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We present the results of a combined experimental and theoretical investigation of the
stability of rings of millimetric droplets bouncing on the surface of a vibrating liquid bath.
As the bath’s vibrational acceleration is increased progressively, droplet rings are found
to destabilize into a rich variety of dynamical states including steady rotational motion,
periodic radial or azimuthal oscillations and azimuthal travelling waves. The instability
observed is dependent on the ring’s initial radius and drop number, and whether the
drops are bouncing in- or out-of-phase relative to their neighbours. As the vibrational
acceleration is further increased, more exotic dynamics emerges, including quasi-periodic
motion and rearrangement into regular polygonal structures. Linear stability analysis and
simulation of the rings based on the theoretical model of Couchman et al. (J. Fluid Mech.,
vol. 871, 2019, pp. 212–243) largely reproduce the observed behaviour. We demonstrate
that the wave amplitude beneath each drop has a significant influence on the stability
of the multi-droplet structures: the system seeks to minimize the mean wave amplitude
beneath the drops at impact. Our work provides insight into the complex interactions and
collective motions that arise in bouncing-droplet aggregates.
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1. Introduction

Ring structures arise in a diverse set of physical systems. In fluid mechanics, rings
composed of multiple vortices are of particular interest and have been observed over a
broad range of scales, from baths of superfluid helium (Yarmchuk, Gordon & Packard
1979) to hurricane eyewalls (Kossin & Schubert 2004). Several theoretical studies have
characterized the stability of polygonal vortex arrays composed of both point vortices
(Thomson 1883; Havelock 1931; Aref et al. 2003; Celli, Lacomba & Pérez-Chavela 2011)
and generalized vortices of finite area (Crowdy 1999; Crowdy & Cloke 2002; Crowdy
2003; Krishnamurthy et al. 2019). Vortex arrays have also been observed in magnetized
non-neutral plasmas (Schecter et al. 1999; Durkin & Fajans 2000) and in both bosonic
and fermionic systems, where vortices play a critical role in superconductivity (Saarikoski
et al. 2010). Ring structures may also form when particles are confined to an air–liquid
interface. Magnetized spinning disks floating on a fluid bath are found to self-assemble
into a variety of ordered structures including rings (Grzybowski, Stone & Whitesides
2000). Electrons levitated above a bath of superfluid helium may form ring structures,
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known as Wigner molecules, whose dynamics is influenced by the coupling of the
electrons to an underlying capillary wavefield (Rousseau et al. 2009). We here investigate
the rich set of dynamical behaviours that arise in rings composed of millimetric droplets
that bounce on the surface of a vibrating liquid bath and interact through their common
wavefield.

The surface of a fluid bath, vibrated vertically with frequency f and acceleration
γ sin(2πft), will destabilize into a field of subharmonic standing Faraday waves for
γ > γF, the Faraday threshold (Benjamin & Ursell 1954; Miles & Henderson 1990). The
resulting Faraday wavefield oscillates with period TF = 2/f and has a wavelength λF
that can be approximated using the water-wave dispersion relation. Above the bouncing
threshold but below the Faraday threshold, γB < γ < γF, a millimetric fluid droplet may
bounce indefinitely on the vibrating bath (Walker 1978). Coalescence is prevented by
a thin air layer between the droplet and the bath that is sustained during the drop’s
impact (Couder et al. 2005a). The dependence of the drop’s bouncing mode on the
droplet radius R, vibrational frequency f and vibrational acceleration γ has been studied
in detail (Protière, Boudaoud & Couder 2006; Eddi et al. 2008; Moláček & Bush 2013a,b;
Wind-Willassen et al. 2013; Galeano-Rios, Milewski & Vanden-Broeck 2017). As γ is
increased progressively beyond γB, the droplet undergoes a period-doubling transition and
eventually becomes resonant with the Faraday wave period, TF, leading to a significant
increase in the wave energy. For γ > γW , the walking threshold, the resonant droplet
destabilizes into steady, rectilinear motion across the surface of the bath, propelled by the
waves generated at its previous impacts (Couder et al. 2005b; Protière et al. 2006). The
closer γ is to γF, the longer the surface waves persist, and the more strongly the drop’s
motion is influenced by its past (Eddi et al. 2011b). Remarkably, in the high-memory limit
γ → γF, walking droplets have exhibited a variety of quantum-like features, as reviewed
elsewhere (Bush 2015; Bush et al. 2018). Notably, this hydrodynamic pilot-wave system is
similar in form to the double-solution pilot-wave theory of quantum dynamics proposed
by Louis de Broglie, who envisaged microscopic particles moving in resonance with a
guiding wavefield (de Broglie 1956; Colin, Durt & Willox 2017).

Multiple bouncing droplets may interact at a distance through their common wavefield.
Depending on the distance between the drops, this interaction can be attractive or
repulsive. Pairs of drops can form bound states with a discrete set of inter-drop distances
and exhibit a variety of dynamical behaviours including orbital (Couder et al. 2005b;
Protière et al. 2006; Protière, Bohn & Couder 2008; Oza et al. 2017), promenading
(Borghesi et al. 2014; Arbelaiz, Oza & Bush 2018), oscillatory (Couchman, Turton &
Bush 2019) and ratcheting (Eddi et al. 2008; Galeano-Rios et al. 2018) motions. When
more than two drops interact, they can self-organize into periodic lattices (Protière et al.
2005; Eddi et al. 2009). These lattices can go unstable to collective motion, such as lateral
vibrations (Eddi, Boudaoud & Couder 2011a), drifting (Eddi et al. 2008) or bulk rotation
(Lieber et al. 2007). The dynamics of multi-droplet systems constrained by submerged
topography has also been considered. When droplets are confined to a two-dimensional

lattice of submerged circular wells, spin–spin correlations may emerge (Sáenz et al. 2018).
Strings of walking droplets confined by a submerged annular channel form a coherent
wavefield that allows them to walk faster than an individual droplet (Filoux, Hubert &
Vandewalle 2015). A droplet chain that spans the entire circumference of an annular
channel is found to destabilize through either out-of-phase oscillations or propagating
solitary-like waves as the vibrational acceleration is increased (Thomson, Couchman &
Bush 2020a; Thomson, Durey & Rosales 2020b), phenomena similar to those predicted
by theoretical studies of one-dimensional driven dissipative lattices (Ebeling et al. 2000).
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By studying rings without the radial constraint imposed by the submerged channel, we
here uncover an even richer variety of dynamical behaviours.

A variety of theoretical models have been developed to describe the dynamics of
walking droplets in various settings (see review of Turton, Couchman & Bush 2018).
We here follow the path initiated by Moláček & Bush (2013a,b), who developed coupled
equations for a drop’s vertical and horizontal motion from a suitable reduction of the
Navier–Stokes equations. In order to describe resonant drops, specifically those in a
period-doubled bouncing mode, Oza, Rosales & Bush (2013) time-averaged the equations
of Moláček & Bush (2013b) over a bouncing period, TF, to obtain a stroboscopic trajectory
equation governing the drop’s horizontal motion. The stroboscopic model implicitly
assumes that the drop’s periodic vertical motion is unchanging and a fitting parameter is
used to prescribe the phase at which the droplet impacts the bath. While this assumption of
a constant impact phase was satisfactory when modelling the dynamics of single droplets,
it was found to be inadequate in modelling the stability of orbiting (Oza et al. 2017) and
promenading (Arbelaiz et al. 2018) pairs, where variations in the impact phase induced
by wave-mediated interactions with neighbouring droplets were significant. Informed by
high-speed imaging of a drop’s vertical motion across a range of parameters, Couchman
et al. (2019) developed a model that accounts for the dependence of a drop’s impact
phase on the bath’s vibrational acceleration, the local wave amplitude beneath a drop
and the droplet radius. Their study demonstrated that accounting for modulations in the
impact phase was essential for rationalizing the observed stability of droplet pairs. Such
phase variations are expected to be similarly important when considering the stability and
dynamics of larger multi-drop systems; hence, their variable-phase stroboscopic model
will be adopted in what follows.

In § 2, we characterize experimentally the discrete set of rings that can be constructed
from a given number of drops. We then characterize how each ring destabilizes when the
bath’s vibrational acceleration is increased progressively. In § 3, we present both linear
stability analysis and numerical simulations based on the theoretical model of Couchman
et al. (2019). Our theoretical developments provide rationale for much of the observed
behaviour, including the set of stable rings, their various instabilities, and the subsequent
dynamics arising as the vibrational acceleration is increased. In § 4, we discuss extensions
of our work to more complex droplet lattices and aggregates, and draw comparisons with
the stability of ring structures found in other areas of physics.

2. Experiments

A schematic of our experimental set-up is illustrated in figure 1(a). A bath of silicon
oil (density ρ = 949 kg m−3, surface tension σ = 20.6 × 10−3 N m−1, kinematic viscosity
ν = 20 cSt, depth = 7 mm) is shaken in the vertical direction with frequency f = 80 Hz
and acceleration γ sin(2πft). The Faraday threshold is γF ≈ 4.25g, where g denotes the
gravitational acceleration. The associated Faraday wavelength, as may be approximated
from the water-wave dispersion relation, is λF = 4.75 mm. A detailed description of
the shaker apparatus is provided by Harris & Bush (2015). Droplets of a desired size,
composed of the same silicon oil, are generated using a piezoelectric droplet generator
(Harris, Liu & Bush 2015). An overhead camera is used to record the drops’ horizontal
motion and a high-speed camera is used to record a side view of the vertical motion.
Following the notation of Moláček & Bush (2013a), we use (i, j)k to denote a bouncing
mode in which the drop’s vertical motion has a period of i times that of the bath vibration,
TF/2, and impacts the bath j times during this period. For the same mode (i, j), it is
sometimes possible for a drop to bounce with either a relatively low or high amplitude, as
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FIGURE 1. (a) A schematic of the experimental set-up (not to scale). A ring composed of N
drops, of radius r0 and corresponding side length s0, bounces on a vertically vibrating liquid
bath. The bath radius, 8 cm, is 4 times larger than the largest ring radius considered, r0 ≈ 2 cm,
to ensure that the rings do not interact with the bath’s boundary. (b) A snapshot of a ring of
N = 10 drops with radius r0 = 9.50 mm. Here, each drop bounces out-of-phase relative to its
neighbours, as evident in the alternating structure of the wavefield surrounding each drop. The
wavefield is visualized by illuminating the bath with a striped pattern of coloured light (Harris
et al. 2017).

distinguished by k = {1, 2}, respectively. During our experiments, a transparent lid covers
the bath in order to minimize the influence of ambient air currents.

We construct rings from individual drops of radius R = 0.36 ± 0.01 mm. At the
vibrational accelerations considered in our experiments, the drops bounce in the resonant
(2, 1) bouncing mode; thus, they may bounce either in synchrony (in-phase) or with
a phase shift of π (out-of-phase) relative to each other. Each ring is characterized by
its drop number N, radius r0, and the relative bouncing phase of neighbouring drops,
either in-phase (ζ = 1) or out-of-phase (ζ = −1). An example of a ring with N = 10,
r0/λF = 2.00 and ζ = −1 is shown in figure 1(b). To construct a ring, we first set the
bath’s vibrational acceleration to γ = 0.7γF, which is below the walking threshold of
an individual drop, γW = 0.75γF. Each drop bounces in place in the (2, 1) mode, as is
consistent with the regime diagram of Wind-Willassen et al. (2013) for individual drops.
A partially submerged needle, which creates a droplet-repelling meniscus in its vicinity, is
then used to arrange the drops into a ring of the desired size. To facilitate the construction
of larger, more fragile rings, it was helpful to partially submerge into the bath a vertical rod,
whose meniscus acts to repel nearby drops. Two needles were then used to wrap a chain of
drops around the rod. Once the ring was formed, the rod could be removed from its centre.
Note that when neighbouring drops are bouncing out of phase, ζ = −1, a periodic ring
can only be achieved if N is even.

For a given drop number N and relative bouncing phase ζ , rings could only be
constructed with a discrete set of possible radii r0, as shown in figure 2. Rings created
with intermediate radii were unstable and collapsed into a variety of shapes. For instance,
while a ring of N = 8, r0/λF ≈ 2 and ζ = 1 could be built around a central rod, the drops
were found to spontaneously rearrange into a square following the rod’s removal. The
possible values of r0 are highly dependent on both N and ζ . For example, with ζ = 1 we
could not construct N = 8 or N = 9 rings, while N = 7 and N = 10 rings were viable.
For ζ = −1, an N = 8 ring is possible. For both ζ = ±1, the number of possible radii r0

generally decreases as N increases. It was difficult to construct rings with r0/λF � 3 due
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FIGURE 2. Rings that could be constructed experimentally, as characterized by their drop
number N and non-dimensional radius r0/λF for drops bouncing (a) in-phase (ζ = 1) and
(b) out-of-phase (ζ = −1) relative to their nearest neighbours. The marker colour denotes
the vibrational acceleration, γ ∗, normalized by the walking threshold of a single free drop,
γW = 0.75γF, at which the ring destabilized into some form of horizontal motion. The marker
shape denotes the type of instability observed: in-phase radial oscillations ( ), out-of-phase
radial oscillations ( ), out-of-phase azimuthal oscillations ( ), azimuthal travelling waves ( ),

orbital motion ( ), irregular rearrangements ( ) and more complex, unclassified motions ( ).

All drops were observed to be in the (2, 1)2 bouncing mode in the vicinity of γ ∗, except for the
special cases noted as being in (2, 1)1 or (4, 2) modes.

to the weak interactions between neighbouring drops at such large ring radii. Note that
the data in figure 2 for N = 2 correspond to those reported for droplet pairs by Couchman
et al. (2019).

Once a ring had been constructed, we slowly increased γ until the ring destabilized
in some fashion. This instability threshold, denoted by γ ∗, is indicated by the colour of
the markers in figure 2. The bouncing mode of each ring was also determined at the
instability threshold γ ∗ using a high-speed camera. The majority of rings were found
to be in the (2, 1)2 mode at γ ∗ and to destabilize above the walking threshold of a
single drop, γ ∗ > γW . For a given N, we observed that rings with small r0 are generally
the most stable and that γ ∗ progressively decreases as r0 increases, approaching γW at the
largest r0 considered. There were two notable exceptions to this trend, occurring when the
rings were composed of drops in a different bouncing mode. First, three ζ = −1 rings
with (N, r0/λF) = (8, 1.68), (14, 2.81) and (16, 3.13) destabilized well below γW , at the

(2, 1)1 to (2, 1)2 bouncing mode transition, as denoted by the right-facing triangles ( ) in
figure 2(b). Second, the three ζ = 1 rings with N = 5, 6, 7 and r0/λF ≈ 0.45, bouncing in
the (4, 2) mode at γ ∗, destabilized close to or below γW .

The shape of each marker in figure 2 denotes the type of instability observed at γ ∗.
The most common type of instability was in-phase radial oscillations ( ), as shown in
figure 3(a). In two cases, (N, r0/λF, ζ ) = (6, 0.45, 1) and (20, 4.15, −1), out-of-phase
radial oscillations ( ) were observed, as shown in figure 3(d), characterized by a phase
difference of π between the radial oscillations of neighbouring drops. Instabilities in the
azimuthal direction also arose, including purely orbital motion ( , see figure 3b) and
out-of-phase azimuthal oscillations ( , see figure 3c). Notably, the motion of the N = 12,
r0/λF = 3.35, ζ = 1 ring in figure 3(c) corresponds to the out-of-phase, rigid-body
rotations of two hexagonal sub-lattices. Videos of the instabilities shown in figure 3
are presented in supplementary movie 1 available at https://doi.org/10.1017/jfm.2020.648.
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FIGURE 3. Examples of instabilities observed at the instability threshold, γ ∗. In each panel
(a–d), a snapshot of the ring is shown on the left, with arrows illustrating the drops’ horizontal
motion. An accompanying time series of each drop’s radial, r(t), or azimuthal, θ(t), coordinate
is shown on the right. (a) In-phase radial oscillations for a ring of N = 4, r0/λF = 1.25 and
ζ = 1. (b) Orbital motion for a ring of N = 6, r0/λF = 0.876 and ζ = 1. (c) Out-of-phase
azimuthal oscillations for a ring of N = 12, r0/λF = 3.35 and ζ = 1. The time series reflect
angular displacements about each drop’s equilibrium angle θ0 = 2πm/N. (d) Out-of-phase
radial oscillations for a ring of N = 20, r0/λF = 4.15 and ζ = −1. See supplementary
movie 1.

The ring of N = 11, r0/λF = 3.10, ζ = 1 also destabilized into azimuthal oscillations.
However, the geometric frustration caused by the odd N results in a travelling wave in the
azimuthal direction ( ), as shown in figure 4 and supplementary movie 2. Note that in
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FIGURE 4. The travelling, azimuthal wave observed at the instability threshold γ ∗ for a ring
of N = 11, r0/λF = 3.10 and ζ = 1. (a) A snapshot of the ring at time t = 2 seconds showing
the instantaneous angular speed of each drop. (b) The angular displacement of each drop from
its initial equilibrium position, θ0 = 2πm/N, as a function of time, t. The curve corresponding
to drop m = 0 is highlighted in black for reference. (c) A close-up view of the red box in (b)
illustrates that the angular oscillation of each drop has a phase shift of 2π/11 relative to its
second-nearest neighbour. See supplementary movie 2.

figure 4, the angular oscillation of every second drop has a phase difference of 2π/11, and
a slow net rotation of the entire ring is evident.

In some cases, more exotic instabilities were observed. For example, the three rings that
destabilized at the (2, 1)1 to (2, 1)2 bouncing mode transition (denoted by dark blue
markers in figure 2b), spontaneously rearranged into new, typically amorphous structures
that then remained stable, instabilities that we refer to as irregular rearrangements. An
example of such a rearrangement is shown in supplementary movie 3a for the ring N = 14,
r0/λF = 2.81, ζ = −1. More complex radial or azimuthal motions were also observed, as
indicated by ( ) markers in figure 2. For instance, in the N = 7, r0/λF = 0.94, ζ = 1
ring shown in supplementary movie 3b, the drops tended to oscillate radially out-of-phase
with their neighbours, but the geometric frustration caused by the odd N complicated the
motion.

We also briefly investigated how the dynamics of rings evolved as γ was increased
progressively beyond γ ∗. The N = 6, r0/λF = 0.876, ζ = 1 ring, which initially went
unstable to orbital motion at γ ∗ = 1.09γW , developed a radial instability for γ > γ ∗,
leading to the coupled radial and angular motion shown in figure 5 and supplementary
movie 4. In this case, the ratio of the orbital and radial period is irrational, Tθ/Tr ≈
8.58 . . . , leading to quasi-periodic motion. In most cases, the kinetic energy of the
drops was observed to increase progressively with γ until a critical value was reached
at which the ring broke apart. However, in two cases, the rings were observed
instead to self-assemble into pentagonal and square structures, as shown in figure 6
and supplementary movie 5. These polygonal structures are stable following the
rearrangement, but eventually collapse at higher γ into a denser array.

Studies investigating the stability of polygonal arrays of fluid vortices often consider the
influence of an additional vortex placed at the ring’s centre (see, for example, Morikawa &
Swenson 1971). Although a detailed characterization of such structures is beyond the scope
of this study, figure 7 and supplementary movie 6 illustrate the complex dynamics that
arises when a central drop is placed in the N = 7, r0/λF = 1.89, ζ = 1 ring. Horizontal
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FIGURE 5. The quasi-periodic wobbling orbital motion exhibited by a ring of N = 6, r0/λF =
0.876 and ζ = 1 at γ /γW = 1.20 > γ ∗/γW = 1.09: (a and b) show the trajectories of each drop

after t = 1 s and t = 100 s, respectively; (c and d) show the radial, r(t), and azimuthal, θ(t),
coordinates of each drop, respectively. Note that the ratio of the periods of the angular and radial
motion Tθ /Tr ≈ 8.58 . . . is irrational, leading to the dense packing of an annular region in the
xy-plane over time, as evident in (b). See supplementary movie 4.
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FIGURE 6. (a) Drops in a ring of N = 10, r0/λF = 2.86 and ζ = 1 rearrange into a stable
pentagonal structure as γ is increased beyond the initial instability threshold γ ∗ = 1.01γW .
(b) Drops in a ring of N = 20, r0/λF = 4.15 and ζ = −1 rearrange into a stable square as γ
is increased beyond the initial instability threshold γ ∗ = 1.06γW . See supplementary movie 5.

oscillations of the central drop are roughly out of phase with respect to those of the drops
in the surrounding ring, resulting in a ratcheting motion that causes the entire ring to
drift steadily, similar to the ratcheting dynamics exhibited by unequally sized droplet pairs
(Eddi et al. 2008; Galeano-Rios et al. 2018).

3. Theoretical modelling

We proceed by performing a linear stability analysis of droplet rings using the
variable-phase stroboscopic model of Couchman et al. (2019). Definitions of relevant
variables and parameters are provided in table 1. Using the dimensionless variables
for position x̄ = kF x, wave height h̄ = h/R, and time t̄ = t/(TFMe), the horizontal
displacements x̄m of the N interacting droplets are governed by the trajectory equations

κ ¨̄xm + ˙̄xm = −βσmCm∇h̄
(
x̄m, t̄

)
, m = 0, 1, . . . , N − 1, (3.1)

where

h̄
(
x̄, t̄

) = AMe

R

N−1∑
n=0

σn

∫ t̄

−∞
Sn f (|x̄ − x̄n (s̄)|) e−(t̄−s̄) ds̄, (3.2)
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FIGURE 7. Dynamics of an N = 7, r0/λF = 1.89, ζ = 1 ring with the addition of a central
droplet. (a) The static equilibrium configuration of droplets below the instability threshold, γ ∗ =
1.02γW . (b) The droplet positions at t = 0 s (light grey) and t = 40 s (black) illustrate the slow
leftward drift of the entire ring at approximately 0.1 mm s−1. (c) The instantaneous velocities of
each drop, indicated by red arrows, highlight the roughly out-of-phase horizontal oscillations of
the central drop with respect to the surrounding ring. See supplementary movie 6.

and

f (r̄) = J0 (r̄)
[
1 + (ξK1 (ξ r̄) r̄ − 1) e−r̄−2

]
. (3.3)

The motion of each droplet is influenced by inertia, drag, and a propulsive wave force
proportional to the gradient of the underlying wave height on the bath’s surface. The wave
height h, which has been strobed at the Faraday period TF, is modelled as the superposition
of the waves, of spatial form f (r), generated by each of the drops’ prior impacts. We note
that the wave kernel f (r) includes a spatial damping term to account for the far-field decay

of the waves, as is necessary to accurately model droplet–droplet interactions (Damiano
et al. 2016; Tadrist et al. 2018; Turton et al. 2018). The parameters σm = ±1 are chosen
to describe the relative bouncing phase of the drops: σmσn = 1 and σmσn = −1 indicate
that drops m and n are bouncing in-phase and out-of-phase, respectively. For in-phase
rings (ζ = 1), σm = 1 for all m. For out-of-phase rings (ζ = −1), σm = (−1)m for m =
0, 1, . . . , N − 1.

The impact-phase parameters S and C, which account for the coupling between a drop’s
vertical and horizontal motion, are defined by

S =
∫ t+TF

t FN (t′) sin (πft′) dt′∫ t+TF

t FN (t′) dt′
, C =

∫ t+TF

t FN (t′) cos (πft′) dt′∫ t+TF

t FN (t′) dt′
, (3.4a,b)

where FN(t) is the vertical contact force exerted on the drop by the bath during impact.
As seen in (3.4a,b), S and C are weighted averages over a Faraday period, TF, of the sine
and cosine of the phase of the bath’s oscillation at which the drop impacts. The phase
parameter S influences the amplitude of the wave generated at each impact while the
phase parameter C influences the horizontal impulse imparted to the drop by the bath. The
functional dependencies of S and C on the bath’s vibrational acceleration γ , local-wave
amplitude, hm = h(xm, t), and droplet radius, R, are presented in table 2 of Couchman et al.
(2019). We here focus our theoretical analysis on drops of radius R = 0.36 mm bouncing
in a (2, 1)2 mode, as was the case for the majority of rings considered in our experiments.
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Symbol Definition

ρ, σ, μ, ν = μ/ρ, νe Fluid density, surface tension, dynamic viscosity,
kinematic viscosity, effective kinematic viscosity
(Moláček & Bush 2013b)

f , TF = 2/f , λF, kF = 2π/λF Bath driving frequency, Faraday period, wavelength,
wavenumber

γ, γB, γW , γF Peak driving acceleration of bath, bouncing threshold,
walking threshold, Faraday threshold

g Gravitational acceleration

R, m = 4ρπR3/3 Droplet radius, mass

xm = (xm, ym) Horizontal position of mth drop

t Time

h, hm = h(xm, t) Wave amplitude, local wave amplitude beneath drop m
Hm Local wave amplitude beneath drop m, as produced by

all neighbouring drops n /= m (see (3.10))

Td = 1/(νek2
F) Wave decay time (Moláček & Bush 2013b)

Me = Td

TF(1 − γ /γF)
Memory parameter

A =
√

νeTF

2π

mgk3
F

(3k2
Fσ + ρg)

Wave-amplitude coefficient

D = 0.17mg

√
ρR
σ

+ 6πRμa, μa Horizontal drag coefficient (Moláček & Bush 2013b),
air viscosity

α = ε2

2νe(1 + 2ε2)
, ε = 2πf ρνekF

3k2
Fσ + ρg

Spatio-temporal damping coefficient, viscosity induced
wave number correction (Turton et al. 2018)

κ = m
TFMeD

Non-dimensional mass

β = mgk2
FTFMeR

D
Non-dimensional wave-force coefficient

ξ = 2

kF

√
α

TFMe
Non-dimensional spatial-damping coefficient

S , C Impact-phase parameters. See (3.5a)–(3.5b) for
functional forms (Couchman et al. 2019)

TABLE 1. Definitions of relevant variables and parameters.

In this case, the impact-phase functions are

S (γ, hm) = 1 − 1.32 exp {−3.52 (γ /g − 5.73hm/R − 2)} , (3.5a)

C (γ, hm) = 1.98 exp {−2.37 (γ /g − 5.86hm/R − 2)} . (3.5b)

We begin by expressing (3.1) in polar coordinates with respect to the basis vectors

(r̂m, θ̂m) for each droplet. Dropping the overbars denoting non-dimensional variables for
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notational simplicity, we obtain

κ

(
r̈m(t) − rm(t)θ̇ 2

m(t)
rm(t)θ̈m(t) + 2ṙm(t)θ̇m(t)

)
+
(

ṙm(t)
rm(t)θ̇m(t)

)
= −AMeβ

R
σmCm

×
N−1∑
n=0

σn

∫ t

−∞
Sn

f ′ (dmn)

dmn

(
rm (t) − rn (s) cos (θm (t) − θn (s))

rn (s) sin (θm (t) − θn (s))

)
e−(t−s)ds, (3.6)

where

dmn =
√

r2
m (t) + r2

n (s) − 2rm (t) rn (s) cos (θm (t) − θn (s)). (3.7)

We then consider the following perturbations to an initially symmetric ring of radius
r0 (see figure 1a), rm(t) = r0 + εδrm(t), θm(t) = 2πm/N + εδθm(t), and proceed by
expanding (3.6) in orders of ε.

3.1. Terms of O(1): the set of possible rings
The O(1) expansion of (3.6) yields two equations

0 =
N−1∑
n=1

ζ nf ′ (2r0 sin (πn/N)) sin (πn/N) , (3.8)

0 =
N−1∑
n=1

ζ nf ′ (2r0 sin (πn/N)) cos (πn/N) . (3.9)

Recall that ζ = {1, −1} for rings with nearest neighbours bouncing in-phase and
out-of-phase, respectively, and note that f ′(0) = 0 which eliminates the n = 0 term in each
sum. Equations (3.8) and (3.9) express the requirement that the net radial and azimuthal
waveforces on each drop in the ring be zero, respectively. For a given ζ and N, the
azimuthal equation (3.9) is satisfied for all values of r0 due to the azimuthal symmetry
of the ring. However, the radial equation (3.8) will only be satisfied for a discrete set of r0,
whose values will depend on both ζ and N.

The possible radii, r0, predicted by (3.8) are plotted as a function of N in figures 8(a)
and 8(b) for rings bouncing in-phase (ζ = 1) and out-of-phase (ζ = −1), respectively. We
note that the radii r0 are independent of the impact-phase parameters S and C. However,
the values of r0 do weakly depend on the bath’s vibrational acceleration γ , due to the
dependence on γ of the spatial decay parameter ξ that appears in the wave kernel f (r)
(see (3.3)). In figure 8, we plot the possible values of r0 at γ /γF = 0.7, slightly below
the theoretically predicted walking threshold of a single drop, γW/γF = 0.74, which is in
the vicinity of the vibrational accelerations where the rings are expected to destabilize.
A comparison between the possible values of r0 at γ /γF = 0.7 and γ /γF = 0.9 is
presented in appendix A.

To gain insight into the solutions, r0, of (3.8), consider the function

H̄m
(
x̄m, t̄

) = AMe

R

∑
n /= m

σn

∫ t̄

−∞
Sn f (|x̄m (t) − x̄n (s)|) e−(t−s)ds, (3.10)

which is the local wavefield beneath drop m that includes the wavefield contributions from
all neighbouring drops n /= m but excludes the wavefield produced by drop m itself. It
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FIGURE 8. The possible ring radii, r0, predicted by (3.8) as a function of drop number N for
(a) in-phase (ζ = 1) and (b) out-of-phase (ζ = −1) rings. Blue and red markers correspond to
rings in which each drop bounces on a minimum or maximum of the wavefield produced by
the neighbouring drops (see (3.11)), respectively. Rings with side length s 	 λF are expected to
have radii corresponding to the extrema an of the function [J0(r)]2 (see appendix B), plotted
in (c). Rings with side length s 
 λF are expected to have side lengths s0 = 2r0 sin(π/N)
corresponding to the extrema bn of the wave kernel f (s) (3.3), plotted in (d). The wavefields
generated by the three rings boxed in panel (a) are plotted in figure 9.

is important to note the distinction between the closely related quantities h(xm, t), the
net wavefield beneath drop m produced by all drops, as defined in (3.2), and H(xm, t).
Consideration of the quantity Hm is useful because it expresses the perturbation to a given
drop’s local wavefield induced by its neighbours.

For drops in a symmetric ring of radius r, the wavefield beneath each drop is identical.
Thus, without loss of generality, we consider the perturbation to the wavefield beneath
drop m = 0, as produced by the neighbouring drops n = 1, 2, . . . , N − 1:

H̄0 (r̄) = AMeS
R

N−1∑
n=1

ζ nf
(

2r̄ sin
(πn

N

))
. (3.11)

Note that the locations of the extrema of the function H̄0 in (3.11) correspond to the
possible radii r0 predicted by (3.8). Thus, the solutions r0 in figure 8 correspond to
each drop bouncing on either a maximum (red markers) or minimum (blue markers) of
the wavefield produced by their neighbours at the time of impact. Figure 9 shows the
wavefields generated by the three rings highlighted by grey squares in figure 8(a). We
emphasize that in figure 9 we are plotting the net wavefield h, which is not to be confused
with the perturbation wavefield H. Although the drops in figure 9 are seen to be bouncing
on maxima of the net wavefield h, each drop is still in fact bouncing in a minimum of
the wavefield H produced by its neighbours. This is due to the fact that the large central
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FIGURE 9. The wavefields produced at γ /γF = 0.7 by in-phase rings with (a) N = 18, r0/λF =
0.884 (s0/λF = 0.307), (b) N = 13, r0/λF = 2.94 (s0/λF = 1.41), and (c) N = 6, r0/λF = 3.61
(s0/λF = 3.61), boxed for reference in figure 8(a). Droplet positions are marked by black circles.

peak in the wavefield produced by drop m at position xm overpowers the minimum in H,
produced by drops n /= m, at xm.

As was the case for droplet pairs (Couchman et al. 2019), we expect values of r0

corresponding to maxima of (3.11) to be unstable at all γ . Conversely, values of r0

corresponding to minima of (3.11) are expected to remain stable up until some critical
vibrational acceleration γ ∗. In § 3.2, we compute the threshold and type of instability for
each possible solution r0 of (3.8).

To gain further insight into the pattern of permissible radii r0 shown in figure 8, we
consider two limiting cases corresponding to rings having either a large or small side
length, s0 = 2r0 sin(π/N), relative to the Faraday wavelength, λF. In the limit of s0 
 λF,
each droplet in the ring is predominately influenced by its two nearest neighbours, as
the wave-kernel f (d) decays to �5 % of its original amplitude for inter-drop distances
d/λF � 4. In this limit, the ring alters its radius so that its side length corresponds to one
of the stationary inter-drop spacings of a droplet pair, which occur at extrema of f (s),
as plotted in figure 8(d). The possible ring radii are then r0 = s0/(2 sin(π/N)) where
s0 satisfies f ′(s0) = 0. An example of the wavefield produced by a ring in this limit is
shown in figure 9(c). Note that the wave profile f (s) in figure 8(d) is plotted at the time
of impact of a drop at s = 0. Therefore, for in-phase rings, side lengths corresponding
to minima (s0 = b1, b3, b5, . . .) and maxima (s0 = b2, b4, b6, . . .) of f (s) are expected to
be stable and unstable, respectively. However, for out-of-phase rings, the neighbouring
droplets now experience a flipped wave profile of shape −f (s), as they impact the standing
wave generated at s = 0 half a cycle later. Thus, for out-of-phase rings, side lengths
corresponding to maxima and minima of f (s) are expected to be stable and unstable,
respectively.

In the opposite limit, s0 	 λF, the net wavefield is well approximated by that produced
by a continuous ring of wave sources with radius r0. In appendix B, we show that for
in-phase (ζ = 1) rings with radius r0, the resulting wavefield is h(r) ∝ J0(r)J0(r0), a
radially symmetric wavefield centred on the ring’s centre of mass. In this limit, the possible

values of r0 correspond to the extrema of [J0(r)]2, as plotted in figure 8(c). An example of
the wavefield produced by a ring in this limit is shown in figure 9(a). Radii corresponding
to minima (r0 = a1, a3, a5, . . .) and maxima (r0 = a2, a4, a6, . . .) of [J0(r)]2 are expected
to be stable and unstable, respectively. A similar analysis is not possible for out-of-phase
rings, as a continuous ring of wave sources of alternating phases would result in a net
wavefield of zero.
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We note that in the intermediate regime where s0 ≈ λF, the wavefields are similar in
form to those reported by Sungar et al. (2018) in their study of the hydrodynamic Talbot
effect generated by a circular array of pillars. An example of the wavefield produced in
this intermediate regime is plotted in figure 9(b).

3.2. Terms of O(ε): the type and threshold of instability
At O(ε) in the expansion of (3.6), we obtain the following 6N × 6N linear system, q̇ = Aq,
as derived in appendix C

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

δR
δΘ

δr
δθ

δu
δv

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
q6N×1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−I 0 I 0 0 0
0 −I 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

ϕU −ϕV ϕc1I 0 − 1
κ
I 0

ϕ

r2
0

V ϕ

r2
0

W 0 ϕ

r2
0

c2I 0 − 1
κ
I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A6N×6N

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

δR
δΘ

δr
δθ

δu
δv

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.12)

The 6N × 1 vector q is composed of six N × 1 vectors: δR(t) = (δR1(t), δR2(t), . . . ,
δRN(t)), δΘ(t) = (δΘ1(t), δΘ2(t), . . . , δΘN(t)),. . . , δv(t) = (δv1(t), δv2(t), . . . , δvN(t)),
where

δRm (t) =
∫ t

−∞
δrm (s) e−(t−s)ds, δΘm (t) =

∫ t

−∞
δθm (s) e−(t−s)ds, (3.13a,b)

δum = δṙm, δvm = δθ̇m. (3.14a,b)

Each block of the matrix A is an N × N matrix where I and 0 denote the identity and
zero matrices, respectively, and U , V and W are defined in (C 25), (C 26) and (C 27)
of appendix C, respectively. The scalars c1 and c2 are defined in (C 22) and (C 23) of
appendix C, respectively, and

ϕ = −AMeβ

4Rκ
S0C0. (3.15)

In (3.15), S0 and C0 are the values of the phase parameters for a ring in its initial
base state with radius r0. In order to compute S0 and C0 for a given ring, we follow the
procedure outlined by Couchman et al. (2019). Based on (3.2), the non-dimensional local
wave amplitude h̄0 beneath each drop in the ring is

h̄0 = AMeS (γ, h0)

R

N−1∑
n=0

ζ nf
(

2r0 sin
(πn

N

))
. (3.16)

Equations (3.5a) and (3.16) can be solved simultaneously to obtain S0 = S(γ, h0) and h0.
Having obtained h0, C0 = C(γ, h0) can then be computed directly using (3.5b). It will be
seen that the values of S0 and C0 are significantly different for different ring geometries,
as are characterized by N, r0 and ζ . In turn, S0 and C0 influence the ring’s stability due to
the dependence of the matrix A on ϕ in (3.12).

We proceed by using (3.12) to determine the threshold and type of instability for each
ring identified in figure 8. For a given ring, we start at γ /γF = 0.7 and increase γ
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progressively while tracking the evolution of the eigenvalues of A (3.12), as computed
numerically. Below γ /γF = 0.7, the assumption that the drops are in a period-doubled
(2, 1) bouncing mode is not expected to be valid (Wind-Willassen et al. 2013). We note
that, as discussed in §3.1, r0 depends weakly on γ , which obliges us to recompute the
corresponding value of r0 at each value of γ using (3.8). The matrix A always has three
eigenvalues equal to zero, reflecting the translational (x, y) and rotational (θ) invariance
of the ring. The instability threshold γ ∗ corresponds to the value of γ at which the real
part of any eigenvalue transitions from negative to positive. By analysing the eigenvector
corresponding to the most unstable eigenvalue, we deduce the type of instability.

In figure 10, we compare the theoretically predicted ring radii, threshold and type of
instability with our experimental data from figure 2. For comparison, we also show the
theoretical predictions obtained using a constant-impact-phase model, where the phase
parameters were fixed at S0C0 = 0.35, a value chosen to match the walking threshold,
γW , predicted by our variable-impact-phase model. Only rings corresponding to the blue
markers in figure 8 are plotted in the theoretical predictions shown in figures 10(b) and
10(c). Rings corresponding to the red markers in figure 8, indicating drops bouncing on
the maxima of the wavefield produced by their neighbours, are found theoretically to be
unstable already at γ /γF = 0.7, as anticipated. In figures 10(b) and 10(c), rings that are
predicted to be unstable at the starting value of γ /γF = 0.7 are denoted by crosses. Rings
that remain stable up to a critical vibrational acceleration, γ ∗, are denoted by coloured
markers.

Five distinct types of instability were predicted by our linear stability analysis. In-phase
radial oscillations ( , see figure 3a), out-of-phase radial oscillations ( , see figure 3d)
and out-of-phase azimuthal oscillations ( , see figure 3c) were all characterized by a
pair of complex-conjugate eigenvalues crossing the real axis at the instability threshold
γ ∗. An example of the eigenvalue spectrum for the N = 5, r0/λF = 0.440, ζ = 1
ring, predicted to go unstable to in-phase radial oscillations, is shown in figure 11.
Inspecting the eigenvectors corresponding to the pair of unstable eigenvalues revealed
the type of oscillation. For example, in-phase radial oscillations were characterized by an
eigenvector with all azimuthal components, δθ , δv and δΘ , equal to zero and non-zero
radial components δr1 = δr2 = δr3 . . . , δu1 = δu2 = δu3 . . . and δR1 = δR2 = δR3 . . . .
Out-of-phase radial oscillations were characterized by alternating signs in the radial
components: δr1 = −δr2 = δr3 . . . , δu1 = −δu2 = δu3 . . . and δR1 = −δR2 = δR3 . . . .
More complex superpositions of radial and azimuthal motion were also observed ( ),
corresponding to the crossing of two identical pairs of complex-conjugate eigenvalues,
with corresponding eigenvectors that had both non-zero radial and azimuthal components.
Finally, there were two in-phase rings, N = 10, r0/λF = 1.30 and N = 17, r0/λF = 1.88,
for which the instability threshold corresponded to the crossing of a single, real eigenvalue.
The corresponding eigenvector indicates that the drops initially move in an irregular set
of directions causing the symmetric ring to break-up, which we classify as an irregular
rearrangement ( ). The nonlinear analysis required to predict the shape of the resulting
aggregate is beyond the scope of our study.

Our theory is found to accurately predict the stable ring radii, r0, observed
experimentally. It also rationalizes why we were unable to construct rings experimentally
in certain regions of the (N, r0) plane. For instance, in the case of ζ = −1 rings, the theory
predicts that the N = 4, r0/λF = 1.45 ring is unstable, explaining the gap apparent in the
experimental data. Similarly, the theory predicts that for ζ = −1, only one N = 10 ring
is stable and that no N = 12 rings are stable, as found experimentally. In other cases,
the theory predicts the existence of stable rings that were not found experimentally. For
example, in the case of ζ = 1 rings, we see that the theory predicts several stable rings
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FIGURE 10. A comparison of the type and threshold of ring instability as (a) observed
experimentally (reproduced from figure 2) and predicted theoretically by (b) our
variable-impact-phase model and (c) a constant-impact-phase model in which the phase
parameters were fixed at S0C0 = 0.35. As in figure 2, the rings are plotted as a function of the
drop number N and non-dimensional ring radius r0/λF . The left and right columns correspond,
respectively, to drops bouncing in-phase (ζ = 1) and out-of-phase (ζ = −1) relative to their
nearest neighbours. The marker colour denotes the vibrational acceleration, γ ∗, normalized by
the walking threshold of a single drop, γW , at which the static ring is predicted to destabilize
into a dynamic state. The marker shape denotes the type of instability observed: in-phase radial
oscillations ( ), out-of-phase radial oscillations ( ), out-of-phase azimuthal oscillations ( ),
irregular rearrangements ( ) and more complex, superposed radial and azimuthal motions ( ).
The black dots in rows (b and c) mark the rings observed experimentally in row (a) for reference,
while the crosses denote rings that are already predicted to be unstable at γ /γF = 0.7. In the
experimental data reported in (a), drops that are not bouncing in the (2, 1)2 mode, assumed in
our theoretical analysis, are marked for reference. Comparison of (a) and (c) reveals that the
principal shortcoming of the constant-impact-phase model is that it always predicts the onset of
ring instability for γ < γW .
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FIGURE 11. The spectrum of the thirty eigenvalues of the matrix A in (3.12) at the vibrational
acceleration γ = 1.26γW , just beyond the instability threshold γ ∗, for the ring N = 5,
r0/λF = 0.440, ζ = 1. Black, red and blue markers indicate a single eigenvalue, two identical
eigenvalues and three identical eigenvalues, respectively. The arrows indicate that, in this
case, a complex-conjugate pair of eigenvalues crosses the real axis at γ ∗. Inspection of the
corresponding eigenvectors indicates that this ring goes unstable to in-phase radial oscillations.

with N ≥ 10 that we did not find in the laboratory. This discrepancy is presumably due
to the manner in which we created the rings: we either pushed droplets together one after
another, or constructed a linear chain of droplets and then wrapped the chain around a
partially submerged rod. Both techniques preferentially select certain radii based on the
initial inter-drop separation distances. If the drops could be simultaneously released onto
the bath in a ring formation with the desired radius, these theoretically stable states might
be attainable in the laboratory.

Figure 10(b) reveals that our theoretical predictions slightly underpredict the stable ring
radii, r0, with the discrepancy between theory and experiment being larger for smaller
rings, but no greater than 15 %. We expect that this discrepancy may arise from our
stroboscopic wave model failing to capture the influence of the radially propagating wave
fronts generated at droplet impact (Eddi et al. 2011b; Damiano et al. 2016), that are
captured by more detailed wave models (Milewski et al. 2015; Durey & Milewski 2017;
Galeano-Rios et al. 2017; Galeano-Rios, Milewski & Vanden-Broeck 2019). As shown by
Galeano-Rios et al. (2018), these fronts influence droplet–droplet interactions when the
drops are both in contact with the bath for a significant fraction of the Faraday period,
TF, and are in close proximity. For the ratcheting pairs considered by Galeano-Rios et al.
(2018), the drops were in low energy (1, 1) and (2, 2) bouncing modes, with contact times
τC ≈ TF/2, and the fronts had the most notable effect on pairs with the smallest inter-drop

spacing, approximately λF/2. In our experiments, the drops are in a high energy (2, 1)2

bouncing mode, with contact time τC � TF/4, and so the effect of the travelling fronts
are expected to be relatively minor. Nevertheless, the discrepancy between theory and
experiment being maximal for rings with radii r0 < λF suggests that travelling fronts may
be influencing the dynamics of the most closely packed rings.

Our comparison of the theoretical predictions of a variable- and constant-impact-phase
model in figure 10 highlights that variations in the vertical dynamics significantly influence
the stability of droplet rings. In particular, our variable-impact-phase model predicts that
rings remain stable above the instability threshold of a single drop, γW , in agreement with
our experimental observations. Conversely, the constant-impact-phase model, in which
the impact phase is assumed to be the same for all rings, predicts that the rings destabilize
below γW . The impact phase influences our stability analysis through the quantities S0
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FIGURE 12. The base state values of the phase parameters S0C0 for each theoretically predicted
stable ring in figure 10(b). Plots (a and b) correspond, respectively, to drops bouncing in-phase
(ζ = 1) and out-of-phase (ζ = −1) relative to their nearest neighbours. The product S0C0

influences the stability of each ring through the quantity ϕ in the linear system (3.12). In
particular, rings with relatively small S0C0 are generally found to have a higher instability
threshold γ ∗ in figure 10(b).

and C0 that appear in (3.15), the values of the phase parameters in the base state of
each ring. As shown in figure 12, S0 and C0 change significantly with the drop number N
and ring radius r0. By comparing figures 10(b) and 12, it is evident that the stabilization of
the rings above γW is generally due to a decrease in the product S0C0 of the base state phase
parameters. Note that in the trajectory equation (3.1), C alters the horizontal waveforce
exerted on each drop; in the wavefield equation (3.2), S alters the amplitude of the wave
generated at each impact. Therefore, a decrease in the product S0C0 results in a decrease
in the local wave gradient and so the lateral force experienced by each droplet at impact,
thereby enhancing the ring’s horizontal stability.

In figure 13(a), we replot the data in figure 10 as a function of the instability threshold
and the depth of the wavefield well beneath each drop that is produced by its neighbours, H
(3.11). As reflected by both the experimental data (green circles) and the predictions of our
variable-impact-phase model (red crosses), we see that rings are more stable when droplets
bounce in a deeper minimum of the wavefield produced by their neighbours. Figure 13(b)
highlights that this stabilization is due to the product S0C0 decreasing with decreasing H.
The constant-impact-phase model (blue crosses), in which the phase parameters are fixed
at S0C0 = 0.35, is unable to capture this behaviour. We note further that in figure 13(a),
the data points characterized by H tending to zero and γ ∗/γW tending to one correspond
to loosely bound rings with a large r0, as each drop is not being strongly influenced by its
neighbours’ wavefields.

Finally, we note that as observed in our experiments, the most common type of
instability predicted was radial in-phase oscillations. The theory also predicted the
majority of other types of instabilities observed experimentally, including out-of-phase
radial oscillations, out-of-phase azimuthal oscillations and complex motions consisting
of coupled radial and azimuthal motion. However, the instabilities predicted by the
theory often occurred in slightly different regions of the (N, r0) plane than observed in
the laboratory. There are several factors that could account for this discrepancy. First,
in the experimental data shown in figure 10(a), we note that for closely bound rings,
the drops were in a (4, 2) bouncing mode, instead of the (2, 1) mode assumed in our
theoretical model. Second, as previously discussed, our stroboscopic model neglects the
influence of transient fronts, that may become important when modelling the dynamics
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FIGURE 13. (a) The instability threshold of each ring plotted as a function of the depth of
the wavefield well beneath each drop, H̄ (3.11), as produced by its neighbours. Green circles
correspond to the experimentally observed rings in figure 10(a), red crosses to the predictions
of the variable-impact-phase model in figure 10(b), and blue crosses to the predictions of the
constant-impact-phase model in figure 10(c), in which S0C0 = 0.35 is fixed. (b) The values of
S0C0 corresponding to each of the red crosses in (a), that influence the stability of each ring
through the variable ϕ (3.15) appearing in the linear system (3.12). The decrease in S0C0 with
decreasing H is responsible for the increased stability of rings in geometries with smaller H. We
note that in (a) there are more theoretical than experimental data points, as there were several
theoretically predicted stable rings in figure 10 that were not considered in the laboratory.

of interacting droplets in close proximity (Galeano-Rios et al. 2018). Third, the type of
instability predicted by our stability analysis was found to be extremely sensitive to the
drop size. For example, a small change in drop size from R = 0.36 mm to R = 0.34 mm
changes the type of instability predicted for a variety of rings. For instance, orbital motion,
which was not predicted theoretically with R = 0.36 mm drops, emerges for in-phase
(N, r0/λF) = (2, 0.30) and (3, 0.35) rings composed of R = 0.34 mm drops.

3.3. The nonlinear evolution of unstable rings
In addition to characterizing the linear stability of each ring, we performed numerical
simulations using the fully nonlinear equations of motion (3.1) to investigate the behaviour
of the unstable rings denoted by crosses in figure 10. At a fixed vibrational acceleration
γ /γF = 0.7, we initialized the drops in each of the unstable ring configurations shown in
figure 10, imposed small velocity perturbations to each drop, and simulated the subsequent
system evolution. An example of the evolution of the unstable ring N = 16, r0/λF = 1.39,
ζ = 1 is shown in figure 14. We observe that the drops transition through two intermediate
structures (see figure 14b,c) before finally settling into the stationary configuration shown
in figure 14(d). In figure 14(e), at each instant we plot both the local wave amplitude
beneath each drop, hm, along with the local wave amplitude averaged over all drops, 〈hm〉 =
(1/N)

∑N−1

m=0 hm. Figure 14(e) makes clear that each re-arrangement of the drops leads to
a decrease in this averaged local wave amplitude. This behaviour was generic: all of the
unstable rings rearranged themselves so as to decrease 〈hm〉 relative to the initial ring,
suggesting that the underlying wavefield acts as a potential landscape that the system tries
to minimize through rearrangement. A complete energetic description of the bouncing
droplet system, and the utility of such a description in predicting the stability of various
single- and multiple-droplet static and dynamic states, is left for future consideration.
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FIGURE 14. Time evolution of the unstable ring N = 16, r0/λF = 1.39, ζ = 1 at the constant
vibrational acceleration γ /γF = 0.7, as predicted by numerically simulating the trajectory
equation (3.1). The drops are initialized in the ring shown in (a), evolve through the two
transitional states shown in (b and c), before settling into the stationary configuration shown
in (d). In (e), the evolution of the local wave amplitudes beneath each drop, hm (computed using
(3.2)), is plotted in red, their mean 〈hm〉 in black. The zoom box in (e) highlights that 〈hm〉
decreases as the drops transition from state (c) to (d).

Guided by our theoretical findings, we returned to the laboratory in order to perform
additional experiments to characterize the nonlinear behaviour of three of the theoretically
unstable ζ = 1 rings indicated in figure 10(b): (N, r0/λF) = (6, 1.55), (8, 1.95) and
(9, 2.18). As described in § 2, we partially submerged a rod in the centre of each
ring to stabilize the drops as the ring was constructed. Upon removal of the rod, the
drops spontaneously rearrange into a stable structure. In figure 15, we find a good
agreement between the experimentally observed and theoretically predicted final stable
drop configurations. In each case, once again, the drops evolve so as to reduce 〈hm〉.

4. Discussion

We have characterized the rings that can be constructed using N bouncing droplets,
and investigated how each ring destabilizes as the bath’s vibrational acceleration is
increased progressively. A unique feature of our system is that the pairwise interaction
force between droplets alternates between being attractive and repulsive as a function of
the inter-drop distance. The result is a discrete set of possible ring radii for each drop
number N, a phenomenon not seen in systems where the force field between particles
decays monotonically with distance. For example, fluid point vortices are advected by
the local velocity field induced by their neighbours and are found to be stable at any
radius provided N ≤ 7 (Havelock 1931). For N > 7, no stable rings exist. In their study
of spinning magnetized disks confined to an air–fluid interface, Grzybowski et al. (2000)
were only able to construct stable rings for N ≤ 5. At each N, only a single possible



Free rings of bouncing droplets: stability and dynamics 903 A49-21

–4 –2 0 2 4
–4

–2

0

2

4

–4 –2 0 2 4
–4

–2

0

2

4

–4 –2 0 2 4
–4

–2

0

2

4

–4 –2 0 2 4
–4

–2

0

2

4

–4 –2 0 2 4
–4

–2

0

2

4

–4 –2 0 2 4

–4

–2

0

2

4

5 mm 5 mm 5 mm

0.06

0.04

0.02

0

–0.02

–0.04

–0.06

〈h̄m〉 = 0.0525

〈h̄m〉 = 0.0504 〈h̄m〉 = 0.0511

〈h̄m〉 = 0.0526 〈h̄m〉 = 0.0562

〈h̄m〉 = 0.0526

x /λF x /λF x /λF

y/
λ

F
y/
λ

F

h/
R

(a) (b) (c)

FIGURE 15. A comparison between the theoretically predicted and experimentally observed
stable droplet configurations that emerge after initializing drops in the ζ = 1 unstable rings
(N, r0/λF) = (a) (6, 1.55), (b) (8, 1.95) and (c) (9, 2.18). The first row shows the initially
unstable ring in which the drops are initialized and the second row shows the final configuration,
as predicted by numerically simulating the trajectory equation (3.1). For the theoretical data, the
underlying wavefield is shown along with the non-dimensional local wave amplitude averaged
over all of the drops, 〈h̄m〉. The third row shows a top view of the experimentally observed stable
configurations into which each unstable ring evolved.

radius existed corresponding to the equilibrium between two competing forces: a magnetic
force attracting each disk toward a central point, and a repulsive hydrodynamic force
between neighbouring disks. Our study highlights that a far greater variety of rings can
be attained in the bouncing-droplet system, with rings of up to N = 20 drops being found
experimentally and numerous stable rings with N > 20 predicted theoretically. In addition,
the relative bouncing phase of the drops provides an additional degree of freedom that
facilitates the construction of more complex structures.

The stability of each droplet ring depends critically on the local wave-amplitude beneath
each drop, which influences the phase at which each drop impacts the bath, as highlighted
in figure 13. This inference is consistent with the study of Couchman et al. (2019), who
found that droplet pairs in a (2, 1)2 bouncing mode become progressively more stable
as the inter-drop distance decreases and each drop bounces in a deeper minimum of the
wavefield produced by its neighbour. For both the droplet pairs and the droplet rings
considered here, the variable-impact-phase model of Couchman et al. (2019) was able
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to capture the system’s observed stability, while the constant-impact-phase stroboscopic
model was not. Our study thus highlights the importance of accounting for modulations
in the impact phase when modelling the interactions of multiple droplets. We note that
Thomson et al. (2020b) have recently developed a weakly nonlinear analysis to study the
collective vibrations in a one-dimensional lattice of bouncing droplets. A similar analysis
could be developed to capture the dynamics of rings beyond the initial instability threshold,
such as the amplitude of the azimuthal oscillations in figure 3(c) or the azimuthal travelling
wave in figure 4.

Our study has highlighted the rich set of dynamical behaviours that may arise
in multi-droplet systems and underscored the robustness of the variable-impact-phase
stroboscopic model of Couchman et al. (2019), opening the door for a variety of studies of
the collective dynamics of multi-droplet systems. For example, by considering the relative
stability of different geometries of periodic droplet lattices, one could hope to observe
phase transitions between different crystalline lattice states as the bath’s vibrational
acceleration is increased progressively. Similarly, based on our observations that bound
droplet aggregates may remain stationary at vibrational accelerations above the walking
threshold of each constituent droplet, γW , a system of droplets in an initially disordered
‘gaseous’ state slightly above γW might be expected to crystallize into ordered, stationary
aggregates over time.

Numerical simulations of the evolution of unstable droplet rings have shown that, at
a fixed vibrational acceleration, multiple droplets evolve over time so as to minimize
their averaged local wave amplitude, as highlighted in figure 14. This suggests that the
wavefield on the bath’s surface could be viewed as a self-induced potential landscape, a
perspective that may prove valuable in characterizing the stability of other multiple-droplet
structures. Campbell & Ziff (1979) catalogued all of the possible structures that could
be formed out of up to N = 50 vortices in superfluid helium, along with their relative
stability, by identifying all of the local minima in the theoretically predicted free energy
landscape of the system. By developing an analogous description of the total energy of the
bouncing droplet system, that includes both wave energy and drop energy, one might hope
to catalogue the possible multi-droplet aggregates in a similar fashion.
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Appendix A. Dependence of ring radii on vibrational acceleration

In figure 16, we compare the ring radii, r0, predicted by (3.8) at γ /γF = 0.7 and
γ /γF = 0.9. We find that as the vibrational acceleration is increased from γ /γF = 0.7 to
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FIGURE 16. A comparison of the possible ring radii, r0, predicted by (3.8) at γ /γF = 0.7
(circles, reproduced from figure 8) and γ /γF = 0.9 (crosses) for (a) in-phase (ζ = 1) and
(b) out-of-phase (ζ = −1) rings. The same colour scheme is used as in figure 8. (c) A
comparison of the first derivative of the wave kernel, f ′(r), that strongly influences the solutions
r0 to (3.8), at γ /γF = 0.7 (black line) and γ /γF = 0.9 (red line).

0.9, the solutions that existed at γ /γF = 0.7 do not shift significantly, but that a number of
new solutions appear. Qualitatively, this can be understood by considering the dependence
of the first derivative of the wave kernel f ′(r), which appears in (3.8), on γ , as shown
in figure 16(c). As γ is increased, the zeros of f ′(r) remain approximately unchanged,
explaining why solutions that existed at γ /γF = 0.7 do not shift significantly with an
increase in γ . However, the spatial extent of the wave form does increase significantly
with increasing γ , explaining the appearance of new solutions at γ /γF = 0.9 that were
not present at γ /γF = 0.7.

Appendix B. Approximate wavefield of closely packed rings

We here consider the wavefield produced by a ring of droplets bouncing in phase
(ζ = 1), with a side length, s0, that is small compared to the Faraday wavelength, λF.
Omitting the prefactors and overbars denoting non-dimensional variables in (3.2), the
wavefield produced by a droplet ring of radius r0 is

h (r, θ) =
N−1∑
n=0

f
(√

r2 + r2
0 − 2rr0 cos (θ − 2πn/N)

)
. (B 1)
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To make analytical progress, we use the near-field approximation of the wave kernel in
(3.3), f (r) ≈ J0(r), allowing us to make use of Graf’s addition theorem

J0

(√
a2 + b2 − 2ab cos (θ)

)
= J0 (a) J0 (b) + 2

∞∑
m=1

Jm (a) Jm (b) cos (mθ) . (B 2)

Thus,

h (r, θ) =
N−1∑
n=0

[
J0 (r) J0 (r0) + 2

∞∑
m=1

Jm (r) Jm (r0) cos

(
m
(

θ − 2πn

N

))]

= NJ0 (r) J0 (r0) + 2

N−1∑
n=0

∞∑
m=1

Jm (r) Jm (r0) (B 3)

×
[

cos (mθ) cos

(
2πmn

N

)
+ sin (mθ) sin

(
2πmn

N

)]
. (B 4)

In the limit s0 	 λF, we have 2π/N 	 1 and can thus approximate the sum over n in (B 4)
by an integral, which yields

h (r, θ) = NJ0 (r) J0 (r0)

+ N
π

∞∑
m=1

∫ 2π

0

Jm (r) Jm (r0) [cos (mθ) cos (mx) + sin (mθ) sin (mx)] dx

= NJ0 (r) J0 (r0) . (B 5)

The wavefield produced by a ring with side length s0 	 λF is therefore well approximated
by a radially symmetric wavefield centred on the ring’s centre of mass with a radial profile
proportional to J0(r).

Appendix C. Details of linear stability analysis

We here derive the linear system presented in (3.12). First, we substitute the
perturbations rm(t) = r0 + εδrm(t) and θm(t) = 2πm/N + εδθm(t) into (3.6) and expand
in orders of ε. We must separately consider the term n = m in each sum, as the expansions
for terms n /= m contain singularities at n = m. We then make the substitutions

δum = δṙm, δvm = δθ̇m, (C 1a,b)

and

δRm (t) =
∫ t

−∞
δrm (s) e−(t−s)ds, δΘm (t) =

∫ t

−∞
δθm (s) e−(t−s)ds. (C 2a,b)

Note that the two substitutions made in (C 2) introduce two additional differential
equations

δṘm = δrm − δRm, δΘ̇m = δθm − δΘm. (C 3a,b)

At O(1), we obtain (3.8) and (3.9) describing the possible base radii r0. At O(ε),
we obtain the following equations describing the evolution of the radial and azimuthal
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perturbations, respectively:

δu̇m = −δum

κ
− AMeβ

4Rκ
S0C0

{
4f ′′ (0) (δrm − δRm)

+
∑
n /= m

σmσn [(Mmn + Nmn) δrm + (Mmn − Nmn) δRn

+ (Omn + Pmn) δθm − (Omn + Pmn) δΘn

]}
, (C 4)

δv̇m = −δvm

κ
− AMeβ

4Rκr2
0

S0C0

{
4r2

0f ′′ (0) (δθm − δΘm)

+
∑
n /= m

σmσn [(Omn − Pmn) δrm + (Omn + Pmn) δRn

+ (Qmn − Rmn) δθm − (Qmn − Rmn) δΘn

]}
, (C 5)

where

Mmn = 4f ′′
(

2r0

∣∣∣∣sin

(
π(m − n)

N

)∣∣∣∣
)

sin2

(
π(m − n)

N

)
, (C 6)

Nmn = 2

r0

f ′
(

2r0

∣∣∣∣sin

(
π(m − n)

N

)∣∣∣∣
)

cos2

(
π(m − n)

N

) ∣∣∣∣csc

(
π(m − n)

N

)∣∣∣∣ , (C 7)

Omn = 2r0 f ′′
(

2r0

∣∣∣∣sin

(
π(m − n)

N

)∣∣∣∣
)

sin

(
2π(m − n)

N

)
, (C 8)

Pmn = f ′
(

2r0

∣∣∣∣sin

(
π(m − n)

N

)∣∣∣∣
)

sin

(
2π(m − n)

N

) ∣∣∣∣csc

(
π(m − n)

N

)∣∣∣∣ , (C 9)

Qmn = 4r2
0f ′′

(
2r0

∣∣∣∣sin

(
π(m − n)

N

)∣∣∣∣
)

cos2

(
π(m − n)

N

)
, (C 10)

Rmn = 2r0f ′
(

2r0

∣∣∣∣sin

(
π(m − n)

N

)∣∣∣∣
) ∣∣∣∣sin

(
π(m − n)

N

)∣∣∣∣ . (C 11)

The quantities S0 and C0 that appear in (C 4) and (C 5) are the values of the phase
parameters for a ring in its initial base state with radius r0. The method used to compute
S0 and C0 for a given ring is discussed following equation (3.15) in the main text. We note
that variations in the phase parameters around the base values S0 and C0 are of O(ε2) and
can thus be neglected in the linear stability analysis. To see this, note that

S [h (x0 + εδxm)] = S [
h (x0) + ε∇h (x0) · δxm + O

(
ε2
)]

. (C 12)

However, in the base state ∇h(x0) = 0. Therefore, the impact phase only enters the
linear stability analysis through the base values S0 and C0. As shown in figure 12, S0

and C0 depend on the drop number N and the ring radius r0. As discussed in § 3.2,
these geometry-induced differences in impact phase are found to dramatically alter the
instability thresholds of the rings.
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We can simplify (C 4) and (C 5) by noting that∑
n /= m

σmσnOmn = 0, (C 13)

∑
n /= m

σmσnPmn = 0, (C 14)

∑
n /= m

σmσnRmn = 0. (C 15)

Equations (C 13) and (C 14) hold for arbitrary values of r0 due to cancellations caused by
the trigonometric functions. Equation (C 15) holds because it is equivalent to the condition
in (3.8) that sets the possible base state radii r0.

With these simplifications, and performing the summations over n for the δrm and δθm
terms, we are left with the following six equations for each m ∈ {0, 1, . . . , N − 1}:

δṘm = δrm − δRm, (C 16)

δΘ̇m = δθm − δΘm, (C 17)

δṙm = δum, (C 18)

δθ̇m = δvm, (C 19)

δu̇m = −δum

κ
+ ϕ

(
c1δrm +

N∑
n=1

UmnδRn −
N∑

n=1

VmnδΘn

)
, (C 20)

δv̇m = −δvm

κ
+ ϕ

r2
0

(
c2δθm +

N∑
n=1

VmnδRn +
N∑

n=1

WmnδΘn

)
, (C 21)

where

c1 = 4f ′′ (0) + 2

r0

N−1∑
n=1

ζ n
[
2r0 f ′′

(
2r0 sin

(πn

N

))
sin2

(πn

N

)

+ f ′
(

2r0 sin
(πn

N

))
cos2

(πn

N

)
csc

(πn

N

)]
, (C 22)

c2 = 4r2
0

(
f ′′ (0) +

N−1∑
n=1

ζ nf ′′
(

2r0 sin
(πn

N

))
cos2

(πn

N

))
, (C 23)

ϕ = −AMeβ

4Rκ
S0C0 (C 24)

and

Umn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2

r0

σmσn

[
2r0f ′′

(
2r0

∣∣∣∣sin

(
π(m − n)

N

)∣∣∣∣
)

sin2

(
π(m − n)

N

)

−f ′
(

2r0

∣∣∣∣sin

(
π(m − n)

N

)∣∣∣∣
)

cos2

(
π(m − n)

N

) ∣∣∣∣csc

(
π(m − n)

N

)∣∣∣∣
]

n /=m

−4f ′′ (0) n =m,

(C 25)
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Vmn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σmσn sin

(
2π(m − n)

N

)[
2r0 f ′′

(
2r0

∣∣∣∣sin

(
π(m − n)

N

)∣∣∣∣
)

+f ′
(

2r0

∣∣∣∣sin

(
π(m − n)

N

)∣∣∣∣
) ∣∣∣∣csc

(
π(m − n)

N

)∣∣∣∣
]

n /= m

0 n = m,

(C 26)

Wmn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2r0σmσn

[
f ′
(

2r0

∣∣∣∣sin

(
π(m − n)

N

)∣∣∣∣
) ∣∣∣∣sin

(
π(m − n)

N

)∣∣∣∣
−2r0f ′′

(
2r0

∣∣∣∣sin

(
π(m − n)

N

)∣∣∣∣
)

cos2

(
π(m − n)

N

)]
n /= m

−4r2
0 f ′′ (0) n = m.

(C 27)

Equations (C 16)–(C 21) form the linear system presented in (3.12).
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MOLÁČEK, J. & BUSH, J. W. M. 2013a Drops bouncing on a vibrating bath. J. Fluid Mech. 727, 582–611.
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