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Abstract—This work introduces the CHEx86 processor ar-
chitecture for securing applications, including legacy binaries,
against a wide array of security exploits that target temporal
and spatial memory safety vulnerabilities such as out-of-bounds
accesses, use-after-free, double-free, and uninitialized reads, by
instrumenting the code at the microcode-level, completely under-
the-hood, with only limited access to source-level symbol in-
formation. In addition, this work presents a novel scheme for
speculatively tracking pointer arithmetic and pointer movement,
including the detection of pointer aliases in memory, at the
machine code-level using a configurable set of automatically
constructed rules. This architecture outperforms the address
sanitizer, a state-of-the-art software-based mitigation by 59%,
while eliminating porting, deployment, and verification costs that
are invariably associated with recompilation.

Index Terms—Memory Safety, Capabilities, Microcode

I. INTRODUCTION

The modern computing landscape has witnessed the rapid
growth, expansion, and deployment of increasingly complex
software, amid the relentless pursuit of high performance.
This rise in software complexity has shown to proliferate
vulnerabilities at an alarming rate, opening the door to a myr-
iad of high-impact security exploits [25], [67], [82]. Notably,
software flaws that arise due to heap memory safety violations
such as out-of-bounds accesses, use-after-free, and uninitial-
ized reads have been principal anchor points for a number
of security exploits in-the-wild [9], [30], [43], [47], [63]. In
fact, memory safety violations have consistently accounted
for about 70% of the vulnerabilities patched via security
updates every year, as reported in recent studies by Microsoft
and Google [30], [47] (re-created in Figure 1), highlighting
the need for stronger and more robust exploit mitigations
that can effectively combat memory safety violations, while
maintaining high performance and high programmability.

The literature abounds with capability-based addressing
schemes that have shown to effectively curtail many temporal
and spatial memory safety exploits [1], [10], [14], [23], [24],
[29], [34], [40], [50], [81], [86], by requiring all memory
accesses to occur via capabilities or fat-pointers that contain
unforgeable bounds and permissions information alongside the
actual address, thereby restricting traditional C-style pointers
to operate within their respective allocated regions and for-
bidding stray accesses that lack sufficient privileges. These
systems abide by a core tenet of computer security — the
principle of least privilege, that stipulates that every user and
program operate with the least set of privileges required to
perform a task. RISC architectures have shown to be particu-
larly viable for implementing such a scheme, given that only
a handful of RISC instructions directly operate on memory,
thereby considerably limiting the number of intrusive changes
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Fig. 1: Root Cause of CVEs by Patch Year (since 2006). The
“other” category consists of XSS/zone elevation, DLL planting,
and file canonicalization and symbolic link issues.

to both the ISA and the processor pipeline, as demonstrated
recently by the CHERI architecture [14], [23], [34], [81], [86].

However, deploying such capability-based protection
schemes on CISC architectures requires non-trivial modifica-
tions to the ISA, notwithstanding extensive porting, deploy-
ment, and verification costs that come with it, leaving large
corpora of binaries unprotected. In this paper, we explore a
suite of novel, high-performance, and transparent capability-
based protection mechanisms, dubbed CHEx86 (Capability
Hardware-Enhanced x86), to secure unmodified source and
object code, completely under-the-hood, against a wide array
of temporal and spatial memory safety exploits, without the
need for software patching and recompilation.

This paper shows that such a transparent capability-based
protection scheme can be seamlessly enforced in a variety of
different design configurations — (a) hardware-only, (b) binary
translation-driven, and (c) microcode-level instrumentation,
and that they each offer different design and performance
trade-offs. The hardware-only scheme completely forgoes dy-
namic code instrumentation, and instead delegates the load/-
store unit to perform capability checks before initiating the
memory access. On the other hand, the binary translation-
driven scheme does not require any modifications to the load-
/store unit, but dynamically instruments every x86 instruction
that employs a register-memory addressing mode, with either
software-based capability checks or special instructions made
available through secure ISA extensions.

In stark contrast to both these schemes, the microcode-
level capability enforcement offers a unique design point —
it takes advantage of an already existing layer of indirection
implemented in modern ISAs — the CISC-to-RISC micro-op
translation interface — to dynamically instrument the micro-
op stream with capability checks on-demand. There are sub-
stantial benefits to such an undercover injection of capability
checks at the microcode level. First, it opens the door to selec-
tive and context-sensitive enforcement [72]-[75] of capability-
based protection, allowing the micro-op stream to be in-



strumented on-demand, only while executing security-critical
code, providing significant flexibility over existing hardware-
only protection mechanisms that can either be always-on or
always-off. Second, it allows capability checks to be cus-
tomized as necessary by leveraging existing mechanisms in
modern processors to re-route machine instruction translation
to the microcode RAM [38], [73], further enabling hardware
vendors to deploy unobtrusive field updates in response to
zero-day attacks, without the need for extensive software
patching. Third, a microcode-level injection mechanism not
only addresses memory safety vulnerabilities that are inherent
to the software code in execution, but interestingly, also
severely inhibits transient execution attacks, such as Spec-
tre [37], that hinge on bypassing software-based bounds checks
by exploiting speculative execution.

To make this vision of a transparent capability-based ad-
dressing scheme a reality, we explore two major extensions to
conventional processor architectures. First, to provide efficient
capability-based protection under-the-hood, CHEx86 designs
store and manage memory capabilities in distinct shadow
tables, requiring privileged access. In the microcode variant of
CHEX86, access is restricted to micro-ops that are dynamically
generated (outside of existing translation) by the microcode
engine. This is similar in spirit to many traditional capability
systems and hardware-only pointer safety mechanisms that
place capabilities and data in separate memory regions [1],
[24], [36], [50], [84]. Second, we introduce speculative pointer
tracking, a novel architectural technique, implemented en-
tirely within the processor’s front-end, that allows us to
trap allocation and de-allocation events, and further dynam-
ically track pointer arithmetic, pointer movement, and spilled
pointer aliases on-the-fly, using an automatically generated
and configurable low-level peephole rule database, coupled
with an address prediction mechanism that tracks pointers
being reloaded from memory. Since this approach does not
require any dynamic code instrumentation to track pointers,
we significantly accelerate pointer tracking, even for pointer-
intensive applications.

In contrast to most existing capability-based protection
mechanisms that rely on extensive pointer analyses and trans-
formations at the compiler-level to track and maintain a
pointer’s allocated bounds, scope, and privileges, the specu-
lative pointer tracking scheme we introduce, operates entirely
within the processor and thereby lacks access to source-level
information. While this may seemingly impede our ability to
track certain code paths and leverage language-level semantics
that are only available for analysis at compile-time, in this
paper, we show that even a small set of peephole rules can
effectively address several high-impact vulnerabilities includ-
ing out-of-bounds accesses, use-after-free, double free, and
invalid free among others. Furthermore, to the best of our
knowledge, this is the first work to establish the viability
of employing hardware-based prediction mechanisms to track
pointers, based on the hypothesis that the temporal pointer
access patterns of many applications are highly predictable —
most code regions typically, and often repeatedly, access only
a limited set of pointers, in a predictable sequence.

We note that such a transparent pointer tracking scheme
places us at a significant advantage over prior approaches

because it now allows us to secure several previously un-
protected legacy binaries, while significantly minimizing the
performance impact due to software-only pointer tracking, and
simultaneously eliminating a substantial amount of develop-
ment, verification, and deployment costs that are invariably
associated with recompilation and/or porting of legacy code.
It also, more importantly, lays the groundwork for performing
other program analyses and transformations in hardware, such
as low-level type verification and data-oblivious code transfor-
mations [21], [48], [88].

This work makes the following major contributions.

e We extend conventional CISC architectures to pro-
vide transparent capability-based protections, safeguard-
ing vulnerable applications (including legacy binaries),
against a wide range of security exploits that target tem-
poral and spatial memory safety, without compromising
software compatibility.

o We identify several design points for implementing
capability-based addressing, at the hardware-level, binary
translation-level, and the microcode-level, and evaluate
their performance and design trade-offs.

« We introduce a novel speculative pointer tracking scheme
that allows us to track pointer arithmetic, pointer move-
ment, and spilled pointer aliases, completely under-the-
hood, with access to limited source-level information.

« We show that most code regions can be characterized by
temporal pointer access patterns that are remarkably pre-
dictable, and further demonstrate that a simple hardware-
based prediction scheme can accurately identify pointer
operations at run-time.

¢ Owing to our flexible micro-op instrumentation and spec-
ulative pointer tracking scheme, we provide significantly
high performance in comparison to existing software-
based defenses, and in particular we outperform software-
only schemes by 59% (SPEC) to 2.2X (PARSEC), while
incurring only 9% (PARSEC) to 14% (SPEC) degradation
with respect to an insecure baseline.

II. BACKGROUND AND RELATED WORK

Memory Safety. The C and C++ languages have been
widely adopted in systems programming, due to their high
flexibility and performance-oriented nature, an undesirable
side effect of which, is that stray accesses by C/C++ pointers
into privileged memory simply go unchecked, due to the lack
of language-level enforcement of memory safety. Depending
upon the type of illegitimate pointer access, memory safety
violations can be broadly classified as: (a) spatial safety
violations that occur when a pointer dereference results in a
memory access outside of its allocated bounds, and (b) tem-
poral safety violations that occur as a result of dereferencing
a pointer that points to invalid (typically, unallocated or freed)
memory. While most memory safety vulnerabilities typically
manifest as a direct consequence of unsafe programming prac-
tices, a significant chunk of temporal safety vulnerabilities also
arise due to exploitable implementations of high-performance
heap management libraries [6], [9], [26], [53], [67].

Tripwire-Based Mitigations. Tripwires are a class of mem-
ory safety mitigations that prevent memory trespassing by
placing redzones between allocated blocks of memory, which
then get activated upon an illegitimate pointer access. Notable



commercial implementations of tripwire-based approaches in-
clude Google’s AddressSanitizer (ASan) [65] and Valgrind’s
memory checker [52]. The key distinguishing aspect of trip-
wires is that they get immediately activated upon a memory
trespass, unlike canaries [18], [19], [27] that need to be
explicitly checked by software. Despite providing strong secu-
rity guarantees, tripwire-based approaches incur prohibitively
high performance overheads, rendering them unfavorable for
deployment in performance-conscious installations. More re-
cent work on hardware-assisted tripwire mechanisms such
as SafeMem [61], REST [68], and Califorms [63], however,
have made significant strides at effectively hiding the run-time
overheads incurred due to static instrumentation.

Fat Pointers. Several prior efforts have proposed safe
language extensions to C/C++ via fat pointers that maintain
the object’s metadata (typically, bounds and permissions in-
formation) alongside the address itself, enabling both static
verification and run-time dynamic checks to flag memory
accesses that are out-of-context. Some early and noteworthy
mentions include Cyclone [33] and CCured [51]. However,
inlining of the metadata along with the address results in loss
of backwards compatibility. In contrast, approaches like Hard-
bound [24], Softbound [50], Watchdog [49], Intel’s MPX [54],
and BOGO [92] maintain metadata in disjoint shadow memory
that is looked up for every dereferencing operation to perform
dynamic checks in software or in hardware using micro-
ops. However, these shadow structures tend to substantially
grow in size for pointer-intensive applications, resulting in
high metadata lookup overheads. Baggy Bounds [1], [44]
considerably mitigates this overhead by leveraging the Jones
and Kelly approach [35] to metadata storage.

While we bear some similarities to some of these ap-
proaches, we also differ in several key aspects. First, we
provide both spatial and temporal safety, unlike Hardbound,
Softbound, Baggy Bounds, and Intel’s MPX that only address
spatial errors. Second, these mechanisms rely on tracking
pointer arithmetic via dynamic code instrumentation at the
software or micro-op level, resulting in significant slowdown
for pointer-intensive applications. In contrast, we present novel
mechanisms to speculatively track pointers under-the-hood
with full alias detection, using minimal source-level symbol
information, without run-time instrumentation of code. Finally,
our approach is significantly more flexible due to the fact
that it can enforce on-demand and context-sensitive capability
protection for security-critical code, while most of the prior
approaches are either always-on or always-off. We present a
more detailed compare and contrast in Table IV.

Capability-Based Systems. The literature describes several
capability-based operating systems and hardware architectures.
These systems are guided by a common philosophical doctrine
— the principle of least privilege — that stipulates every user and
program to operate with the least set of privileges required to
perform a task. This principle is primarily enforced via capa-
bilities, that are essentially pointers to a given system resource
that provide appropriate access rights to their owners. An
important trait of these capabilities is that they are unforgeable,
which means they can be created, transferred, and destroyed,
but cannot be modified. Notable modern OS-level capability-
based implementations include the se[.4 microkernel [36] and

the Barrelfish multikernel [4].

Modern capability-based hardware architectures such as
the M-Machine [10], low-fat pointers [40], and CHERI [14],
[23], [34], [81], [86], rely on tagged memory to implement
unforgeable fat-pointers, allowing for the metadata (bounds
and permissions) to be maintained inline with the address,
thereby eliminating expensive shadow table lookups, by trad-
ing off area, storage, and memory bandwidth. In particular,
the CHERI capability model has made major strides in estab-
lishing the viability of implementing practical capability-based
addressing in RISC-style architectures, operating systems, and
runtime systems. However, it necessarily requires applications
to be ported and recompiled to the CHERI architecture, leaving
a significant chunk of legacy applications and traditionally
CISC execution environments unprotected.

Low-Level Secure Code Instrumentation. Several pro-
posals in the past have shown that low-level secure code
instrumentation is particularly effective at enforcing security
policies such as control-flow integrity and memory safety.
DISE [15]-[17] provides a framework for instrumenting the
dynamic instruction stream in hardware, at the microcode-
level, to perform simple bounds checking and shadow stack
protection. More recently, there has been a renewed interest
in on-demand microcode-level customization [38], [72]-[75]
of machine code to defend against side-channel and transient
execution attacks.

Hardware-Based Information Flow Tracking. The spec-
ulative pointer tracker described in this work is built on top of
a extensive body of prior work on information flow tracking.
Suh, et al [69] first described and proposed architectural mech-
anisms for Dynamic Information Flow Tracking (DIFT) to tag
data from untrusted channels such as the console, network, and
filesystem, as potentially spurious, and then tag the result of a
computation (registers and memory locations) as spurious if it
was computed using one or more spurious inputs, by following
the dynamic information flow in instructions, and thereby
restricting information flow of such spurious values with a
suitable pre-defined security policy. Information flow tracking
techniques have been described at a variety of different levels
in hardware — from the gate-level to the microarchitecture-
level, offering varying degrees of trade-offs [11]-[13], [20],
[22], [76], [77], [80], [91]. More recently, Yu, et al [89]
introduced Speculative Taint Tracking to analyze taint/secret
propagation in the context of transient execution attacks.

Low-Level Program Analysis. Morrisett, et al [48] demon-
strate the feasibility of translating programs written in a high-
level functional programming language to a type-preserving
assembly language, based on a simple RISC-style instruction
set, fully automating the process of generating proof-carrying
code to enforce security properties at the machine code-
level. Crary, et al. [21] extend this type-preserving translation
scheme to emit x86 assembly instructions annotated with type
information. Further, Azevedo de Amorim, et al. [3] describe
a system that is able to track type information in hardware,
by leveraging tagged memory. More recently, Mchmahan, et
al. [45] present Bouncer, a hardware engine for performing
static analysis in a microcontroller architecture implementing
the ZARF functional ISA [46]. While the pointer-tracking
scheme we describe is similar in spirit to classic Dynamic
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Information Flow Tracking (DIFT) [69], we also extend these
systems, in many novel ways, to more efficiently deal with
speculative execution and aliases.

III. ASSUMPTIONS AND THREAT MODEL

Threat Landscape. The goal of this work is to secure
unmodified binaries against exploits that target temporal and
spatial memory safety violations, such as out-of-bounds ac-
cesses, use-dfter-free, double free, invalid free, and other
metadata corruption errors in the heap and the global data
section. The granularity of protection we provide is at the
object-level, and our threat model does not yet include attacks
that exploit intra-object spatial errors (e.g., overflowing into
an adjacent field within a struct). Furthermore, we do not
assume the presence of any more defenses in our execution
environment, than what is already available in conventional
hardware architecture and operating system implementations
(e.g., ASLR [57] and DEP [58]).

Attacker Characterization. We assume that, in absence
of our defense mechanism, the attacker has the ability to
repeatedly exploit one of more memory safety vulnerabilities
in the program code, in order to gain arbitrary read, write,
and execute privileges. Further, we assume that the attacker
has complete access to the source code of the program in exe-
cution, along with any other compile-time metadata that may
assist in the automatic generation of exploits [2], [31], [62],
[64], [90]. However, like other contemporary approaches [63],
we assume that the executable binary itself is protected (e.g.,
via code-signing) and cannot be tampered with.

In addition, we assume that the attacker neither has access
to the dynamically injected capability check micro-ops (since
they reside outside any user-addressable memory), nor to the
shadow tables that maintain capability and alias metadata
(since they may only be accessed by dynamically generated
micro-ops injected by the microcode engine).

Trusted Components. We assume that all hardware com-
ponents including the ones we add in this work are trusted
and tamper-resistant [70], [71]. We also include any privileged
entities that have the ability to perform microcode updates
and/or configure parameters of the underlying microcode-level
defense framework, in our TCB. Furthermore, our threat model
excludes attacks [39] that can reverse engineer or poison the
microcode as these attacks can only be carried out on old AMD
processors (K8 and K10) that don’t have advanced microcode
update signing protections in place.

Side-Channel Attacks. Finally, since our approach does
not provide any explicit protections against side-channel and
transient execution attacks, we exclude them from our threat
model. Interestingly, our mechanisms do protect against the
Spectre-v1 attack [37] that attempts to bypass software-based
bounds checks by exploiting side effects of speculative ex-
ecution. This is due to the fact that our capability checks
are essentially part of the same macro-op that performs the
dereferencing operation, and therefore, in most cases cannot
be bypassed. However, we note that this depends upon the
TOC/TOU assumptions of the underlying implementation.

IV. THE CHEX86 ARCHITECTURE

A. Architectural Overview

Goals and Challenges. One of the main goals of CHEx86 is
to provide high performance and transparent capability-based
protections to secure unmodified binaries against a wide array
of temporal and spatial memory safety exploits. However, this
entails solving several key challenges.

First, to instrument the dynamic instruction stream with ap-
propriate capability checks, the processor’s front-end should be
able to seamlessly and transparently track pointer arithmetic,
pointer movement, and pointer dereferencing operations. On
RISC architectures that expose a limited number of opcodes
and addressing modes, this may be accomplished by using
a small set of pointer-tracking rules. However, the nature,
number, and type of such rules required to track pointers
on CISC architectures like x86 is immediately unclear — a
major contribution of this research is a principled approach to
constructing such a pointer-tracking rule database for x86.

Second, in addition to tracking pointer movement between
registers, the front-end should also be able to track spilled
pointers in memory and detect instances of such spilled point-
ers getting reloaded into registers. These typically arise when
a register containing a pointer is spilled to the stack, the global
data section, or the heap memory, essentially creating a spilled
pointer alias in memory. Note that this is very common in code
regions that use pointers with multiple levels of indirection.
Prior research has dealt with this problem in two primary
ways — (a) by inlining of capability metadata for both in-
register and in-memory pointer aliases (e.g., CHERI), which
necessarily requires recompilation, and (b) by associating
every word in memory with pointer identifier metadata in
shadow memory and instrumenting every load to also read the
associated pointer identifier metadata from shadow memory
(e.g., Watchdog), not only deferring pointer alias detection
until the execute stage, but incurring significant overheads in
performance and storage. A key contribution of this work is
a speculative pointer tracker that employs a simple prediction
scheme to detect spilled pointer aliases at the front-end.

Third, to emulate fat pointers at the microcode level,
completely under-the-hood, it is important that the processor
maintains capability metadata in shadow structures, while
making minimally intrusive changes to the core design of
the processor pipeline, and especially while minimizing the
impact on the critical path of load operations. This work
employs several microarchitectural optimizations (including
the use of shadow caches) to minimize the impact of such
shadow metadata structures on performance.



Finally, the pointer tracker employed by CHEx86 is in-
herently speculative in nature as (1) it employs a predictor
to detect spilled pointer aliases, and (2) all pointer tracking
is done at the front-end of the pipeline on speculatively
fetched instructions. Therefore, it is important to ensure that
the pointer tracker gracefully recovers from any form of mis-
speculation, including branch mispredictions and spilled alias
mispredictions. While we leverage conventional squashing
mechanisms to recover from mispredictions, we describe a
few additional optimizations in Sections V-C and V-D.

Our Approach. Figure 2 provides the architectural
overview of CHEx86. The principal components include: (a)
the microcode customization unit (applicable only for the
microcode variant of CHEx86), (b) the shadow capabilities
table, and (c) the speculative pointer tracker. At a high level,
the speculative pointer tracker is responsible for tracking
pointers, including spilled pointer aliases, at the front-end of
the pipeline. It acts as a trigger mechanism to the microcode
customization unit that instruments pointer dereferencing op-
erations with appropriate capability checks by looking up the
shadow capabilities table.

B. Principal Components of CHEx86

Microcode Customization. The microcode customization
unit implements the core functionality of the microcode variant
of CHEx86 by instrumenting the dynamic instruction stream
with appropriate capability generation, validation, and free
micro-ops. This can be done by leveraging existing function-
ality and existing micro-op instructions in modern processor
architectures (including ARM and x86), by simply re-routing
the translation of relevant native macro-operations to the
microcode RAM that hosts custom translations [38], [73]-[75].

Shadow Capabilities Management. The shadow capability
table is a per-process table that stores the list of all capabilities
granted to the program in execution, essentially tracking all
live and freed memory allocations (both static and dynamic).
This table is located in a separate shadow address space that
is only accessible by privileged code. Each entry of a shadow
capability table contains a capability that is tagged by a non-
zero unique capability identifier (denoted in this work, as PID).

In our implementation, each capability is 128 bit-wide,
with 64 bits allocated to the base address and 32 bits allo-
cated to bounds. The remaining 32 bits are used to maintain
permissions, including read, write, execute, busy, and valid
bits. While the busy bit indicates whether the memory block
pointed to by the capability is currently in process of being
allocated/freed, the valid bit indicates whether the capability
points to a valid block of memory, typically used to detect
use-after-free scenarios.

Since the shadow capability table maintains all capabili-
ties, allocated and freed, throughout the program’s execution,
looking up the table at run-time for performing checks can
be particularly expensive, especially given that every pointer
dereferencing operation is predicated upon the result of a
capability check. However, we find that the capability table
lookup can be significantly accelerated by caching only those
capabilities that are currently-in-use, with the help of a small
in-processor capability cache. This is motivated by the fact
that programs typically tend to frequently use only a handful

of pointers at any given point of time, despite making several
allocations over the course of their execution.

Figure 3 shows this phenomenon using three key metrics:
(1) the total number of allocations made by an application over
the course of its execution, (2) the maximum number of live
(allocated, bur not freed) allocations at any given point of time,
and (3) the average number of allocations that are actually in
use during any given 100 million instruction interval. These
statistics were collected by profiling C and C++ applications
from the SPEC CPU2017 and PARSEC 2.1 benchmark suites,
using valgrind [52]. We note that although an application
may potentially make tens of millions of allocations over
its lifetime, the maximum number of live allocations is an
order of magnitude lower, and the number of allocations in
use at any given point of time is actually much lower, by
at least three orders of magnitude. In the average case, the
number of allocations in use during a 100 million dynamic
instruction interval (which is a considerably long interval, tens
of milliseconds if not more) is only 7034, clearly motivating
the utility of a small in-processor capability cache that can
track allocations in use. To this end, we include a 64-entry
fully associative capability cache in our CHEx86 design.

Note that the capability cache access is not on the critical
path of load operations. In fact, in the microcode variant of
CHEX86 (which is our default implementation), the capability
cache is accessed only by special capability check micro-ops
as described in detail in the next section.

Speculative Pointer Tracking. The speculative pointer
tracker is responsible for tracking the transfer of capabili-
ties between registers due to pointer arithmetic and pointer
movement, in the front-end, while they are getting streamed
in to the microcode engine. In addition, it also detects spilled
pointer aliases with the help of a simple prediction mechanism,
and identifies relevant memory dereferencing operations that
need instrumentation. Section V describes the design of our
speculative pointer tracker in more detail.

C. Functional Overview

In this section, we discuss how CHEx86 intercepts and
handles memory allocation events, pointer arithmetic, pointer
dereferencing, and pointer free events to generate, transfer,
validate, and free capabilities respectively, by elucidating
certain key events of a program in execution. We specifically
take the example of our microcode variant to describe our
instrumentation mechanisms, but note that this instrumentation
may also happen with the help of a binary translator [78], [79].
In our hardware-only variant, we forgo instrumentation, but we
perform our checks as part of the regular load/store micro-op.

Initial Configuration. At the time of scheduling a process
on a CHEx86 core, the OS kernel or other trusted entities may
configure a set of model-specific registers (MSRs) to register
the instruction address of the entry and exit points of key heap
management functions (e.g., malloc, calloc, free, realloc, etc.)
that the program is expected is use, along with their respec-
tive signatures (recorded as a vector of architectural register
names). On ASLR-enabled systems, the randomized addresses
of the entry/exit points will be configured in the MSRs by
the OS kernel, allowing us to intercept allocation/free events
to appropriately generate/free capabilities. We intercept both
entry and exit points because we want to keep track of both
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instantiation and completion of the allocation/de-allocation
events. Note that these MSRs are saved and restored upon
a context switch. As a result, there is a model-specific limit
on the number of entry/exit points that can be registered per
process.

Furthermore, at the time of process creation and program
loading, the OS kernel may also load the symbol table into
memory, if available, and further instruct CHEx86 (again,
using a privileged wrmsr instruction) to initialize the shadow
capability table by generating a capability for each global
data object found in the symbol table, while appropriately
recording their bounds and permissions information. Although,
in this work, we only initialize our shadow tables using the
information available from symbol tables, we note that our
approach is flexible enough to be configured with metadata
derived from more sophisticated static analysis.

Generation of capabilities. When a program in execution
performs a memory allocation request by calling a registered
heap management function such as malloc, the microcode
customization unit immediately intercepts such an event, and
further instruments the intercepted macro-op to include a
special capGen.Begin micro-op that instantiates a new ca-
pability with the busy bit set, indicating that the allocation
is still in progress. The micro-op also copies the contents
of the argument register %rdi into the bounds field of the
capability. Note that these micro-ops operate within the realms
of speculative execution, and therefore updates to a transient
capability register are only finalized upon commit.

Once the memory allocation is complete and the program
is ready to return from the heap management function, the
microcode customization unit again intercepts the event, since
it is a registered exit point. This time, the intercepted macro-op
is instrumented with a capGen.End micro-op that signals the
completion of the memory allocation by resetting the busy bit.
The micro-op also copies the contents of the return value regis-
ter %rax to the base address field of the capability. Further, the
micro-op also sets the valid bit of the capability, indicating the
legitimacy of the allocation, iff the base address has been set
to a non-zero value. At this point, the capability generation is
complete, allowing no further modifications to the generated
capability. Note that this two-step update procedure is only
required by the microcode variant of CHEx86, which performs
the instrumentation under-the-hood, without recompilation or
binary translation. If the instrumentation is performed by a
binary translator, it is possible to leverage special capability
generation instructions exposed via ISA extensions, to perform
this update in one step.

Transfer of capabilities. Upon returning from the memory
allocation function, if the program executes an instruction
to move the address contained in the result register %rax

to a different register or is spilled to a memory location, a
capability transfer should occur. In CHEx86, this capability
transfer occurs implicitly via the speculative pointer tracker,
which maintains its own set of tables to associate a register
or a spilled memory address with a PID. Section V describes
our speculative pointer tracker in detail.

Validation of capabilities. When the speculative pointer
tracker detects a dereferencing operation carried out using base
register that is tagged with a non-zero PID, the microcode
customization unit instruments the dereferencing operation to
include a special capCheck micro-op, which during execution,
looks up the shadow capability table using the appropriate PID,
and further checks for bounds/permission violations.

Freeing of capabilities. Similar to capability generation,
freeing of capabilities also happens in two steps. Upon inter-
ception of the entry point of a registered de-allocation function,
a capFree.Begin micro-op is injected. With the help of the
speculative pointer tracker, the PID of the argument register
%rdi is obtained, and is used by the capFree.Begin micro-
op to look up the shadow capability table and set the busy
bit, indicating that a de-allocation is in progress. Once it is
time to return from the de-allocation function, an exit point is
intercepted, resulting in the injection of a capFree.End micro-
op that resets both the valid and the busy bit, signalling
the freeing of the capability. We continue to maintain the
capability in our shadow capability table and track transfers
via the speculative pointer tracker, to detect use-after-free
violations.

In multithreaded environments, when a pointer is freed on
one core, invalidate requests are sent to all other cores in
the system, to ensure that the valid and the busy bit of the
capability entries corresponding to that pointer are reset across
all in-processor capability caches in the system. Note that, due
to the unforgeability property of capabilities, these invalidation
requests have to be sent only once at the time of freeing
capabilities.

V. SPECULATIVE POINTER TRACKING

This section describes the key mechanisms and functional-
ities of our speculative pointer tracker, including rule-based
pointer tracking, alias detection, and misspeculation recovery.

A. Rule-Based Pointer Tracking

Tracking pointer activity in machine code, in the absence of
any type annotations, is a well-known difficult problem. This
is due to the loss of precise language-level semantics during
the translation to low-level machine code. In this work, we
show that capability transfers due to pointer arithmetic, pointer
movement, and pointer dereferencing operations can be effi-
ciently tracked at the decoder-level using a small configurable
set of rules.

The goal of our rule-based pointer tracker is to propagate
capabilities from the source operands of a micro-op instruction
to its destination operand, based on the instruction’s opcode,
addressing mode, and the current set of capabilities associated
with its operands. However, given the multitude of different
ways in which a pointer can be manipulated, characterizing
pointer activity using a limited set of low-level rules can be
a non-trivial endeavor. While it is possible to construct the
rule database (and update it, as necessary) with the help of an



TABLE I
POINTER TRACKING RULE DATABASE

Lop Addr. Mode Example Capability Propagation Code Example
MOV Reg-Reg mov %rcx, %rbx PID(rcx) < PID(rbx) ptrl = ptr2;
Reg-Reg and %rcx, %rbx, %rax if (PID(rax) == 0) then PID(rcx) <— PID(rbx) int mask = Oxffff0000; ptr2 = ptrl & mask;
AND if (PID(rbx) == 0) then PID(rcx) <— PID(rax)
If the PID of one source operand is zero, then assign the PID of the other source operand to the destination operand
Reg-Imm andi %rcx, %rbx, $imm PID(rcx) < PID(rbx) ptr2 = ptrl & Oxffff0000;
LEA Reg-Reg lea %rcx, (%rbx, %idx, scl) PID(rcx) < PID(rbx) ptr = &a[50];
Reg-Reg add %rcx, %rbx, %rax if (PID(rax) == 0) then PID(rcx) <— PID(rbx) ptr2 = ptrl + const;
ADD if (PID(rbx) == 0) then PID(rcx) <— PID(rax)
If the PID of one source operand is zero, then assign the PID of the other source operand to the destination operand
Reg-Imm addi %rcx, %rbx, $imm PID(rcx) < PID(rbx) ptr2 = ptrl + 4
Reg-Reg sub %rcx, %rbx, %rax PID(rcx) <— PID(rbx) ptr2 = ptrl - const;
SUB Always assign the PID of the second operand to the destination operand
Reg-Imm subi %rcx, %rbx, $imm PID(rcx) <— PID(rbx) ptr2 = ptrl - 4;
LD Reg-Mem(qw) 1dq %rcx, [EA] PID(rcx) < PID(Mem[EA]) int **ptrl = malloc(400%100); int *ptr2 = ptr1[100];
ST Reg-Mem(qw) stq %rcx, [EA] PID(Mem[EA]) < PID(rcx) int **ptrl = malloc(400); int *ptr2 = malloc(100); *ptrl = ptr2
MOVI Reg-Imm limm %rax, $imm PID(rax) < PID(-1) int *p = (int *)0x7fff1000;

All other operations PID(result) <— PID(0)

expert, in this work, we automate the process of incrementally
constructing our rule database, with the help of a hardware
checker co-processor that validates our rules at run-time. This
process does not require any support from the compiler.

The rule database is first initialized to a small set of rules
by an expert, and is then validated and incrementally updated
in an offline profiling step with the help of the hardware
checker. The operation of the hardware checker is two-fold.
First, for every micro-op in execution, it exhaustively looks up
our shadow tables to check if the result of the instruction is
an address that points to any of the allocated/freed blocks that
we have been tracking. If the search fails, it concludes that the
result operand is either not a pointer, or that it points to a mem-
ory block that is not of interest to us (e.g., memory allocated
using an unregistered heap management function, or a global
structure that wasn’t listed in the symbol table). If the search
succeeds, then it records the PID of the corresponding memory
block. The hardware checker validates our rules by checking
the predicted PID from the speculative pointer tracker against
the actual PID obtained via the exhaustive search, and if this
check fails, it dumps the offending instruction along with its
execution state, and requests that the rule database be updated
via manual intervention.

Table I presents our rule database that was automatically
constructed using the above process, while running C and C++
benchmarks from the SPEC and PARSEC suites [55], the RIPE
security suite [83], LLVM’s Address Sanitizer test suite [65],
and the How2Heap suite of heap exploits from the CTF team
ShellPhish. This shows that pointer activity can be successfully
tracked in hardware using a limited of rules, confirming our
hypothesis that most high-level pointer manipulation methods
boil down to only few distinct micro-op execution patterns.
But more importantly, we now have a framework to extend this
pointer tracking rule database, as we execute new workloads.

Our approach does not yet explicitly deal with the problem
of integer provenance, as most existing capability-based sys-
tems [85] defer to the compiler to detect and flag wild pointer
dereferences performed using an integer constant virtual ad-
dress. However, just to exemplify the extensibility of our rule
database, consider the rule MOVI in Table I, which shows

TABLE 1I
TEMPORAL POINTER ACCESS PATTERNS

Pattern Stride Example PIDs
Constant 0 31 31 31 31 31 31 31
Stride 3 13 16 19 22 25 28 31
Batch + Stride 4 11 11 11 15 15 15 15
Batch + No Stride NA 22 22 22 13 99 99 99
Repeat + Stride 1 26 27 28 26 27 28 26
Repeat + No Stride NA 26 57 5 26 57 5 26
Random + Stride NA 26 23 29 27 24 30 28

Random + No Stride NA 26 23 29 31 29 34 40

a load-immediate micro-op that moves an integer immediate
value to a register. This rule assigns a special PID(-1) to
the destination register, allowing us to track any indirect
memory reference performed using that register. Further, the
capabilities table will not include any entry that corresponds to
PID(-1), as no such capability was generated using a registered
allocation function, allowing capCheck micro-ops to flag such
violations.
B. Temporal Pointer Access Patterns

Pointer operations have been known to result in hard-to-
predict random memory accesses that evade traditional stride-
based load address prediction mechanisms. However, we find
in this work that, most code regions access only a limited set of
dynamically allocated buffers in any given execution interval
(of 100 million dynamic instructions in our experiments), and
often access these buffers in a deterministic sequence (one
buffer after another), although the memory access patterns
while accessing any one buffer may be fairly random. We
identify several interesting patterns that are succinctly sum-
marized in Table II. The first and the most trivial case is
where one buffer is repeatedly accessed over a long execution
interval, found extensively in the SPEC benchmarks sjeng and
Ibm. The second pattern is that of a striding access, where
one buffer is accessed after another in the sequence of their
allocation, in a striding pattern. These accesses may occur in
batches, as shown in Listing 1, where each batch corresponds
to a set of dereferencing operations (pointer chasing in this
example) performed on any one buffer. The third pattern is that
of a repeating access, where buffers are accessed in sequence
(potentially with a stride), and that sequence repeats, as shown
in Listing 2. Both these patterns occur extensively in all the
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4

void chase (BUFx buf) {
while (buf) {
«buf = xbuf + 10;
buf = buf—>next;

while (true) {
chase (bufll); //
chase (bufl5); //
chase (bufl19); //

repeat PID(I11)
repeat PID(15)
repeat PID(15)

Listing 1: Example Temporal Access Pattern: Batch + Stride

void update (BUFx buf) {
#buf = =buf + 10;
buf = buf—>next;

5 while (true) {

6

3

9

update (buf26) ;
update (buf27);
update (buf28);

} /1 repeat (PID(26),

Listing 2: Example Temporal Access Pattern: Repeat + Stride
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SPEC benchmarks we examine, with perlbench exhibiting the
highest number of “Batch + Stride” patterns. Finally, buffers
are sometimes accessed in random order of their allocation, but
even in those instances, we observe striding access patterns.

These patterns are remarkably predictable as they are associ-
ated with the instruction address rather than the load effective
address, allowing us to leverage and re-purpose conventional
address prediction techniques [5] for fast detection of pointer
reload operations at the front-end, as we switch from buffer
to buffer. In the next two sections, we describe the implemen-
tation of such a predictor, along with misprediction recovery
mechanisms.

C. Spilled Pointer Alias Detection

One of the major advantages of our microcode-level pro-
tection mechanism is that it is context-sensitive, which allows
us to only protect sensitive code regions and the data they
access, as a result of which, instrumentation may only be
surgically enabled for specific load/store operations. However,
this involves identifying, at the front-end of the pipeline, what
allocated buffer any given load/store instruction is accessing,
so that an appropriate capability check may be injected into the
decoded micro-op stream. Although it is possible to maintain a
shadow table of spilled pointer aliases to store PID tags (albeit,
only the finalized PID field) of spilled registers, it can only
be looked up at the execute stage of the pipeline, when the
effective address of a load instruction is available, significantly

undermining our ability to detect instances of a spilled pointer
getting reloaded to a register, at the front-end of the pipeline
where we perform our microcode customization.

To ensure the seamless functioning of our pointer tracker,
we develop a novel high-performance alias detection strategy
that effectively predicts spilled pointer reload instances at the
front-end of the pipeline. This is similar in spirit to load
address prediction [5], but instead of predicting the effective
address for every load instruction, we predict the PID that
corresponds to the spilled pointer, potentially being reloaded
into a register. Moreover, since pointer reload instances are
fairly infrequent (for the SPEC CPU2017 benchmarks, only
2.5% of the memory references are spilled pointer reloads), the
amount of predictor state required to perform pointer reload
prediction is significantly lower than what is required for load
address prediction. In fact, in this work, we show that even
a simple 512-entry stride-based pointer reload predictor with
2-bit saturating counters (shown in Figure 4) can provide
substantially high accuracy. We also employ a blacklist [32] of
non-pointer reload operations to avoid destructive aliasing with
other load instructions in the program that are loading data
values rather than spilled pointer aliases. We note that such a
high-performance alias detection feature not only significantly
enhances our approach, but may potentially benefit other
contemporary capability-based addressing systems.

Furthermore, just like any other speculative feature in the
processor, it is imperative that we provide necessary mech-
anisms for misprediction detection and recovery, to ensure
hazard-free execution. Since the effective address of a load
is available at the execute stage of the pipeline, we are able to
successfully perform a shadow alias table lookup to validate
our predictions, as shown in Figure 4. There can be three
types of pointer reload mispredictions: (1) PNAO (shown in
Figure 5(c)) — where we predicted that we are reloading a
pointer to a buffer with PID(N), but it was actually a buffer
that we are not tracking (e.g., a stack buffer), in which case,
we simply mark the injected capability check as an x86
zero-idiom that gets squashed at the instruction queue, before
getting dispatched (similar to how NOPs get evaluated in Intel
architectures), (2) POAN (shown in Figure 5(d)) — where we
are actually reloading a pointer to a buffer with PID(N), but we
predicted that it is a buffer that we are not tracking, in which
case, we leverage existing misprediction recovery mechanisms
to flush the pipeline and restart execution at the offending
instruction, with the right capability checks injected, and (3)
PMAN (shown in Figure 5(e)) where we predicted that we are
reloading a pointer to a buffer with PID(M), but it is a pointer
to a buffer with PID(N), in which case, we simply forward
the right PID and update our pointer tracking structures.

Misprediction detection is contingent on looking up a
shadow table of spilled pointer aliases. To avoid the overhead
of accessing this large shadow table for every load instruc-
tion, we employ several optimizations. First, we maintain
a 256-entry 2-way set-associative in-processor alias cache,
augmented by a 32-entry victim cache, to accelerate the lookup
of aliases that are frequently spilled and reloaded. Note that
as soon as the effective address of the load is available, we
initiate the memory access for the load operation, and at the
same time, also perform the alias cache access. Thus, the alias
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Fig. 5: Pointer Reload Misprediction Recovery Mechanisms

cache access is not on the critical path of the load and does not
impact the load-to-use latency. Second, since pointer reloads
make up a small percentage of all memory references, we
extend the metadata bits in the TLB and the page tables to
include an alias-hosting bit that indicates if a page contains
a spilled pointer, to further minimize the number of lookups.
Third, we only allow committed store instructions to update
the alias cache, to avoid transient stores along mispredicted
paths from polluting it. Instead, for transient stores that may
spill pointers to memory, we extend the store buffer to hold
their corresponding PIDs, until the time they commit. Finally,
similar to the in-memory page table structure, we implement
a 5-level hierarchical shadow alias table structure that can be
traversed using a hardware alias table walker, minimizing both
the storage overhead and the latency of traversal. Unlike page
table entries that hold the physical page number, an entry
in the lowest-level alias table holds the PID of the pointer
alias spilled at that virtual address. Note that the bounds
and permissions information associated with that PID can be
retrieved by a capCheck micro-op from a separate capabilities
table.

In multithreaded environments, when a store instruction
updates a spilled pointer alias on one core, invalidate requests
are sent to all other cores in the system, to ensure that
the in-processor alias caches in the system are coherent.
The overheads due to this (including the overheads due to
coherence misses in an alias cache) are modeled in all our
multithreaded experiments.

D. Misspeculation Recovery Mechanisms

Our pointer tracking scheme may be prone to errors that
manifest as a result of incorrect branch speculation and/or
alias misprediction, since this tracking occurs entirely within
the front-end. However, owing to the already well-established
misprediction detection and recovery schemes implemented in
modern processors, we can efficiently recover from misspec-
ulation by simply extending a register’s PID tags to include
both transient and committed information, in which case, when

TABLE III
HARDWARE CONFIGURATION OF THE SIMULATED SYSTEM

Baseline Processor
Frequency 3.4 GHz I cache 32 KB, 8 way
Fetch width 4 fused uops D cache 32 KB, 8 way
Issue width 6 unfused uops ROB size 224 entries
INT/FP Regfile 180/168 regs 1Q 64 entries
RAS size 64 entries BTB size 4096 entries
LQ/SQ size 72/56 entries Functional Int ALU (6) / Mult (1),
Branch Predictor LTAGE Units FPALU (3) / SIMD (3)

a misprediction is detected, squash signals from the execute
stage are propagated to the speculative pointer tracker, so that
it can discard any incorrect transient execution state.

In particular, we extend the register tags maintained by
the speculative pointer tracker to include two major fields
— (1) the finalized PID propagated by the last committed
instruction, and (2) a vector of transient PIDs containing the
PIDs propagated by in-flight older instructions, along with
their sequence numbers. When the pointer tracker receives a
squash signal, just like the rest of the recovery logic in the
pipeline, it inspects the sequence number of the offending
instruction, and for each architectural register it tracks, it
removes all transient PIDs that are associated with a sequence
number that is greater than that of the offending instruction,
from its tag. Furthermore, since the fetch stage is always ahead
of the rest of the pipeline, the pointer tracker ensures that
capability transfers are performed using the transient PID that
is associated with the highest sequence number. While this
approach limits the number of intrusive changes we make
to the core design of the pipeline, we note that a more
efficient implementation is possible by augmenting the register
renaming logic [28], [60].

VI. METHODOLOGY

Baseline Architecture. We use the GemS5 [8] architectural
simulator to model both our CHEx86 architecture and the
insecure baseline x86 architecture. Both architectures are
modeled after Intel Skylake. Table III describes their detailed
architectural configuration. Further, we also evaluate CHEx86
with different capability and alias cache configurations.



Benchmark Selection. To characterize the performance
impact due to our approach, we use the C and C++ benchmarks
from the SPEC CPU2017 [55] and PARSEC 2.1 [7] suite.
We also use PinPlay [56] and Simpoint [59], [66] tools to
select representative regions for simulation. These benchmarks
are compiled at the -O3 optimization level using the LLVM/-
Clang [41], [42] compiler infrastructure for comparison with
LLVM’s address sanitizer.

Security Evaluation. To measure the security effectiveness
of our approach, we use three exploit suites: (a) Runtime
Intrusion Prevention Evaluator [83] that comprises of 850 ex-
ploits targeting spatial safety violations, generated by sweep-
ing across five different dimensions (location of the buffer,
target code pointer, direct/indirect buffer overflow, type of
shellcode, and the libc being function abused), (b) LLVM’s
address sanitizer [65] test suite that comprises of unit test
cases that test the ability of the address sanitizer to flag typical
memory safety violations, and (c) How2Heap from the CTF
team ShellPhish that comprises of 18 distinct evasive exploits
that corrupt the heap metadata by targeting a variety of spatial
and temporal safety violations.

VII. RESULTS

In this section, we first discuss the effectiveness of CHEx86
in mitigating memory safety violations, and then present
results from a detailed performance evaluation.

A. Security Evaluation

We note that CHEx86 is able to successfully thwart all
exploits from RIPE [83], LLVM’s ASan [65], and ShellPhish’s
How2Heap, completely under-the-hood, without making any
modifications to the source/object code, while having access
to limited source-level symbol information. Regardless of the
degree of evasion used to trick the memory allocator, the
principal anchor points for most exploits remain buffer out-
of-bounds accesses, use-after-free, illegal free, and double
free, with the exception of two ASan exploits that attempt
a resource exhaustion attack by allocating prohibitively large
memory blocks. The rest of this section will describe in detail
how CHEx86 mitigates each of these violations.

Out-Of-Bounds Accesses. Recall from Section IV that
CHEX86 instruments all pointer dereferencing operations with
a special capCheck micro-op that looks up the capability cache
(or the shadow capability table, in case of a miss) with the
appropriate PID, to check if the address being dereferenced
lies within the bounds maintained in the capability, and further
flags violations. In our experiments, all RIPE exploits, four
exploits from ASan, and six from How2Heap are flagged for
out-of-bounds accesses by CHEx86, regardless of the method
used by the attacker to perform these violations.

Use-After-Free. In addition to validating bounds infor-
mation, the capCheck micro-op also validates permissions,
including checking the valid bit. If the valid bit is set to zero,
it indicates access to a freed memory block, and thus flagged
as a violation. While none of the RIPE exploits, and only two
ASan exploits (tail magic and UAF with RB Distance) target
use-after-free, a majority of the How2Heap exploits corrupt
heap metadata through a use-after-free violation.

Invalid Free and Double Free. Again, recall from Sec-
tion IV that CHEx86 intercepts both entry and exit points

of registered heap management functions, including free, and
upon intercepting the entry point of the free function, a
capFree.begin micro-op is injected (with the appropriate PID)
into the execution stream, to initiate the capability free process.
However, if the capFree micro-op finds that the PID is zero or
that the valid bit has already been set to zero, it immediately
throws an invalid free or a double free exception respectively,
to prevent further memory corruption. In our experiments, we
detect seven violations due to invalid free and/or double free,
with six of these coming from How2Heap and one from ASan.

Heap Spraying and Resource Exhaustion. CHEx86 is
also capable of defending against heap spraying and resource
exhaustion attacks that hinge on allocating large blocks of
memory. Two exploits from ASan (allocator returns NULL
and sizes) are representative anchor points for such attacks.
We are able to detect such violations via the capGen.begin
micro-op at the time of capability generation, by checking if
the request size of allocation lies within the pre-configured
maximum allocatable size for any given memory block (1GB
in our experiments).

B. Discussion on False Positives

Intentional Constant Dereferencing. In many x86-64 ap-
plications, global data structures are intentionally accessed by
dereferencing constant integer addresses. There are two pri-
mary ways in which this is done. In the first and most common
case, these addresses are retrieved from a constant pool within
the text section using a PC-relative load instruction, allowing
us to automatically track the global address being loaded
into the register, triggering appropriate capability checks.
Second, in some applications that are statically linked against
libstdc++, we observe instances of constant integer addresses
being directly moved into a register and then subsequently
dereferenced using the register. As noted in Section V-A,
our pointer tracker flags such wild dereferences as potential
capability violations, resulting in false positives. We observe
one instance of such a false positive when the benchmark leela
is statically linked against libstdc++.

Non-Local Control Transfers. In C++ applications, non-
local control transfers may occur as a result of (a) exceptions —
in which case, the stack is unwound frame-by-frame, cleaning
up any heap-allocated buffers along the way, and (b) setjmp/-
longjmp — where the calling context is restored using a jump
buffer, albeit without cleaning up heap-allocated buffers. In
both cases, we observe that pointer aliases that are spilled
to memory are reloaded back into registers during a context
restore, and therefore, we do not observe any false positives
or false negatives.

C. Comparison with Prior Approaches

Table IV compares CHEx86 with other prior memory safety
techniques in terms of performance, security, storage overhead,
binary compatibility, and hardware complexity. While the core
functionality of CHERI and CHEx86 is similar in that they
dynamically perform capability checks in hardware for every
pointer dereferencing operation, CHERI requires recompila-
tion unlike CHEx86, and suffers from high storage overhead
for pointer-intensive applications due to its tagged mem-
ory implementation. Out of the other schemes, BOGO [92],
REST [68], Califorms [63], and Watchdog [49] are the only



TABLE IV
COMPARISON WITH PRIOR MEMORY SAFETY TECHNIQUES

Temporal  Spatial Binary Performance(%) Storage Overhead(%) . .
Proposal Safety Safety Metadata Compatibility  (Average) (Bench) (Average) (Bench) Hardware Modifications
Hardbound [24] X v Shadow Partial 5% (Olden) 55% (Olden) Tag metadata cache + TLB, pop injection logic
Watchdog [49] v v Shadow Partial 249% (SEPC2000) 56% (SPEC2000) Renaming logic, psop injection logic
Lock location cache
Intel MPX [54] X v Inline X 80% (SEPC2006) 150% (SPEC2006) N/A
BOGO [92] 4 v Inline X 60% (SEPC2006) 36% (SPEC2006) N/A
. Capability coprocessor, Tag cache
CHERI [86] X v Inline X 18% (Olden) 90% (Olden) Capability Unit
CHERIvoke [87] v X Inline X 47% (SPEC2006) 12.5% (SPEC2006) Capability co-processor, Tag cache
Tag controller, Capability unit
REST [68] v v Shadow X 23% (SPEC2006) N/A 1-8b per LID line, 1 comparator
Califorms [63] v v Shadow X 16% (SPEC2006) N/A 8b per L1D line, 1b per L2/L3 line
CHEx86 v v Shadow v 14% (SPEC2017) 38% (SPEC2017) pop injection logic, Capability$, Alias$

Speculative Pointer Tracker

other works apart from CHEx86 that offer both temporal
and spatial memory safety protections. BOGO is a software
solution that extends Intel’s MPX to provide temporal memory
safety, but incurs severe performance degradation for many
applications. The tripwire-based approaches, REST [68] and
Califorms [63], are attractive in terms of performance and low
hardware overhead, but they necessarily require recompilation.
While Watchdog also dynamically instruments the micro-
op stream with temporal and spatial memory safety checks,
CHEXx86 differs from Watchdog in several important ways.

First, Watchdog conservatively instruments every 64-bit
integer load/store instruction in the program with memory
safety checks, as opposed to the more targeted and prediction-
driven instrumentation in CHEx86. Our experiments on the
SPEC CPU2017 benchmarks indicate that such a conservative
scheme could impact the overall execution time by 40% on
average, slowing down pointer-intensive applications such as
xalancbmk by as much as 2X. To mitigate this severe degra-
dation in performance, Watchdog suggests extending the ISA
and the compiler to annotate pointer dereferencing operations.
This not only necessarily requires recompilation or binary
translation, but entails substantial development, verification,
porting, and deployment costs.

Second, a key distinguishing feature of CHEx86 is that it has
the ability to speculatively detect spilled pointer aliases getting
reloaded into registers, without having to lookup any metadata
in shadow memory. Watchdog, on the other hand, deals with
spilled pointer aliases by associating every word in memory
with pointer identifier metadata in the shadow memory — when
a pointer is reloaded to a register, the associated identifier
metadata is also read from shadow memory, increasing the
number of memory references by as much as 2X, thereby
negatively impacting both performance and energy efficiency.
We note that the shadow memory overhead in CHEx86 scales
by the number of allocations (capabilities table) and the
number of references (alias table), rather than by the number
of words in memory. In particular, we observe an average
reduction of 32% in shadow memory overhead, in comparison
to Watchdog.

Third, the pointer tracking scheme in Watchdog is signif-
icantly less flexible than that of CHEx86, as it is tightly
integrated with the register renaming logic. In contrast, the
pointer tracking logic and the rule database in CHEx86 is
completely decoupled from register renaming and other core

logic on the decode/rename critical path, allowing us for
example, to update pointer tracking rules on-demand and in
the field using microcode updates.

Finally, we present a more complete and flexible scheme
that can be integrated with modern x86 processors with
minimal intrusion, along with an extensive security analysis
that covers a wide range of evasive modern-day memory safety
exploits.

D. Performance Evaluation

Figure 6 (top) shows the performance degradation due to
CHEX86, in terms of the overall execution time. Clearly, from
the graph, we sacrifice little performance in comparison to
the software-based address sanitizer for most benchmarks. The
prediction-driven microcode-level variant of CHEx86 always
outperforms the always-on strategy that instruments every
load/store instruction, regardless of whether it performs a heap
access. It also only slightly trails behind the hardware-only
variant, and supersedes it for the memory-intensive applica-
tions leela, mcf, and xalancbmk. This is because the hardware-
only scheme directly affects the performance of all loads and
stores in the program. Moreover, it consistently outperforms
the binary translation-driven variant and in fact, by moving the
secure instrumentation functionality from the binary translator
to the microcode engine, we significantly enhance the front-
end throughput, and speed up execution overall, by 12%,
on average. In comparison to a software-only defense, the
microcode-based variant of CHEx86 speeds up execution by
59% for SPEC and 2.2X for PARSEC, and with respect to
an insecure baseline architecture that is vulnerable to memory
corruption exploits, it slows down execution by an average of
14% for SPEC, and 9% for PARSEC. Note that this is heavily
dominated by outliers such as mcf and xalancbmk that perform
pointer-intensive computation for most of their execution.

Overall, surgical on-demand instrumentation of the micro-
op stream with capability checks offers significant advantages
over the other variants. First, it always offers better perfor-
mance than the binary translation variant and the software-
based address sanitizer, while maintaining software compati-
bility. Second, it only slightly trails behind the hardware-only
scheme, while being less intrusive — importantly, it does not
change the behavior of loads and stores, and performs all
instrumentation using existing micro-ops.
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We next perform a detailed technical evaluation to under-
stand how the different components of CHEx86 contribute
to the 14% slowdown with respect to the insecure baseline.
The primary factor that affects performance in CHEx86 is the
micro-op instrumentation for generating, checking, and freeing
capabilities, considerably expanding the number of dynamic
micro-op instructions executed by the processor. Figure 6 (bot-
tom) shows the increase in the number of dynamic micro-ops
executed due to both the software-based instrumentation of the
address sanitizer and the microcode-level instrumentation in
CHEXx86. We incur an average micro-op expansion of 11% (for
SPEC and PARSEC) in comparison to the address sanitizer
that more than doubles the number of dynamic instructions
executed. The amount of micro-op expansion is directly pro-
portional to the extent of pointer activity in an application —
for code regions without significant pointer activity, we offer
close to native performance. In fact, in a context-sensitive
implementation, where only security-critical code regions are
instrumented, we track all allocations, but inject capCheck
micro-ops for only those pointer dereferencing instructions
that lie in security-critical code, greatly reducing the micro-op
bloat.

Furthermore, to provide capability-based protection, com-
pletely under-the-hood, without sacrificing binary compatibil-
ity, we maintain all our capability metadata in shadow tables,
and avoid frequent trips to memory by leveraging a small
in-processor capability cache. Figure 7 (top) shows the miss
rate of our 64-entry in-processor capability cache. Recall from
Section IV that the number of allocations in use at any given
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point in time is significantly lower than the total number of
allocations a process makes during its lifetime, which allows
us to efficiently track in-use capabilities using a capability
cache holding only 64 capabilities, with a miss rate of only
2.1% on average.

We next evaluate the impact of the alias cache on per-
formance. Again recall from Section V that pointer reloads
are infrequent, and can therefore be efficiently tracked us-
ing a small 2-way set associative 256-entry alias cache that
is augmented by a 32-entry fully associative victim cache.
Clearly from Figure 7 (bottom), our alias cache miss rate is
negligible for most applications, resulting in very few extra
trips to memory for looking up aliases. Our alias cache incurs
an average miss rate of 17.3% across the SPEC and PARSEC
benchmarks, again, heavily dominated by outliers.

In Figure 8 (top), we show the misprediction rate of the
pointer alias detection unit. Again, given the rarity of pointer
reloads, we are able to predict these events with high accuracy
(89% on average for SPEC and PARSEC) using a simple
stride-based prediction scheme. We note that with this high
level of accuracy, comes the knowledge of whether a given in-
struction reloads a pointer from memory, and more importantly
the PID associated with the spilled pointer alias. Figure 8
(bottom) compares the percentage of time spent squashing in
both the insecure baseline and CHEx86. We observe that this
number only slightly increased, indicating that the contribution
of the pointer alias misprediction squash penalty to the overall
performance degradation is negligible, in comparison to other
factors such as micro-op expansion.



Finally, we evaluate the impact of our shadow tables on
memory bandwidth and the memory storage. Figure 9 (bottom)
compares the bandwidth usage of our applications on both
CHEXx86 and the insecure baseline x86 architecture. Due to
our low miss rates for both the capability cache and the
alias cache, we do not observe any significant change in the
memory bandwidth usage. Outliers include xalancbmk, leela
and deepsjeng that are characterized by notably intense pointer
activity. However, we note that, even for these benchmarks, the
bandwidth usage is contained at an acceptable limit. Further,
in the same Figure (top), we also show the memory storage
overhead of CHEx86, by examining the increase in an appli-
cation’s resident set size. We also include the address sanitizer
in our comparison since it also uses shadow memory for
providing security. We note that we do not allocate any more
shadow memory than the address sanitizer, while performing
significantly better.

Overall, we provide effective high performance microcode-
level mitigations against several attack vectors that exploit
temporal and spatial memory safety violations, on unmodified
source and object code, completely under-the-hood.

VIII. CONCLUSIONS

This work proposes the CHEx86 processor architecture for
safeguarding applications, including legacy binaries, against a
multitude of security exploits that target common temporal
and spatial memory safety vulnerabilities by instrumenting
the code at the microcode-level, completely under-the-hood.
The novel extensions we propose include: (a) microcode-
level capability enforcement, (b) a fully automated speculative
pointer tracking scheme, and (c) an efficient scheme for
detecting pointer aliases in memory. Overall, we incur 14%
degradation in performance, while outperforming a state-of-
the-art software-based mitigation by 59%. This is also the first
work to identify the temporal access patterns of pointer ac-
cesses, and demonstrate that these can be effectively predicted
using a simple stride-based prediction mechanism.
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