Ad Hoc Networks 82 (2019) 134-145

Contents lists available at ScienceDirect =
Ad Hoc
[Networks
Ad Hoc Networks
journal homepage: www.elsevier.com/locate/adhoc
MARLIN-Q: Multi-modal communications for reliable and low-latency n
underwater data delivery” e

Stefano Basagni?, Valerio Di Valerio®, Petrika Gjanci™*, Chiara Petrioli®

2 ECE Department Northeastern University, Boston, MA, United States
b Dipartimento di Informatica Universita di Roma “La Sapienza,” Roma, Italy

ARTICLE INFO

Article history:

Received 25 March 2018
Revised 27 July 2018

Accepted 6 August 2018
Available online 7 August 2018

Keywords:

Underwater wireless sensor networks
Multi-modal communications
Reinforcement learning-based routing
Soft QoS

ABSTRACT

This paper explores the smart exploitation of multi-modal communication capabilities of underwater
nodes to enable reliable and swift underwater networking. Following a model-based reinforcement learn-
ing approach, we define a framework allowing senders to select the best forwarding relay for its data
jointly with the best communication device to reach that relay. The choice is also driven by the quality
of the communication to neighboring nodes over time, thus allowing nodes to adapt to the highly adverse
and swiftly varying conditions of the underwater channel. The resulting forwarding method allows appli-
cations to choose among different classes of soft Quality of Service (QoS), favoring, for instance, reliable
routes to the destination, or seeking faster packet delivery. We name our forwarding method MARLIN-
Q, for Multi-modAl Reinforcement Learning-based RoutINg with soft QoS. We evaluate the performance
of MARLIN-Q in varying networking scenarios where nodes communicate through two acoustic modems
with widely different characteristics. MARLIN-Q is compared to state-of-the-art forwarding protocols, in-
cluding a channel-aware solution, and a machine learning-based solution. Our results show that a smartly
learned selection of relay and modem is key to obtain a packet delivery ratio that is twice as much that
of other protocols, while maintaining low latency and energy consumption.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The past decade witnessed a marked shift in underwater sens-
ing and communication capabilities. The resulting variety of re-
search and development activities has propelled underwater wire-
less sensor network (UWSN) technology to new levels of possi-
bilities and usage. Applications such as underwater monitoring,
surveillance, discovery, exploration, aquaculture and coastal pro-
tection, are becoming increasingly sophisticated and produce more
and more complex data in need of reliable and swift delivery to
their destination, whether a collection point on the surface or the
final user. Examples include pictures and video streams from un-
derwater cameras, as well as data from sonars and other high data
rate sensors [1,2]. To best respond to the challenges imposed by
underwater communications, which are beset by extreme short-
term channel variability and by environmental noise at different
frequencies, a recent trend is that of allowing sensor nodes to com-
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municate through multiple devices at the same time, which is also
known as multi-modal communications. Switching among multiple
devices allows nodes to quickly adapt to variations, changing fre-
quencies, and therefore power levels, bit rates and ranges, avoid-
ing noise and other sudden impairments. For instance, endowing a
node with optical and acoustic modems provides flexible ways to
combine short range, high bit rate data transfer with long range,
low bit rate, robust communication capabilities. Applications that
take advantage from multi-modal communication include network-
ing with Autonomous Underwater Vehicles (AUVs) visiting sen-
sors to retrieve data optically at high rate and coordinating with
nodes and other AUVs over long range acoustic links [3-8]. Mul-
tiple acoustic modems also provide great adaptability to channel
variability and noise. In fact, acoustic modems with widely differ-
ent characteristics are already available whose frequencies are cen-
tered from 24 kHz [9] to 100 kHz [10], up to 160 kHz [11]. These
devices obtain bandwidth, bit rates and ranges that greatly differ
from each other. For example, commercial modems from Teledyne
Benthos, which communicate on the band centered at 24 kHz, al-
low nodes to transmit data at 4 kilo bit per second (kb/s) to re-
ceivers up to 2 km away [9]. Higher data rate modems, trans-
mitting in the 100 kHz band at up to 28 kb/s, reliably deliver
data to nodes no more than 100 m away [10]. This variety of
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technologies promptly at disposal of a node provides the per-link
reliability unavailable so far to underwater communication.

In this paper we aim at demonstrating how multi-modal com-
munications can be cleverly exploited for reliable and low latency
underwater networking that meets the stringent requirements of
key underwater applications. Particularly, we are interested in in-
vestigating how the link reliability afforded to a node by commu-
nicating through multiple devices can be extended to network-wide
routes, thus bringing the advances in underwater communications
to fruition for networking underwater devices on a larger scale. We
explore how nodes can acquire knowledge on the quality of the
links to neighboring nodes through each of their communication
devices, and how this knowledge can be used for selecting reli-
able multi-link, multi-modal routes to the dOata final destination.
To this aim, we define a model-based reinforcement learning frame-
work through which senders are able to select the best forwarding
relay for their data packets jointly with the best communication
device to reach that relay. Our framework is built to make rout-
ing decisions that support multiple service classes, through which
applications can seek reliable routes to their data final destination,
preferring packet delivery ratio (reliability class), or routes that pro-
vide faster packet delivery at the expense of moderate packet loss
(urgent class). We name the resulting forwarding method MARLIN-
Q, for Multi-modAl Reinforcement Learning-based RoutINg with soft
Quality of Service. MARLIN-Q is flexibly defined to consider recent
channel quality over each communication device, as well as infor-
mation on routing reliability and delivery times from neighboring
nodes, thus addressing network wide performance via local infor-
mation exchange.

The performance of MARLIN-Q is evaluated through simulations
with SUNSET SDCS, a tool for underwater networking that mod-
els a wide variety of details of the underwater channel and en-
vironment realistically [12]. We consider compelling underwater
scenarios, with different network size, varying traffic and varying
amount of urgent traffic, which represent the variety of settings
suitable to a large number of applications. In network with nodes
with two underwater acoustic modems with different characteris-
tics we investigate key metrics such as packet delivery ratio (PDR),
end-to-end latency, and energy consumption. In these settings we
compare MARLIN-Q to the following state-of-the-art protocols: (i)
CARP, a cross-layer solution designed to be reliable, channel aware
and energy efficient [13], and (ii) QELAR, a machine learning-based
protocol designed for minimizing and balancing node energy con-
sumption [14]. We choose CARP and QELAR as they have been
shown to outperform previous solutions for underwater routing
and machine learning-based routing, respectively.

Our results show that MARLIN-Q obtains remarkable packet de-
livery ratio for both reliable and urgent traffic, irrespective of vary-
ing network size, and amount and type of traffic. Latency is kept
remarkably low: Even in the most challenging settings—networks
with 40 nodes and high traffic—urgent traffic is always delivered
within 9 s, while incurring a noticeably low energy consumption.
MARLIN-Q also achieves remarkable fairness to different types of
traffic, delivering steady amount of packets to the sink indepen-
dently of their type (either urgent of reliable). We observe that
our protocol outperforms CARP and QELAR in all scenarios. Partic-
ularly, in the most challenging settings, MARLIN-Q obtains a PDR
that is twice as much that of the second best performing proto-
col. Because of the clever definition of the cost optimization func-
tion of its core framework, despite delivering a higher number of
packets MARLIN-Q is the fastest of all considered protocols, with
improvements over the second fastest of up to 32%. Energy con-
sumption is also kept at bay: Albeit delivering twice as many pack-
ets, the energy performance of MARLIN-Q is at par with that of
CARP, which uses channel reservation and saves energy on packet
re-transmission.

The results in this paper confirm that the trend of using multi-
modal communication for link reliability extends to network-wide
performance provided that route selection is driven by a smart
choice of best relays and communication devices. This makes
MARLIN-Q a solution for future underwater networking, achieving
performance levels needed by key underwater applications, and es-
pecially those with soft QoS requirements.

The rest of the paper is organized as follows. Section 2 intro-
duces the scenarios considered in our investigation, along with
notation and preliminaries on model-based reinforcement learn-
ing, the core of MARLIN-Q routing. Section 3 defines MARLIN-Q
in details. Section 4 reports results on the performance evalua-
tion of MARLIN-Q, and its comparison with previous solutions. In
Section 5 we survey previous works on multi-modal communi-
cations and on underwater reinforcement learning-based routing.
Section 6 concludes the paper.

2. Network scenario and preliminaries

We introduce scenario, concepts and notation that are prelimi-
nary to the protocol description. We also provide a brief introduc-
tion to model-based reinforcement learning, whose methods con-
stitute the core of MARLIN-Q.

Multi-modal scenario. We consider a static underwater wire-
less sensor network (UWSN) made up of N nodes whose sensors
produce data that need to be delivered to the network data col-
lection point (the sink), for processing and/or further forwarding.
Given the geographic extent of node deployment, not every node
is able to communicate directly with the sink. Therefore, packets
may have to travel multi-hop routes.

The scenario we consider is multi-modal in the precise sense
that each underwater node is equipped with multiple wireless
communication devices (modems) operating on different frequen-
cies, at different bandwidths, obtaining different bit rates, and with
various communication ranges and power consumption. Nodes are
generically indicated as i and j. A specific modem is denoted by m,
and M indicates the set of all modems available at each node.
With Mg, we indicate the subset of the modems of a node that
are idle at a certain point in time, i.e., that are ready to be used
for transmission.

A sketch of a multi-modal underwater scenario is depicted in
Fig. 1. Every node is equipped with two communication devices.
The sink is shown close to surface, in the upper right corner of
the picture, and has capabilities to report data from the UWSN to
stations on shore.

Classes of service. Nodes are deployed to monitor assets or
events through their sensors. When something that needs report-
ing happens a node produces data that need to be delivered to the
sink. Depending on the application, these data need to reach the
sink as soon as possible (urgent data) or reliably (reliable data). To
this aim, MARLIN-Q supports different classes of service. In partic-
ular, in this work we consider a reliability class r for reliable pack-
ets, and a low latency class u, for urgent ones. If an application
requires reliable delivery, MARLIN-Q seeks to deliver the highest
number of packets to the sink. Otherwise, for an application that
produces packets of type u, MARLIN-Q does its best to be fast, at
the expense of tolerating some packet loss. As nodes may run mul-
tiple applications, each node may generate packets of both types.

Use of implicit ACKs. In order to reduce overhead—and latency,
and energy consumption—each packet is acknowledged implicitly,
leveraging the broadcast nature of the wireless channel. Specifi-
cally, after transmitting a packet, the sender starts listening to the
channel on any of its modems. If it overhears the packet being
retransmitted by the chosen relay within a given time, it consid-
ers the packet transmitted successfully. If it does not, the packet
is considered lost. (Only the sink sends explicit ACKs back to its
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Fig. 1. Multi-modal UWSN. Each node has two communication devices.

senders, as it does not forward the packet further underwater). The
node behavior after packet loss depends on the class of service of
the packet that has been transmitted, as described in details below.

A brief primer on reinforcement learning. Reinforcement learning
concerns how some agents take actions in a given environment for
optimizing some notion of cumulative cost [15]. To this purpose,
agents learn and optimize policies online through direct experience
rather than computing them a priori. Given the set S of possible
states of an agent, and the set A(s) of the actions available at each
state, a policy is a function ;v that associates each state s € S with
the action acA(s) that the agent should take towards cost mini-
mization. In the context of our work, agents correspond to under-
water nodes handling packets, while the policy corresponds to the
forwarding strategy, namely to the choice of a relay and of a mo-
dem to communicate with that relay.

In order for an agent to establish how good it is to be in a given
state, a value function V7(s) is defined as the expected infinite-
horizon discounted cost starting from s as initial state and using a
given policy 7 as follows:

o0

VT(s) =EF Y D vte(sadlso =s . Q)

t=0

where 0<y <1 is the discount factor, s; and a; are the system
state and the action taken at time t, respectively, and c(s;, a;) is
the expected cost associated to state s; and decision a;. For each
state s € S, the optimal policy 7* minimizing the value functions
satisfies the Bellman optimality equation:

VTi(s) = min 1¢(s.0) +y Y PLVT(S) L (2)

s'eS

where P!  represents the transition probability from state s to
state s’ after action a has been taken. Eq. (2) highlight that the
policy r* that minimizes the cost depends on the immediate cost
of taking the action a from state s and on the expected discounted
cost from the next state s’ onward.

In order to measure the costs of taking different actions a from
state s to different states s’ we define the function Q as the ex-
pected infinite horizon discounted cost of taking an action a in
state s and then following the policy 7:

Q7 (s.a)=c(s.a)+y Yy PLVT(s), Vses. (3)

s'eS

For each state s € S the Bellman equation and the function Q
allow us to greedily compute the optimal policy as w*(s) =
arg minga (s, Q™ (s. a).

Solving the Bellman Eq. (2) depends on knowing the cost c(s,
a) and the transition probabilities P! . In scenarios where these
parameters are not known a priori, models can be provided for
their estimation, so that functions V and Q can be learned on-
line, by interacting with the agent environment. This interaction
usually takes the form of exploiting the knowledge acquired so
far by the agent, and of exploring the agent environment to gain
new knowledge. Learning techniques following this methodology
are called model-based [15]. In the description of our protocol
(Section 3), these ingredients of reinforcement learning are tailored
to our underwater multi-modal scenario to constitute the core of
how MARLIN-Q learns how to route, i.e., how nodes choose the
best relays and modems to reliably and quickly deliver data pack-
ets to the sink.

3. The MARLIN-Q protocol

In this section we describe MARLIN-Q in details, and particu-
larly, the machine learning framework at its core.

3.1. Protocol description

Each node manages two output transmission queues: One for
packets of type r (“reliability queue”), and one for those of type u
(“urgent queue”). Urgent packets take priority over reliability pack-
ets, i.e,, are always transmitted first. Reliability packets are trans-
mitted only when the urgent queue is empty.'

When a node i has a packet p to forward, it executes the follow-
ing algorithm SENDPACKET(p, c), where p is the packet to be trans-
mitted and c is its type, i.e., either r or u.

Forwarding packets depends on their type. Reliability is fos-
tered by having node i re-transmitting packet p until its success-

1 Although unlikely, there could be cases in which urgent packets are always
present at a node that would prevent transmission of reliable packets, which would
then loose they “reliability.” In order to avoid the occurrence of such an extreme
case, MARLIN-Q can be extended to include a “failsafe mode” that would ensure
transmission of one (or more) reliability packet(s) every ¢ urgent packets, with ¢
to be selected, possibly as a function of traffic. For ease of protocol description, we
have not detailed this mechanism in the current description of the protocol.
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Algorithm 1 SENDPACKET(p, c).

1: if (c =r) then

2: k=0

3: done = false

4: while (not done) do

5: (j, m) = ComputeR&M(r, k, M;g.)

6: if Channel Idle then

7: TransmitPacket(p, j, m)

8: if (j is heard to transmit p within § time units)
then

9: done = true

10: else

11: if k > K -1 then

12: Drop p

13: done = true

14: else

15: k=k+1

16: else

17: set Backoff([§, 67])

18: else

19: (j, m) = ComputeR&M(u, 0, M;q.)
20: if Channel Idle then

21: Compute&InsertBackUpRelays(p)
22: TransmitPacket(p, j, m)

23: else

24: set Backoff(r € [0, §¢])

ful reception at the selected neighbor j. Success is recognized by
node i overhearing node j forwarding the packet within a certain
time & (implicit acknowledgment), or by explicit acknowledgment
if node j is the packet final destination (i.e., the sink). We allow up
to K> 1 transmissions, after which the packet is discarded. (Param-
eters K and § are global to the algorithm. They are set at the start
of node operations.) Low latency for urgent packets is obtained by
avoiding packet re-transmissions altogether. A main relay is chosen
along with a list of back-up relays, which are in charge to forward
the packet if the main relay is not heard to forward it.

In details, the operations of SENDPACKET are as follows. If
packet p comes from the reliability queue, node i chooses the
best relay j and modem m for forwarding packet p by running
algorithm ComputeR&M (line 5; detailed below). Subsequently, it
checks whether the channel is idle or not. If it is, node i trans-
mits p to the chosen relay j using the selected modem m (line 7).
After transmission, node i awaits to overhear the forwarding of p
by relay j (implicit ACK) or to receive an ACK from the sink. If the
ACK is received within a pre-defined time &, the transmission of
packet p is successfully concluded, and the algorithm terminates
(line 9). If that does not happen, and the packet has been already
transmitted for K>1 times, then the packet is dropped (line 12)
and the algorithm terminates (line 13); otherwise, the number of
re-transmission attempts is increased by 1 (line 15) and the pro-
cess is repeated with the selection of new relay and modem, and
So on.

If the channel is found busy, instead, node i re-enqueues the
packet and postpones its transmission by setting a backoff timer
to a value chosen randomly and uniformly in the interval [§%, &7]
(line 17). We stipulate that §" <§". Both parameters are global to
the algorithm. They are set at the start of the node operation. Upon
timer expiration, operations resume from line 5.

If packet p comes from the urgent queue, node i chooses the
best relay j and modem m for forwarding packet p by running
the algorithm ComputeR&M (line 19; detailed below). We notice
that in this case, the parameter k concerning the number of re-

transmissions is set to 0, as urgent packets are not re-transmitted.
Subsequently, node i checks whether the channel is idle or not.
If it is, node i computes a set of back-up relays that are in
charge of forwarding p if the main relay j is not heard to trans-
mit it, and attaches the list to the header of packet p (Com-
pute&InsertBackUpRelays(p); line 21. Details on the selection of
back-up relays are provided below.) Node i then transmits p to
the chosen relay j using the selected modem m (line 22). If the
channel is busy, node i re-enqueues the packet and postpones its
transmission by setting a backoff timer to a value chosen randomly
and uniformly in the interval [0, §¥] (line 24). Upon timer expira-
tion, operations resume from line 19. We notice that by choosing
8% < 8" we favor the re-transmission of urgent packets before that
of reliability ones.

The crux of every node operation, i.e., the heart of algorithm
SENDPACKET, is choosing of the next hop relay j and of the best
idle modem m for transmitting packet p. This choice is performed
by running the algorithm ComputeR&M (lines 5 and 19). Choosing
relays and modem for packet forwarding, as well as back-up relays
for urgent packet, is supported by a sophisticated reinforcement
learning-based framework, described in the following.

3.2. Learning how to route

Each node i acts as an agent that, for each packet p, deter-
mines the best among a set of forwarding decisions, namely an
action a representing a relay and a modem. The model for routing
packets in MARLIN-Q is characterized by defining the following: (i)
The state space, (ii) the actions, (iii) the state transition dynamics,
and (iv) the cost function. Based on these four components, model-
based reinforcements learning allows nodes to determine (v) op-
timal forwarding decisions. In the rest of this section we first de-
scribe each of the ingredients of our framework, and we then use
them to define algorithm ComputeR&M.

(i) States. A node i handling a packet p can be in one of k <
K — 1 representing the number of times that it has transmitted p
unsuccessfully. The state space S is therefore the set {0,...,K —
1} U {rcv, drop}, where rcv identifies successful packet transmis-
sion and drop identifies the case when the maximum number K
of transmissions has been exceeded and the packet is discarded.

(ii) Actions. Actions concern forwarding decisions, i.e., the joint
selection of a relay among the sender neighbors and of the mo-
dem to that relay. Let us denote with A" the set of nodes that a
node i can reach using modem m. (Different modems correspond
to different sets, although a neighbor can be reached by multiple
modems.) For each node i, state s and set of modems M € M, the
set AﬁV’ (s) of available actions is:

AM(s)={a=(jm) |meM, je N}, (4)

where a = (j,m) is the action of forwarding a packet to neigh-
bor j using modem m. Since no action can take place when s € {rcv,
drop}, it is AM (rcv) = AM(drop) = 0.

(iii) Transitions. The transition from one state to another de-
pends on the current state s and on the performed action a =
(j,m). Let us denote with Pl"; the probability of correct packet
transmission on the link from node i to node j using modem m.
When the transmission of p succeeds after k unsuccessful attempts,
node i transitions from state s = k to state s’ = rcv. The transition
probability is the following:

um _ [POP IFO<k<K-1
et P ifk=K-1.

When p can be (re)transmitted, i.e, when the number k of re-
transmission is < K — 1, successful transmission depends on the
following probabilities: (i) The probability P,”} that the packet is re-
ceived by node j on modem m. This probability is computed by

(5)
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Fig. 2. States and transitions of node i handling packet p. The initial state is 0; rcv
and drop are the final absorbing states.

node j and broadcast in the header of its packets. (ii) The prob-
ability Pj"}’ that the packet p, forwarded by node j on best mo-
dem m’, is successfully overheard by node i. This probability is
computed by node i based on overhearing node j transmissions on
modem m’. (Details on determining best modems and probabili-
ties are provided below.) In case node j is the sink, Pm expresses
the probability that node i receives the ACK exp11c1t1y sent by the
sink. (In this case, we stipulate that the sink sends the ACK us-
ing the same modem it received the packet on, i.e.,, m = m’.) When
the number of transmissions has reached its last value K, there
is no need for i to listen for an ACK, and the state transition de-
pends only on the link from i to j. When the transmission of p fails,
we have two possible transitions. If k < K — 1 we just increase the
number of re-transmissions, and the next state is s’ = k+ 1. Oth-
erwise, if k=K —1, the packet p is dropped and the next state
is s’ =drop. In both cases, the transition probability can be de-
fined simply as P, Hz, =1- Pl<s_)rw The state diagram of a node i
handling a packet p is depicted in Fig. 2. (iv) Costs. In a reinforce-
ment learning approach, the inner logic of a protocol resides in the
structure of the cost function ¢; to be optimized. MARLIN-Q focuses
on minimizing the network-wide time needed by node i to deliver
packet p to the sink, i.e., to its final destination. In order to express
the whole routing time, we associate each state-action pair (s, a)
with a cost reflective of the time needed to forward the packet by
one hop, to a selected relay, and of the time needed to forward it
from that relay to the sink. Equally important, we increase relia-
bility by associating a high penalty time to transitions to the drop
state. As we seek to minimize time, this discourages packet loss.
More formally:

ti(s,a) +d;(s, a)
ti(s,a) +d;(s,a) + li(s,a)

if0<k<K-1

ifk=K-1. (6)

ci(s,a) = {
The cost t;(s, a) indicates the time needed for p to be delivered
to neighbor j. It is defined as follows:

w; k=0
b; otherwise,

ti(s,a) =tm+ pij+ { (7)
where tp, is the time needed to transmit p on modem m, p; ; is
the propagation time between the two nodes, w; is the average
time spent by packet p in the queue of node i (before the first
transmission of the packet), and b; is the time spent waiting for the
implicit ACK (subsequent re-transmissions). The d;(s, a) component
of the cost in Eq. (6) is given by:

di(s. a) = V;(0)P}. (8)

where V;(0) is the value of the function V associated to the state
s =0 of relay node j. This cost is, by definition, a measure of the
minimum time needed to reach the sink starting from node j. (It
is available to node i as it is broadcast by node j in the header of
its packets.) The cost V;(0) is multiplied by the probability P[j as

node j will forward the packet only in case it correctly receives it
from node i. Finally, in case a packet has been unsuccessfully trans-
mitted for k = K — 1 times, we associate to the action a = (j, m) of
the last re-transmission the penalty time (s, a) aimed at discour-
aging node i to drop the packet. We can think of dropped packets
as packets that are delivered to the sink arbitrarily late in time. As
such, the cost Ii(s, a) associated to “delivering the packet that late”
is defined as:

li(s,a) =L(1 - P). (9)

where (1 —13,.'3.) is the probability of dropping the packet, and L
is set to a value greater than the highest cost of delivering the
packet to the sink through any of the neighbors of node i (i.e.,
L> maxjeumNimVj(O)). In other words, as node i approaches the

maximum number K of transmission attempts, its actions tend to
favor the reliability of the transmission to the next hop.

(v) Optimal forwarding. To compute optimal forwarding deci-
sions, every time a packet p is ready to be transmitted, node i
executes an algorithm for determining the action a = (j, m) for p,
i.e., the best relay j and the best modem m to reach it. Each node
starts with no knowledge of its surrounding environment. Inter-
acting with its neighbors, it iteratively acquires and updates its
knowledge over time. In particular, the value function V; is approx-
imated and updated relying on current estimations of the transi-
tion probabilities P?_ ., and on the estimated value of the func-
tions V;(0) from nelghbormg nodes j, needed to estimate the cost
ci(s, a). (From now on, all values of the transition probabilities, and
of functions V and c are to be intended estimates changing over
time.)

We are finally able to describe the core component of MARLIN-
Q forwarding process, namely, algorithm ComMPUTER&M. This is the
algorithm through which node i executes the learning framework
and uses it to determine the best relay and modem (R&M) every
time there is a packet p to (re-)transmit.

Algorithm 2 CoMPUTER&M(c, k, Mige)-
1: for all (s € S) do
2: for all a e AM(s) do
Qi(s,a) =ci(s,a) +y Yyes Py Vi(S)

4 VE(s) = ming ) QF (s, a) #Update
5. T = random_number(0, 1)
6: if T <1 —€ then #Exploitation

' ) B ) c
7 (jm) = argmin, sy, & k@)

8: else #Exploration
o: m = random modem in Mg,

10: (j,m) = argminaEAgm}(bQic(k, a)

11: return a = (j, m) #Forwarding decision

The algorithm takes as input the type c of packet p, the current
state k and the set of idle modems M;4,.. When packet p is ready
for transmission, node i updates the model and computes the new
value function (line 1to 4). Once the model has been updated, a
forwarding action can be selected. To balance between exploitation
of the acquired knowledge and exploration of new one, we use the
e-greedy heuristic, which is well-known for robustness and effec-
tiveness [15]. Specifically, each time, the best neighbor on the best
idle modem is selected with probability 1 — € (line 7), exploiting
the knowledge just updated. Conversely, with probability € we ex-
plore new solutions by selecting a random modem among those
available (line 9), and we forward the packet to the best relay we
can reach using that modem (line 10). Even when exploration may
produce a suboptimal choice of modem and relay, the broadcast



S. Basagni et al./Ad Hoc Networks 82 (2019) 134-145 139

nature of the transmission to this relay allows nodes to acquire
key statistics about their neighbors. (Parameter € is global to the
algorithm. It is set at the start of the node operations.)

It is worth pointing out that algorithm CoMPUTER&M han-
dles both types of packets simultaneously: Two instances of our
learning framework are executed in parallel based on the type of
the packet to be transmitted. Specifically, depending on the flow
type ¢, functions Q° and V° are updated and used to determine
the best relay and modem for packet p. In order for a node to
understand which functions to update upon receiving a packet p,
we stipulate that the header of p carries an extra bit indicating its
type.

The execution of Algorithm ComMPUTER&M relies on the knowl-
edge of the transition probabilities P7_  and on the packet for-
warding cost c¢;(s, a), which in turn depends on the value func-
tion VJF(O) of each neighbor j of node i. Here is how these prob-
abilities and function values are determined. The estimation of the
transition probabilities is based on the estimation of the link prob-
abilities Pz",l (Eg. (5)). Nodes estimate link quality upon receiving
a packet. In particular, a receiver j keeps count of the number of
packets nl"1 received from each neighbor i on modem m, regardless
of whether node j is the packet intended destination. The incom-
ing link probability is estimated as Pl”} = n;’fj/nlm, where nf" is the
total number of packets sent by node i, an information that node i
broadcasts in the header of its packets. These estimates are then
broadcast by node j into its packet headers, to be overheard by its
neighbors. In order to keep track of the varying link conditions, the
counts ni" and n{"} are computed over a sliding window. If node i
fails to overhear transmissions from a neighbor j within a given
time it automatically updates its own link transmission probability.
In particular, node i “degrades” P,”} to (nf'/(n" + 1))1’1."7}. If node i
does not hear packets from node j for a given time, it removes
node j from the list of its neighbors until node j is heard again.
The determination of c;(s, a) is based on information available lo-
cally at node i and on values broadcast by node j in the header of
its packets.

Finally, we describe how a node that is forwarding an urgent
packet p computes the list of back-up relays, namely, we detail
the operations of Compute&InsertBackUpRelays(p) (line 21 of al-
gorithm SENDPACKET). Let us assume that Algorithm COMPUTER&M
outputs node j as the main relay for forwarding packet p to be
reached using modem m. Let us also assume that node j uses mo-
dem m’ to forward the packet p. The first back-up relay h is se-
lected by node i using the following rule:

Qi(0.a)

(h,m) = argmin, _ym o)\ ((jm)) e
Js

(10)
This rule aims at selecting a node that is not only a good for-
warder (low Q;(0, a)) but also a node that is “well connected” to
the main relay j, i.e., with high probability of overhearing j for-
warding p (high P]"“;:) In so doing, node i tries to avoid redundant
re-transmissions that would increase network traffic and waste en-
ergy. Applying rule (10) with h in place of j produces the second
best back-up relay, and so on.

The length of the list is set to a number ¢; < |[N"|, which may
vary dynamically, depending on the network load. In fact, we keep
adding back-up relays to the list until either the probability that
none of them receives the packet is lower than a given threshold
Post or the size of the list ¢; is reached.

Upon receiving the packet, the back-up relays set a back-up
timer and store the packet in their queues. The timer is set to a
time that is inversely proportional to the node position in the pri-
oritized list of back-up relays: The higher its position, the shorter
the time. When the timer goes off, the node checks if it has over-
heard the packet transmission by higher priority nodes. If so, it dis-

cards the packet; otherwise it transmits it. For example, the first
back-up relay forwards p only if it does not overhear its transmis-
sion by the main relay; the second back-up relay transmits p only
if it does not overhear its transmission from either the main re-
lay or the first back-up node, and so on. By not re-transmitting a
packet for which there is no implicit ACK, the original sender keeps
transmitting other packets, whose queuing delay is thus shorter.
This is a key feature of MARLIN-Q, enabling overall faster delivery
of urgent packets.

4. Performance evaluation

We demonstrate the effectiveness of our approach to multi-
modal networking through a simulation-based performance evalu-
ation of MARLIN-Q in realistic underwater channel conditions and
scenarios. The performance of our protocol is also compared to
that of two solutions that represent current state-of-the-art rout-
ing for UWSNs. The two protocols are: (i) CARP, a cross-layer so-
lution designed to be reliable, channel aware and energy efficient.
CARP is characterized by a channel reservation phase through con-
trol packets (named PING and PONG) that also carry routing in-
formation [13], and (ii) QELAR, a machine learning-based proto-
col designed for minimizing and balancing node energy consump-
tion [14]. All routing protocols have been implemented in SUNSET
SDCS [12]. We used the Bellhop ray tracing tool via the WOSS in-
terface [16] for accurate modeling of the underwater acoustic chan-
nel. The environmental data input to Bellhop refer to an area lo-
cated in the Norwegian fjord off the coast of Trondheim, with the
coordinates (0,0,0) of the surface located at 63°, 29/, 1.0752"'N and
10°, 32/, 46.6728"'E. Sound speed profiles, bathymetry profiles and
information on the type of bottom sediments of the selected area
are obtained from the World Ocean Database, from the General
Bathymetric Chart of the Oceans (GEBCO), and from the National
Geophysical Data Center’s Deck41 data-base, respectively [17]. In
the following we first describe the selected scenarios and protocol
parameters settings (Section 4.1), we then introduce the investi-
gated metrics (Section 4.2), and we finally report the results of our
experiments (Section 4.3).

4.1. Simulation scenarios and settings

We consider UWSNs with N = 6, 20 and 40 nodes deployed ac-
cording to a uniform random distribution in rectangular regions
with surface of 1 km?, 2 km? and 4 km?, respectively. This allows
us to investigate networks with size ranging from that of current
deployments (6 nodes) to that of larger (20) and desirable (40)
networks. In all scenarios nodes are deployed at different depths,
ranging from 10 to 240 m, while the sink is located at one of the
corners of the deployment area, 10 m below surface. Topology con-
struction ensures that each node has at least one route to the sink.

We consider underwater nodes equipped with two acoustic
modems with different characteristics. The first modem carrier fre-
quency is set to 25.6 kHz for a bandwidth of 4 kHz, resulting in a
bit rate of 4000 b/s. The second modem carrier frequency is higher,
63 kHz, for a bandwidth of 30 kHz and a bit rate of 9000 b/s.
We assume a BPSK modulation for both modems. For the selected
value of the bandwidth and of the carrier frequency the transmis-
sion power of the two modems is set to 2.8 W and 5.5 W. Their
reception power is set to 0.5 W. These values are consistent with
those of commercial modems by Teledyne Benthos [9] and Evolog-
ics [11].

We consider a scenario where nodes generate traffic based on
the occurrence of events that are of interest to applications run-
ning on the nodes. As soon as an event happens, it is sensed by a
node that starts producing packets with a given type, at a specific
rate and for a variable period of time. Multiple events can happen
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concurrently, and can be sensed by different nodes in the network.
As a consequence, different types of packets are generated in the
network at the same time. The inter arrival time of occurrences
of events is exponentially distributed, with mean w4 seconds. The
event duration is also distributed exponentially, with mean p,4 sec-
onds. When an event happens at a given location (chosen accord-
ing to a random uniform distribution within the network deploy-
ment area) the node closest to it senses the event and generates
the corresponding packets for the entire duration of the event. All
packets from a sensed event are either urgent or reliable. Selection
of the type of all packets from an event is controlled by the prob-
ability P, that the event is urgent. Finally, the packet generation
rate of an event is Constant Bit Rate (CBR). For instance, a CBR rate
of one packet every 10 seconds for an event that lasts 200 sec-
onds will generate 20 packets. In our simulations, we consider the
following parameter setting: (q € {100, 200} s, g = 100 s, P, €{0,
0.25, 0.5, 0.75, 1}, and CBR {10, 20} s. Mixing these parameters
up allows us to generate different network-wide aggregated traffic
rates. Particularly, in this paper we consider the following rates.

1. High traffic (H): pq = 100, 14 = 100 and CBR =10 s.
2. Medium-High traffic (MH): tq = 200, 14 = 100, and CBR = 10 s.
3. Medium-Low traffic (ML): wq = 100, @4 = 100, and CBR = 20 s.
4. Low traffic (L): nq =200, py = 100, and CBR = 20 s.

The destination of all packets is the sink. The data packet pay-
load size is set to 1000 bytes (B). The actual size of a transmitted
data packet is given by its payload plus the bytes of the headers
added at different layers. The physical header overhead changes ac-
cording to the data rate but is dominated by a 10 ms synchroniza-
tion preamble. At the MAC layer, the header size depends on the
protocol. QELAR uses CSMA, whose header contains the sender and
the destination addresses, and the packet type. Its length is 3 B.
QELAR also needs 6 B extra for information on the residual energy
and for the state space of the node. Being a cross layer protocol,
CARP implements its own MAC, and the header of its MAC packets
also carries routing information. As such, the size of its PING and
PONG control packets is 10 B and 6 B, respectively. Its ACK and
HELLO packets are 6 B long. The CARP MAC data packet header is
4 B long. Finally, as MARLIN-Q carries a number of information in
the packet header, including the value function, P; ; estimates, list
of back-up relays, etc., its size varies with the network size. In our
implementation the MARLIN-Q header size was 7 B, 15 B and 30 B,
depending on the network size. In our experiment, we have set
the parameter € of Algorithm ComMPUTER&M to 0.1, as typical [15].
The number of re-transmissions K used by MARLIN-Q for reliabil-
ity packets, QELAR and CARP is set to 4 (low traffic), 3 (medium
traffic) and to 2 (high traffic). The maximum length ¢; of the pri-
oritized list of back-up relays of node i is set to 4 (low traffic), 3
(medium traffic) and to 2 (high traffic), and B, is set to 0.05.

4.2. Simulation metrics

Routing performance is assessed through the investigation of
the following metrics.

« Packet delivery ratio (PDR), defined as the fraction of packets
correctly received by the sink over the total number of pack-
ets generated by the nodes.

 End-to-end latency, defined as the time between packet genera-
tion and the time of its correct delivery to the sink.

« Energy, defined as the overall energy consumed by the network
to correctly deliver all the data belonging to a specific type (i.e.,
reliable or urgent).

4.3. Performance results

We start by describing the performance of MARLIN-Q in net-
works with different size, traffic, and amount of urgent traffic. We
finish our investigation with a comparative evaluation of the per-
formance of MARLIN-Q, CARP and QELAR. For CARP and QELAR we
show results obtained by using the modem that produces their
best performance. All results are obtained by averaging over data
from a number of simulation runs that achieves a statistical confi-
dence of 95% within a 5% precision.

4.3.1. MARLIN-Q vs. network size

Fig. 3 shows the performance of MARLIN-Q for increasing net-
work size. We show results from the most challenging scenario,
namely, at the highest traffic: ;4 = 100, ny = 100, CBR = 10 s. The
number of reliable packets generated in the network is the same as
the one of urgent packets (P, = 0.5).

As expected, the PDR decreases with increasing network size
(Fig. 3a). This is due to the fact that in larger networks, packets
travel longer routes (the average number of hops per route is 1.2
for small networks, which is almost half of that in networks with
40 nodes), and therefore incur a higher level of interference/re-
transmissions. The PDR of reliable traffic is always higher than that
of urgent packets, because of the re-transmission mechanism that
MARLIN-Q implements for this kind of traffic. This is particularly
noticeable in large networks (N = 40), where the PDR of reliable
traffic is, on average, 13% higher than that of urgent packets.

Latency increases with network size, also because of longer
routes and increased interference (Fig. 3b). This is particularly ev-
ident for reliable traffic. Reliable packets are re-transmitted (while
urgent packets are not), and re-transmissions occur more often in
larger networks. Finally, as reliable packets are transmitted only if
there are no urgent packets to be forwarded, they have to wait
longer. Urgent packets incur the lowest latency, improving on the
latency of reliable packets by up to 600% (large networks). Their
latency is pretty stable: Independently of the network size it is al-
ways <9 s.

Finally, energy also increases with increasing network size
(Fig. 3b). This is because of the higher number of interfering trans-
missions and of the longer routes taken by the packets. In gen-
eral, the energy spent to deliver reliable packets is higher than that
needed for urgent ones, because of the re-transmissions allowed
for reliable packets. This is particularly evident in large networks,
where the number of interference is higher, therefore requesting
a higher number of re-transmissions. In case of small networks,
however, we notice that it costs more to deliver urgent packets
(around 30% more). This is because the topology of small networks
is so sparse that when node i chooses node j as main relay and
node h as back-up relay, node h is so far from node j that it can-
not overhear node j transmission. As a consequence, node h (also)
transmits the packet to the sink. We have indeed observed that in
this scenario the sink received most of the packets twice, which
implies higher energy consumption. This clearly does not happen
for reliable traffic, for which we observed that there are very few
re-transmissions (because of the short routes of these networks,
whose number of hops per route is slightly in excess of 1), and a
very high PDR (almost 100%).

4.3.2. MARLIN-Q vs. traffic

Fig. 4 shows the performance of MARLIN-Q for increasing traf-
fic. We show results for network with 40 nodes (results for smaller
networks show similar trends and provide no further insights), and
P, =0.5.

As expected, as the traffic increases the PDR decreases for both
types of packets: The higher the traffic, the higher the interference
and packet loss (Fig. 4a). Reliable packets are delivered more than
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Fig. 3. MARLIN-Q in networks with varying size. Scenario with high traffic.

urgent packets, because of the re-transmissions allowed for reliable
data.

Latency also increases with increased traffic (Fig. 4b). Ur-
gent packets are always considerably faster at reaching the sink
than reliable packets. The improvement ranges from 100% (low
and medium-low traffic) to 600% (high traffic). As noticed in
Section 4.3.1, this is because higher traffic causes higher interfer-
ence and hence it takes more time to forward reliable traffic. The
latency of urgent packets is instead quite low independently of the
traffic, consistently remaining under 9 s.

Finally, increasing the traffic increases the level of congestion in
the network, which corresponds to increased energy consumption
(Fig. 4c). The energy consumption of urgent traffic is consistently
less than that of reliable traffic (up to 26% improvement, ob-
tained at high traffic). This is because of the re-transmissions
of reliable packets, which clearly impose higher energy
requirements.

4.3.3. MARLIN-Q vs. varying Py

In Fig. 5 we investigate the performance of MARLIN-Q in sce-
narios where we vary the amount of urgent traffic from 0 to 100%,
i.e., Py is varied from O to 1. We show results for large networks
with high traffic.

The PDR of both types of traffic is fairly consistent irrespective
of the value of P, (Fig. 5a). The PDR of reliable packets is con-

sistently higher (around 13%) than that to urgent traffic, due to
the re-transmission mechanism that MARLIN-Q allows for reliable
packets.

The latency of reliable packets decreases by increasing the
amount of urgent traffic (Fig. 5b). We observe that the major fac-
tor affecting the latency of these packets is the overall number
of re-transmissions in the network, which is clearly higher when
“re-transmittable” (i.e., reliable) traffic is higher. Latency of urgent
packets is instead consistently kept at bay by swift transmission
and smart selection of best relay and modem. We note that the la-
tency of urgent packet is not affected by the varying amount of re-
liable traffic, as independently of how many reliable packets there
are, urgent packets are always transmitted before reliable packets.
As mentioned, urgent packets find their way to the sink always in
less than 9 s.

As the number of urgent packets increases the energy con-
sumed to correctly deliver them increases proportionally, simply
because there are more urgent packets to transmit (Fig. 5c). This
same trend is observed for reliable packets: The more the packets
of this type, the more energy is consumed to deliver them to the
sink. As noticed, on average, the energy consumed for delivering
reliable packets is higher than that needed for urgent packets be-
cause of the re-transmission mechanism that MARLIN-Q allows for
reliable traffic.
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4.3.4. MARLIN-Q vs. CARP and QELAR

Results of the comparative performance evaluation of MARLIN-
Q, CARP and QELAR are shown in Fig. 6. We consider the most
challenging scenarios with large networks, P, = 0.5 and vary the
traffic from low to high. All metrics refer to averages from values
for reliable and urgent traffic.

We observe that MARLIN-Q obtains the highest PDR indepen-
dently of traffic (Fig. 6a). This is because of the smart way with
which MARLIN-Q chooses the best modem on a per-link basis, each
time selecting the device that provides the best forwarding. Im-
provements vary from 20% (low traffic) up to 100% (high traffic)
over the second best performing protocol, CARP. We notice that
CARP outperforms QELAR because of its channel reservation mech-
anism, which, especially at lower traffic, provides higher probabil-
ity of collision free channel access.

In spite of a PDR significantly higher than that of the other two
protocols, MARLIN-Q exhibits always the lowest latency. This is be-
cause the learning-based framework that governs MARLIN-Q oper-
ations explicitly takes latency (and link robustness) into account in
its cost function (Section 3). Not surprisingly, CARP experiences the
highest latency because of the channel reservation phase needed
prior to packet transmission.

By choosing relays and modems smartly (which include the
ability of a link to forward packets successfully), MARLIN-Q al-
ways exhibits excellent performance by consuming the lowest
amount of energy. CARP also avoids spending extra energy for re-

transmission through its channel reservation phase, which results
in fewer packet collisions. However, the energy spent for control
packets raises its energy toll. This is particularly evident at low
traffic, where CARP spends up to 44% more energy than that spent
by MARLIN-Q. The two protocols exhibit similar performance only
at high traffic, which is where the CARP channel reservation is at
its most effective.

5. Related work

In this section we review solutions in the realm of UWSNs that
use the concepts and techniques used in this paper, namely, multi-
modal communication for underwater networking, data delivery in
UWSNs, and underwater solutions for data delivery that use ma-
chine learning-guided ideas.

Multi-modal communications have emerged as a means to en-
hance UWSN reliability and performance in a variety of scenar-
ios. Some of the existing works concern combining communication
technologies at the extremes of the transmission range spectrum
and of the spectrum of data rates. An example is provided by the
joint usage of acoustic communication for the long haul, more ro-
bust, low data rate exchanges, and of short-range, high data rate
optical packet transfer [3-8]. While these works show that con-
current use of multiple communicating devices overcomes engag-
ing challenges of underwater data transfer, they do not concern
data delivery, as we do in this paper. To the best of our knowl-
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Fig. 5. MARLIN-Q in networks with varying amount of urgent traffic. Networks with 40 nodes and high traffic.

edge, a first attempt at underwater multi-modal routing is pro-
vided by Hu and Fei’s MUIti-level Routing protocol for Acoustic-
Optical UWSNs (MURAO) [6]. This solution concerns partitioning
the network nodes into two layers. Lower layer nodes are respon-
sible for multi-hop data forwarding over optical channels. Nodes
in the upper layer use long range/low bandwidth acoustic com-
munication to coordinate the routing of the lower level nodes.
Actual data routing within the two layers is performed by QE-
LAR, a machine learning-based routing protocol for single-modem
UWSNs (described below). MURAO requires nodes to be deployed
densely enough to obtain a connected topology over the optical
links. Given the considerably short range of optical communication,
however, MURAO can be costly and even impracticable for applica-
tions requiring coverage of large areas.

While multi-modal routing is still quite the unexplored topic,
routing protocols for UWSNs with single-mode acoustic modems
have been proposed for over a decade now, and include remark-
ably effective solutions, including [13,18-21] and those surveyed by
Ayaz et al. [22] and by Li et al. [23]. A solution that stands out in
terms of enhanced performance is the Channel-aware Routing Pro-
tocol (CARP) by Basagni et al., which exploits link quality informa-
tion for data forwarding [13]. Nodes are selected as relays based
on their link quality, hop count and residual energy. CARP utilizes
a channel reservation mechanism a la RTS/CTS for channel access
and for selecting packet relays (cross layer design). For this reason,
while achieving reliability and suffering from few packet collisions,

it incurs remarkable latency. Furthermore, in networks with high
traffic nodes have troubles in gaining rights to the channel, which
results in quickly decreasing PDR. MARLIN-Q uses a channel aware
approach similar to that used by CARP for selecting the next hop
relay for a packet. However, instead of selecting a relay through
channel reservation, it smartly uses our reinforcement learning-
based framework for both relay and modem selection, obtaining
CARP performance on collisions, but also remarkably better PDR,
latency and energy consumption (Section 4.3.4).

Reinforcement learning has been already successfully applied to
routing problems in multi-hop wireless networks, including wire-
less ad hoc networks, wireless sensor networks and cognitive radio
networks (see [24] for an extensive survey) and more recently to
UWSNs [6,14,25,26]. The advantage of learning-based routing algo-
rithms is that they are able to learn optimal routing policies on-
line, and are thus capable to remain optimal or near optimal in a
dynamic environment. Furthermore, learning-informed algorithms
are often amenable to distributed implementation and require rel-
atively small communication and computation overhead. These are
all essential and desirable features for the resource constrained
UWSNs environment. Solutions presented in [25,26] concern the
specific scenario of networks with intermittent connectivity, which
is not similar to the scenario considered here. The QELAR proto-
col by Hu and Fei [14] has been introduced for routing in scenar-
ios similar to those considered in this paper. QELAR is based on a
model-based Q-learning approach aimed at maximizing the resid-
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Fig. 6. MARLIN-Q vs. CARP and QELAR. Large networks, and P, = 0.5.

ual energy among nodes. The learning cost function accounts for
the residual energy of each node as well as for the energy distri-
bution among neighboring nodes, and relays are chosen depending
on the energy they can save. This makes QELAR a solution that
compares well with previous protocols, especially in terms of net-
work lifetime. However, the QELAR model leads to routing deci-
sions that are prone to packet loss and to unfairness, especially to
nodes far away from the sink. This, as observed in Section 4.3.4,
leads to degraded performance, especially in larger networks.

To the best of our knowledge, the only solution that reaps the
joint positive effects of multi-modality and machine learning-based
routing is provided by the Multi-modAl Reinforcement Learning-
based RoutINg (MARLIN) protocol [27], which provides the design
platform from which we built MARLIN-Q. The core difference be-
tween the two protocols concerns the fact that MARLIN could be
configured at the nodes to support only one soft QoS class. For
instance, concerning our performance investigation, a node using
MARLIN could run either applications requesting reliability or ap-
plications concerned with low-latency delivery, but not both. Our
MARLIN-Q, instead, provides nodes with the capability to run the
reinforcement learning framework for both types of traffic, thus
allowing them to run multiple applications with different QoS
requirements. The simulation-based performance evaluation pro-
vided in this paper clearly demonstrates the heightened effective-
ness of MARLIN-Q in obtaining reliable and low-latency data deliv-
ery in a wider class of scenarios with respect to those where nodes
could use MARLIN.

6. Conclusions

This paper concerns UWSNs with nodes with multi-modal
communication capabilities. We present a reinforcement learning-
based framework for senders to jointly select the best forwarding
relay for their data and the best communication device to reach
that relay. The resulting forwarding method, named MARLIN-Q for
Multi-modAl Reinforcement Learning-based RoutINg with soft QoS
capabilities, allows nodes to perform routing depending on the na-
ture of the data-creating application they run. In other words, ap-
plications can choose among different soft QoS data delivery ser-
vices. Through a SUNSET SDCS-based study we show that MARLIN-
Q always shows excellent performance in scenarios with varying
network size, varying traffic and varying amount of urgent traffic.
We also show that it always outperforms state-of-the-art under-
water forwarding protocols by delivering more packets, faster, and
by spending considerable low energy. Our results clearly show that
the smart use of multi-modal communications takes underwater
networking to levels of reliability and low latency long demanded
by the majority of key underwater applications.
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