of networks is given’sﬂzyx 2", wheréd is the number ofthat is motivated by gene pathway diagrams commonly el
genes. With only 4 genes, there are a t&Bfl, 67,536 countered in biomedical research. Let a sample state vec
Boolean network models to be seanaldedlithd =10 X € {0, 1} ? and the network functibie expressed in

genes this number is larger th&h, rendering exhauscomponent formas (x 1 - - -, ¥) andf = (f 1, - - -, §),
tive search completely unfeasible. PALLAS differs fiespehtively. Each compbnefit 1 }Y - {0, 1} is given
method in [22]n using penalized maximum likelihodw ( Py

and particle swarms for optimizatidsich allows io 1, a;j Xj +bj >0,

(3¢) = j=1
handle networks of realistic size in the absence of any priorf' )= 0, ot]herwise, )

knowledge.
The performance of PALLAS is demonstrated by Whss®i = t1 if there is positive regulation (activation)

prehensive sef experimentlising synthetic data gefrom gene/ to gene/; d; =-1 if there isnegative

erated from both reahd artificiaBRNs,which allows regulation (inhibition) from detregené; andd; =0

computation of performance metrics, we compare H/AIGN%S is notan inputto gené, wherea§ = +1/2

to regression-based metheds,GENIE3 [28][29],TI- if gene is positively biased in the sense timéqual

GRESS [30]29];Bayesian Networks methedsBanjo humber ofactivation and inhibition inputs wiiduce

[31]and Boolean network methog®Best-Fit algorithnictivatiorthe reverse being the case if -1/2 . The

[32],REVEAL [33]GABNI [34],and FBNNe{35].Using network model is depicted in Figure 1, where the threshol

real time series microarray data from the SOS DNAURdéfsaare step functions that output 1 if the input is positi'

System in Eoli,we compare PALLAS to the methodanf 0, otherwise. This model constraint reduces the numl

[36], [37], [27]- We also illustrate the performance 6f PALIAASters needed to spénify2”’ tod? + d.

in recovering known regulatory links in the E. Coli Biofilm

Formation Pathway using time series RNA-Seq data.

—0 f1(x)

2 METHODS
2.1 Partially-Observable Boolean Dynamical Systems

The Partially-ObservabBoolean dynamical system
(POBDS) model [20] allows for uncertainty in Boolean s
transitionand partialobservation ofthe Boolean state
variables through noise.

—0 fa(x)

2.1.1 State model

Consider a state prodeéés k=0, 1, . . .}, whereX« €
{0, 1}d is a Boolean vector of,sideich evolves according
to

_Ofd(x)

Xk =f(X k-1)@©nk; (1)  Fig. 1: Schematic representation of the network functior

fork=1,2,... wherd : {0, 1}° - {0, 1} is called the
network functionjk € {0, 1}d is additive noise at fimad 21.2 Observation Model
«®” jndicates component-wise modulo-2 addition. The state . —
- - e sequence sfates is observed indirectly through the
and noise processes are assumed to be indepEhdent.

state model (1) can be suitably modified to include%r)?&?' 1< k=0,1,. . J» where t.he measurement vector .
. . ) k 1s a general nonlinear function of the state and observ:
inputs, if desired.

The noise random veatomodels uncertainty in tl'ftleon noise:

state transition: if a compomerit df the corresponding Yi =h (X« w) (3)
component bfX - ) is flipped. As long as all comporfents- 1, 2, . . ., where the noise vectois assumed to

ofn« have a nonzero probability of being 1, the statinplepesdent of the state process and state transition nois
is an ergodic Markov Chain, with a steady state dispribzcstiaslie describe nexhe two observatiomabdels

But if the noise is too intense, i.e., the probability ofdisisdered in this papenrresponding to two common

is too large, state evolution becomes chaotic. Howgenap édsression modalities: RNA-Seq count data or micro
well known that important biological pathways arertigiftiprescence d@tmervational models for other data
regulated. Accordingly, each component of the noiseod=dities can be introduced, if desired.
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RNA-Seq observation mod@NA-Seq data can be mo@-2 PALLAS Algorithm
eled with the Poisson distribution [38]the negative

In thi i ibe i LLAS (P li
binomiaHlistribution [3940].Here,we employ the lat- n this sectiomye describe in detdih S (Penalized

ter,since it is able to address overdispersion in thefmat?lm?um LikeLihood and pArticle Swarms), an algorithm
oBool lat t ks fi
distribution¥WWe assume that the transcript c¥unts erence gBoolean gene reguiatory networxs from

noisy time series géne expression dakhe algorithm
9'/:: -+ ko) are related to the Xate (X (. - - - %) has two main componentyefficientomputation of

penalized log-likelihood cost fun@jiemaximization of
the previous co$éinction using a novehrticle swarm
P(Yk =y|Xk=x)= P =yil Xk =xi), (4) methodpamelya mixed discrete-continuous fish school
=1 search procedure. We describe here the general case, wh
and adopt the negative binomial model for each countprior knowledge is available tormatelparameters.
P =yilXu =x )= The algorithm can be easily modified to allow some of the
_ ‘ parameters to be specified by thbyusanply reducing
Myi +@i) Aj yi @ o (5) the size of the parameter space and using the known parz
YilT(pi) Ai+qi Ai + @i ' eter values in the likelihood computation.
Letd = (0 qisc- econt) €0, Withedisc € O gisc a“decont €

wherd denotes the Gamma functiad®; A >0 are . -
- . - Ocgnt » beJhe discrete and continuous unknown model pa-
the real-valued inverse dispersion parameter and meai rea

countof transcript respectiveligr/ =1,..., d. The rame'iersvheré), Odisc andOcont are the corresponding

inverse dispersion paramétespecifies the amounit pa_rameter spaces, Withd qisc * O cont. Hereﬁcfisc con-
- p oy - ins the parameters of the network function in (2), namel
observation noise: the larger it is, the less observa ¢

on nois
is present. We model the para\nhtéog-space as:

e edge parametéysc {-1,0,1} ,fori/ =1,...,4d

and the regulation bias paramétesrf—‘l/Z, 172} , for

logAi =logs+u i +38iXi, (6) i=1,...,d.HencePgs: ={-1,0, 1} © x{-1/2, 1/2) d

L . . . Y d

where the parametéris the sequencing deptivhich ;T:e:sz;::;:ter:::ehl- iu“ t;‘:zzd:‘nua':jbag'::lye:e $1XI=20r
depends on the instrumént> 0 is the baseline level y '

of expression in the inactivated transcrijstivtegind exampldipr a network with ordy= 4 geneslOqs; | =

. 1o e — | = 32
% >0 is the difference between read count ag 6I?27:t7l:52f ;vahrlé‘z If(::or?t;i:'lhse::'llczdgialser%it?(:r?al .:rr;meterS'
from the inactivatéd=(0) to the activatéd— 1) state, ¢ nt P :

fori = 1 d he baseline expression léveld) and the differential

) . expression levéls> 0 , for/ =1, ..., d for both RNA-
Microarray observation moddlreasonable modédr seq and microarray data, the inverse dispersion paramete
continuous microarray fluorescence data is a Gausgiaml,iqb"' =1, ..., d for RNA-Seq data, and the standard
ear model: deviation§i >0, for/ =1,..., d for microarray data

y=H+Dx+v, (7) (the sequencing depth paranidseassumed known for
whergt = (i 1 - - -+ H) > 0 is the vector of baseline expr8iven RNA-seq assay, so itis notthary.dence, the
sion levels corresponding to the “zero” or inactive &mS%PFa"‘Y?éfnt isQ = 3d in both cases.
each gen®,=diag{é 1,---. & >0 is a diagonal matrix 1he mixed discrete-continuous fish stwrah pro-

containing differential expression values for each §&fir§rmployed by PALLAS assumes that the parameter
v~ N (0, %) is an uncorrelated zero-mean Gaussian HBRGE is a closed and bounded region with an absorbing

vectonvhere = diag{o 12 L 9} >0 . Notice that (4) jdecision boundary (if the current best estimate exceeds t

still satisfied here. boundary, it remains at the boundary). This is not a limitin
requiremernih practicesince sensible lowasd upper

2.1.3 Boolean Kalman Filter boundscan be sefor all the observationphrameters.

Given a time series of observa¥ions {Y 1,..., Y}, :h_ese interv:ls c?n bﬁts?t :yr':f;:ﬁr’ or the :ollo;ving dz
the Boolean Kalman Filter[@8@Fcribed in detail the riven procedure to obtain de als Is employed.

- . ’I’ﬁt min, max, and mean be respectively the minimum
1 M iad) ly th ’ ’ ’
zl::\l:\-esﬁsz::ero?t:trate):::i::t?:'ad y the minim maximumand mean value ofthe observed data for all

. . genes across aiine points and available time selmies.
XMS =argmin  E[||Xk - Xkll? | Y14]. (8) the case of RNA-Seq dtita,data must be normalized by
Xke {01} @ dividing the measurements by the sequencing depth and

The BKF also computes the probabilities needed totd8Pci2king logs prior to computing the nman,and ]
mine the likelihood functiaadetailed in Section 2.2Mean values. Then the following intervals are assumed:

When the network is largmwevergomputation dhe /. _ [ min , mean ]
BKF is intractable since each transition matrig’¢ontain - ’ . ;
elements which requires large computation and merdo?y[. min{max — mean, mean - minj/3, max - min |,

In this casapproximate methods must be s as % <[0.1, max{max — mean, mean - min}/3],

the Sequential Monte Carlo (SMC) metlisodknown as ¢, <[ 0.5, 7],

particle filter [4llkre we use the auxiliary particle filter 9)
implementation tifie Boolean Kalman Filter (APF-BKfog !/ =1, ..., d. Some ofthe parametexsan often be
described in [42] (please see that reference for theabstaiisll to be the same across dif§eseadtyvhich re-
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duces the data requirenufrthe estimation problém. The maximum-likelihood estimator of parﬁlabtime
the simplest case, there are single pd#aﬁlatmlfkor Kk is then given by
¢ for all genes, so that3. In any cas@,.: is a closed
and bounded rectangular reg in

Nextwe describe the two main steps comprising the N N
PALLAS algorithmcomputation ofhe penalized log- A state estimﬁaﬂ(,’}’”- = X«(%") can be obtainedf
likelihood function and the novel mixed discrete-coiRRliRslhereX(6) denotes the optinsthte estimator

WL = arg max Li(o). (14)

fish-school search method. produced by a BKF tuned to the par@meter

2.2.1 Penalized Maximum-Likelihood Computation 2.2.2 Mixed Fish School Search Algorithm

Suppose that the sample data cdhuidepéndent timdn this section, we describe in detail a novel particle-swatr
seried’ , ={Y ', ... Y} uptotimé,forj=1,.. ., n. optimization algorithm for discrete-continuous parameter

d searchcalled the mixed fish scheehrch (MFSSjigo-
rithmwhich is an extension of the fish school search (FSS
algorithm for continuous parameter spaces proposed in [2

L 1 ) ) ) One of the main novelties in the MFSS algorithm is the abi
k(6) = kn log pe(Y 1, - - - Y:?k) -n laj | ity to operate on large continuous and discrete parameter

=1 (10) spaces simultaneously, which is needed to infer the conti

1 X j ous noise parameters of the observation process, in addit

= n log pe(Y1.x) = n laj |, to the discrete parameters of the GRN itself. As the origin

=1 ij=1 algorithm, MFSS has a few properties that are unique amc
most particle swarm optimization techmiapmedythe

ability to switch automatically between exploration and

Lor%%gon modes and its modular concept.

t
S

The penalized log-likelihood of fhadéimé is define
as
d

where) > 0 is a regularization parameathich has
a default value of 0.01 in our implementatidlence, pe
the penalized log-likelihood in (10) is the sum of th _ h o r
log-likelihood per time series and a negative value tj g eM_FSS alg_orltlihe object_we is to f_'“d a model
number of edges in the moddximization of (10) thud*atmaximizes a given score or fitness — in our present
encourages the model to both fit the data and be sﬁglsféhi'i'.s th? penalized |_°9'|'kel'h°°d defined '“_the
contain a smaiumber of edges between gevieish is revious sectioBach candidate modieé,,each candi-
in agreement with biological knowledge. Thé& camedite parameter vecter(9 ic: 8ont ), corresponds to a

be adjusted by the user to obtain a desired level of |'§| or “fish.” The lengtN & denoted b{/. From
Notic:authat y u ' ! v the previous sectiohy d 2 +d+ Q . The fish school

] . ) . ) is an ensemble ¥fsuch particles in the parameter space
log pa(Y'x) =log  Po(Yk | Yy P6(Y'iiy | Yok )  ©=Oudisc X0 cont - The position of fisk iteratiénwill be

o denoted b3 (1) = (6 §. (1), Ooont (1) s fors =1,. .., Sand
p(Y, | Yy)p(Y’) r=0,..., R. The number of fisfkeand the total number
e ' of iteration§ are user-defined parameters (in practice,
= log pe(Y{n 1Y), S=3xP andR =5000 are found to be good values).

In additiongach fish has a weights(r) at iteratioh,
(11) which reflects the quality of the solution.

m=1
W"e"_e _ Initialization. The initial position 6°(0) =
Po(Yh | Y, 1) (65isc (0), Bt (0)) of eachfish is assignedrandomly.
2 The continuous vectdy, (0) is drawn from a uniform
- j Y v Y distribution ove®..nt, but for the discretgart,it is
» Po(Yim | Xm = X', Yooy ) PoXim = X' | Yoy ) advantageous to use a non-uniform distribution to initializ
% the edge parametémssuch a way that (0) is equal to
- - i -1 or 1 with probability4, and0 with probability?2
= / = I = I . 9 ’
» Po(¥in | Xm = x') Po(Xm = X' | Y1 ) fori,j=1, ..., d which introduces a bias toavds!
g . (12) and-1. This is in agreement with the biological observatio
With(B% )i =po(Yh | Xm = x') Pe(Xm =x" | Y, 1 ), lt)?at GRNs tend to be sparsely conribieddditial value
the penalized log-likelihood in (10) be written as ”(0) of the regulation bias parameter is chosen to be eithc
-1/2 or1/2 with equal probabilities,¥ér. . ., d

Individual movement operator. This is an exploratory step
where each fish independently moves adiktahce in

a random directiomas long as this increases the fitness
The sequence ofalues||B% Il;, for/ =1,...,n and functionLetAO () =(A0 §oing (1), AB oniing (1)) be
m=1,..., k can be computed by a BKF tuned to paiiféeandidatadividualdisplacementctor for fish

6 applied to the time serls, (see the Supplementadt iteration Vectok6 ;.. (1) is drawn from a uniform
Material for a description of the BKF). As mentionediatribation over the rectangular rbgio‘l'}d2+d , While
previous section, here we use the auxiliary particleMiftering) is drawn from a uniform distribution over the

implementation é6lie BKF for computationaFficiencyrectangular regipn ((r), 71(r)] x X [-T o(r), To(n].

d

X oo %
@ 185 11y —n lai | (13)
=1 m=1 ij=1

Ly(d) =
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The step size bouhds , forg = 1, .. ., @ shrink linearlyThe position of each¥islhupdated according to:
with ', in order to ensure convergence and emphasize () =
exploitation over exploration at later itehaansm- "™t
plementatiothe initiahnd finalalues (1) and7y(R) & (r) +

are setyespectivelyn 10% and0.01% of the range (i.e., " S0y (Lk(B%, (D)L «(65°(r-1)))

the difference between upped lowerbounds)of the ) " (18)
corresponding continuous parameter — these valuethealidplacement in discrete parameter space is quantize
modified by the uséfdesiredNow,\0 ., () needs following the same procedure adopted to discretize the
to be quantized into the l4tlic® 1} @+d jn order to beindividual movement displacement vector.

added to the discrete component of the current fisigppetiRfe volitive movemapieratoihis is similar to
The quantization scheme we adopt here is a genergligati@ividuainovemenstepbutnow the fish move in
of the method for binary parameters in [43]. We defppnéend, depending on whether the fish school is success
adaptive thresholds: after the previous steips,its totalveighfincreaseer
not.If the fish school is succetiséuljt should contract,

somy A0 (N(L k(B ()L 1(6°(r=1)))

thr;os(f) =max (A8 Zisc ing () % {;,, changing from exploration to exploitation mode. Otherwis
s ’ (15) it should expand in order to explore the spacmmwre.
thrpeg () = Min -~ (A8 §igeing (N) X & is accomplished by fixkéfining the currefish school
barycenter:
where the operatorax. (v) is equalto the maximum P S ws(nes ., (r
of the components wéctow if atleasone ofthem is b(r) = SB o . st 22 (19)
positiveand equato zeroptherwiseimilarlymin- (v) =1 V(N
is equal to the minimum of the componernifsableast For each fishafter the collective instinctive movement at
one of them is negatimed equal to zerstherwis&@he iteratioh, leté°( =6 7, () -b(nN=(E 1), ..., &)

factof/R increases the thresholds (in magnitude) withthe position vector with respect to the school barycen:
to favor exploitation over exploration at later iteratie#s@ind) = (A0 jg. o (1), AO 1o (1)) be the collec-
ensure convergenErploitation could be understoodtiase volitive displacemeattor for fish atiteration.

an analogy to tree depth-first search as opposed tovmqtb6 ;.. ., (1) is drawn from a uniform distribution
rationwhich would equate to tree breadth-first beamlorthe rectangulaegion[0, &] X x [0, &g2.q] and
exploration mode the algorithm widens the search guiin¢ized by the same process used in the individual mov
parameter space, while in exploitation mode, the algbii!hﬁléomyvd () is drawn from uniform distribution
attempts to get a more accurate result in a small aseaiththeectangulaegion|0, 27 (1)¢ 5., 4,4 (1) % x
parameter space. [0, 2w (n)é 6512+d+Q (N1, wherd((r), ..., o(r) are the same

The quantized discrete displacement vector is obtéineiges used in the ipdividumbverpenstep.lf the
by assigning to a positive component if it is larger theimools successfub.jif __, W°(r) > oy WE(r=1),
thrf,os(r) , assigning1 to a negative compondhft is then its radius should contract, and
smaller thethrieg (r)  and assignirigto all other compo- & (=6 5. (1) - A8 5, (1) (20)
nents (no movement). Then the positiohiefufpstated vol inst vol ¥/
if the exploratory move causes an increase in fitnessherwisdhe radius expands, the schoahn escape a

bad region, and

j E(r-1)+ 26 540, B0 (N =0 et (N + A8 55(r), (21)

ifLi(0°(r-1)+A0 [, () >L «k(8°(r-1)), The new position of the fidkis 6 _ (/).

e (r) =
[ &(r-1), otherwise. vol

ind
(16)
wherel « is the penalized log-likelihood thfe model, 3 RESULTS
defined in the previous sectiln.absorbing boundaryln this sectiome presenthe resulbf a comprehensive
condition is adopted, whereby each fish interrupts fetabyamerical experiments, using both synthetic and re
ment at the boundary of the parameteraptepoint gene expression time series data, to assess the performa
where it encounters it. of PALLAS and comparedgainsthatof other popular
) ) ) methods in the literatNeprior knowledge is useal;
Feeding operator. The weights of all fish are updateg has88) parameters must be estikdatess otherwise
on the fitness improvemfmim the previous individug|,¢oqshe default values for all PALLAS fixed parameters
movement, if any: and estimation intervals are used, as described in the pre
ous sections.
Li(68hq (N) =L x(6°(r—1)) _

maxstL k(64 (1) — L «(6°(r-1))} 3.1 Network Size

(17) We consider networks with 6 to 10 genes. These are typic
Collective instinctive movemepeératorThis operatornetwork sizes encountered in biomediésahrciMost
makes the fish thixdd successfmdividuaimovements known molecular pathways invofeedastancin cell-
influence the collective direction of movement of thigsaliaod, metabolic processes, and the cell cycle, conta

Wy =w (1) +
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TABLE 1Number of pathwaysjerage number of genqg,s distance is related to the dynaimibakior ofhe
per pathway for different species networks, since it has to do with how the Boolean functio
H.sapiens pathways genes/pathway differ.
KEGG 237 72.4
WikiPathways 135 46.3 3.2.2 Edge-Calling Accuracy Rates
,\'n'":n":‘z';ﬁ}’:s patzhgveays gene:/.:athway An edge in the groundtruth network represents a relation-
KEGG 218 74.6 ship between two genHere we consider directionality
WikiPathways 140 57.8 (an edge from geneto gené is distincfrom an edge
sM°“se(_:y_° fh23 8/'0 - from gené to gené), but disregard activation/inhibition
'?Erg‘gs'ae L 9;" = genegsf; ey relationships (this is done because some of the methods 1
WikiPathways 125 118 which PALLAS is compared in this section do not capture
YeastCyc 184 6.5 activation/inhibitiohptTP andFN be the total number
M't“be:(cE“é‘:;s's H37R‘pat1h1";ays 9e“e;"2|’g““’"ay of directional edges that are correctly detected (irrespect
WikiPathways 8 223 of inhibition/activation) and incorrectly missed by the infe
MTBRvCyc 234 5.7 ence algorithm, respectively. Simifarbund&t be the

total number of directional edges that are incorrectly foun

. . and correctly missedpectiveWe define the following
small number of components. This could be a bias m’g@fgélling accuracy rates:

smallemetworkslictated by the limitation$ wet-lab (i) Sensitivity/True Positive Rate (TPR):
experiments, but it is more likely to be a result of the funda-

mental constraints of biological processes: huge state spaces TPR = ™ ) (23)
could be prone to non-robust, chaotic dynamical behaviour TP +FN

and unnecessary energy expenditure by tRaldeH,
extracted from [44], substantiates this claim using a divdidéSpecificity/True Negative Rate (SPC):
sample ofnetabolic pathways for four madghnisms TN
from majompublic databases (KEGG [4S]kiPathways SPC = BPrTN
[46],[47],BioCyc [48]49],[50]).The average number of

genes per pathway in KEGG is around 61, in WikiPathwayg;) precision/Positive Predictive Value (PPV):
it is 39,and in BioCycjt is 8. In [51],the BioCyc and

KEGG databases are compared, and it is shown that KEGG PPV = L.

pathways are substrate-ceihésbhey combine multiple TP +FP
biologicaprocessethatimpinge on a single substrate,

meaning that individual KEGG pathways can contain3alteperiments with Synthetic Data
native routes of biosynthesis (or catabolism) of a sybstragg,,najian Cell-Cycle Network with Synthetic RNA-
either from one organism or from multiple org@hisms,; psta
conclusion is that the BioCyc pathway conceptualization is
closer to a single conserved biological process than th=#¢ ~f
KEGG.That is to say 10-gene networks are not small fo
single biological process, and in fact it is above the av
BioCyc network size in all species considered.

3.2 Performance Criteria

The problem ofomparing networks is a nontrioiad;
there is not a single metric that captures both the topc H

(24)

(25)

and dynamicgiroperties dthe networks [52ere we
consider two classes of metrics, one based on the diff(
between the network functiohich takes into account
the full regulatory relationships among genes, and the
based on edge-calling accuracy rates, which considers only

the network topology. Fig. 2: Mammalian cell cycle network.
3.2.1  Network Function Distance Here, we present results based on the well-known Man
Letf =(f 1,---,4) andf =( fo... fd) be the networkmalian Cell-Cycle network [GBich is displayed in Fig-

functions of the groundtruth and inferred networksuveh2r{Results for a different GRN are presented in the Su
the componelinctioné; and fi are Boolean functionslementary Materidlpe state vectods (CycD,Rb,

ond variabledpri/ =1, ..., d see (1)The performanc®27, E2F, CycE, CycA, Cdc20, Cdh1, UbcH10, CycB). This i
criterion isthe average numbeaf disagreeing Boolean large network, with a huge parameter space, for which f
functions between the two networks estimation problem is hard. The gene interaction paramet
1 xR _ _ dj can be read from Figure 2 in the same way as in the p5
OF F)= . [fiod)e fix)]. (22) MDM2 network in the Supplementary Material. Once agair

dx20 the regulation biases are Bettd2 ,fori=1,...,1Q
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The transition noise paramisteelected randomly in flhactiondpr which the network function distance is ap-

interval.01, 0.1] The RNA-Seq data model parameteprapeiateéOn the other hand, the output of GABNI consist

Mi=pu=01,5=5=3 ,9%=¢p=5 ,fori=1,...,10. of positive (activating) or negative (inhibitory) interaction:

The sequencing depth is set1a52 (500K-550K read$pr which we use the edge-calling accuracy rates defined

and the time series length is fixedHdr8Owe comparereviously.

PALLAS with the GENIE3 [2F]GRESS [303nd Banjo Average network function distances and edge-calling a

[31] algorithms. Like PALLAS, these algorithms carcopeecygteates obtained over 20 repetitions of the experime

directly on the noisy time series, without a need fot2xfbheach of the 10 networks) with are displayed

binarizatioddoweverthey do not estimate observatidndligures 4 and 5 (corresponding results for are

parameters or provide activation/inhibition informasieenyvsoin the Supplementary Material). Figure 4 shows thz

only the edge-calling accuracy rates in Section 3.2f2agerformance &8fest-Fiind PALLAS increases with

appropriate here. Average rates obtained over 20 répetisionseries lengthjle the performance of REVEAL

of the experiment are displayed in Figure 3. One camnseEBNAetare mostly stabl®ALLAS perform better

with similar specificity, PALLAS displays higher sertbitivihe Best-Fitgorithmespecially whéhis smaller.

and precision than GENIE3 and TIGRESS. AlthoughThisaeflects the fabatad-hoc binarization tife data

not possible to adjust the specificity of Banjo to thbsaamees less accurate with a smaller difference betweer

levelsywe can see that its sensitivity is quitinléaet, activation/inactivation levels in the observedhixta,

Banjo returned a very small number of edges overailbidettdsmined b§. Figure 5 shows thaRALLAS beats

experimenPALLAS also displayed the higipeetision GABNI in sensitivity throughastwelkls in specificity

among all the algorithms. under sufficient data. Indeed, it is shown in Supplementar
MateriathatGABNI detects very few edges under small
sample size ohigh observation noisehich artificially

m Sensitivity inflates its specificity.
Specificity
B Precision

PALLAS
3.4 Experiments with Real Data

In this sectiome demonstrate the application of PALLAS
to real microarray data from well-known biological systen

The complete resuliis¢gluding both false positives and
false negatives, can be found in the Supplementary Mater

GENIE3

TIGRESS

3.4.1 E. Coli SOS DNA Repair System

. ! ; . ‘ ‘ | . | Firstwe consider the SOS DNA repair systemGoliE.
O O 0 D el R 0 00 In the normalktatethe protein LexA is known to be a
. . . repressor to the SOS geMéisen DNA is damagedhe
Fig. 3: Mammalian cell cycle experiment resul{i.otein RecA becomes activated and mediates LexA auto-
cleavagevhich causes activation of the SOS §étens.
o ) , the activated SOS genes repair the damagedBNA,
3.3.2 Artificial Networks with Synthetic RNA-Seq Data stops mediating LexA autocleavage and LexA represses the
In this section we report results obtained on an en&0Shienés agaiFhe fullSOS DNA repair gene network
10 randomly generated networks/ withgenesywhere is displayed in Figure 6 [EB5]]We attempt to infer this
each gene is regulated by 3 other genes on dagagaetwork from gene expression time series datasets gener
connectivifpcluding activation and inhibitowell as ated by [56]http://www.weizmann.ac.il/mcb/UriAlon/
regulation biases, are randomly chosen. The transitiownkiad/downloadable-daEsch time series contains
parametdris selected randomly in the inféfi/al0.1] 50 measurements forery 6 minutes including the ini-
RNA-Seq synthetidata are generated with parametetialzero concentrations pick the third datadsatthe
Hi=u=0 ,9 =¢p=1 orb5for! =1,...,8 Inthe databaséor this experimengnd comparethe results
first case, there is more observation noise, and thezpysinisththose found in [36], [37], [27].
is hardefhe parametérsare allowed to vary uniformly The sparsity parametdn (10) is chosen to produce
over the intervils2]or([1, 5] fori=1, ..., 8 In the firstabout half of the possible edges in the six-gene network. |
case, the problem is harder, since the differences iurel&dispthys in red the edges of the original network tha
expression are smaller. Sequencing depthis28é&Ratwere successfully recovered by a consensus of the top th
(500K-550K reads). networks found by PALLASg¢cording to the penalized
Here,we compare PALLAS with the Best-FitRB2] likelihood score (the full network is displayed in the Supp!
VEAL [33], FBNNet[35], and GABNI [34] algorithms.ni&etay Material). We can see that all inhibitory edges frc
methodsapply to Boolean time seriss, they need to /exA were successfully detedti¢bough PALLAS infers
employ ad-hoc binarizationthf gene expression datthe wrong direction between recA and /exA, the connection
For the firsttwo,[54]recommends the use tife KM3 detected. With a similar total number of inferred edges, [3
binarization method, while for GABNI, [9] recommefiddsithe opposite regulationgll the inhibitory edges
use of K-means binarization, as well as FBNNet; heacejnferred as activating edges. While [36] finds most of {
use those binarization methods here. The output ofikhéibBRes§edges, it misses the important edge from /exA to
Fit, REVEAL and FBNNet algorithms are Boolean transitiomally, [27] recovers only two of the edges.

Banjo
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Fig. 5: Comparison of edge-calling accuracy rates between the PALLAS and GABNI algorithisangelar differe

database (https://www.genome.jp/kegg/well as in

—. [57],[58],[59]-.Figure 7 displays a consensus gene net-

/ work derived from these sources. The gene expression da
’ used is from the EoliStrain B/REL606 and is available
at the Dryad DigitaRepository (https:/datadryad.org/

resource/doi:10.5061/dryad.hj@8j)This dataseton-
sists of 3 bacterial samples and 9 time points evenly spac
for each sample. The genes in this pathway display simila
values atow expression levdiaf vary considerably at
high expression levelzcordinglyye assume a single
Fig.6:SOS DNA repair system in E.coli (the red edgdwmaedine paramétet [ for all genes, but the parameters
the ones successfully recovered by PALLAS). O and @ are allowed to diffeéirom gene to gendpr
i=1,..., 8. The sequencing depth is set&t02 (1k-
50k reads) reflecting the low read counts in the data set.

3.4.2 E. Coli Biofilm Formation Pathway As in the previous experimé¢hé, sparsity parameter

In this sectionye demonstrate the performan®dbf 2 in (10)is chosen to produce abbalfof the possible

LAS on RNA-Seq time series expression data from a¢géb-in the eight-gene netwaglre 7 displays in red

way involved in biofilm formation b§dii,namelythe the edges ofhe originahetwork thatwere successfully
Rpos(sigmaS)/MIrA/CsgD cascaddajch involves eightrecovered by a consensus of the top three networks founc
geneskpos, MIrA, CsgD, YciR, YoaD, BcsA, YaiC, ydaM. by PALLASaccording to penalized likelihood score (the
Information on this pathway can be found in the KEGIBnetwork is displayed in the Supplementary Material).
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