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a b s t r a c t 

This paper explores the smart exploitation of multi-modal communication capabilities of underwater 

nodes to enable reliable and swift underwater networking. Following a model-based reinforcement learn- 

ing approach, we define a framework allowing senders to select the best forwarding relay for its data 

jointly with the best communication device to reach that relay. The choice is also driven by the quality 

of the communication to neighboring nodes over time, thus allowing nodes to adapt to the highly adverse 

and swiftly varying conditions of the underwater channel. The resulting forwarding method allows appli- 

cations to choose among different classes of soft Quality of Service (QoS), favoring, for instance, reliable 

routes to the destination, or seeking faster packet delivery. We name our forwarding method MARLIN- 

Q, for Multi-modAl Reinforcement Learning-based RoutINg with soft QoS. We evaluate the performance 

of MARLIN-Q in varying networking scenarios where nodes communicate through two acoustic modems 

with widely different characteristics. MARLIN-Q is compared to state-of-the-art forwarding protocols, in- 

cluding a channel-aware solution, and a machine learning-based solution. Our results show that a smartly 

learned selection of relay and modem is key to obtain a packet delivery ratio that is twice as much that 

of other protocols, while maintaining low latency and energy consumption. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

The past decade witnessed a marked shift in underwater sens-

ing and communication capabilities. The resulting variety of re-

search and development activities has propelled underwater wire-

less sensor network (UWSN) technology to new levels of possi-

bilities and usage. Applications such as underwater monitoring,

surveillance, discovery, exploration, aquaculture and coastal pro-

tection, are becoming increasingly sophisticated and produce more

and more complex data in need of reliable and swift delivery to

their destination, whether a collection point on the surface or the

final user. Examples include pictures and video streams from un-

derwater cameras, as well as data from sonars and other high data

rate sensors [1,2] . To best respond to the challenges imposed by

underwater communications, which are beset by extreme short-

term channel variability and by environmental noise at different

frequencies, a recent trend is that of allowing sensor nodes to com-
� Results included in this paper are partially covered by a patent pending appli- 

cation. 
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unicate through multiple devices at the same time, which is also

nown as multi-modal communications . Switching among multiple

evices allows nodes to quickly adapt to variations, changing fre-

uencies, and therefore power levels, bit rates and ranges, avoid-

ng noise and other sudden impairments. For instance, endowing a

ode with optical and acoustic modems provides flexible ways to

ombine short range, high bit rate data transfer with long range,

ow bit rate, robust communication capabilities. Applications that

ake advantage from multi-modal communication include network-

ng with Autonomous Underwater Vehicles (AUVs) visiting sen-

ors to retrieve data optically at high rate and coordinating with

odes and other AUVs over long range acoustic links [3–8] . Mul-

iple acoustic modems also provide great adaptability to channel

ariability and noise. In fact, acoustic modems with widely differ-

nt characteristics are already available whose frequencies are cen-

ered from 24 kHz [9] to 100 kHz [10] , up to 160 kHz [11] . These

evices obtain bandwidth, bit rates and ranges that greatly differ

rom each other. For example, commercial modems from Teledyne

enthos, which communicate on the band centered at 24 kHz, al-

ow nodes to transmit data at 4 kilo bit per second (kb/s) to re-

eivers up to 2 km away [9] . Higher data rate modems, trans-

itting in the 100 kHz band at up to 28 kb/s, reliably deliver

ata to nodes no more than 100 m away [10] . This variety of
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echnologies promptly at disposal of a node provides the per-link

eliability unavailable so far to underwater communication. 

In this paper we aim at demonstrating how multi-modal com-

unications can be cleverly exploited for reliable and low latency

nderwater networking that meets the stringent requirements of

ey underwater applications. Particularly, we are interested in in-

estigating how the link reliability afforded to a node by commu-

icating through multiple devices can be extended to network-wide

outes , thus bringing the advances in underwater communications

o fruition for networking underwater devices on a larger scale. We

xplore how nodes can acquire knowledge on the quality of the

inks to neighboring nodes through each of their communication

evices, and how this knowledge can be used for selecting reli-

ble multi-link, multi-modal routes to the d0ata final destination.

o this aim, we define a model-based reinforcement learning frame-

ork through which senders are able to select the best forwarding

elay for their data packets jointly with the best communication

evice to reach that relay. Our framework is built to make rout-

ng decisions that support multiple service classes, through which

pplications can seek reliable routes to their data final destination,

referring packet delivery ratio ( reliability class ), or routes that pro-

ide faster packet delivery at the expense of moderate packet loss

 urgent class ). We name the resulting forwarding method MARLIN-

 , for Multi-modAl Reinforcement Learning-based RoutINg with soft

uality of Service . MARLIN-Q is flexibly defined to consider recent

hannel quality over each communication device, as well as infor-

ation on routing reliability and delivery times from neighboring

odes, thus addressing network wide performance via local infor-

ation exchange. 

The performance of MARLIN-Q is evaluated through simulations

ith SUNSET SDCS, a tool for underwater networking that mod-

ls a wide variety of details of the underwater channel and en-

ironment realistically [12] . We consider compelling underwater

cenarios, with different network size, varying traffic and varying

mount of urgent traffic, which represent the variety of settings

uitable to a large number of applications. In network with nodes

ith two underwater acoustic modems with different characteris-

ics we investigate key metrics such as packet delivery ratio (PDR),

nd-to-end latency, and energy consumption. In these settings we

ompare MARLIN-Q to the following state-of-the-art protocols: (i)

ARP, a cross-layer solution designed to be reliable, channel aware

nd energy efficient [13] , and (ii) QELAR, a machine learning-based

rotocol designed for minimizing and balancing node energy con-

umption [14] . We choose CARP and QELAR as they have been

hown to outperform previous solutions for underwater routing

nd machine learning-based routing, respectively. 

Our results show that MARLIN-Q obtains remarkable packet de-

ivery ratio for both reliable and urgent traffic, irrespective of vary-

ng network size, and amount and type of traffic. Latency is kept

emarkably low: Even in the most challenging settings—networks

ith 40 nodes and high traffic—urgent traffic is always delivered

ithin 9 s, while incurring a noticeably low energy consumption.

ARLIN-Q also achieves remarkable fairness to different types of

raffic, delivering steady amount of packets to the sink indepen-

ently of their type (either urgent of reliable). We observe that

ur protocol outperforms CARP and QELAR in all scenarios. Partic-

larly, in the most challenging settings, MARLIN-Q obtains a PDR

hat is twice as much that of the second best performing proto-

ol. Because of the clever definition of the cost optimization func-

ion of its core framework, despite delivering a higher number of

ackets MARLIN-Q is the fastest of all considered protocols, with

mprovements over the second fastest of up to 32%. Energy con-

umption is also kept at bay: Albeit delivering twice as many pack-

ts, the energy performance of MARLIN-Q is at par with that of

ARP, which uses channel reservation and saves energy on packet

e-transmission. 
i  
The results in this paper confirm that the trend of using multi-

odal communication for link reliability extends to network-wide

erformance provided that route selection is driven by a smart

hoice of best relays and communication devices. This makes

ARLIN-Q a solution for future underwater networking, achieving

erformance levels needed by key underwater applications, and es-

ecially those with soft QoS requirements. 

The rest of the paper is organized as follows. Section 2 intro-

uces the scenarios considered in our investigation, along with

otation and preliminaries on model-based reinforcement learn-

ng, the core of MARLIN-Q routing. Section 3 defines MARLIN-Q

n details. Section 4 reports results on the performance evalua-

ion of MARLIN-Q, and its comparison with previous solutions. In

ection 5 we survey previous works on multi-modal communi-

ations and on underwater reinforcement learning-based routing.

ection 6 concludes the paper. 

. Network scenario and preliminaries 

We introduce scenario, concepts and notation that are prelimi-

ary to the protocol description. We also provide a brief introduc-

ion to model-based reinforcement learning, whose methods con-

titute the core of MARLIN-Q. 

Multi-modal scenario . We consider a static underwater wire-

ess sensor network (UWSN) made up of N nodes whose sensors

roduce data that need to be delivered to the network data col-

ection point (the sink ), for processing and/or further forwarding.

iven the geographic extent of node deployment, not every node

s able to communicate directly with the sink. Therefore, packets

ay have to travel multi-hop routes. 

The scenario we consider is multi-modal in the precise sense

hat each underwater node is equipped with multiple wireless

ommunication devices (modems) operating on different frequen-

ies, at different bandwidths, obtaining different bit rates, and with

arious communication ranges and power consumption. Nodes are

enerically indicated as i and j . A specific modem is denoted by m ,

nd M indicates the set of all modems available at each node.

ith M idle we indicate the subset of the modems of a node that

re idle at a certain point in time, i.e., that are ready to be used

or transmission. 

A sketch of a multi-modal underwater scenario is depicted in

ig. 1 . Every node is equipped with two communication devices.

he sink is shown close to surface, in the upper right corner of

he picture, and has capabilities to report data from the UWSN to

tations on shore. 

Classes of service . Nodes are deployed to monitor assets or

vents through their sensors. When something that needs report-

ng happens a node produces data that need to be delivered to the

ink. Depending on the application, these data need to reach the

ink as soon as possible ( urgent data ) or reliably ( reliable data ). To

his aim, MARLIN-Q supports different classes of service. In partic-

lar, in this work we consider a reliability class r for reliable pack-

ts, and a low latency class u , for urgent ones. If an application

equires reliable delivery, MARLIN-Q seeks to deliver the highest

umber of packets to the sink. Otherwise, for an application that

roduces packets of type u , MARLIN-Q does its best to be fast, at

he expense of tolerating some packet loss. As nodes may run mul-

iple applications, each node may generate packets of both types. 

Use of implicit ACKs . In order to reduce overhead—and latency,

nd energy consumption—each packet is acknowledged implicitly,

everaging the broadcast nature of the wireless channel. Specifi-

ally, after transmitting a packet, the sender starts listening to the

hannel on any of its modems. If it overhears the packet being

etransmitted by the chosen relay within a given time, it consid-

rs the packet transmitted successfully. If it does not, the packet

s considered lost. (Only the sink sends explicit ACKs back to its
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Fig. 1. Multi-modal UWSN. Each node has two communication devices. 
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1 Although unlikely, there could be cases in which urgent packets are always 

present at a node that would prevent transmission of reliable packets, which would 

then loose they “reliability.” In order to avoid the occurrence of such an extreme 

case, MARLIN-Q can be extended to include a “failsafe mode” that would ensure 

transmission of one (or more) reliability packet(s) every � urgent packets, with � 

to be selected, possibly as a function of traffic. For ease of protocol description, we 

have not detailed this mechanism in the current description of the protocol. 
senders, as it does not forward the packet further underwater). The

node behavior after packet loss depends on the class of service of

the packet that has been transmitted, as described in details below.

A brief primer on reinforcement learning . Reinforcement learning

concerns how some agents take actions in a given environment for

optimizing some notion of cumulative cost [15] . To this purpose,

agents learn and optimize policies online through direct experience

rather than computing them a priori. Given the set S of possible

states of an agent, and the set A ( s ) of the actions available at each

state, a policy is a function π that associates each state s ∈ S with

the action a ∈ A ( s ) that the agent should take towards cost mini-

mization. In the context of our work, agents correspond to under-

water nodes handling packets, while the policy corresponds to the

forwarding strategy, namely to the choice of a relay and of a mo-

dem to communicate with that relay. 

In order for an agent to establish how good it is to be in a given

state, a value function V π ( s ) is defined as the expected infinite-

horizon discounted cost starting from s as initial state and using a

given policy π as follows: 

 
π (s ) = E πs 

{ 

∞ ∑ 

t=0 

γ t c(s t , a t ) | s 0 = s 

} 

, (1)

where 0 ≤γ < 1 is the discount factor, s t and a t are the system

state and the action taken at time t , respectively, and c ( s t , a t ) is

the expected cost associated to state s t and decision a t . For each

state s ∈ S, the optimal policy π ∗ minimizing the value functions

satisfies the Bellman optimality equation: 

 
π ∗

(s ) = min 
a ∈ A (s ) 

{ 

c(s, a ) + γ
∑ 

s ′ ∈S 
P a s → s ′ V 

π ∗
(s ′ ) 

} 

, (2)

where P a 
s → s ′ represents the transition probability from state s to

state s ′ after action a has been taken. Eq. (2) highlight that the
policy π ∗ that minimizes the cost depends on the immediate cost

of taking the action a from state s and on the expected discounted

cost from the next state s ′ onward. 

In order to measure the costs of taking different actions a from

state s to different states s ′ we define the function Q as the ex-

pected infinite horizon discounted cost of taking an action a in

state s and then following the policy π : 

Q 
π (s, a ) = c(s, a ) + γ

∑ 

s ′ ∈S 
P a s → s ′ V 

π (s ′ ) , ∀ s ∈ S. (3)
For each state s ∈ S the Bellman equation and the function Q

llow us to greedily compute the optimal policy as π ∗(s ) =
rg min a ∈ A (s ) Q 

π∗
(s, a ) . 

Solving the Bellman Eq. (2) depends on knowing the cost c ( s,

 ) and the transition probabilities P a 
s → s ′ . In scenarios where these

arameters are not known a priori, models can be provided for

heir estimation, so that functions V and Q can be learned on-

ine, by interacting with the agent environment. This interaction

sually takes the form of exploiting the knowledge acquired so

ar by the agent, and of exploring the agent environment to gain

ew knowledge. Learning techniques following this methodology

re called model-based [15] . In the description of our protocol

 Section 3 ), these ingredients of reinforcement learning are tailored

o our underwater multi-modal scenario to constitute the core of

ow MARLIN-Q learns how to route, i.e., how nodes choose the

est relays and modems to reliably and quickly deliver data pack-

ts to the sink. 

. The MARLIN-Q protocol 

In this section we describe MARLIN-Q in details, and particu-

arly, the machine learning framework at its core. 

.1. Protocol description 

Each node manages two output transmission queues: One for

ackets of type r (“reliability queue”), and one for those of type u

“urgent queue”). Urgent packets take priority over reliability pack-

ts, i.e., are always transmitted first. Reliability packets are trans-

itted only when the urgent queue is empty. 1 

When a node i has a packet p to forward, it executes the follow-

ng algorithm SendPacket ( p, c ), where p is the packet to be trans-

itted and c is its type, i.e., either r or u . 

Forwarding packets depends on their type. Reliability is fos-

ered by having node i re-transmitting packet p until its success-
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Algorithm 1 SendPacket ( p, c ). 

1: if ( c = r) then 

2: k = 0 
3: done = false 
4: while ( not done ) do 

5: 〈 j, m 〉 = ComputeR & M( r, k , M idle ) 
6: if Channel Idle then 

7: TransmitPacket( p, j, m ) 
8: if ( j is heard to transmit p within δ time units) 

then 

9: done = true 
10: else 
11: if k > K − 1 then 

12: Drop p 
13: done = true 
14: else 
15: k = k + 1 

16: else 
17: set Backoff( [ δu , δr ] ) 

18: else 
19: 〈 j, m 〉 = ComputeR & M( u , 0, M idle ) 
20: if Channel Idle then 

21: Compute&InsertBackUpRelays( p) 
22: TransmitPacket( p, j, m ) 
23: else 
24: set Backoff( r ∈ [0 , δu ] ) 
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ul reception at the selected neighbor j . Success is recognized by

ode i overhearing node j forwarding the packet within a certain

ime δ (implicit acknowledgment), or by explicit acknowledgment

f node j is the packet final destination (i.e., the sink). We allow up

o K ≥1 transmissions, after which the packet is discarded. (Param-

ters K and δ are global to the algorithm. They are set at the start

f node operations.) Low latency for urgent packets is obtained by

voiding packet re-transmissions altogether. A main relay is chosen

long with a list of back-up relays, which are in charge to forward

he packet if the main relay is not heard to forward it. 

In details, the operations of SendPacket are as follows. If

acket p comes from the reliability queue, node i chooses the

est relay j and modem m for forwarding packet p by running

lgorithm ComputeR & M (line 5; detailed below). Subsequently, it

hecks whether the channel is idle or not. If it is, node i trans-

its p to the chosen relay j using the selected modem m (line 7).

fter transmission, node i awaits to overhear the forwarding of p

y relay j (implicit ACK) or to receive an ACK from the sink. If the

CK is received within a pre-defined time δ, the transmission of

acket p is successfully concluded, and the algorithm terminates

line 9). If that does not happen, and the packet has been already

ransmitted for K ≥1 times, then the packet is dropped (line 12)

nd the algorithm terminates (line 13); otherwise, the number of

e-transmission attempts is increased by 1 (line 15) and the pro-

ess is repeated with the selection of new relay and modem, and

o on. 

If the channel is found busy, instead, node i re-enqueues the

acket and postpones its transmission by setting a backoff timer

o a value chosen randomly and uniformly in the interval [ δu , δr ]
line 17). We stipulate that δu < δr . Both parameters are global to

he algorithm. They are set at the start of the node operation. Upon

imer expiration, operations resume from line 5. 

If packet p comes from the urgent queue, node i chooses the

est relay j and modem m for forwarding packet p by running

he algorithm ComputeR & M (line 19; detailed below). We notice

hat in this case, the parameter k concerning the number of re-
ransmissions is set to 0, as urgent packets are not re-transmitted.

ubsequently, node i checks whether the channel is idle or not.

f it is, node i computes a set of back-up relays that are in

harge of forwarding p if the main relay j is not heard to trans-

it it, and attaches the list to the header of packet p (Com-

ute&InsertBackUpRelays( p ); line 21. Details on the selection of

ack-up relays are provided below.) Node i then transmits p to

he chosen relay j using the selected modem m (line 22). If the

hannel is busy, node i re-enqueues the packet and postpones its

ransmission by setting a backoff timer to a value chosen randomly

nd uniformly in the interval [0, δu ] (line 24). Upon timer expira-

ion, operations resume from line 19. We notice that by choosing
u < δr we favor the re-transmission of urgent packets before that

f reliability ones. 

The crux of every node operation, i.e., the heart of algorithm

endPacket , is choosing of the next hop relay j and of the best

dle modem m for transmitting packet p . This choice is performed

y running the algorithm ComputeR & M (lines 5 and 19). Choosing

elays and modem for packet forwarding, as well as back-up relays

or urgent packet, is supported by a sophisticated reinforcement

earning-based framework, described in the following. 

.2. Learning how to route 

Each node i acts as an agent that, for each packet p , deter-

ines the best among a set of forwarding decisions, namely an

ction a representing a relay and a modem. The model for routing

ackets in MARLIN-Q is characterized by defining the following: (i)

he state space , (ii) the actions , (iii) the state transition dynamics ,

nd (iv) the cost function . Based on these four components, model-

ased reinforcements learning allows nodes to determine (v) op-

imal forwarding decisions. In the rest of this section we first de-

cribe each of the ingredients of our framework, and we then use

hem to define algorithm ComputeR & M. 

(i) States . A node i handling a packet p can be in one of k ≤
 − 1 representing the number of times that it has transmitted p

nsuccessfully. The state space S is therefore the set { 0 , . . . , K −
 } ∪ { rcv , drop} , where rcv identifies successful packet transmis-

ion and drop identifies the case when the maximum number K

f transmissions has been exceeded and the packet is discarded. 

(ii) Actions . Actions concern forwarding decisions, i.e., the joint

election of a relay among the sender neighbors and of the mo-

em to that relay. Let us denote with N 
m 

i 
the set of nodes that a

ode i can reach using modem m . (Different modems correspond

o different sets, although a neighbor can be reached by multiple

odems.) For each node i , state s and set of modems M ⊆ M , the

et A M 

i 
(s ) of available actions is: 

 
M 

i (s ) = { a = 〈 j, m 〉 | m ∈ M, j ∈ N 
m 

i } , (4)

here a = 〈 j, m 〉 is the action of forwarding a packet to neigh-

or j using modem m . Since no action can take place when s ∈ { rcv,

rop }, it is A M 

i 
(rcv ) = A M 

i 
(drop) = ∅ . 

(iii) Transitions . The transition from one state to another de-

ends on the current state s and on the performed action a =
 j, m 〉 . Let us denote with P m 

i, j 
the probability of correct packet

ransmission on the link from node i to node j using modem m .

hen the transmission of p succeeds after k unsuccessful attempts,

ode i transitions from state s = k to state s ′ = rcv . The transition
robability is the following: 

 

〈 j,m 〉 
i,s → rcv = 

{
P m 

i, j 
P m 

′ 
j,i 

if 0 ≤ k < K − 1 

P m 

i, j 
if k = K − 1 . 

(5) 

When p can be (re)transmitted, i.e, when the number k of re-

ransmission is < K − 1 , successful transmission depends on the

ollowing probabilities: (i) The probability P m 

i, j 
that the packet is re-

eived by node j on modem m . This probability is computed by
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Fig. 2. States and transitions of node i handling packet p . The initial state is 0; rcv 

and drop are the final absorbing states. 
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node j and broadcast in the header of its packets. (ii) The prob-

ability P m 
′ 

j,i 
that the packet p , forwarded by node j on best mo-

dem m 
′ , is successfully overheard by node i . This probability is

computed by node i based on overhearing node j transmissions on

modem m 
′ . (Details on determining best modems and probabili-

ties are provided below.) In case node j is the sink, P m 
′ 

j,i 
expresses

the probability that node i receives the ACK explicitly sent by the

sink. (In this case, we stipulate that the sink sends the ACK us-

ing the same modem it received the packet on, i.e., m = m 
′ .) When

the number of transmissions has reached its last value K , there

is no need for i to listen for an ACK, and the state transition de-

pends only on the link from i to j . When the transmission of p fails,

we have two possible transitions. If k < K − 1 we just increase the

number of re-transmissions, and the next state is s ′ = k + 1 . Oth-

erwise, if k = K − 1 , the packet p is dropped and the next state

is s ′ = drop. In both cases, the transition probability can be de-

fined simply as P 
〈 j,m 〉 
i,s → s ′ = 1 − P 

〈 j,m 〉 
i,s → rcv . The state diagram of a node i

handling a packet p is depicted in Fig. 2 . (iv) Costs . In a reinforce-

ment learning approach, the inner logic of a protocol resides in the

structure of the cost function c i to be optimized. MARLIN-Q focuses

on minimizing the network-wide time needed by node i to deliver

packet p to the sink , i.e., to its final destination. In order to express

the whole routing time, we associate each state-action pair ( s, a )

with a cost reflective of the time needed to forward the packet by

one hop, to a selected relay, and of the time needed to forward it

from that relay to the sink. Equally important, we increase relia-

bility by associating a high penalty time to transitions to the drop

state. As we seek to minimize time, this discourages packet loss.

More formally: 

c i (s, a ) = 

{
t i (s, a ) + d i (s, a ) if 0 ≤ k < K − 1 

t i (s, a ) + d i (s, a ) + l i (s, a ) if k = K − 1 . 
(6)

The cost t i ( s, a ) indicates the time needed for p to be delivered

to neighbor j . It is defined as follows: 

 i (s, a ) = t m + p i, j + 

{
w i k = 0 

b i otherwise, 
(7)

where t m is the time needed to transmit p on modem m, p i, j is

the propagation time between the two nodes, w i is the average

time spent by packet p in the queue of node i (before the first

transmission of the packet), and b i is the time spent waiting for the

implicit ACK (subsequent re-transmissions). The d i ( s, a ) component

of the cost in Eq. (6) is given by: 

d i (s, a ) = V j (0) P m 

i, j , (8)

where V j (0) is the value of the function V associated to the state

s = 0 of relay node j . This cost is, by definition, a measure of the

minimum time needed to reach the sink starting from node j . (It

is available to node i as it is broadcast by node j in the header of

its packets.) The cost V j (0) is multiplied by the probability P m 

i, j 
as
ode j will forward the packet only in case it correctly receives it

rom node i . Finally, in case a packet has been unsuccessfully trans-

itted for k = K − 1 times, we associate to the action a = 〈 j, m 〉 of
he last re-transmission the penalty time l i ( s, a ) aimed at discour-

ging node i to drop the packet. We can think of dropped packets

s packets that are delivered to the sink arbitrarily late in time. As

uch, the cost l i ( s, a ) associated to “delivering the packet that late”

s defined as: 

 i (s, a ) = L (1 − P m 

i, j ) , (9)

here (1 − P m 

i, j 
) is the probability of dropping the packet, and L

s set to a value greater than the highest cost of delivering the

acket to the sink through any of the neighbors of node i (i.e.,

 > max j∈ ⋃ 

m N m i 
V j (0) ). In other words, as node i approaches the

aximum number K of transmission attempts, its actions tend to

avor the reliability of the transmission to the next hop. 

(v) Optimal forwarding . To compute optimal forwarding deci-

ions, every time a packet p is ready to be transmitted, node i

xecutes an algorithm for determining the action a = 〈 j, m 〉 for p ,
.e., the best relay j and the best modem m to reach it. Each node

tarts with no knowledge of its surrounding environment. Inter-

cting with its neighbors, it iteratively acquires and updates its

nowledge over time. In particular, the value function V i is approx-

mated and updated relying on current estimations of the transi-

ion probabilities P a 
i,s → s ′ , and on the estimated value of the func-

ions V j (0) from neighboring nodes j , needed to estimate the cost

 i ( s, a ). (From now on, all values of the transition probabilities, and

f functions V and c are to be intended estimates changing over

ime.) 

We are finally able to describe the core component of MARLIN-

 forwarding process, namely, algorithm ComputeR&M . This is the

lgorithm through which node i executes the learning framework

nd uses it to determine the best relay and modem (R&M) every

ime there is a packet p to (re-)transmit. 

lgorithm 2 ComputeR&M ( c, k , M idle ). 

1: for all ( s ∈ S) do 

2: for all a ∈ A 
M 

i 
(s ) do 

3: Q 
c 
i 
(s, a ) = c i (s, a ) + γ

∑ 

s ′ ∈S P 
a 
i,s → s ′ V 

c 
i 
(s ′ ) 

4: V c 
i 
(s ) = min a ∈ A M 

i 
(s ) Q 

c 
i 
(s, a ) #Update

5: τ = random _ number(0 , 1) 
6: if τ < 1 − ε then #Exploitation
7: 〈 j, m 〉 = arg min 

a ∈ A M idle 
i 

(k ) 
Q 

c 
i 
(k, a ) 

8: else #Exploration
9: m = random modem in M idle 

10: 〈 j, m 〉 = arg min 
a ∈ A { m } 

i 
(k ) 
Q 

c 
i 
(k, a ) 

11: return a = 〈 j, m 〉 #Forwarding decision

The algorithm takes as input the type c of packet p , the current

tate k and the set of idle modems M idle . When packet p is ready

or transmission, node i updates the model and computes the new

alue function (line 1to 4). Once the model has been updated, a

orwarding action can be selected. To balance between exploitation

f the acquired knowledge and exploration of new one, we use the

-greedy heuristic, which is well-known for robustness and effec-

iveness [15] . Specifically, each time, the best neighbor on the best

dle modem is selected with probability 1 − ε (line 7), exploiting

he knowledge just updated. Conversely, with probability ε we ex-

lore new solutions by selecting a random modem among those

vailable (line 9), and we forward the packet to the best relay we

an reach using that modem (line 10). Even when exploration may

roduce a suboptimal choice of modem and relay, the broadcast
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ature of the transmission to this relay allows nodes to acquire

ey statistics about their neighbors. (Parameter ε is global to the

lgorithm. It is set at the start of the node operations.) 

It is worth pointing out that algorithm ComputeR&M han-

les both types of packets simultaneously: Two instances of our

earning framework are executed in parallel based on the type of

he packet to be transmitted. Specifically, depending on the flow

ype c , functions Q 
c and V c are updated and used to determine

he best relay and modem for packet p . In order for a node to

nderstand which functions to update upon receiving a packet p ,

e stipulate that the header of p carries an extra bit indicating its

ype. 

The execution of Algorithm ComputeR&M relies on the knowl-

dge of the transition probabilities P a 
i,s → s ′ and on the packet for-

arding cost c i ( s, a ), which in turn depends on the value func-

ion V c 
j 
(0) of each neighbor j of node i . Here is how these prob-

bilities and function values are determined. The estimation of the

ransition probabilities is based on the estimation of the link prob-

bilities P m 

i, j 
( Eq. (5) ). Nodes estimate link quality upon receiving

 packet. In particular, a receiver j keeps count of the number of

ackets n m 

i, j 
received from each neighbor i on modem m , regardless

f whether node j is the packet intended destination. The incom-

ng link probability is estimated as P m 

i, j 
= n m 

i, j 
/ n m 

i 
, where n m 

i 
is the

otal number of packets sent by node i , an information that node i

roadcasts in the header of its packets. These estimates are then

roadcast by node j into its packet headers, to be overheard by its

eighbors. In order to keep track of the varying link conditions, the

ounts n m 

i 
and n m 

i, j 
are computed over a sliding window. If node i

ails to overhear transmissions from a neighbor j within a given

ime it automatically updates its own link transmission probability.

n particular, node i “degrades” P m 

i, j 
to (n m 

i 
/ (n m 

i 
+ 1)) P m 

i, j 
. If node i

oes not hear packets from node j for a given time, it removes

ode j from the list of its neighbors until node j is heard again.

he determination of c i ( s, a ) is based on information available lo-

ally at node i and on values broadcast by node j in the header of

ts packets. 

Finally, we describe how a node that is forwarding an urgent

acket p computes the list of back-up relays, namely, we detail

he operations of Compute&InsertBackUpRelays( p ) (line 21 of al-

orithm SendPacket ). Let us assume that Algorithm ComputeR&M

utputs node j as the main relay for forwarding packet p to be

eached using modem m . Let us also assume that node j uses mo-

em m 
′ to forward the packet p . The first back-up relay h is se-

ected by node i using the following rule: 

 h, m 〉 = arg min 
a ∈ A { m } 

i 
(0) \{〈 j,m 〉} 

Q i (0 , a ) 

P m 
′ 

j,h 

. (10)

his rule aims at selecting a node that is not only a good for-

arder (low Q i (0, a )) but also a node that is “well connected” to

he main relay j , i.e., with high probability of overhearing j for-

arding p (high P m 
′ 

j,h 
). In so doing, node i tries to avoid redundant

e-transmissions that would increase network traffic and waste en-

rgy. Applying rule (10) with h in place of j produces the second

est back-up relay, and so on. 

The length of the list is set to a number � i ≤ |N 
m 

i 
| , which may

ary dynamically, depending on the network load. In fact, we keep

dding back-up relays to the list until either the probability that

one of them receives the packet is lower than a given threshold

 lost or the size of the list � i is reached. 

Upon receiving the packet, the back-up relays set a back-up

imer and store the packet in their queues. The timer is set to a

ime that is inversely proportional to the node position in the pri-

ritized list of back-up relays: The higher its position, the shorter

he time. When the timer goes off, the node checks if it has over-

eard the packet transmission by higher priority nodes. If so, it dis-
ards the packet; otherwise it transmits it. For example, the first

ack-up relay forwards p only if it does not overhear its transmis-

ion by the main relay; the second back-up relay transmits p only

f it does not overhear its transmission from either the main re-

ay or the first back-up node, and so on. By not re-transmitting a

acket for which there is no implicit ACK, the original sender keeps

ransmitting other packets, whose queuing delay is thus shorter.

his is a key feature of MARLIN-Q, enabling overall faster delivery

f urgent packets. 

. Performance evaluation 

We demonstrate the effectiveness of our approach to multi-

odal networking through a simulation-based performance evalu-

tion of MARLIN-Q in realistic underwater channel conditions and

cenarios. The performance of our protocol is also compared to

hat of two solutions that represent current state-of-the-art rout-

ng for UWSNs. The two protocols are: (i) CARP, a cross-layer so-

ution designed to be reliable, channel aware and energy efficient.

ARP is characterized by a channel reservation phase through con-

rol packets (named PING and PONG) that also carry routing in-

ormation [13] , and (ii) QELAR, a machine learning-based proto-

ol designed for minimizing and balancing node energy consump-

ion [14] . All routing protocols have been implemented in SUNSET

DCS [12] . We used the Bellhop ray tracing tool via the WOSS in-

erface [16] for accurate modeling of the underwater acoustic chan-

el. The environmental data input to Bellhop refer to an area lo-

ated in the Norwegian fjord off the coast of Trondheim, with the

oordinates (0,0,0) of the surface located at 63 °, 29 ′ , 1.0752 ′ ′ N and

0 °, 32 ′ , 46.6728 ′ ′ E . Sound speed profiles, bathymetry profiles and

nformation on the type of bottom sediments of the selected area

re obtained from the World Ocean Database, from the General

athymetric Chart of the Oceans (GEBCO), and from the National

eophysical Data Center’s Deck41 data-base, respectively [17] . In

he following we first describe the selected scenarios and protocol

arameters settings ( Section 4.1 ), we then introduce the investi-

ated metrics ( Section 4.2 ), and we finally report the results of our

xperiments ( Section 4.3 ). 

.1. Simulation scenarios and settings 

We consider UWSNs with N = 6 , 20 and 40 nodes deployed ac-

ording to a uniform random distribution in rectangular regions

ith surface of 1 km 
2 , 2 km 

2 and 4 km 
2 , respectively. This allows

s to investigate networks with size ranging from that of current

eployments (6 nodes) to that of larger (20) and desirable (40)

etworks. In all scenarios nodes are deployed at different depths,

anging from 10 to 240 m, while the sink is located at one of the

orners of the deployment area, 10 m below surface. Topology con-

truction ensures that each node has at least one route to the sink.

We consider underwater nodes equipped with two acoustic

odems with different characteristics. The first modem carrier fre-

uency is set to 25.6 kHz for a bandwidth of 4 kHz, resulting in a

it rate of 40 0 0 b/s. The second modem carrier frequency is higher,

3 kHz, for a bandwidth of 30 kHz and a bit rate of 90 0 0 b/s.

e assume a BPSK modulation for both modems. For the selected

alue of the bandwidth and of the carrier frequency the transmis-

ion power of the two modems is set to 2.8 W and 5.5 W. Their

eception power is set to 0.5 W. These values are consistent with

hose of commercial modems by Teledyne Benthos [9] and Evolog-

cs [11] . 

We consider a scenario where nodes generate traffic based on

he occurrence of events that are of interest to applications run-

ing on the nodes. As soon as an event happens, it is sensed by a

ode that starts producing packets with a given type, at a specific

ate and for a variable period of time. Multiple events can happen
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concurrently, and can be sensed by different nodes in the network.

As a consequence, different types of packets are generated in the

network at the same time. The inter arrival time of occurrences

of events is exponentially distributed, with mean μa seconds. The

event duration is also distributed exponentially, with mean μd sec-

onds. When an event happens at a given location (chosen accord-

ing to a random uniform distribution within the network deploy-

ment area) the node closest to it senses the event and generates

the corresponding packets for the entire duration of the event. All

packets from a sensed event are either urgent or reliable. Selection

of the type of all packets from an event is controlled by the prob-

ability P u that the event is urgent. Finally, the packet generation

rate of an event is Constant Bit Rate (CBR). For instance, a CBR rate

of one packet every 10 seconds for an event that lasts 200 sec-

onds will generate 20 packets. In our simulations, we consider the

following parameter setting: μa ∈ {10 0, 20 0} s, μd = 10 0 s, P u ∈ {0,

0.25, 0.5, 0.75, 1}, and CBR ∈ {10, 20} s. Mixing these parameters

up allows us to generate different network-wide aggregated traffic

rates. Particularly, in this paper we consider the following rates. 

1. High traffic (H): μa = 100 , μd = 100 and CBR = 10 s. 

2. Medium-High traffic (MH): μa = 200 , μd = 100 , and CBR = 10 s.

3. Medium-Low traffic (ML): μa = 100 , μd = 100 , and CBR = 20 s. 

4. Low traffic (L): μa = 200 , μd = 100 , and CBR = 20 s. 

The destination of all packets is the sink. The data packet pay-

load size is set to 10 0 0 bytes (B). The actual size of a transmitted

data packet is given by its payload plus the bytes of the headers

added at different layers. The physical header overhead changes ac-

cording to the data rate but is dominated by a 10 ms synchroniza-

tion preamble. At the MAC layer, the header size depends on the

protocol. QELAR uses CSMA, whose header contains the sender and

the destination addresses, and the packet type. Its length is 3 B.

QELAR also needs 6 B extra for information on the residual energy

and for the state space of the node. Being a cross layer protocol,

CARP implements its own MAC, and the header of its MAC packets

also carries routing information. As such, the size of its PING and

PONG control packets is 10 B and 6 B, respectively. Its ACK and

HELLO packets are 6 B long. The CARP MAC data packet header is

4 B long. Finally, as MARLIN-Q carries a number of information in

the packet header, including the value function, P i, j estimates, list

of back-up relays, etc., its size varies with the network size. In our

implementation the MARLIN-Q header size was 7 B, 15 B and 30 B,

depending on the network size. In our experiment, we have set

the parameter ε of Algorithm ComputeR&M to 0.1, as typical [15] .

The number of re-transmissions K used by MARLIN-Q for reliabil-

ity packets, QELAR and CARP is set to 4 (low traffic), 3 (medium

traffic) and to 2 (high traffic). The maximum length � i of the pri-

oritized list of back-up relays of node i is set to 4 (low traffic), 3

(medium traffic) and to 2 (high traffic), and P lost is set to 0.05. 

4.2. Simulation metrics 

Routing performance is assessed through the investigation of

the following metrics. 

• Packet delivery ratio (PDR), defined as the fraction of packets
correctly received by the sink over the total number of pack-

ets generated by the nodes. 

• End-to-end latency , defined as the time between packet genera-

tion and the time of its correct delivery to the sink. 

• Energy , defined as the overall energy consumed by the network

to correctly deliver all the data belonging to a specific type (i.e.,
reliable or urgent). a  
.3. Performance results 

We start by describing the performance of MARLIN-Q in net-

orks with different size, traffic, and amount of urgent traffic. We

nish our investigation with a comparative evaluation of the per-

ormance of MARLIN-Q, CARP and QELAR. For CARP and QELAR we

how results obtained by using the modem that produces their

est performance. All results are obtained by averaging over data

rom a number of simulation runs that achieves a statistical confi-

ence of 95% within a 5% precision. 

.3.1. MARLIN-Q vs. network size 

Fig. 3 shows the performance of MARLIN-Q for increasing net-

ork size. We show results from the most challenging scenario,

amely, at the highest traffic: μa = 100 , μd = 100 , CBR = 10 s. The

umber of reliable packets generated in the network is the same as

he one of urgent packets ( P u = 0 . 5 ). 

As expected, the PDR decreases with increasing network size

 Fig. 3 a). This is due to the fact that in larger networks, packets

ravel longer routes (the average number of hops per route is 1.2

or small networks, which is almost half of that in networks with

0 nodes), and therefore incur a higher level of interference/re-

ransmissions. The PDR of reliable traffic is always higher than that

f urgent packets, because of the re-transmission mechanism that

ARLIN-Q implements for this kind of traffic. This is particularly

oticeable in large networks ( N = 40 ), where the PDR of reliable

raffic is, on average, 13% higher than that of urgent packets. 

Latency increases with network size, also because of longer

outes and increased interference ( Fig. 3 b). This is particularly ev-

dent for reliable traffic. Reliable packets are re-transmitted (while

rgent packets are not), and re-transmissions occur more often in

arger networks. Finally, as reliable packets are transmitted only if

here are no urgent packets to be forwarded, they have to wait

onger. Urgent packets incur the lowest latency, improving on the

atency of reliable packets by up to 600% (large networks). Their

atency is pretty stable: Independently of the network size it is al-

ays < 9 s. 

Finally, energy also increases with increasing network size

 Fig. 3 b). This is because of the higher number of interfering trans-

issions and of the longer routes taken by the packets. In gen-

ral, the energy spent to deliver reliable packets is higher than that

eeded for urgent ones, because of the re-transmissions allowed

or reliable packets. This is particularly evident in large networks,

here the number of interference is higher, therefore requesting

 higher number of re-transmissions. In case of small networks,

owever, we notice that it costs more to deliver urgent packets

around 30% more). This is because the topology of small networks

s so sparse that when node i chooses node j as main relay and

ode h as back-up relay, node h is so far from node j that it can-

ot overhear node j transmission. As a consequence, node h (also)

ransmits the packet to the sink. We have indeed observed that in

his scenario the sink received most of the packets twice, which

mplies higher energy consumption. This clearly does not happen

or reliable traffic, for which we observed that there are very few

e-transmissions (because of the short routes of these networks,

hose number of hops per route is slightly in excess of 1), and a

ery high PDR (almost 100%). 

.3.2. MARLIN-Q vs. traffic 

Fig. 4 shows the performance of MARLIN-Q for increasing traf-

c. We show results for network with 40 nodes (results for smaller

etworks show similar trends and provide no further insights), and

 u = 0 . 5 . 

As expected, as the traffic increases the PDR decreases for both

ypes of packets: The higher the traffic, the higher the interference

nd packet loss ( Fig. 4 a). Reliable packets are delivered more than
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Fig. 3. MARLIN-Q in networks with varying size. Scenario with high traffic. 
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rgent packets, because of the re-transmissions allowed for reliable

ata. 

Latency also increases with increased traffic ( Fig. 4 b). Ur-

ent packets are always considerably faster at reaching the sink

han reliable packets. The improvement ranges from 100% (low

nd medium-low traffic) to 600% (high traffic). As noticed in

ection 4.3.1 , this is because higher traffic causes higher interfer-

nce and hence it takes more time to forward reliable traffic. The

atency of urgent packets is instead quite low independently of the

raffic, consistently remaining under 9 s. 

Finally, increasing the traffic increases the level of congestion in

he network, which corresponds to increased energy consumption

 Fig. 4 c). The energy consumption of urgent traffic is consistently

ess than that of reliable traffic (up to 26% improvement, ob-

ained at high traffic). This is because of the re-transmissions

f reliable packets, which clearly impose higher energy

equirements. 

.3.3. MARLIN-Q vs. varying P u 
In Fig. 5 we investigate the performance of MARLIN-Q in sce-

arios where we vary the amount of urgent traffic from 0 to 100%,

.e., P u is varied from 0 to 1. We show results for large networks

ith high traffic. 

The PDR of both types of traffic is fairly consistent irrespective

f the value of P u ( Fig. 5 a). The PDR of reliable packets is con-
istently higher (around 13%) than that to urgent traffic, due to

he re-transmission mechanism that MARLIN-Q allows for reliable

ackets. 

The latency of reliable packets decreases by increasing the

mount of urgent traffic ( Fig. 5 b). We observe that the major fac-

or affecting the latency of these packets is the overall number

f re-transmissions in the network, which is clearly higher when

re-transmittable” (i.e., reliable) traffic is higher. Latency of urgent

ackets is instead consistently kept at bay by swift transmission

nd smart selection of best relay and modem. We note that the la-

ency of urgent packet is not affected by the varying amount of re-

iable traffic, as independently of how many reliable packets there

re, urgent packets are always transmitted before reliable packets.

s mentioned, urgent packets find their way to the sink always in

ess than 9 s. 

As the number of urgent packets increases the energy con-

umed to correctly deliver them increases proportionally, simply

ecause there are more urgent packets to transmit ( Fig. 5 c). This

ame trend is observed for reliable packets: The more the packets

f this type, the more energy is consumed to deliver them to the

ink. As noticed, on average, the energy consumed for delivering

eliable packets is higher than that needed for urgent packets be-

ause of the re-transmission mechanism that MARLIN-Q allows for

eliable traffic. 
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Fig. 4. MARLIN-Q in networks with varying traffic. Networks with 40 nodes and P u = 0 . 5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

i  

p  

t  

b  

a  

i

5

 

u  

m  

U  

c

 

h  

i  

t  

a  

j  

b  

o  

c  

i  
4.3.4. MARLIN-Q vs. CARP and QELAR 

Results of the comparative performance evaluation of MARLIN-

Q, CARP and QELAR are shown in Fig. 6 . We consider the most

challenging scenarios with large networks, P u = 0 . 5 and vary the

traffic from low to high. All metrics refer to averages from values

for reliable and urgent traffic. 

We observe that MARLIN-Q obtains the highest PDR indepen-

dently of traffic ( Fig. 6 a). This is because of the smart way with

which MARLIN-Q chooses the best modem on a per-link basis, each

time selecting the device that provides the best forwarding. Im-

provements vary from 20% (low traffic) up to 100% (high traffic)

over the second best performing protocol, CARP. We notice that

CARP outperforms QELAR because of its channel reservation mech-

anism, which, especially at lower traffic, provides higher probabil-

ity of collision free channel access. 

In spite of a PDR significantly higher than that of the other two

protocols, MARLIN-Q exhibits always the lowest latency. This is be-

cause the learning-based framework that governs MARLIN-Q oper-

ations explicitly takes latency (and link robustness) into account in

its cost function ( Section 3 ). Not surprisingly, CARP experiences the

highest latency because of the channel reservation phase needed

prior to packet transmission. 

By choosing relays and modems smartly (which include the

ability of a link to forward packets successfully), MARLIN-Q al-

ways exhibits excellent performance by consuming the lowest

amount of energy. CARP also avoids spending extra energy for re-

d  
ransmission through its channel reservation phase, which results

n fewer packet collisions. However, the energy spent for control

ackets raises its energy toll. This is particularly evident at low

raffic, where CARP spends up to 44% more energy than that spent

y MARLIN-Q. The two protocols exhibit similar performance only

t high traffic, which is where the CARP channel reservation is at

ts most effective. 

. Related work 

In this section we review solutions in the realm of UWSNs that

se the concepts and techniques used in this paper, namely, multi-

odal communication for underwater networking, data delivery in

WSNs, and underwater solutions for data delivery that use ma-

hine learning-guided ideas. 

Multi-modal communications have emerged as a means to en-

ance UWSN reliability and performance in a variety of scenar-

os. Some of the existing works concern combining communication

echnologies at the extremes of the transmission range spectrum

nd of the spectrum of data rates. An example is provided by the

oint usage of acoustic communication for the long haul, more ro-

ust, low data rate exchanges, and of short-range, high data rate

ptical packet transfer [3–8] . While these works show that con-

urrent use of multiple communicating devices overcomes engag-

ng challenges of underwater data transfer, they do not concern

ata delivery, as we do in this paper. To the best of our knowl-
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Fig. 5. MARLIN-Q in networks with varying amount of urgent traffic. Networks with 40 nodes and high traffic. 
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dge, a first attempt at underwater multi-modal routing is pro-

ided by Hu and Fei’s MUlti-level Routing protocol for Acoustic-

ptical UWSNs (MURAO) [6] . This solution concerns partitioning

he network nodes into two layers. Lower layer nodes are respon-

ible for multi-hop data forwarding over optical channels. Nodes

n the upper layer use long range/low bandwidth acoustic com-

unication to coordinate the routing of the lower level nodes.

ctual data routing within the two layers is performed by QE-

AR, a machine learning-based routing protocol for single-modem

WSNs (described below). MURAO requires nodes to be deployed

ensely enough to obtain a connected topology over the optical

inks. Given the considerably short range of optical communication,

owever, MURAO can be costly and even impracticable for applica-

ions requiring coverage of large areas. 

While multi-modal routing is still quite the unexplored topic,

outing protocols for UWSNs with single-mode acoustic modems

ave been proposed for over a decade now, and include remark-

bly effective solutions, including [13,18–21] and those surveyed by

yaz et al. [22] and by Li et al. [23] . A solution that stands out in

erms of enhanced performance is the Channel-aware Routing Pro-

ocol (CARP) by Basagni et al., which exploits link quality informa-

ion for data forwarding [13] . Nodes are selected as relays based

n their link quality, hop count and residual energy. CARP utilizes

 channel reservation mechanism à la RTS/CTS for channel access

nd for selecting packet relays (cross layer design). For this reason,

hile achieving reliability and suffering from few packet collisions,
t incurs remarkable latency. Furthermore, in networks with high

raffic nodes have troubles in gaining rights to the channel, which

esults in quickly decreasing PDR. MARLIN-Q uses a channel aware

pproach similar to that used by CARP for selecting the next hop

elay for a packet. However, instead of selecting a relay through

hannel reservation, it smartly uses our reinforcement learning-

ased framework for both relay and modem selection, obtaining

ARP performance on collisions, but also remarkably better PDR,

atency and energy consumption ( Section 4.3.4 ). 

Reinforcement learning has been already successfully applied to

outing problems in multi-hop wireless networks, including wire-

ess ad hoc networks, wireless sensor networks and cognitive radio

etworks (see [24] for an extensive survey) and more recently to

WSNs [6,14,25,26] . The advantage of learning-based routing algo-

ithms is that they are able to learn optimal routing policies on-

ine, and are thus capable to remain optimal or near optimal in a

ynamic environment. Furthermore, learning-informed algorithms 

re often amenable to distributed implementation and require rel-

tively small communication and computation overhead. These are

ll essential and desirable features for the resource constrained

WSNs environment. Solutions presented in [25,26] concern the

pecific scenario of networks with intermittent connectivity, which

s not similar to the scenario considered here. The QELAR proto-

ol by Hu and Fei [14] has been introduced for routing in scenar-

os similar to those considered in this paper. QELAR is based on a

odel-based Q-learning approach aimed at maximizing the resid-
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Fig. 6. MARLIN-Q vs. CARP and QELAR. Large networks, and P u = 0 . 5 . 
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ual energy among nodes. The learning cost function accounts for

the residual energy of each node as well as for the energy distri-

bution among neighboring nodes, and relays are chosen depending

on the energy they can save. This makes QELAR a solution that

compares well with previous protocols, especially in terms of net-

work lifetime. However, the QELAR model leads to routing deci-

sions that are prone to packet loss and to unfairness, especially to

nodes far away from the sink. This, as observed in Section 4.3.4 ,

leads to degraded performance, especially in larger networks. 

To the best of our knowledge, the only solution that reaps the

joint positive effects of multi-modality and machine learning-based

routing is provided by the Multi-modAl Reinforcement Learning-

based RoutINg (MARLIN) protocol [27] , which provides the design

platform from which we built MARLIN-Q. The core difference be-

tween the two protocols concerns the fact that MARLIN could be

configured at the nodes to support only one soft QoS class. For

instance, concerning our performance investigation, a node using

MARLIN could run either applications requesting reliability or ap-

plications concerned with low-latency delivery, but not both. Our

MARLIN-Q, instead, provides nodes with the capability to run the

reinforcement learning framework for both types of traffic, thus

allowing them to run multiple applications with different QoS

requirements. The simulation-based performance evaluation pro-

vided in this paper clearly demonstrates the heightened effective-

ness of MARLIN-Q in obtaining reliable and low-latency data deliv-

ery in a wider class of scenarios with respect to those where nodes

could use MARLIN. 
e  
. Conclusions 

This paper concerns UWSNs with nodes with multi-modal

ommunication capabilities. We present a reinforcement learning-

ased framework for senders to jointly select the best forwarding

elay for their data and the best communication device to reach

hat relay. The resulting forwarding method, named MARLIN-Q for

ulti-modAl Reinforcement Learning-based RoutINg with soft QoS

apabilities, allows nodes to perform routing depending on the na-

ure of the data-creating application they run. In other words, ap-

lications can choose among different soft QoS data delivery ser-

ices. Through a SUNSET SDCS-based study we show that MARLIN-

 always shows excellent performance in scenarios with varying

etwork size, varying traffic and varying amount of urgent traffic.

e also show that it always outperforms state-of-the-art under-

ater forwarding protocols by delivering more packets, faster, and

y spending considerable low energy. Our results clearly show that

he smart use of multi-modal communications takes underwater

etworking to levels of reliability and low latency long demanded

y the majority of key underwater applications. 
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