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pArticle Swarms for Inference of Gene

Regulatory Networks from Time Series Data
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Abstract—We present PALLAS, a practical method for gene regulatory network (GRN) inference from time series data, which
employs penalized maximum likelihood and particle swarms for optimization. PALLAS is based on the Partially-Observable Boolean
Dynamical System (POBDS) model and thus does not require ad-hoc binarization of the data. The penalty in the likelihood is a
LASSO regularization term, which encourages the resulting network to be sparse. PALLAS is able to scale to networks of realistic size
under no prior knowledge, by virtue of a novel continuous-discrete Fish School Search particle swarm algorithm for efficient
simultaneous maximization of the penalized likelihood over the discrete space of networks and the continuous space of observational
parameters. The performance of PALLAS is demonstrated by a comprehensive set of experiments using synthetic data generated
from real and artificial networks, as well as real time series microarray and RNA-seq data, where it is compared to several other
well-known methods for gene regulatory network inference. The results show that PALLAS can infer GRNs more accurately than
other methods, while being capable of working directly on gene expression data, without need of ad-hoc binarization. PALLAS is a
fully-fledged program, written in python, and available on GitHub (https://github.com/yukuntan92/PALLAS).

Index Terms—Gene regulatory network, partially-observable Boolean dynamical system, penalized maximum likelihood, particle
swarms, PALLAS.

F

1 INTRODUCTION

INFERENCE of gene regulatory networks (GRN) from gene
expression time-series data is a problem ofcriticalim-

portance in Bioinformatics [1].Many mathematical models
have been proposed in the literature to address this problem,
including linearmodels[2], [3], Bayesian networks[4],
[5],neuralnetworks [6],differentialequations [3],[7] and
information theory based approaches [8],[9].The Boolean
network (BN) model[10],is an effective modelfor GRNs
due to its ability to describe temporalpatterns ofgene
activation and inactivation and its comparatively small data
requirement for inference [11],[12],[13],[14],[15].Several
extensions of the BN model have been proposed, including
Random Boolean Networks [10],Boolean Networks with
perturbation (BNp)[16],and ProbabilisticBoolean Net-
works (PBN)[17],and Boolean ControlNetworks (BCN)
[18],[19].However,all of those models assume thatthe
system Boolean states are completely observable.This is
a significant drawback,since allpracticalmethods for the
inference of Boolean networks must include a step of ad-
hoc binarization of the gene expression data. The Partially-
observed Boolean dynamicalsystem (POBDS)model[20]
addresses this problem in a principled way,by postulating
separate Boolean state and generalobservation processes.
The time-series gene expression data,whether microarray

• Yukun Tan is with the Department of Electrical and Computer Engineer-
ing, Texas A&M University, College Station, TX, 77843, USA.

• Fernando B.Lima Neto is with Department of Computer Engineering,
Polytechnic University of Pernambuco, Recife, 50720, Brazil.

• Ulisses Braga Neto is with the Department ofElectricaland Computer
Engineering, Texas A&M University, College Station, TX, 77843, USA.
E-mail: ulisses@ece.tamu.edu (corresponding author.)

Manuscript received XXXX; revised XXXX.

or RNA-seq data,is modeled by the observation process,
while the Boolean states are hidden. This allows the optimal
inference of the sequence of Boolean states, as well as system
parameters, from the time series data.

In this paper,we present PALLAS,a practicalmethod
for parametric gene network inference based on the POBDS
model,using penalized maximum likelihood and particle
swarms for optimization.PALLAS is a sophisticated state-
space method thatcan detectedge directionality and ac-
tivation/inhibition status,withoutany priorknowledge,
in addition to being capable ofworking directly on gene
expression data,without the need for ad-hoc binarization.
The penalty in the likelihood score is aL 1-norm LASSO
regularization term [21],which encourages the resulting
network to be sparse, i.e., contain a small number of edges
between genes;its value can be adjusted by the user to
obtain a desired levelof sparsity.The likelihood itselfis
calculated efficiently by an auxiliary particle filter (APF)
implementation ofthe Boolean Kalman Filter[20],[22].
Anothernovelfeature ofPALLAS isthe application to
Boolean models of a particle swarm method:a new mixed
continuous-discrete version of the Fish School Search algo-
rithm [23],[24],for efficient simultaneous maximization of
the penalized likelihood over the discrete space of networks
and the continuous space of observational parameters.An
early version of this work appeared previously in a short
communication [25]. We mention that particle swarm meth-
ods have been employed before for GRN inference using
non-Boolean models,namely,recursive neuralnetworks
(RNN) in [26] and S-systems in [27].

PALLAS is an extension of the adaptive filtering method
proposed in [22].The latter performs maximization of the
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fork = 1, 2, . . . wheref : {0, 1} d −→ {0, 1} d is called the
network function,nk  ∈ {0, 1} d is additive noise at timek, and
“⊕” indicates component-wise modulo-2 addition. The state
and noise processes are assumed to be independent.The
state model (1) can be suitably modified to include external
inputs, if desired.

The noise random vectornk models uncertainty in the
state transition: if a component ofnk is 1, the corresponding
component off (X k−1 ) is flipped. As long as all components
ofnk have a nonzero probability of being 1, the state process
is an ergodic Markov Chain, with a steady state distribution.
But if the noise is too intense, i.e., the probability of 1’s innk

is too large, state evolution becomes chaotic. However, it is
well known that important biological pathways are tightly
regulated. Accordingly, each component of the noise vector

2.1.2 Observation Model

The sequence ofstates is observed indirectly through the
process{Y k ; k = 0, 1, . . .}, where the measurement vector
Yk is a general nonlinear function of the state and observa-
tion noise:

Yk = h (X k , vk ) (3)

for k = 1, 2, . . ., where the noise vectorvk is assumed to
independent of the state process and state transition noise
process.We describe nextthe two observationalmodels
considered in this paper,corresponding to two common
gene expression modalities: RNA-Seq count data or microar-
ray fluorescence data.Observational models for other data
modalities can be introduced, if desired.
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RNA-Seq observation model.RNA-Seq data can be mod-
eled with the Poisson distribution [38]or the negative
binomialdistribution [39],[40].Here,we employ the lat-
ter,since it is able to address overdispersion in the count
distributions.We assume that the transcript countsYk =
(Yk1 , . . . , Ykd ) are related to the stateXk = (X k1 , . . . , Xkd )
via

P (Yk = y | X k = x) =
dY

i=1

P (Yki = y i | X ki = x i ), (4)

and adopt the negative binomial model for each count,

P (Yki = y i | X ki = x i ) =
Γ(y i + φ i )
yi ! Γ(φ i )

λ i

λ i + φ i

y i φi

λ i + φ i

φi

,
(5)

whereΓ denotes the Gamma function,andφi , λi > 0 are
the real-valued inverse dispersion parameter and mean read
countof transcripti , respectively,for i = 1, . . . , d. The
inverse dispersion parameterφi specifies the amountof
observation noise: the larger it is, the less observation noise
is present. We model the parameterλ i in log-space as:

log λ i = log s + µ i + δ i x i , (6)

where the parameters is the sequencing depth,which
depends on the instrument,µi ≥ 0 is the baseline level
of expression in the inactivated transcriptionalstate,and
δi > 0 is the difference between read count as genei goes
from the inactivated (x i = 0 ) to the activated (x i = 1 ) state,
fori = 1, . . . , d.
Microarray observation model.A reasonable modelfor
continuous microarray fluorescence data is a Gaussian lin-
ear model:

y = µ + D x + v , (7)

whereµ = (µ 1, . . . , µd) ≥ 0 is the vector of baseline expres-
sion levels corresponding to the “zero” or inactive state for
each gene,D = diag{δ 1, . . . , δd} > 0 is a diagonal matrix
containing differential expression values for each gene, and
v  N∼ N  (0, Σ)) is an uncorrelated zero-mean Gaussian noise
vector,whereΣ) = diag{σ 2

1 , . . . , σ2d} > 0 . Notice that (4) is
still satisfied here.

2.1.3 Boolean Kalman Filter

Given a time series of observationsY1:k = {Y 1, . . . , Yk } ,
the Boolean Kalman Filter[20](described in detailin the
Supplementary Material)computes exactly the minimum
mean-square error state estimator:

X̂MS
k = argmin

X̂ k  ∈ {0,1} d

E[ ||X̂k − X k ||2 | Y1:k ] . (8)

The BKF also computes the probabilities needed to deter-
mine the likelihood function,as detailed in Section 2.2.1.
When the network is large,however,computation ofthe
BKF is intractable since each transition matrix contain22d

elements which requires large computation and memory.
In this case,approximate methods must be used,such as
the Sequential Monte Carlo (SMC) method,also known as
particle filter [41].Here we use the auxiliary particle filter
implementation ofthe Boolean Kalman Filter (APF-BKF),
described in [42] (please see that reference for the details).

2.2 PALLAS Algorithm

In this section,we describe in detailPALLAS (Penalized
mAximum LikeLihood and pArticle Swarms), an algorithm
for inference ofBoolean gene regulatory networks from
noisy time series ofgene expression data.The algorithm
has two main components:1) efficientcomputation ofa
penalized log-likelihood cost function;2) maximization of
the previous costfunction using a novelparticle swarm
method,namely,a mixed discrete-continuous fish school
search procedure. We describe here the general case, where
no prior knowledge is available to setmodelparameters.
The algorithm can be easily modified to allow some of the
parameters to be specified by the user,by simply reducing
the size of the parameter space and using the known param-
eter values in the likelihood computation.

Letθ = (θ disc , θcont ) ∈  Θ , withθdisc ∈  Θ disc andθcont ∈ 

Θcont , be the discrete and continuous unknown model pa-
rameters,whereΘ, Θdisc andΘcont are the corresponding
parameter spaces, withΘ = Θ disc × Θ cont . Here,θdisc con-
tains the parameters of the network function in (2), namely
the edge parametersaij  ∈ {−1, 0, 1} , for i, j = 1, . . . , d,
and the regulation bias parametersbi  ∈ {−1/2, 1/2} , for
i = 1, . . . , d. Hence,Θdisc = {−1, 0, 1} d2

× {−1/2, 1/2} d.
This is a finite space,but its cardinality|Θdisc | = 3 d2

× 2 d

increases extremely fastwith the number ofgenesd. For
example,for a network with onlyd = 4 genes,|Θdisc | =
688747536, while ifd = 8 , then|Θdisc | ≈ 8.8 × 10 32. On
the other hand,θcont contains the observational parameters:
the baseline expression levelsµi > 0 and the differential
expression levelsδi > 0 , for i = 1, . . . , d, for both RNA-
Seq and microarray data, the inverse dispersion parameters
φi > 0 , fori = 1, . . . , d, for RNA-Seq data, and the standard
deviationsσi > 0 , for i = 1, . . . , d, for microarray data
(the sequencing depth parameters is assumed known for
a given RNA-seq assay, so it is not part ofθcont ). Hence, the
dimensionality ofθcont isQ = 3d in both cases.

The mixed discrete-continuous fish schoolsearch pro-
cedure employed by PALLAS assumes that the parameter
space is a closed and bounded region with an absorbing
decision boundary (if the current best estimate exceeds the
boundary, it remains at the boundary). This is not a limiting
requirementin practice,since sensible lowerand upper
boundscan be setfor all the observationalparameters.
These intervals can be set by the user, or the following data-
driven procedure to obtain defaultintervals is employed.
Let min, max, and mean be respectively the minimum,
maximum,and mean value ofthe observed data for all
genes across alltime points and available time series.In
the case of RNA-Seq data,the data must be normalized by
dividing the measurements by the sequencing depth and
then taking logs prior to computing the mean,max,and
mean values. Then the following intervals are assumed:

µi ∈  [ min , mean ] ,
δi ∈  [ min{max − mean, mean − min}/3 , max − min ] ,
σi ∈  [ 0.1 , max{max − mean, mean − min}/3 ] ,
φi ∈  [ 0.5, 7] ,

(9)
for i = 1, . . . , d. Some ofthe parameterscan often be
assumed to be the same across differentgenes,which re-
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duces the data requirementof the estimation problem.In
the simplest case, there are single parametersµ, δ, andσ or
φ for all genes, so thatQ = 3 . In any case,Θcont is a closed
and bounded rectangular region inRQ

+ .
Nextwe describe the two main steps comprising the

PALLAS algorithm:computation ofthe penalized log-
likelihood function and the novel mixed discrete-continuous
fish-school search method.

2.2.1 Penalized Maximum-Likelihood Computation

Suppose that the sample data consist ofn independent time
seriesY j

1:k = {Y j
1, . . . , Yjk } up to timek, for j = 1, . . . , n.

The penalized log-likelihood of modelθ at timek is defined
as

L k (θ) =
1

kn log pθ(Y (1)
1:k , . . . , Y(n)

1:k ) − η
2d

X

i,j=1

|aij |

=
1

kn

nX

j=1

log pθ(Y j
1:k ) − η

2d
X

i,j=1

|aij | ,

(10)

whereη > 0 is a regularization parameter,which has
a default value ofη = 0.01 in our implementation.Hence,
the penalized log-likelihood in (10) is the sum of the average
log-likelihood per time series and a negative value times the
number of edges in the model.Maximization of (10) thus
encourages the model to both fit the data and be sparse, i.e.,
contain a smallnumber of edges between genes,which is
in agreement with biological knowledge. The value ofη can
be adjusted by the user to obtain a desired level of sparsity.
Notice that

log pθ(Y j
1:k ) = log

h
pθ(Y j

k | Y j
1:k−1 )pθ(Y j

k−1 | Y j
1:k−2 )

· · · p(Yj
2 | Y j

1)p(Y j
1)

i

=
kX

m=1

log pθ(Y j
m | Y j

1:m−1 ) ,

(11)
where
pθ(Y j

m | Y j
1:m−1 )

=
2d

X

i=1

pθ(Y j
m | Xm = x i , Y j

1:m−1 ) Pθ(X m = x i | Yj
1:m−1 )

=
2d

X

i=1

pθ(Y j
m | Xm = x i ) Pθ(X m = x i | Yj

1:m−1 )

(12)
With(βθ,j

m ) i = p θ(Y j
m | Xm = x i ) Pθ(X m = x i | Yj

1:m−1 ),
the penalized log-likelihood in (10) be written as

L k (θ) =
1

kn

nX

j=1

kX

m=1

||βθ,j
m ||1 − η

2d
X

i,j=1

|aij | . (13)

The sequence ofvalues||βθ,j
m ||1, for j = 1, . . . , n and

m = 1, . . . , k, can be computed by a BKF tuned to parameter
θ applied to the time seriesY j

1:k (see the Supplementary
Material for a description of the BKF). As mentioned in the
previous section, here we use the auxiliary particle filtering
implementation ofthe BKF,for computationalefficiency.

The maximum-likelihood estimator of parameterθ at time
k is then given by

θ̂ML
k = arg max

θ∈ Θ
L k (θ) . (14)

A state estimatêXML
k = X̂k (θ̂ML

k ) can be obtained,if
desired,whereX̂k (θ) denotes the optimalstate estimator
produced by a BKF tuned to the parameterθ.

2.2.2 Mixed Fish School Search Algorithm

In this section, we describe in detail a novel particle-swarm
optimization algorithm for discrete-continuous parameter
search,called the mixed fish schoolsearch (MFSS)algo-
rithm,which is an extension of the fish school search (FSS)
algorithm for continuous parameter spaces proposed in [23].
One of the main novelties in the MFSS algorithm is the abil-
ity to operate on large continuous and discrete parameter
spaces simultaneously, which is needed to infer the continu-
ous noise parameters of the observation process, in addition
to the discrete parameters of the GRN itself. As the original
algorithm, MFSS has a few properties that are unique among
most particle swarm optimization techniques,namely,the
ability to switch automatically between exploration and
exploitation modes and its modular concept.

In the MFSS algorithm,the objective is to find a model
thatmaximizes a given score or fitness — in our present
case,this is the penalized log-likelihood defined in the
previous section.Each candidate model,i.e.,each candi-
date parameter vectorθ = (θ disc , θcont ), corresponds to a
particle or “fish.” The length ofθ is denoted byP . From
the previous section,P = d 2 + d + Q . The fish school
is an ensemble ofS such particles in the parameter space
Θ = Θ disc ×Θ cont . The position of fishs at iterationr will be
denoted byθs(r) = (θ s

disc (r), θs
cont (r)) , fors = 1, . . . , S, and

r = 0, . . . , R. The number of fishesS and the total number
of iterationsR are user-defined parameters (in practice,
S = 3 × P andR = 5000 are found to be good values).
In addition,each fishs has a weightws(r) at iterationr ,
which reflects the quality of the solution.
Initialization. The initial position θs(0) =
(θs

disc (0), θs
cont (0)) of eachfish is assignedrandomly.

The continuous vectorθs
cont (0) is drawn from a uniform

distribution overΘcont , but for the discretepart, it is
advantageous to use a non-uniform distribution to initialize
the edge parameters,in such a way thatas

ij (0) is equal to
−1 or 1 with probability1/4 , and0 with probability1/2 ,
fori, j = 1, . . . , d, which introduces a bias towards0 over1
and−1 . This is in agreement with the biological observation
that GRNs tend to be sparsely connected.The initial value
bs

i (0) of the regulation bias parameter is chosen to be either
−1/2 or1/2 with equal probabilities, fori = 1, . . . , d.
Individual movement operator. This is an exploratory step,
where each fish independently moves a shortdistance in
a random direction,as long as this increases the fitness
function.Let ∆θ s

ind (r) = (∆θ s
disc,ind (r), ∆θ s

cont,ind (r)) be
the (candidate)individualdisplacementvector for fishs
at iterationr . Vector∆θ s

disc,ind (r) is drawn from a uniform
distribution over the rectangular region[−1, 1]d2 +d , while
∆θ s

cont,ind (r) is drawn from a uniform distribution over the
rectangular region[−τ 1(r), τ 1(r)] × · · · × [−τ Q (r), τ Q (r)] .
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The step size boundsτq(r) , forq = 1, . . . , Q, shrink linearly
with r , in order to ensure convergence and emphasize
exploitation over exploration at later iterations.In our im-
plementation,the initialand finalvaluesτq(1) andτq(R)
are set,respectively,to 10% and0.01% of the range (i.e.,
the difference between upperand lowerbounds)of the
corresponding continuous parameter — these values can be
modified by the user,if desired.Now,∆θ s

disc,ind (r) needs
to be quantized into the lattice{−1, 0, 1} d2 +d in order to be
added to the discrete component of the current fish position.
The quantization scheme we adopt here is a generalization
of the method for binary parameters in [43]. We define two
adaptive thresholds:

thr s
pos (r) = max + (∆θ s

disc,ind (r)) × r
R

,

thr s
neg(r) = min − (∆θ s

disc,ind (r)) × r
R

,
(15)

where the operatormax+ (v) is equalto the maximum
of the components ofvectorv if at leastone ofthem is
positive,and equalto zero,otherwise;similarly,min− (v)
is equal to the minimum of the components ofv if at least
one of them is negative,and equal to zero,otherwise.The
factorr/R increases the thresholds (in magnitude) withr ,
to favor exploitation over exploration at later iterations and
ensure convergence.Exploitation could be understood as
an analogy to tree depth-first search as opposed to explo-
ration,which would equate to tree breadth-first search.In
exploration mode the algorithm widens the search in the
parameter space, while in exploitation mode, the algorithm
attempts to get a more accurate result in a small area of the
parameter space.

The quantized discrete displacement vector is obtained
by assigning1 to a positive component if it is larger than
thr s

pos (r) , assigning−1 to a negative componentif it is
smaller thanthr s

neg(r) , and assigning0 to all other compo-
nents (no movement). Then the position of fishs is updated
if the exploratory move causes an increase in fitness:

θs
ind (r) =






θs(r−1) + ∆θ s
ind (r),

if L k (θs(r−1)+∆θ s
ind (r)) > L k (θs(r−1)),

θs(r−1), otherwise.
(16)

whereL k is the penalized log-likelihood ofthe model,
defined in the previous section.An absorbing boundary
condition is adopted, whereby each fish interrupts its move-
ment at the boundary of the parameter space,at the point
where it encounters it.

Feeding operator. The weights of all fish are updated based
on the fitness improvementfrom the previous individual
movement, if any:

ws(r) = w s(r−1) +
L k (θs

ind (r)) − L k (θs(r−1))
maxs{L k (θs

ind (r)) − L k (θs(r−1))}
.

(17)

Collective instinctive movementoperator.This operator
makes the fish thathad successfulindividualmovements
influence the collective direction of movement of the school.

The position of each fishs is updated according to:
θs

inst (r) =

θs
ind (r) +

P S
s0=1 ∆θ s0

ind (r)(L k (θs0

ind (r))−L k (θs0

(r−1)))
P S

s0=1 (L k (θs0

ind (r))−L k (θs0(r−1)))
.

(18)
The displacement in discrete parameter space is quantized
following the same procedure adopted to discretize the
individual movement displacement vector.
Collective volitive movementoperator.This is similar to
the individualmovementstep,butnow the fish move in
concert, depending on whether the fish school is successful
after the previous steps,i.e.,its totalweightincreases,or
not.If the fish school is successful,then it should contract,
changing from exploration to exploitation mode. Otherwise,
it should expand in order to explore the space more.This
is accomplished by firstdefining the currentfish school
barycenter:

b(r) =
P S

s=1 ws(r)θ s
inst (r)

P S
s=1 ws(r)

. (19)

For each fishs, after the collective instinctive movement at
iterationr , letξs(r) = θ s

inst (r) − b(r) = (ξ s
1(r), . . . , ξsR (r))

be the position vector with respect to the school barycenter.
Let∆θ s

vol (r) = (∆θ s
disc,vol (r), ∆θ s

cont,vol (r)) be the collec-
tive volitive displacementvector for fishs at iterationr .
Vector∆θ s

disc,vol (r) is drawn from a uniform distribution
overthe rectangularregion[0, ξs

1 ] × · · · × [0, ξ s
d2 +d ] and

quantized by the same process used in the individual move,
while ∆θ s

cont,vol (r) is drawn from uniform distribution
over the rectangularregion[0, 2τ1(r)ξ s

d2 +d+1 (r) × · · · ×
[0, 2τQ (r)ξ s

d2 +d+Q (r)] , whereτ1(r), . . . , τQ (r) are the same
step sizes used in the individualmovementstep.If the
schoolis successful,i.e.,if

P S
s=1 ws(r) >

P S
s=1 ws(r − 1),

then its radius should contract, and
θs

vol (r) = θ s
inst (r) − ∆θ s

vol (r) , (20)

otherwise,the radius expands,so the schoolcan escape a
bad region, and

θs
vol (r) = θ s

inst (r) + ∆θ s
vol (r) , (21)

The new position of the fish isθs(r) = θ s
vol (r) .

3 RESULTS

In this section,we presentthe resultof a comprehensive
set of numerical experiments, using both synthetic and real
gene expression time series data, to assess the performance
of PALLAS and compare itagainstthatof other popular
methods in the literature.No prior knowledge is used;i.e.,
all model parameters must be estimated.Unless otherwise
noted,the default values for all PALLAS fixed parameters
and estimation intervals are used, as described in the previ-
ous sections.

3.1 Network Size

We consider networks with 6 to 10 genes. These are typical
network sizes encountered in biomedicalresearch.Most
known molecular pathways involved,for instance,in cell-
signalling, metabolic processes, and the cell cycle, contain a
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3.2.1 Network Function Distance

Letf = (f 1, . . . , fd) and f̂ = ( f̂ 1, . . . ,̂f d) be the network
functions of the groundtruth and inferred networks, where
the componentfunctionsf i and f̂ i are Boolean functions
on d variables,for i = 1, . . . , d; see (1).The performance
criterion isthe average numberof disagreeing Boolean
functions between the two networks

ϕ(f , f̂ ) =
1

d × 2d

dX

i=1

2d
X

j=1

[f i (xj ) ⊕ f̂ i (xj )] . (22)

Here, we present results based on the well-known Mam-
malian Cell-Cycle network [53],which is displayed in Fig-
ure 2. (Results for a different GRN are presented in the Sup-
plementary Material).The state vector isX = (CycD,Rb,
p27, E2F, CycE, CycA, Cdc20, Cdh1, UbcH10, CycB). This is
a large network, with a huge parameter space, for which the
estimation problem is hard. The gene interaction parameters
aij can be read from Figure 2 in the same way as in the p53-
MDM2 network in the Supplementary Material. Once again,
the regulation biases are set tobi = −1/2 , fori = 1, . . . , 10.
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The transition noise parameterp is selected randomly in the
interval[0.01, 0.1]. The RNA-Seq data model parameters are
µi ≡ µ = 0.1 , δi ≡ δ = 3 , φi ≡ φ = 5 , for i = 1, . . . , 10.
The sequencing depth is set tos = 22.52 (500K-550K reads)
and the time series length is fixed at 50.Here we compare
PALLAS with the GENIE3 [28],TIGRESS [30],and Banjo
[31] algorithms. Like PALLAS, these algorithms can operate
directly on the noisy time series, without a need for ad-hoc
binarization.However,they do not estimate observational
parameters or provide activation/inhibition information, so
only the edge-calling accuracy rates in Section 3.2.2 are
appropriate here. Average rates obtained over 20 repetitions
of the experiment are displayed in Figure 3. One can see that
with similar specificity, PALLAS displays higher sensitivity
and precision than GENIE3 and TIGRESS. Although it was
not possible to adjust the specificity of Banjo to the same
levels,we can see that its sensitivity is quite low.In fact,
Banjo returned a very small number of edges overall in this
experiment.PALLAS also displayed the highestprecision
among all the algorithms.

Fig. 3: Mammalian cell cycle experiment results.

3.3.2 Artificial Networks with Synthetic RNA-Seq Data

In this section we report results obtained on an ensemble of
10 randomly generated networks withd = 8 genes,where
each gene is regulated by 3 other genes on average.Edge
connectivity,including activation and inhibition,as well as
regulation biases, are randomly chosen. The transition noise
parameterp is selected randomly in the interval[0.01, 0.1].
RNA-Seq syntheticdata are generated with parameters
µi ≡ µ = 0 , φi ≡ φ = 1 or 5, for i = 1, . . . , 8. In the
first case, there is more observation noise, and the problem
is harder.The parametersδi are allowed to vary uniformly
over the intervals[1, 2]or [1, 5], fori = 1, . . . , 8. In the first
case, the problem is harder, since the differences in observed
expression are smaller. Sequencing depth is set ats = 22.52
(500K-550K reads).

Here,we compare PALLAS with the Best-Fit [32],RE-
VEAL [33], FBNNet[35], and GABNI [34] algorithms. These
methodsapply to Boolean time series,so they need to
employ ad-hoc binarization ofthe gene expression data.
For the firsttwo,[54]recommends the use ofthe KM3
binarization method, while for GABNI, [9] recommends the
use of K-means binarization, as well as FBNNet; hence, we
use those binarization methods here. The output of the Best-
Fit, REVEAL and FBNNet algorithms are Boolean transition

functions,for which the network function distance is ap-
propriate.On the other hand, the output of GABNI consist
of positive (activating) or negative (inhibitory) interactions,
for which we use the edge-calling accuracy rates defined
previously.

Average network function distances and edge-calling ac-
curacy rates obtained over 20 repetitions of the experiment
(2 for each of the 10 networks) withφ = 5 are displayed
in Figures 4 and 5 (corresponding results forφ = 1 are
shown in the Supplementary Material). Figure 4 shows that
the performance ofBest-Fitand PALLAS increases with
the time series length,while the performance of REVEAL
and FBNNetare mostly stable.PALLAS perform better
than the Best-Fitalgorithm,especially whenδ is smaller.
This reflects the factthatad-hoc binarization ofthe data
becomes less accurate with a smaller difference between
activation/inactivation levels in the observed data,which
is determined byδ. Figure 5 shows thatPALLAS beats
GABNI in sensitivity throughout,as wellas in specificity
under sufficient data. Indeed, it is shown in Supplementary
MaterialthatGABNI detects very few edges under small
sample size orhigh observation noise,which artificially
inflates its specificity.

3.4 Experiments with Real Data

In this section,we demonstrate the application of PALLAS
to real microarray data from well-known biological systems.
The complete results,including both false positives and
false negatives, can be found in the Supplementary Material.

3.4.1 E. Coli SOS DNA Repair System

First,we consider the SOS DNA repair system in E.Coli.
In the normalstate,the protein LexA is known to be a
repressor to the SOS genes.When DNA is damaged,the
protein RecA becomes activated and mediates LexA auto-
cleavage,which causes activation of the SOS genes.After
the activated SOS genes repair the damaged DNA,RecA

stops mediating LexA autocleavage and LexA represses the
SOS genes again.The fullSOS DNA repair gene network
is displayed in Figure 6 [55],[27].We attempt to infer this
network from gene expression time series datasets gener-
ated by [56](http://www.weizmann.ac.il/mcb/UriAlon/
download/downloadable-data).Each time series contains
50 measurements forevery 6 minutes including the ini-
tialzero concentrations;we pick the third datasetin the
databasefor this experiment,and comparethe results
against those found in [36], [37], [27].

The sparsity parameterλ in (10) is chosen to produce
about half of the possible edges in the six-gene network. Fig-
ure 6 displays in red the edges of the original network that
were successfully recovered by a consensus of the top three
networks found by PALLAS,according to the penalized
likelihood score (the full network is displayed in the Supple-
mentary Material). We can see that all inhibitory edges from
lexA were successfully detected.Although PALLAS infers
the wrong direction between recA and lexA, the connection is
detected. With a similar total number of inferred edges, [37]
finds the opposite regulations,i.e.,all the inhibitory edges
are inferred as activating edges. While [36] finds most of the
inhibitory edges, it misses the important edge from lexA to
uvrA. Finally, [27] recovers only two of the edges.
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Fig.4:Comparison of network function distance among the PALLAS,Best-Fit,REVEAL,and FBNNet algorithms,under
differentδ ranges.

Fig. 5: Comparison of edge-calling accuracy rates between the PALLAS and GABNI algorithms, under differentδ ranges.

Fig.6:SOS DNA repair system in E.coli (the red edges are
the ones successfully recovered by PALLAS).

3.4.2 E. Coli Biofilm Formation Pathway

In this section,we demonstrate the performance ofPAL-
LAS on RNA-Seq time series expression data from a path-
way involved in biofilm formation by E.Coli,namely,the
Rpos(sigmaS)/MlrA/CsgD cascade,which involves eight
genes:Rpos, MlrA, CsgD, YciR, YoaD, BcsA, YaiC, YdaM.
Information on this pathway can be found in the KEGG

database (https://www.genome.jp/kegg/)as well as in
[57],[58],[59].Figure 7 displays a consensus gene net-
work derived from these sources. The gene expression data
used is from the E.ColiStrain B/REL606 and is available
at the Dryad DigitalRepository (https://datadryad.org/
resource/doi:10.5061/dryad.hj6mr)[60].This datasetcon-
sists of 3 bacterial samples and 9 time points evenly spaced
for each sample. The genes in this pathway display similar
values atlow expression levels,butvary considerably at
high expression levels.Accordingly,we assume a single
baseline parameterµi ≡ µ for all genes, but the parameters
δi and φi are allowed to differfrom gene to gene,for
i = 1, . . . , 8. The sequencing depth is set ats = 1.02 (1k-
50k reads) reflecting the low read counts in the data set.

As in the previous experiment,the sparsity parameter
λ in (10)is chosen to produce abouthalfof the possible
edges in the eight-gene network.Figure 7 displays in red
the edges ofthe originalnetwork thatwere successfully
recovered by a consensus of the top three networks found
by PALLAS,according to penalized likelihood score (the
full network is displayed in the Supplementary Material).
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Fig. 7: Biofilm architecture of Escherichia coli (the red edges
are the ones successfully recovered by PALLAS).

PALLAS successfully infers five out of the six important acti-
vating interactions from RpoS. Most of the other connections
in the original network were correctly detected.

4 CONCLUSION

We presented in this paper PALLAS,a new framework for
inference of Boolean gene regulatory networks from gene
expression time series data.The algorithm avoids ad-hoc
binarization of the gene expression data and allows infer-
ence of large networks by employing penalized maximum
likelihood asa regularization method,applying particle
filtering for the computation of the likelihood,and using a
novel version of the fish school search particle swarm algo-
rithm to search the parameter space. Numerical experiments
using synthetic time series data show that PALLAS outper-
forms other well-known GRN inference methods.The per-
formance of PALLAS was also demonstrated on realgene
expression time series data from the SOS DNA repair and
Biofilm formation pathways in E.Coli.As a sophisticated
state-space method for Boolean GRN inference directly from
noisy gene expression data,withoutthe need ofad-hoc
binarization, PALLAS is computationally expensive. Results
provided in the Supplementary Material indicate that execu-
tion time increases linearly with the number of fish used in
the MFSS algorithm.The user can adjust the running time
by changing the number of fish,at a cost to performance.
Future work will include the implementation of PALLAS on
high-performance parallelarchitectures,which willenable
the inference of larger networks.
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