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Abstract
Heterogeneous architectures and heterogeneous-ISA designs
are growing areas of computer architecture and system soft-
ware research. Unfortunately, this line of research is signif-
icantly hindered by the lack of experimental systems and
modifiable hardware frameworks. This work proposes BYOC,
a "Bring Your Own Core" framework that is specifically de-
signed to enable heterogeneous-ISA and heterogeneous sys-
tem research. BYOC is an open-source hardware framework
that provides a scalable cache coherence system, that in-
cludes out-of-the-box support for four different ISAs (RISC-
V 32-bit, RISC-V 64-bit, x86, and SPARCv9) and has been
connected to ten different cores. The framework also sup-
ports multiple loosely coupled accelerators and is a fully
working system supporting SMP Linux. The Transaction-
Response Interface (TRI) introduced with BYOC has been
specifically designed to make it easy to add in new cores
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with new ISAs and memory interfaces. This work demon-
strates multiple multi-ISA designs running on FPGA and
characterises the communication costs. This work describes
many of the architectural design trade-offs for building such
a flexible system. BYOC is well suited to be the premiere plat-
form for heterogeneous-ISA architecture, system software,
and compiler research.
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1 Introduction
Heterogenous systems and processors are becoming ubiq-
uitous [18, 22–25, 29, 31, 54]. Driven by the need to gain
further efficiencies at the end of Moore’s Law [38], building
chips with mixtures of different cores, accelerators, GPUs,
GPGPUs, TPUs, microarchitectures, and potentially even
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Figure 1. A BYOC system connecting supported cores and
platform-agnostic peripherals.

different ISAs is becoming the standard. One example of this
heterogeneity can be seen in cell phone processors; for in-
stance, the latest Apple A12 processor contains two different
processor cores and 42 accelerators [19, 48].
It has become common for heterogeneous processors to

integrate devices such as GPUs, TPUs, and other accelerators,
all working under the direction of a set of general-purpose
cores. In the world of general-purpose compute, processor
cores have emerged as reusable Intellectual Property (IP)
blocks, with different, ISA-dependent features such as com-
pact code density, low power operation, security extensions,
high-throughput vector processing, and/or number of ar-
chitectural registers. As a result of this, heterogeneous-ISA
processors are emerging both as products [20] and as a hot
topic of active research [16, 46, 52–54].
While heterogeneous-ISA processors provide significant

opportunities for optimisation, exploiting the unique fea-
tures of their distinct ISAs (and microarchitectures) to im-
prove energy efficiency, performance, or security, there exist
many interesting system-level challenges that need to be
explored and solved with such systems. In particular, there
is difficulty integrating cores of different ISAs, there is signif-
icant, ISA-specific, platform-level baggage that is needed to
run existing operating systems and applications, and many
of the existing platforms are so loosely coupled that they
look more like traditional distributed systems than highly
optimised heterogeneous-ISA systems.
Ideally, connecting cores of different ISAs to build a het-

erogeneous-ISA processor would not require significant ar-
chitectural changes, with the ISA acting as "just another
interface". However, existing research on heterogeneous-ISA
systems has been hindered for multiple reasons. First, the
direct comparison of cores of different ISAs requires a system
in which those cores can be integrated. There are no existing
hardware platforms which support this level of pluggability
and therefore, prior work has had to rely on high level simu-
lations. A framework to compare and characterise cores of
different ISAs would require a simple, standard interface for
connecting new cores, independent of their architectural or

microarchitectural details. It should also enable all cores to
connect as equals in order to enable apples-to-apples com-
parisons across differing design points.
Second, existing systems which feature cores of multi-

ple ISAs typically do not offer hardware-coherent shared
memory, instead they rely on slower and less convenient
core-to-core communication mechanisms. Such platforms
only offer either message passing [11] for communication or
provide software-enabled coherence [29] which both incur
significantly higher communication overheads. Next, exist-
ing heterogeneous-ISA research systems require significant
runtime support for their secondary cores [24], or they limit
the type of threads that can execute on them [29], treating
the general-purpose cores more like accelerators which need
bespoke application support. Finally, previously built sys-
tems frequently are not open source or feature significant
components which are closed. This limits the opportunity
for researchers across the stack to make modifications to
facilitate research such as changes to improve performance,
energy efficiency, or security.
In this paper, we present BYOC (shown in Figure 1), a

cache-coherent, manycore, research framework built to en-
able heterogeneous-ISA research which can be simulated,
realised on FPGA (at ~100MHz), or taped out in silicon (at
>1GHz). BYOC is designed with a "Bring Your Own Core"
architecture which supports the connection of cores with dif-
ferent ISAs and microarchitectures, and the integration with
specialised hardware accelerators and domain specific accel-
erators. In addition,BYOC is fully open source1 (hardware,
software, and firmware) and is built using industry standard
hardware description languages (Verilog and SystemVerilog).
To enable this "Bring Your Own Core" architecture, we

developed a new cache interface termed the "Transaction-
Response Interface" (TRI) in conjunction with a local "BYOC
Private Cache" (BPC) that can work as a private L1 or L2
cache. TRI is lightweight, handshaked, and supports multiple
outstanding memory transactions per core. With the cache
coherence protocol implemented in the BPC and last-level
cache (LLC), the core is decoupled from most details of the
cache coherence protocol. This makes connecting a new core
to BYOC a simple matter of implementing a transducer from
the core to TRI, regardless of the core’s ISA.
Our design of BYOC extends the OpenPiton manycore

research platform [7], which used only the SPARC V9 ISA.
In the process of developing the TRI and adding support
for RISC-V and x86 cores in BYOC, we developed a num-
ber of world’s first prototypes. These include JuxtaPiton (or
Oxy) [27, 28], the world’s first open-source, general-purpose,
heterogeneous-ISA processor, and OpenPiton+Ariane [8],
the first open-source, SMP Linux-booting RISC-V many-
core. In this paper, we characterise both Oxy and a pro-
totype system known as Dicho which has 64 bit SPARC V9

1GitHub repository: https://github.com/bring-your-own-core/byoc
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(OpenSPARC T1) and 64 bit RISC-V (Ariane) cores both boot-
ing Linux and coherently sharing memory. These prototypes
operate at high speed on FPGA to enable at-speed operating
system (OS) and system software research.
We believe we have identified a pluggable, scalable, and

performant design point for the MESI-based cache coherence
protocol and the interface from the cores to BYOC. So far we
have been able to connect ten different cores of varying
microarchitectures and four different ISAs to BYOC via
TRI transducers and support the mixing and matching of
cores to build heterogeneous-ISA processors.

Our contributions include:

• The creation of an open-source, cache-coherent, mem-
ory system and framework explicitly designed to sup-
port cores of multiple general-purpose ISAs.

• The design of the Transaction-Response Interface (TRI)
which enables taking a core with a minimal coherence
interface and turning it into a manycore processor.

• The BYOC frameworkwhich supports both heterogeneous-
ISA designs and heterogeneous architectures with ac-
celerators and domain specific processors.

• A detailed evaluation of inter-core communication cost
using the BYOC framework running on an FPGA.

• The first open-source, general-purpose, heterogeneous-
ISA processor.

• The first open-source, SMP Linux-booting RISC-Vmany-
core.

2 Background
2.1 Heterogeneous Architectures
Multicore andmanycore systems can exhibit varying degrees
of heterogeneity. The most common design point is hetero-
geneous microarchitecture, homogeneous ISA. Previous re-
search [22, 23] showed performance and energy efficiency
benefits by scheduling applications on cores that best match
applications’ demands. Due to its energy efficiency benefits,
this architecture has become common in mobile processors,
such as ARM big.LITTLE [5] and Apple’s A12[19].
Another design point is heterogeneous microarchitec-

ture, overlapping ISA where cores share some instructions
but not others. This design is seen in work by Venkat et
al. [52], which constructs an ISA based on x86 and then does
a simulation-based design space exploration of systems with
cores implementing subsets of their extended x86 ISA.
A third design point in this space is heterogeneous mi-

croarchitecture and disjoint ISAs where cores in the system
do not have any common instructions. Venkat et al. [54]
went on to explore this design point with ARM Thumb, x86,
and Alpha cores in design space exploration. Due to the lack
of BYOC, they had to rely on gem5 and McPAT.

In both the overlapping ISA and disjoint ISA works, they
do not run an OS or fully model their memory system in

evaluation. They do find performance and energy efficiency
benefits over heterogeneous microarchitecture alone.

This prior work shows the wide range of design points pos-
sible in heterogeneous systems research, so any framework
needs to be flexible enough to support all of these config-
urations. Additionally, prior work is either closed-source
IP, which is not easily extensible, or high-level simulation,
which does not support full-stack systems. BYOC is able
to support these different levels of heterogeneity with all
types of cores connecting as peers, enabling apples-to-apples
comparisons for different hardware configuration. It is also
completely open-source and is a hardware implementation
capable of supporting full-stack research.

2.2 Heterogeneous-ISA Software Support
Heterogeneous-ISA architectures comes with challenges for
compilers, runtimes, and operating systems. DeVuyst et al. [16]
built a compiler and runtime support for dynamic migration
between cores in heterogeneous-ISA systems. They were
able to migrate binaries during runtime between cores, limit-
ing total performance loss to under 5% even when migrating
every few hundred milliseconds. A key to achieving this per-
formance, however, was the availability of hardware shared
memory, so they performed their experiments in simulation.
Prodromou et al. [46] tackle heterogeneous-ISA schedul-

ing. They apply machine learning techniques to predict the
ISA affinity of different application regions.

The researchers behind Popcorn Linux have also explored
building a compiler that enables runtime migration as well
as OS support for heterogeneous-ISA systems [11, 31]. They
used their multikernel model to investigate a potential OS
design for a heterogeneous-ISA system by compiling a copy
of their kernel for each ISA. For evaluations, they used a
hardware x86-ARM system where the cores were connected
over PCIe. Because the system did not have hardware shared
memory, the migration of binaries during execution was
expensive due to the overhead of copying state.

Lin et al. built the K2 OS [29], an OS which assumes multi-
ple coherence domains where cores in different domains do
not have coherent memory. Their hardware has cores in the
different domains of different ISAs. Using modified Linux
kernels, they run a main kernel in one domain and a shadow
kernel in another and replicate state between them using
software coherence, which incurs overhead.
One of the main takeaways from prior work is that soft-

ware systems running on heterogeneous-ISA architectures
rely on shared memory to achieve good performance. Thus,
it is crucial that any framework targeting heterogeneous-ISA
systems is able to provide shared memory.

2.3 Heterogeneous-ISA Platforms
Some heterogeneous-ISA platforms are coming into being,
but they are typically built in such a way that little cores
are connected as "guests" in a big core’s environment, rather
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indicates the interface point.

than being a first-class citizen. Most commonly this means
there is a lack of coherent shared memory, no caches for the
little cores, or the little cores do not feature full, OS-capable
platform support. HERO from the PULP Platform [24] and
the OMAP4 used as the platform for the K2 OS [20, 29] are
some such examples. Other examples of heterogeneous-ISA
platforms include lowRISC [12] and Celerity [15] which pair
RV64 cores with RV32 cores.

2.4 Heterogeneous-ISA Security
Varying the ISA of a system can provide potential security
improvements. Instruction set randomisation has the goal of
making different cores appear to have different and secret
instruction sets, emulating a heterogeneous-ISA system, so
attackers must craft a custom exploit for each machine. Bar-
rantes et al. [9] use dynamic binary translation to prevent
code injection attacks by randomising code at load time and
then unscrambling instructions as the translator runs them.
Sinha et al. [50] build this randomisation into a hardware
prototype to prevent code reuse attacks.

HIPStR [53] leverages a hardware heterogeneous-ISA set-
ting to defend against code reuse attacks by randomly mi-
grating execution of a binary between x86 and ARM cores.
This forces any potential attackers to craft heterogeneous-
ISA ROP attacks, which are extremely hard to execute. They
still maintain performance benefits of heterogeneous-ISA
systems due to the low overhead of migration.

3 Choosing an Interface Point
One challenge in building a cache-coherent framework de-
signed to connect arbitrary cores is where to interface. At-
taching new cores should be straightforward, and inter-
nal network-on-chip (NoC) and coherence protocol details
should be sufficiently hidden. BYOC is a tile-based manycore
by default, so the inclusion of a distributed, shared LLC is
our first assumption, as it ensures scalability with core count.
Next, we assume at least one level of local, private cache
(which should be write-back to reduce traffic to the LLC).
With these assumptions, our options (shown in Figure 2) are:

A The framework provides the L1 cache, L2 private cache
(if included), and LLC. The user connects with the frame-
work at an L1 cache interface.

B The framework provides LLC only. The user rewrites
their L1 and/or private L2 for coherence and connects
at the NoC or LLC cache interface.

C The framework provides the private cache and LLC.
The user connects the L1 to the private cache interface.

Option A. The framework provides all cache levels (ei-
ther two or three), thereby decoupling the user’s core from
the coherence protocol. The L1 cache must be designed to
be suitable for integration into cores with a wide variety
of microarchitectures and ISAs with low overhead, while
maintaining the user’s core’s performance. The framework
must also implement the parts of the coherence protocol that
must be handled in the private cache.

One failing of this design point is that L1 caches are typi-
cally tightly interwoven with the processor instruction front-
end and load-store unit (LSU), and hence the implementation
can vary significantly between microarchitectures. One com-
plication for Option A is the tagging and indexing strategy
for the supplied L1 cache. There is a lot of variance based on
microarchitecture as to whether a core’s L1 caches will be
virtually or physically indexed and virtually or physically
tagged. An L1 supplied with the framework must support all
these modes and thus must also interact with the core’s TLBs.
This renders Option A a difficult and impractical choice.

Option B. Option B requires the user of the framework to
understandmany details of the coherence protocol, including
atomic operations and how instructions and data are kept
coherent. It may also require heavy modifications to the last
private cache level. Cache coherence protocols are inherently
complex. The OpenPiton P-Mesh cache coherence system [7,
45] that we base our work on handles around 30 different
message types. Writing compatible private caches would
introduce both significant design and validation effort. While
the designer gains control over architectural details at the
core, it may lead to community fragmentation in how to
rewrite the L1 (and L2) caches.

Option C. Given the downsides of Options A and B, we
chose Option C. Like Option A, it can decouple the core
and L1 cache from the coherence protocol. This requires a
carefully written and highly configurable interface to the
framework’s local, private cache. However, unlike Option
A, the framework does not need to deeply understand the
core’s microarchitecture. Given that the BYOC framework-
provided local, private cache is primarily designed to be used
as a second layer of cache beyond the L1, it also does not
have the L1’s, tight, single-cycle turnaround performance
requirements.
Option C also wins over Option B as the framework pro-

vides a canonical implementation for the local, private cache’s



Core to BPC BPC to Core Subset
Load Load response Load/store
Store Store acknowledgement Load/store

Instruction miss Instruction return Instruction
Invalidation request Invalidation

Atomic Atomic response Atomic
Outbound Interrupt Inbound Interrupt Interrupt

Table 1. TRI message types sent to and from the BPC.

part of the coherence protocol. The user can benefit from
this validation and use the framework without having to
understand the coherence protocol – provided that the in-
terface to the local, private cache is sufficiently decoupled. If
a user wishes to modify the local, private cache, it is part of
the framework and so they may do so.

4 BYOC Architecture
BYOC is a cache-coherent manycore framework designed
to support the connection of cores of a variety of ISAs andmi-
croarchitectures. To decouple cores from the cache-coherence
protocol, BYOC provides a local, private cache known as the
"BYOC Private Cache" (BPC) and a distributed, shared last-
level cache (LLC) which implement the coherence protocol.
New cores (including the four cores detailed in Table 3) con-
nect their write-through L1 caches to the BPC using our new
"Transaction-Response Interface" (TRI). The TRI handles
load, store, and instruction requests from the core, invali-
dations to the core, and offloads atomic requests from the
core to the BPC or LLC as applicable. BYOC also provides a
chipset for the connection of peripherals and non-coherent
accelerators, which is automatically generated based on an
XML description of the system.

4.1 Transaction-Response Interface
Having chosen option C, we needed to specify a suitable
interface to the BPC. Our Transaction-Response Interface
(TRI) evolved over several years in which we integrated
several different cores with the BYOC framework. Those
cores serve both as useful tests and extensions of BYOC and
as reference implementations of TRI transducers to the BPC.
The goal is to make it possible to take any single-core system
and turn it into a cache coherent multi- or manycore design
with a rich collection of peripherals and platform support
while minimising the effort required for the end user.

TRI has two parts: one from Core-to-BPC and one from
BPC-to-Core. Both directions are valid-then-ready hand-
shaked [51]. In the Core-to-BPC direction, a request provides
a message type (shown in Table 1), a naturally-aligned phys-
ical address, the request size, its cacheability, the L1 cache
way to replace (if any), and the data (for stores or atomics).
As described in Section 4.2, the core may specify a "memory
thread ID", used for hardware threads or as MSHRs entry IDs
for a core to support more outstanding memory transactions.

In the BPC-to-Core direction, primarily used for responses,
a request has a message type, the L1 ways to be invalidated,
the request’s cacheability, the memory thread ID, and data.

4.1.1 TRI Functionality Subsets. TRI is designed to be
modular, offering subsets of the functionality depending on
the chosen core’s needs. For instance, a core can implement
the load/store subset comprising the load and store messages,
enabling swift system integration and single-core bring up.
If the core has no L1 cache, then it is already coherent and
ready to be a multicore.

For full coherence support with L1 caches, the invalidation
subset is also needed. This includes providing the L1 cache
way allocated for the load or store request, which the BPC
tracks. TRI invalidations come to the L1 caches including the
way to be invalidated. With write-through L1 caches there
is no write-back of dirty data which keeps the invalidation
interface simple.
To provide efficient synchronisation, the core can also

implement the atomic memory operation subset. For cores
without L1 caches, this is simply another message type. For
cores with L1s, the atomic subset requires invalidations.

4.1.2 Write-through L1 Caches. If a core has L1 caches,
it must write-through all memory operations to the BPC
so that the BYOC LLC can track the cacheline state in its
directory. This requirement was a design decision made to
make TRI a simpler to use interface.Write-back caches would
need an additional data flow in response to invalidations
from the BPC to the L1 data cache for dirty lines.

We have found it to be relatively straightforward to mod-
ify a write-back L1 data cache to be write-through, while
also reducing the complexity of the L1 cache subsystem and
thus the likelihood of bugs. However, to achieve higher per-
formance by supporting multiple outstanding memory trans-
actions, some modifications are needed, like the addition of
a merging write buffer mentioned in Section 5.3. Proper care
must be taken that the L1 miss handling and write buffer
adhere to the memory consistency model of the specific ISA.
While the L1 is write-through, the BPC remains write-

back. This minimises NoC traffic between the BPC and LLC.

4.2 BYOC Private Cache
The BPC serves dual purpose as both a cache (configurable
in size and associativity) and a transducer to bridge the pre-
defined, potentially non-customisable L1s to BYOC’s cache
coherence protocol. To increase manycore scalability, the
BPC maintains optional support for features such as Coher-
ence Domain Restriction (CDR) for software-configurable
coherence domains and cache line placement [17] and a
Memory Inter-arrival Time Traffic Shaper (MITTS) for high-
performance and fair memory traffic shaping [58], both of
which come as part of OpenPiton.

To maintain cache coherence with the optional L1 cache,
the BPC includes a “way-map table” (WMT) as a cost-efficient



alternative to a shadow tag table to track the L1 data cache.
The WMT does not store address tags, but rather the ways
of cache lines allocated in the L1. The BPC can invalidate the
L1 data cache without having to model its eviction policy.
The WMT also decouples the size and associativity of the
two caches, though the BPC must be inclusive of the L1.
The LLC maintains code-data coherence (e.g. for self-

modifying code), with the BPC bypassing all instruction
cache fills to the LLC. This increases space-storage efficiency
of the chip, but, in principle, the BPC could be a unified
cache. At the moment, instruction cache lines are 32 bytes,
compared with 16 byte data cache lines. This is required to
support the OpenSPARC T1 core, which has a fixed line size.
Other cores have similar, specific restrictions, which makes
supporting configurable line sizes a priority, though modern
cores typically make cache line size parameterisable. Making
BPC line size configurable is a work-in-progress.

4.2.1 Memory Consistency. The BPC can handle up to
four concurrentmemory threads. For a singlememory thread,
transactions conform to the total store order (TSO) memory
model, but BYOC supports cores that are TSO or weaker.
With the OpenSPARC T1 core, each CPU thread is bound
to one BPC memory thread, to satisfy TSO. Across memory
threads, no ordering is enforced to maximise memory paral-
lelism and performance. Multiple BPC memory threads can
be used by a single core to increase single-threaded perfor-
mance. With the Ariane core, each memory thread can serve
one outstanding MSHR for load and store transactions that
do not have ordering requirements. This works for weaker
consistency models (like RISC-V) to increase performance.

4.3 Shared Last-Level Cache
The LLC is configurable in size and associativity and is
sharded by design, meaning that each slice is allocated a
portion of the address space and is unaware of the other
shards (LLCs do not communicate). The BPC performs the
allocation of homes for lines. Each LLC has a slice of the
directory which (in sum) tracks the coherence states of all
cache lines in the memory system. The LLC interacts with
the BPC over the NoC to implement the MESI cache coher-
ence protocol. For a simple multicore processor, the LLC
can be reduced to fewer shards, instead of scaling with core
count. In that case, only the home allocation unit in the BPC
needs modified to home data in the few available shards.

4.4 Atomic Operations
Atomic memory operations are essential to implement soft-
ware synchronisation mechanisms in multi- and manycore
systems. Different ISAs require different flavours of atomic
operations to be supported by the memory system. Two
widely used variants are load-reserved/store-conditional
(LR/SC), and "compare-and-swaps" (CAS). BYOC supports

Atomic Fetch-and- Fetch-and-
Operation Logical Arithmetic

Compare-and-swap AND Add
Swap OR Minimum (signed)

Minimum (unsigned)
Load Reserved / XOR Maximum (signed)
Store Conditional Maximum (unsigned)

Table 2. The atomic operation types supported in BYOC.

both flavours, in addition to a rich set of fetch-and-op op-
erations such as atomic arithmetic or logic operations. These
fetch-and-ops could be emulated with LR/SC or CAS opera-
tions, but supporting a small set of integer and logical ALU
operations makes for faster execution. The supported atomic
operations are shown in Table 2 and described below.

Atomic Performance. Compare-and-swap, swap, and
fetch-and-op atomic operations are implemented in the LLC.
For highly contended lines (particularly lines not being con-
currently used for non-atomic access), implementing the
atomic operations in the LLC provides higher throughput
than performing them in the modified state of the BPC. This
is because consecutive operations do not require invalida-
tions to BPCs and also do not require a round-trip from the
BPC for acquisition of the line into the modified state for
each operation.

4.4.1 Support for SPARC Atomic Operations. The
SPARC V9 instruction set includes three atomic operations:
compare-and-swap (CAS), swap, and load-store unsigned
byte (LDSTUB). These are implemented in the LLC as two
atomic operations, with LDSTUB a subset of swap. These
are issued via TRI as non-cacheable operations. The LLC in-
validates all sharers before performing the atomic operation.

4.4.2 Support for RISC-V Atomic Operations. The
RISC-V ISA relies on LR/SC-type atomics and fetch-and-op
atomics. We leveraged the same LLC datapath used for CAS
and swap to implement fetch-and-op by adding a small ALU
that performs all of the RISC-V fetch-and-op atomics. The
logical operations are AND, OR, and XOR. The arithmetic op-
erations are add, minimum, unsigned minimum, maximum,
and unsigned maximum. The old value read from the LLC is
returned to the core after the operation is performed.

Load-reserved/store-conditional (LR/SC) is handledwithin
the BPC. The BPC has a flag to indicate the status of the most
recent LR/SC. After receiving an LR over the TRI, the cache
requests an upgrade for the line to the “M” MESI state and
sets the LR/SC flag to high. From then, any operation that
changes the line’s MESI state will clear the LR/SC flag (e.g. a
load from another core which downgrades the MESI state to
“S”). The later SC returns 0 (success) only when the LR/SC
flag is still high, otherwise the store fails and 1 is returned.

4.4.3 Support for x86 Atomic Operations. The i486
ISA implemented by the ao486 core supports CMPXCHG



and XADD atomics, analogous to CAS and fetch-and-add
respectively. Since both of these are already implemented
for SPARC and RISC-V, we can reuse them. The ao486 core
needs to be modified to send the atomics over TRI and sup-
port invalidating the affected L1 cache line.

4.4.4 Support for Unaligned Atomic Operations.
Some ISAs (including x86) support unaligned atomic op-
erations. BYOC does not currently support these, but the
LLC and BPC can be straightforwardly modified to support
unaligned atomics within a cache line. To support the opera-
tions across cache lines, the BPC can be modified to include a
small state machine and ALUwhich will bring both lines into
the modified state and then perform the atomic operation
across the two lines. Ensuring that both lines are the M state
simultaneously has similar forward progress challenges to
LR/SC, as described in Section 5.3.2.

4.5 Virtual Memory
The BYOC memory system operates on physical memory
addresses. This means the system designer, when choosing
which cores and accelerators to connect, must choose how
to build their cross-ISA virtual memory configuration. In our
Oxy prototype, the PicoRV32 core accesses a 4GB region of
physical memory addresses directly, but is directed by the
OST1 core on where the application is located in memory.
For our Dicho prototype, the OpenSPARC T1 and Ariane
cores use independent page tables managed by their indepen-
dent Linux kernels and negotiate their shared region using a
fixed memory location which is updated with a pointer to the
region. Both cores mmap the shared region to allocate their
independent virtual memory mappings in their page tables.
In a more heterogeneous-ISA-friendly OS environment, the
designer could enable common virtual memory mappings
without modification to the existing BYOC hardware. Cores
can use BYOC’s (instruction-triggerable) inter-processor in-
terrupts to request TLB invalidations and make cross-calls
to other cores (as is required by many ISAs). Accelerators in
the system are expected to use IOMMUs for translation to
BYOC physical addresses.

4.6 Networks on Chip
BYOC inherits its networks on chip (NoCs) and NoC order-
ing requirements from OpenPiton [7]. BYOC defaults to a
2D mesh topology for its three networks on chip, though a
crossbar is also provided as an alternative. The network can
be replaced with other networks provided they maintain per
network point-to-point ordering.

4.7 Chipset
NoC traffic sent off-chip is routed to the chipset where
"chipset crossbars" connect all of the peripherals. The chipset

crossbars are generated from an XML description of the sys-
tem using the PyHP preprocessor provided as part of Open-
Piton. To add a new peripheral or accelerator, the user simply
adds a device in the system XML description and the nec-
essary Verilog code is automatically generated. The XML
device description includes the memory range assigned to
the device and whether the device will generate memory
requests. A packet filter is attached to any device which gen-
erates its own memory requests. The packet filter reads the
requested address and rewrites the packet’s destination ID
according to the XML description. This way, the devices do
not need to be aware of the system memory map.

4.7.1 Peripherals. A number of platform-agnostic periph-
erals are supported in the system. These are usually con-
nected via standard interfaces like AXI4-Lite or in the case
of the SDHC controller, Wishbone. The supported peripher-
als include an SDHC controller, UART, Ethernet MAC, VGA
framebuffer, and PS/2 for keyboard input. The OpenPiton
platform provides an interface from the NoC to the Xilinx
memory controller. We have added an AXI4 bridge to provide
a more generic interface to other memory controllers.

4.7.2 Accelerators. TRI makes it possible to coherently
connect accelerators to some of the system’s tiles, while the
chipset crossbar enables incoherent connections. These can
be useful to build heterogeneous systems with a mix of gen-
eral purpose cores and dedicated accelerators for specialised
tasks. Below we describe our experience with adding the
non-coherent accelerators MIAOW [6] and NVDLA [39].

MIAOWGPGPU. MIAOW [6] is an open-source GPGPU
implementing the AMD Southern Islands ISA for architec-
tural research and experimentation. MIAOW on FPGA was
tethered to a Microblaze microcontroller (on the FPGA) and
a host (connected to the FPGA). For a student project to
integrate non-coherent accelerators into BYOC, MIAOW
was connected to the chipset via AXI-Lite and programmed
from the OpenSPARC T1 core. MIAOW was then modified
to natively send memory requests on the NoC to increase
performance and better reflect everyday CPU+GPU systems.

NVDLA. Wehave also connected theNVIDIADeep Learn-
ing Accelerator (NVDLA) [39] to the system similarly to
MIAOW. The configuration interface for NVDLA is trans-
duced to AXI-Lite, and its interrupt output is wired to the
platform’s interrupt controller. NVDLA’s AXI memory re-
quests are translated to corresponding P-Mesh packets.

5 Case Studies
5.1 OpenSPARC T1
We started with the OpenSPARC T1 (OST1) core [35, 41],
which is the original core provided with OpenPiton. This
core implements the (big endian) 64 bit SPARC V9 instruc-
tion set and supports the swap and CAS SPARC atomics.



Core OpenSPARC T1 PicoRV32 Ariane ao486
ISA 64 bit SPARC V9 32 bit RISC-V 64 bit RISC-V 32 bit x86

Physical address 40 bit 32 bit 40 bit 32 bit
L1 caches ✓ ✗ ✓ ✓

Virtual memory ✓ ✗ ✓ ✓

Endianness Big endian Little endian Little endian Little endian
Atomic operations Compare-and-swap, swap Fetch-and-op Fetch-and-op, LR/SC Compare-and-swap, Fetch-and-add

OS Capable ✓ ✗ ✓ *
Unique 1/2/4 threads Instructions Multiple outstanding Unaligned accesses
feature per core cached as data memory transactions (realigned in transducer)

Table 3. Cores Integrated with BYOC (*OS capable core. OS support in BYOC in progress)

The core has virtual memory with 40 bit physical addresses
and features write-through L1 instruction and data caches.
Uniquely among the cores we have integrated with TRI,
the OpenSPARC T1 supports multiple hardware threads per
core, which requires a thread ID to be included in each TRI
transaction.

TheOpenSPARCT1 chip environment used the core-cache
crossbar (CCX) interface [35] to connect cores, L2 cache, and
FPU. The interface is somewhat coupled to core implementa-
tion details, such as L1 cache size, associativity, and line size.
CCX was also used by OpenPiton [7], which resulted in CCX
details becoming embedded in OpenPiton L1.5 cache. This
made the path to building from OpenPiton and adding new
cores unclear in the beginning. However, through adding
new cores and developing the TRI, we were able to remove
some CCX couplings. Importantly with TRI the core is de-
coupled from the cache coherence protocol.

Platform Details. The SPARC V9 ISA separates mem-
ory into two regions: I/O and memory. Memory addresses
have a most-significant bit of 0 and are cached as normal.
I/O addresses have a most-significant bit of 1 and are non-
cacheable. Specific memory accesses or pages can be marked
as (non-) cacheable which is indicated to the cache system.
Specific memory accesses or pages can also be marked as
little endian, though this is handled in the core.
SPARC uses the Open Firmware Device Tree to describe

the system hardware to the software. The SPARC hypervisor
reads the device tree description from the PROM and uses
it to allocate memory, interrupts, etc. It filters the device
tree and passes it to the guests’ bootloaders and operating
systems which will use it to discover hardware components
and initialise the appropriate drivers.

Device interrupts connect to an interrupt controller which
sends NoC interrupt packets to signal the core. In SPARC,
interrupts (both device and inter-processor) are first handled
by the hypervisor which passes them to the corresponding
guest via an ISA-specified queue in memory.

5.2 PicoRV32
As the first step to add new cores of different ISAs and thus
build TRI, we integrated PicoRV32 [55] to develop JuxtaPi-
ton (or Oxy), the world’s first open-source, general-purpose
heterogeneous-ISA processor, which consists of OpenSPARC
T1 and PicoRV32 cores [27, 28].

PicoRV32 is a multicycle RISC-V RV32IMC core and is
little-endian. It does not have an L1 cache or an MMU for
virtual memory. It also does not implement any of the RISC-
V privilege modes and has a bespoke approach to interrupt
handling. In its first iteration for PicoRV32, TRI only needed
to support loads and stores. Once we developed TRI and
BYOC further, we added (fetch-and-op) atomics to PicoRV32.
As PicoRV32 does not have an L1 cache, the BPC acts as

PicoRV32’s L1 cache. This is enabled by the fact that the TRI
supports cacheable accesses of different sizes. The PicoRV32
core can directly write out just the modified data rather than
a whole cache line, simplifying integration. Furthermore,
the BPC acts as a combined instruction and data cache for
PicoRV32, which issues all requests as data requests. Now
integrated with TRI, PicoRV32 can access peripherals and
send IPIs just like the OpenSPARC T1 cores in the topology.
Oxy is used as a platform to explore system software im-

pacts of heterogeneous-ISA systems. We developed a proxy
kernel that offloads user-mode RISC-V binaries from Linux
run on the OpenSPARC T1 core to the PicoRV32 core. The
PicoRV32 core can then make syscalls which are proxied by
the OpenSPARC T1 core. We describe this system in more
detail and evaluate it in Section 6.1.

Platform Details. As PicoRV32 is hosted in Oxy, plat-
form support was limited. Oxy has both big-endian
OpenSPARC T1 cores and little-endian PicoRV32 cores. Pi-
coRV32’s TRI transducer flips transactions bytewise to pre-
serve a little endian data layout in memory.

We sign extend the core’s 32 bit addresses and use themost
significant bit to indicate cached or uncached operations.
This enables access to peripherals from the PicoRV32 core
without the need for hosting by the OpenSPARC T1 core.
As the core is hosted, it is awoken to start executing by an
IPI NoC packet sent from the OpenSPARC T1 core. Once it
completes execution it returns to its reset/idle state.

5.3 Ariane
Ariane [57] is a 64 bit, single-issue, six-stage, in-order RISC-V
core (RV64GC). It has support for hardware multiply/divide,
atomic memory operations, and an IEEE compliant FPU.
Moreover, it has support for the compressed and privileged
instruction set extensions. It implements the 39 bit virtual
memory scheme SV39 and boots Linux single-core on FPGA.



Ariane is little-endian and its TRI transducer flips endian-
ness similarly to Oxy to ensure interoperability with existing
platform peripherals. Sub-word flips are not necessary as
Ariane uses 64 bit words like the OpenSPARC T1.

Connecting Ariane to BYOC took less than six months, de-
spite the complexity of the core and the final goal of booting
SMP Linux. It is worth noting that once the write-through
L1 cache and TRI support were implemented in Ariane, we
successfully booted SMP Linux on two Ariane cores
the day after first booting single core Linux, and booted
four cores one week later with no RTL changes needed in
between.We attribute this success to the thorough validation
of the original infrastructure provided with OpenPiton and
the well defined TRI interface that we established for BYOC.
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Figure 3. LUT distribution of single-core builds for a Xilinx
Kintex 7k325tffg900-2 FPGA. The percentages are normalised
with respect to the OpenSPARC T1’s total size.

The LUT distribution for single-core Genesys2 FPGA
builds is shown in Figure 3. The core uses around 22%-41% of
the total resources, depending on the configuration (Ariane
with or without FPU, OpenSPARC T1 with FPU). The T1 is
around 23% and 93% larger than Ariane with and without
FPU, respectively. This can be attributed in part to the T1’s
large register windows and reliability features. On FPGA, we
synthesise the T1 only with one hardware thread, thus there
is no hardware multithreading overhead.

5.3.1 L1 Cache Subsystem. Ariane’s L1 caches are pa-
rameterisable in size, line size, and associativity. Ariane orig-
inally used a write-back L1 cache which was prone to subtle
bugs. Moving to write-through and supporting TRI made for
a simpler L1 cache subsystem. The L1 data cache features a
merging write-buffer with forwarding capability to improve
write performance. This write-buffer by default is eight, 64
bit words deep and supports two outstanding writes to the
BPC by using multiple TRI memory thread IDs. The memory
thread ID field’s current size of two matches the T1’s two
hardware threads, limiting Ariane to two outstanding sets
of load, store, and instruction fill transactions (six total).

5.3.2 Eventual Completion Guarantee of LR/SC.
Without mechanisms that ensure eventual completion of
LR/SC sequences, the probability of running into a livelock
is high. The current RISC-V specification does not outline

such a mechanism, and hence we propose to use an expo-
nential back-off counter to ensure effective LR/SC conflict
resolution. The mechanism is implemented in the miss-unit
of the L1 data cache (which talks to the TRI) and works as
follows: If an LR fails, any subsequently issued LR will not be
sent to the TRI until the back-off counter reaches zero. The
back-off counter initialises to a masked random value drawn
from a 16 bit LFSR. The mask is created using a 16 bit shift
register with all flops initially set to zero. A failing LR shifts
a one into the shift register, exponentially increasing the
range for random back-off times (up to 216 − 1 CPU cycles).

Platform Details. RISC-V uses Physical Memory At-
tributes (PMAs) to specify features of the memory map. Most
relevant to BYOC, it details which memory ranges will be
cached or uncached, which receive atomic operations, and
which are idempotent. For Ariane, like OpenSPARC T1, ad-
dresses with a most significant bit of 1 are non-cacheable,
non-idempotent, and do not receive atomics. Unlike SPARC,
the main cacheable, idempotent, atomic-receiving memory
range is automatically generated from the system XML de-
scription. RISC-V does not address non-cached access to
cacheable memory. It is left as a platform detail and the
UNIX platform specification is a work in progress.

We implemented the following platform peripherals that
are required to successfully boot SMP Linux on a RISC-V
manycore system. These include:

• Debug: The RISC-V draft spec v0.13 compliant debug
module [47] governs external, multi-hart, run-control
debug. The cores use their existing pipeline to facilitate
debug functionality. An external debug request signal
redirects the core to a “programmable” debug ROM
which injects debug instructions into the core’s pipeline.

• CLINT: The CLINT provides inter-processor interrupts
(IPI) and a common time-base. Each core uses its own
timer register which triggers an external timer interrupt
when it matches the global time-base.

• PLIC: This interrupt controller manages external pe-
ripheral interrupts. It provides a context for each priv-
ilege level and core. Software can configure different
priority thresholds for each context. Though not yet
standardised, there is a reference implementation in-
cluding a Linux driver which acts as a de facto standard.

We also added an automatic device tree generation script
using PyHP. This script reads the XML description of the
system (used to generate the chipset crossbars), the core
count, and the clock frequency to generate a device tree that
is compiled into a bootrom peripheral. That bootrom’s "zero-
stage" bootloader initialises the cores and loads a pointer to
the device tree blob into register a1 as per RISC-V convention.
With this automatic device tree generation, the same Linux
image can be booted on differently parameterised instances
of BYOC, automatically adapting to the platform at runtime.



5.4 ao486
The ao486 [44] core is a full reimplementation of the Intel
486 SX processor (which lacks floating-point). The core has a
16KB L1 instruction cache and a 16KB data cache as well as
a 32 entry TLB. Released alongside the core are the platform
peripherals for an FPGA-based SoC capable of booting Linux
and both Microsoft Windows 95 and 98. We were interested
in ao486 because x86 brings support for legacy code and
because CISC ISAs are rare among open source cores.

Our initial implementation aims to integrate ao486 while
minimising changes to core RTL to further test the suitability
of the TRI. ao486 is unique among our cores as it uses an
Avalon memory interface which makes unaligned accesses
to memory. Connecting to Avalon without modifications
requires realignment in the transducer.

Platform Details. ao486 has been integrated into BYOC
and can execute the Bochs [37] BIOS, enter x86 Protected
Mode, and run programs on top of the BIOS. This function-
ality is similar to PicoRV32 and our other non-OS capable
cores. However, cache invalidations are still in progress and
atomics are done in the core’s datapath, so the design re-
quires workarounds to be used as a multicore.
The ao486 SoC provides Verilog implementations of pe-

ripherals required for full platform functionality. These in-
clude the 8259 Programmable Interrupt Controller (PIC),
8253/4 Programmable Interval Timer (PIT), and a Real Time
Clock (RTC). As the platform is single-core, it does not pro-
vide the newer Intel Advanced PIC (APIC) used for multicore.

5.5 Other Core Prototypes
Beyond the cores detailed above, we have prototypes for test-
ing other microarchitectures. Four of these, like PicoRV32,
are 32 bit RISC-V cores which lack L1 caches and can
run RISC-V assembly tests in BYOC. The first is an in-
order, bit-serial core. Two more (one of which is written
in PyMTL [21, 30]) are five-stage, in-order cores used for
computer architecture education. The last is a minimal con-
figuration of the highly parameterisable VexRiscv core [2].
AnyCore [10, 13, 14] is a high performance, highly con-

figurable, out-of-order superscalar core that implements 64
bit RISC-V (RV64IMAFD). AnyCore’s configurability made it
easy to match BYOC’s default parameters and the core runs
C and assembly tests in BYOC. We modified the BPC and
TRI to return the requested address back to AnyCore’s L1
interface, to use for its index and way calculation. Further
integration of AnyCore is quite feasible as it previously used
the OpenSPARC T2 [36] variant of CCX. It could also reuse
Ariane’s 64 bit RISC-V platform support unmodified.

We also worked with the developers of the BlackParrot [1]
64 bit RISC-V multicore to connect the core to BYOC. Black-
Parrot has its own cache coherence system, so we tested
multiple methods of connection, including a novel hierar-
chical coherence method. We settled on connecting the core

with its L1 caches but without its coherence engines. This
prototype ran single-core RISC-V assembly tests with just a
few days of work.
Independently, the Lagarto RISC-V core was integrated

into BYOC [26]. This shows BYOC’s promise in enabling ex-
ternal users to quickly build their own cores into manycores
with the option of heterogeneous-ISA capabilities.

5.6 Hardware Transactional Memory
A group of graduate students were able to modify BYOC
and the OpenSPARC T1 core to build a hardware transac-
tional memory (HTM) prototype as a six week course project.
To minimise hardware modifications to the core and TRI,
they used specially addressed memory accesses to indicate
transaction start and commit. Thus, this HTM can be easily
transplanted to other cores (though it may not be compatible
with the core’s ISA’s HTM, which is usually coupled with mi-
croarchitectural features). In the BPC, four states are added
to the coherence protocol to indicate that the line is currently
read/written in an ongoing transaction or is in the commit
process. In the LLC, the coherence protocol in unchanged,
but four new NoC message types are added to implement the
two-phase commit mechanism. This project shows that with
a few changes in the BPC and the LLC, BYOC can be easily
leveraged to implement different memory system research
ideas, which can then be reused across multiple cores.

5.7 QEMU Co-simulation with BYOC
Xilinx’s open source LibSystemCTLM-SoC library [56] pro-
vides a co-simulation environment between QEMU and RTL
simulation. In two days, we and the library’s developers
built a new BYOC enabled proof-of-concept that connected
QEMU to the TRI. We bypassed QEMU memory traffic from
an emulated RISC-V core through a write-through L1 cache
and a new TRI transducer, which enabled the use of the BPC
and LLC for the reserved memory range. QEMU is unique
in supporting a variety of ISAs, including those for which
no or few open core implementations exist. This enables
connecting "cores" of more ISAs to BYOC for further ISA
heterogeneity and to develop multi-ISA platform support.

6 Results
To enable future heterogeneous-ISA research using BYOC,
we conducted several experiments to measure latency,
throughput, and comparative performance of two prototypes.
The first is Oxy, where we characterise the PicoRV32 core
and then compare the OpenSPARC T1 and PicoRV32 cores.
For the second prototype, Dicho, with OpenSPARC T1 and
Ariane cores, we measure the latency and throughput for
cooperative applications running across the two cores which
are independently running Linux.

Both of our experimental platforms were implemented at
66.67 MHz on a Digilent Genesys2 board, which has a Xilinx



Operation Measured True
Latency (cycles) Latency (cycles)

Cached Uncached Cached Uncached
Load 17 113 ± 1 4 100 ± 1
Store 17 113 ± 1 4 100 ± 1

Table 4. Memory latency measurements for PicoRV32. The
measured latency is the raw cycle count from the test. True
latency is adjusted for cycles spent in the cache hierarchy.

Kintex 7k325tffg900-2 FPGA. The BPC on each tile is 4-way
associative and 8KB in size while the LLC shard on each tile
is 4-way associative and 64KB in size.

6.1 Oxy
6.1.1 Experimental Setup. This Oxy system consists of
one OpenSPARC T1 (OST1) and one PicoRV32 core con-
nected via BYOC. The OST1 has its default 16KB, 4-way L1
instruction cache and 8KB, 4-way L1 data cache. We boot
Debian Linux on the OST1 core and RISC-V programs are
run on PicoRV32 using our proxy kernel.
The proxy kernel consists of a loader and a system to

proxy syscalls from the PicoRV32 core. The loader allocates
a block of memory for PicoRV32 and sets up the ELF image
in that memory. The system to proxy syscalls consists of
two parts. The first is a modified version of Newlib, run on
the PicoRV32 core, that writes syscall arguments to a (cache-
coherent) shared memory region. The second is a loop, run
on the OST1 core, that polls on the shared memory. When
it receives a syscall request, it executes the syscall locally,
taking advantage of the OST1’s Linux capability, and writes
the return value to the same region of shared memory for
the PicoRV32 core to read.
The binfmt_misc kernel subsystem enables invocation

of RISC-V binaries from the OST1 core like native binaries.
binfmt_misc allows a binary (typically an interpreter) to
be associated with a binary type. The binary type can be
determined from the ELF magic number. We registered our
proxy kernel binary to be invoked for RISC-V executables
using the ELF magic number for RISC-V binaries.

6.1.2 Memory Hierarchy Latency. We investigated the
latency to different parts of the BYOC memory hierarchy to
better understand performance of the PicoRV32 core. Cycle
counts for instructions that are only dependent on the core
itself are given on GitHub [55].
We measured latency (shown in Table 4) of a memory

operation between two rdcycle instructions. The raw mea-
surements given are the difference between the two rdcycle
values. The PicoRV32 core is unpipelined and takes multiple
cycles to execute an instruction. Thus we adjust the raw
measurements to calculate the latency within the memory
hierarchy versus the other portions of instruction execution.
We first determined the true BPC hit time from the raw

BPC hit time of 17 cycles. Every instruction fetch must access
the BPC, so a memory instruction accesses the BPC twice.

Figure 4.Multiplicative slowdown of running microbench-
marks on the PicoRV32 core versus the OST1 core. Slowdown
is also given over each bar.
Some of the latency is also from fetching the second rdcycle
instruction. Thus, the instructions account for 3 BPC accesses.
In addition, load and store instructions take 5 cycles in the
PicoRV32 core (given by its documentation [55] and verified
in simulation). After subtracting the 5 cycles for the memory
instruction and dividing by the 3 memory accesses, we find
that a BPC hit for PicoRV32 takes 4 cycles.
DRAM access latency from our Kintex-7 FPGA to the

DRAM on the Genesys2 board is around 113 cycles, with
some variance due to clock domain crossings. For this test,
both instruction reads go to the BPC and only the actual
memory access goes to DRAM. With this in mind, one oper-
ation to memory for the PicoRV32 core is about 100 cycles.
Latency from BPC to LLC is the same for PicoRV32 and OST1
cores and varies with core count and the LLC cache homing
policy as described in [7].

6.1.3 Microbenchmarks. We ran three microbench-
marks to compare the performance of the PicoRV32 core
and OpenSPARC T1 core integrated into BYOC. hanoi re-
cursively solves the Towers of Hanoi puzzle with a height
of 7. binsearch does a binary search for 10 keys randomly
chosen in an array of 10,000 32-bit integers. quicksort sorts
an array of 100 32-bit integers shuffled randomly.

The slowdown of each benchmark is shown in Figure 4. All
microbenchmarks experienced a slowdownwhen running on
the PicoRV32 core since it has a less complex microarchitec-
ture. hanoi and quicksort both saw about an 8x slowdown.
binsearch experienced a smaller slowdown at 4x.
binsearch’s working set does not fit in the 8KB BPC

(though it does fit in the LLC). As a result of this, both cores
must access the LLC or memory often. Since accesses to the
BPC or beyond take approximately the same amount of time
for both PicoRV32 and OST1, binsearch is less impacted by
running on the PicoRV32 core.
Although microbenchmarks running on PicoRV32 suf-

fer reduced performance, PicoRV32 is designed to minimise
FPGA area and maximise frequency. The OST1 core was de-
signed for throughput and not single-threaded performance.
The core originally had 4 threads to overlap useful work.
These trade-offs between performance and other metrics are
an intended consequence of having a heterogeneous system



architecture. An intelligent scheduler would optimise for
these and use the most appropriate core for its performance
and energy-consumption goals.

6.2 Dicho
6.2.1 Experimental Setup. Dicho consists of one OST1
and one Ariane core connected via BYOC. Both cores have
their default 8KB, 4-way L1 data caches and 16KB, 4-way
instruction caches. Ariane is allocated the first 512MB of
memory, OST1 is allocated the next 496MB, and the remain-
ing 16MB is reserved as a fixed communication region. The
OST1 core uses a similar mechanism to Oxy. A syscall allo-
cates a contiguous region of physical memory to share. The
address of this buffer is written to the fixed region to commu-
nicate to Ariane. Both cores then use /dev/mem to map the
shared buffer with user-mode accessible virtual addresses.

6.2.2 Latency Results. Our latency microbenchmark ex-
periment uses two shared memory FIFO queues between the
two cores, one for each direction. Each core removes items
from its inbound queue and places items into its outbound
queue, updating the head and tail pointers as necessary.

We first measured round-trip latency by inserting a single
item into the queues and passing it through ten round trips.
These ten round trips define a single iteration. We repeat this
for ten iterations, discounting the first iteration for warmup
as it takes ~10x the cycles of the subsequent iterations.

We measure 78.97 cycles per round-trip using atomics and
73.50 cycles without atomics. This corresponds to two LLC
downgrades (one in each direction) needed after the head
pointer for each queue has been updated. This downgrade
latency is in line with the L2 cache hit latency observed in a
previous characterisation of the Piton processor [34], which
was an ASIC implementation of the OpenPiton platform
we started our work from. A downgrade round trip will
take additional cycles over an LLC hit as the LLC must then
request the downgrade itself from the BPC.

Throughput Results. We measured system throughput
using a single queue producer-consumer microbenchmark.
TheOST1 corewaits for an empty queue slot to insert an item.
Every iteration Ariane waits for the item and takes it out.
10,000 insertions/extractions define a single iteration. We use
ten iterations: one for warmup and nine for measurements,
and those last nine times are averaged.

Wemeasure 7.52 cycles for one insertion/extraction, which
corresponds to 566 Mbps throughput at the 66.7 MHz FPGA
clock frequency. The maximum throughput may be higher
as our setup restricted the queue size to a maximum of 4KB.

7 Related Work
Heterogeneous Cache Coherence. There has been recent

work on building cache coherence systems for SoCs which

integrate coherent accelerators. Spandex [3] defines a com-
bination of cache coherence protocols targeting heteroge-
neous systems. Embedded Scalable Platforms (ESP) include
an FPGA-based framework for prototyping and analysing
heterogeneous SoCs [32, 33] with their focus on integra-
tion of accelerators. ESP’s cache coherence system has been
extended with support for cache coherence schemes specifi-
cally optimised for accelerators [18]. Both Spandex and ESP’s
accelerator coherence models could be integrated into BYOC
as extensions to the existing cache coherence protocol.
Similarly, PULP clusters could be integrated into BYOC

using the TRI to make a system similar to HERO [24] but
featuring more platform support and enabling coherence
capabilities for the clusters.

Comparing TRI to Other Interfaces. TileLink can pro-
vide a similar cache coherent memory system to BYOC. We
believe that it is more convenient to connect cores using TRI
than TileLink. TileLink uses between two and five channels
and has 19 different message types in total. TRI only requires
request and response channels with 11 total message types.
According to its specification, TileLink [49] "was designed
for RISC-V but supports other ISAs". However, we are not
aware of its use for building heterogeneous-ISA systems.
Buses like Wishbone [42, 43] and Arm AXI [4] are de-

signed primarily for peripheral connections rather than pro-
viding cache-coherent interconnects. Arm ACE is an exten-
sion of AXI which "provides support for hardware-coherent
caches" [4]. ACE relies primarily on snoopy cache coherence,
which limits its scalability compared to BYOC.

Crossing Guard (XG) provides a platform-agnostic inter-
face for providing varying levels of coherence to accelera-
tors [40]. XG is conceptually similar to TRI in providing some
decoupling of accelerators from the coherence protocol. XG
also provides safety guarantees to the coherence system in
the presence of misbehaving accelerators.

8 Conclusion
In this paper, we introduced BYOC: an open-source hard-
ware framework for heterogeneous-ISA and heterogeneous
systems research. Notable for enabling this type of research,
BYOC provides a "Bring Your Own Core" interface to its local,
private cache. This "Transaction-Response Interface" (TRI)
is straightforward and extensible to connect to, as demon-
strated by our connection of ten cores of four different ISAs.
With these cores, we have developed several prototypes.
The first, Oxy, features OpenSPARC T1 and PicoRV32 cores,
with the OpenSPARC T1 core capable of offloading RISC-V
binaries from SPARC Linux to the PicoRV32 core. We char-
acterised Oxy to measure BYOC memory hierarchy latency
and provide a classical performance comparison of the two
cores of different ISAs, as performed in previous simulation-
based heterogeneous-ISA research. The second prototype,
Dicho, reflects a heterogeneous-ISA system of the future,



with OpenSPARC T1 and Ariane cores which can both boot
Linux and share memory. We characterised Dicho’s latency
and throughput in executing a cooperative shared memory
application run across the two Linux instances.

BYOC and the prototypes built with it will form the basis
of future heterogeneous-ISA research. For systems research,
Dicho provides a solid foundation for the development of op-
erating systems, schedulers, and more systems software de-
signed to run on heterogeneous-ISA systems with hardware-
coherent shared memory.
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A Artifact Appendix
A.1 Abstract
BYOC is a significant piece of infrastructure that has many
moving parts. This appendix deals specifically with repro-
ducing the Dicho latency experiment from Section 6.2.2. We
provide a DOI for the FPGA bitfiles and OS images to repro-
duce this experiment. The code for this and the other parts
of BYOC are available via GitHub in several ways:

• Oxy and PicoRV32 The Oxy prototype is an instance
of JuxtaPiton, which has been open source as an up-
stream part of OpenPiton since release 9.

• Ariane OpenPiton+Ariane has been open source as an
upstream part of OpenPiton since release 10.

• Dicho The working Dicho code is available and repro-
ducible on the BYOC GitHub repository 2.

• ao486 The working ao486 code is available and repro-
ducible on the BYOC GitHub repository 3.

2https://github.com/bring-your-own-core/byoc/tree/dicho_repro
3https://github.com/bring-your-own-core/byoc/tree/ao486

The Dicho experiment has relatively specific hardware
requirements (mainly the two Genesys 2 FPGA boards). To
build everything from source (FPGA bitfiles, microbench-
marks for OST1 and Ariane, bootloaders, etc.) requires multi-
ple cross-compilers and other time-intensive infrastructure,
so we instead provide pre-compiled bitfiles, binaries, etc.
With the appropriate hardware and our instructions below,
it should be straightforward to reproduce the results for this
experiment.

A.2 Artifact check-list (meta-information)
• Hardware: 2 Digilent Genesys 2 Boards with Xilinx Kintex-7
FPGA, 1 4GB SDHC card, 2 FAT-formatted USB drives

• Execution: Boot Linux on each core, manually run binaries
• Metrics: Latency (nanoseconds)
• Output: 10 rounds of round-trip latency measurement
• Experiments: Latency with/without atomics
• How much disk space required (approximately)?: 5GB
• Howmuch time is needed to prepare workflow (approx-
imately)?: 1 hour

• Howmuch time is needed to complete experiments (ap-
proximately)?: 5 minutes

• Publicly available?: Yes
• Code licenses (if publicly available)?: RTL: BSD, Apache,
ISC, GPL. Microbenchmark: BSD

• Archived (provide DOI)?: 10.5281/zenodo.3563256 (URL:
https://doi.org/10.5281/zenodo.3563256)

A.3 Description
A.3.1 How delivered. We provide the OS images including the
pre-built microbenchmark binaries. We also provide bitfiles to pro-
gram the two FPGAs.

A.3.2 Hardware dependencies. Our Dicho latency measure-
ment experiment used two Digilent Genesys 2 FPGA boards, but
both cores are running on one board and the second board
is only used for its UART connection. To provide a UART for
each of the two cores, we wired secondary UART tx/rx pins from
the PMOD connector on the first board to a second identical board.
Alternatively one could connect to a microcontroller or similar
that can connect to the 3.3V PMOD pins and provide access to the
second serial terminal.

We also need:

• 4GB MicroSDHC card onto which to write the OS images.
• Two FAT-formatted USB drives (exFAT and others will not
work) to program the two FPGAs.

• 3 breadboard wires to connect PMOD connectors.

A.3.3 Software dependencies. We assume that the host ma-
chine the MicroSD card is written from runs a Unix-friendly OS
that can use dd to write MicroSD cards, including writing with
different offsets. Primary dependencies are:

• dd to write images onto MicroSD card.
• PUTTY/screen/minicom or similar to provide serial terminal
connection to both FPGAs.

• tar to unarchive optional microbenchmark tarball.

https://github.com/bring-your-own-core/byoc/tree/dicho_repro
https://github.com/bring-your-own-core/byoc/tree/ao486
https://doi.org/10.5281/zenodo.3563256


A.4 Installation
To install the OS images (which contain the pre-built binaries) onto
your MicroSDHC card, follow these steps in order (note that dd on
macOS uses a lower-case m for the bs argument):
1. Identify your SD card’s device location. We use

/dev/MYSDCARD as our example.
2. sudo dd if=dicho_ariane_linux.img of=/dev/MYSDCARD

bs=1M seek=2048
3. sudo dd if=dicho_ost1_linux.img of=/dev/MYSDCARD

bs=1M
4. sudo dd if=dicho_ariane_bbl.bin of=/dev/MYSDCARD

bs=1M seek=2049
5. sudo dd if=dicho_ost1_prom.bin of=/dev/MYSDCARD

bs=1M

Next you must copy each of the two FPGA bitfiles onto its own
USB drive. Plug the USB drive into the top USB port of the FPGA
board. Plug the MicroSDHC card into the board which has the
bitfile for dicho_g2_repro.bit (you will know which board it is
as when it is programmed, the OLED screen will light up).

A.5 Experiment workflow
1. Plug a micro USB cable into each powered-off board’s UART

port and connect both to the host computer.
2. Establish two serial terminals on the host computer (one for

each FPGA) with 115200-8-N-1 configuration.
3. Connect three breadboard cables to PMOD connector JC, pins

9, 10, and 11, matching the same pins on both boards 4.
4. Ensure both boards have jumpers set to program from USB.
5. Power on the FPGA board which has the uart_passthru.bit

bitfile in its USB drive and wait for the programming DONE
light to illuminate.

6. Power on the FPGA board with the other USB and the MicroS-
DHC card.

7. Once the OLED screen lights up, both serial terminals start to
print output from the SPARC and RISC-V boot processes.

8. The SPARC boot process will reach an "ok" prompt. On that
serial terminal, enter: boot Linux init=/bin/bash

9. The RISC-V boot process will reach a login prompt. Log in as
the root user.

10. Once both serial terminals show a bash shell prompt, it is time
to run the experiment.

A.6 Evaluation and expected result
The first test uses atomics. In the serial terminals, run:
1. On SPARC, run: /home/guest/main_ost1_O2_x10
2. On RISC-V, run: /bin/main_ariane_O2_x10
The second test does not use atomics or fences. In the serial

terminals, run:
1. On SPARC, run: /home/guest/main_ost1_nofence_O2_x10
2. On RISC-V, run: /bin/main_ariane_nofence_O2_x10
The serial terminal output from the SPARC core will give the

nanosecond count for ten iterations of the test, where each iter-
ation is one hundred round-trips. The first iteration, as noted in
Section 6.2.2 is warmup, so average the other nine iterations to get
an average nanosecond count for 100 roundtrips. The core runs
4https://reference.digilentinc.com/reference/programmable-logic/
genesys-2/reference-manual#pmod_connectors

at 66.67MHz, meaning a cycle takes 15 nanoseconds. If you divide
your measured average by 1500, then you will get the average cycle
count for one round-trip. As noted, we expect latency of 78.97 cycles
per round-trip using atomics and 73.50 cycles without atomics.

A.7 Methodology
Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/artifact-review-
badging
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