
 1 © 2019 by ASME 

 
Proceedings of the ASME 2020 

International Design Engineering Technical Conferences 
and Computers and Information in Engineering Conference   

IDETC/CIE 2020 
August 16-19, 2020, St. Louis, MO, USA 

 

 
IDETC2020-22582 

IS VERIFYING FREQUENTLY AN OPTIMAL STRATEGY? A BELIEF-BASED MODEL OF 
VERIFICATION 

 
 

Aditya U. Kulkarni1, Alejandro Salado1, Christian Wernz2, Peng Xu1 
 

1Virginia Tech, Blacksburg, VA, USA 
2Virginia Commonwealth University, Richmond, VA, USA 

 

ABSTRACT 
Verification activities increase an engineering team’s 

confidence in its system design meeting system requirements, 

which in turn are derived from stakeholder needs. Conventional 

wisdom suggests that the system design should be verified 

frequently to minimize the cost of rework as the system design 

matures. However, this strategy is based more on experience of 

engineers than on a theoretical foundation. In this paper, we 

develop a belief-based model of verification of system design, 

using a single system requirement as an abstraction, to 

determine the conditions under which it is cost effective for an 

organization to verify frequently. We study the model for a broad 

set of growth rates in verification setup and rework costs. Our 

results show that verifying a system design frequently is not 

always an optimal verification strategy. Instead, it is only an 

optimal strategy when the costs of reworking a faulty design 

increase at a certain rate as the design matures.    
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NOMENCLATURE 
T  number of development phases 

t  generic development phase 

st  state of the system design 

ct  verification setup cost 

rt  expected cost correcting design errors 

rF  expected cost of project failure 

βt  belief value in ideal state of design 

ε  confidence retention factor 

dt  decision to verify or not verify 

bt  belief vector 

Pv  belief transformation matrix for verify 

P-v  belief transformation matrix for not-verify 

lt,v  cost vector associated with verification 

lt,-v  cost vector associated with not verifying 

d*
t(βt) optimal decision given belief value 

Vt(bt , dt) optimal cost function in development phase t 

  

1. INTRODUCTION  
Verification activities seek to determine if a system design 

meets the system requirements. These system requirements 

define the space of acceptable system solutions (or system 

designs) [1], which the engineering teams explore during the 

design process to arrive at the final system design. Through 

verification activities, engineering teams can check if the current 

system design is in the space of acceptable system solutions [2], 

that is, verification activities are the means by which engineers 

check if the system is being built “right” [3]. Furthermore, 

verification activities enable design teams to detect errors early 

in the design development, where an error is a violation of one 

or more system requirements. Early error detection prevents 

unwanted rework costs for the design teams in the future [4]. 

Thus, verification activities have been recognized as an integral 

part of the system design process [5].  

Verifying the system design frequently has been previously 

advocated both in industry and research literature [6-8]. 

However, this strategy is derived more from experience than 

from a theoretical foundation. Since verification activities are 

cost and time intensive, verifying the system design more 

frequently than necessary can result in misallocation of limited 

resources [9]. An optimal verification strategy is one that 

balances the cost of verification activities with the risks 

associated with erroneous designs [10]. In this regard, a 

significant challenge is to theoretically test whether it is optimal 

to verify a system design frequently throughout the design 

process.  

In this paper, we lay the foundation to theoretically 

determine the conditions under which frequent verification is an 

optimal strategy in systems design. Our work explores if 

frequent verification of a single system requirement by an 

organization is an optimal strategy, or not, for different scenarios. 

Each scenario is defined by growth rates in the setup costs to 

execute verification activities and expected costs of corrective 
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actions taken to address problems in the system design 

potentially discovered through the execution of verification 

activities. We develop a belief-based model of verification in 

which the organization’s confidence in the system design 

meeting its system requirements is modeled using belief 

distributions. The organization’s optimal verification strategy is 

then defined as the one that minimizes the organization’s 

expected verification costs as a function of its belief in the true 

state of its design.  

 

2. BACKGROUND 
Prior works on verification in systems engineering can be 

broadly classified into conceptual approaches [11-14], empirical 

approaches [4, 15-18], and probabilistic models of verification 

[19, 20]. We define as conceptual approaches to verification 

those that are based on guidelines, industry standards and best 

practices. These guidelines are developed by studying the 

failures of past projects. Problems are identified and then 

correlated with verification activities that could have been 

performed to identify early the observed failures. Though 

conceptual approaches to verification activities have their merits, 

a significant drawback is that they are rooted more in experience 

and hindsight than mathematical analysis. Without a proper 

understanding of the scientific foundation of verification, 

adopting a conceptual approach to verification can result in 

suboptimal verification strategies [21].  

Empirical works on verification incorporate more 

mathematical formalism by considering the costs and risks 

associated with verification activities [4]. In this approach, pre-

defined verification strategies are applied in different systems 

engineering projects, and the results of the same are observed. 

The goal is then to use results from a wide range of systems 

engineering projects and empirically deduce the characteristics 

of optimal verification strategies. The drawback of empirical 

approaches is that their solutions are only as good as the cases 

they explore [22]. This prevents the results of empirical studies 

from being extended to those systems engineering projects that 

lie outside the original dataset.   

The drawbacks of conceptual and empirical approaches to 

verification are significantly reduced when probabilistic models 

of verification are used [23, 24]. In this approach, the verification 

process is assumed to reveal the errors in design according to a 

predefined stochastic process. Examples include the software 

reliability growth model to detect errors in software design [25, 

26], the canonical model of verification for systems engineering 

projects [9, 10, 27], and models for sequential and parallel testing 

in new product development [28-30]. Though probabilistic 

models of verification are grounded in mathematical analysis, 

their use of stochastic processes in modeling verification 

activities restricts them to those scenarios where there is prior 

data by which the parameters of a model’s stochastic process can 

be determined. 

It has been previously recognized that designing systems is 

a cognitive process [31]. Recent works [32] have identified that 

engineers make design decisions based on subjective beliefs 

about the true state of the system design. When engineers are 

uncertain about whether their current design meets system 

requirements, it is more due to a lack of confidence in how all 

their design activities have combined than due to a belief in the 

design process being inherently stochastic [33]. Thus, traditional 

probability frameworks are not suited for capturing the epistemic 

uncertainty in the system design process, and belief-based 

frameworks are more appropriate [34]. Yet, the current body of 

literature on verification in systems engineering largely ignores 

the epistemic aspect of systems design.  

To the best of our knowledge, only the recent works by 

Salado et al. [35-38] have explicitly captured the epistemic 

uncertainty in the design process by using beliefs to model 

verification strategies. In their work, verification strategies are 

derived based on the organization’s changing belief in the system 

design meeting the system requirements. Using a belief-based 

approach to derive verification strategies is advantageous since 

beliefs better represent an organization’s knowledge in the 

current state of its design, and this facilitates a more accurate 

representation of the risk vs reward tradeoff in determining 

optimal verification strategies. We leverage this 

conceptualization of verification strategies in this paper.   

 

3. MODEL 
3.1 Model environment 

The system design process is often considered to progress 

from a conceptual design, to preliminary design to detailed 

design [39]. We model the system design process as a series of 

design development phases, or simply development phases. We 

say that two development phases are distinct if the system 

designs at the end of the two phases are different in either design 

attributes or design maturity. Here, design maturity refers to the 

state of the current design, with blueprints and modeling 

representing designs of low maturity and operational prototypes 

representing designs of high maturity.  

We divide each development phase into two periods: design 

period and verification period. In the design period, design 

activities are executed to take the current system design to the 

next level of maturity, whereas in the verification period, 

verification activities are carried out to determine whether the 

current design meets the system requirements. Examples of 

design activities include analysis, modeling, tradespace studies, 

mock-ups, prototyping, and manufacturing. Examples of 

verification activities include testing, inspection, demonstration, 

and analysis. We assume that design activities will be executed 

in each development phase, whereas verification activities will 

be executed based on a strategy (that is, they may be executed in 

some development phases and not in others).  

Since design activities are assumed to be executed in each 

development phase, we normalize all costs associated with 

design activities to $0. For verification activities, we restrict our 

attention to two high-level verification costs in each 

development phase: setup cost for the verification activity in a 

development phase and the expected cost to correct a faulty 

design in a development phase, which we refer to as rework cost. 

In addition to these two high-level verification costs, we assume 

the organization incurs an expected cost of project failure if the 
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system design does not meet system requirements at the end of 

all development phases.  

In reality, there may be multiple organizations working on a 

system design that has numerous requirements, with many of 

these requirements being correlated [40]. To develop a model of 

verification that is analytically tractable, in this paper, we restrict 

our attention to a single organization and a single system 

requirement, which we refer to as the requirement of interest. For 

modeling simplicity, we assume that the organization classifies 

the state of the design in each development phase as either the 

system design satisfying the requirement of interest, or not 

satisfying it.   

To quantify the organization’s confidence in the system 

design meeting the requirement of interest in each development 

phase, we use belief distributions [41-43]. Belief distributions 

enable us to model the organization’s subjective assessment of 

its design meeting the requirement of interest. Per Dempster-

Shafer theory of evidence, belief distributions are transformed 

by the evidence received from the environment [43]. In our 

model, we implicitly account for evidence provided by the 

environment, in this case the system design process, by defining 

the transformation of the organization’s beliefs when it executes 

design and verification activities. Specifically, we assume that 

the organization’s belief in the system design meeting the 

requirement of interest decreases when design activities are 

executed, due to changes in the design attributes. Conversely, we 

assume that the organization’s belief in the system design 

meeting the requirement of interest increases through 

verification activities either by obtaining successful verification 

results or by performing a corrective action (i.e., rework) when 

errors are found. 

The organization’s goal is then to utilize its beliefs in the 

current state of the system design to determine an optimal 

verification strategy. The optimal verification strategy is defined 

as one that minimizes the verification setup costs, expected costs 

of correcting a faulty design upon verification, and the expected 

cost of failure for the organization. 

 

3.2 Model parameters 
Let T denote the number of development phases. To denote 

a generic development phase, we use the subscript {1, , }t T  . 

As mentioned before, we assume the organization broadly 

classifies the state of the system design as either meeting the 

requirement of interest or not meeting the requirement of 

interest. To denote the state of the system design at the start of 

development phase t, we use the state variable {0,1}ts  , where 

1ts =  denotes the system design meeting the requirement of 

interest, and 0ts =  denoting that the system design does not 

meet the requirement of interest. We will refer to 1ts =  as the 

ideal state, and 0ts =  as the non-ideal state of the system design.  

In development phase t, we denote the organization’s 

decision by { , }t v vd  − , where v  denotes the organization 

verifies the system design, and v−  denotes the organization does 

not verify the system design. The setup cost for verification 

activities is denoted by 
tc  and the expected cost to correct any 

errors in system design upon verification, or the rework cost, is 

denoted by 
tr . We assume that if the organization chooses to 

verify its design in development phase t, then it will incur the 

setup cost 
tc  for certain, whereas, the rework cost 

tr  is only 

incurred if the system design is found to be in the non-ideal state 

upon verification. Furthermore, we denote the expected cost of 

project failure by 
Fr . To avoid exploring trivial scenarios, in this 

paper, we assume 
t t Fc r r+   for all t. Hence, it is in the 

organization’s interest to verify the system design in at least one 

development phase.  

We model the organization’s knowledge in the state of its 

design using belief distributions. The organization’s belief in the 

system design being in the ideal state at the start of development 

phase t, or 1ts = , is denoted by 
t . In our model, we assume the 

belief values over the state space add up to 1. This implies the 

organization’s belief value in system design being in the non-

ideal state at start of development phase t is equal to 1 t− . 

Furthermore, belief values adding up to 1 in our model implies 

[0,1]t  .  

As per our model assumption, if the organization does not 

verify the design in the current development phase, then the 

changes in design with respect to the previous development 

phase will decrease the organization’s belief in the system design 

being in the ideal state at the end of the current development 

phase. To model this, we assume that
t  is transformed by a 

factor   to 
t   after all the design activities are carried out in 

development phase t. We refer to   as the confidence retention 

factor. The parameter   is a measure of the organization’s 

confidence in the correctness of its design activities (in other 

words,   can be understood as the predictability of the 

organization’s design process). In this paper, we assume that 

0 1  . This implies that our model assumes the organization 

will not discover any error in the design during the design 

process because we consider design activities to not generate 

new information about the state of the system [44]. Hence, its 

belief in the ideal state of the system design always reduces after 

design activities. 

The value of the confidence retention factor   is a measure 

of the rate of refinement in the system design with each passing 

development phase. A low value of   indicates that the system 

design undergoes major refinement from conceptual design to 

detailed design, whereas a high value of   indicates the system 

design undergoes minor refinement from conceptual design to 

detailed design. In this paper, we restrict our attention to those 

scenarios where the confidence retention factor   is stationary 

in all development phases. However, in practice, it is possible for 

the value of   to be dependent on either the verification strategy 

or the design maturity. 

For mathematical tractability, we restrict our analysis to 

those scenarios where verification activities reveal the true state 

of the system design and result in the organization having 
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complete confidence in the ideal state of the system design at that 

developmental stage. In general, this is not true, and verification 

activities may only provide partial confidence in the system 

design meeting the requirement of interest.  

To model our assumption of verification activities leading to 

complete confidence in the ideal state of the system design, we 

say that if the organization chooses to verify its design in 

development phase t, then 
1 1t + = , i.e., the organization has 

complete confidence in the ideal state of the system design at the 

start of development phase 1t + . Similarly, if the organization 

chooses not to verify the design in development phase t, then its 

belief in the ideal state of the system design at the start of 

development phase 1t +  is 
1t t  + = . The evolution of the 

organization’s belief in development phase t is graphically 

represented in Figure 1.      

 
FIGURE 1: EVOLUTION OF THE ORGANIZATION’S BELIEFS 

IN DEVELOPMENT PHASE t 

For ease of discussion, we will utilize vector notation for the 

remainder of this paper. To this end, let the row vector 

)1 ,(t t tb  = −  denote the vector of beliefs for the organization 

at the start of development phase t, where the first element of 

vector 
tb  denotes the organization’s belief in the non-ideal state 

of the system design, and the second element of vector denotes 

the organization’s belief in the ideal state of the system design. 

To represent the transformation of 
tb  into 

1tb +
 for the two 

alternatives of the verification decision { , }t v vd  − , we define 

the following matrices: 
0

1

1
v

 
−

 
 


=
− 

  and 
0 1

0 1
v

 
 


=


. 

Then, 

                      1

if 

if 

t v t

t

t v t

b d v
b

b d v

−

+





= −
=

=
.   (1) 

Let the column vectors 
,t vl  and 

,t vl −
 denote the 

organization’s vector of costs associated with its decisions to 

verify and not verify, respectively. The organization’s cost vector 

for verifying the system design in any development phase t is 

defined by 
, ( , ) 't v t t tl c r c= + , where the apostrophe denotes a 

vector transpose. Based on our model assumptions, the 

organization incurs no cost for not verifying the system design 

in development phases t T . Thus, for all t T ,  
, (0,0)t vl − = . 

At the end of the final development phase, if the system design 

is in the non-ideal state, then the organization incurs the expected 

cost of failure. We capture this by defining the organization’s 

cost vector for not verifying the system design in the final 

development phase T as 
, ( ,0) 'T v Fl r− = − . 

 

3.3 Optimal verification strategy based on beliefs 
The organization can follow a pre-defined verification plan 

1( , ), Td d , which defines a decision { , }t v vd  −  in each 

development phase. However, a pre-defined verification plan 

ignores the organization’s changing belief in the true state of its 

design, and can end up dictating the organization verify its 

design even when the organization’s confidence in the ideal state 

of the design is high [45]. In order to minimize verification costs 

over the entire development, the organization must implement a 

verification strategy, or a dynamic verification plan that specifies 

a decision in each development phase while accounting for the 

organization’s belief in the true state of its design in each 

development phase [45].   

Before we present a formal definition of an optimal 

verification strategy, we elucidate two important features of a 

pre-defined verification plan 
1( , ), Td d . First, given the initial 

belief vector 
1b , a verification plan completely defines the 

organization’s belief vectors in all development phases. This is 

so, since the belief vector 
2b  is the result of the transformation 

of the initial belief vector
1b  through the decision 

1d . The belief 

vector 
3b is the result of the transformation of 

2b  through the 

decision 
2d , and so on until the end of all development phases. 

Second, the decision 
td  in a verification plan determines the 

organization’s immediate costs in development phase t, and also 

affects the organization’s verification costs in phases 1,t T+  . 

This follows from the belief vector 
1tb +
 being a transformation 

of 
tb  through 

td , 
2tb +

 being a transformation of 
1tb +
 through 

1td +
, and so on.     

Using the two properties of the verification plan mentioned 

above, we now define the organization’s optimal decision in 

development phase t, denoted by *

1 { ,( })td vb v − , as the one that 

minimizes the organization’s expected verification costs over the 

development phases , 1 ,, Tt t +  given the organization’s initial 

belief vector is 
1b . Our definition is motivated by the fact that if 

the organization’s decision in development phase t affects the 

overall costs over the development phases , 1 ,, Tt t +  , then the 

rational decision for the organization is the one that minimizes 

the expected costs over the development phases , 1 ,, Tt t +  . 

Using the definitions and properties mentioned above, we now 

define the optimal verification strategy for the organization as 

the set of optimal decisions *

1

*

1 1{ ( ( }), , )Td b bd  in each 

development phase.  

1

0

t

1

0 1

0

1
t 

1 1t + =

1t t  + =

Design 

Period

Verification

Period

v−

v

Confidence 

degradation

Start of 

phase t

Start of 

phase t + 1

1 t− 1 t −

11 t +−
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To determine 
1

* ( )td b , the organization must know its 

immediate and future expected costs resulting from a decision 

td  and the belief transformation of 
tb  into 

1tb +
 through the 

decision 
td . To this end, we define ( , )t t tV b d  as the lowest 

possible cost the organization can expect to incur over 

development phases , 1 ,, Tt t +   for the decision 
td  and belief 

vector 
tb . We will refer to )(tV   as the organization’s optimal 

cost function in development phase t.  

The optimal cost functions )(tV   can be determined through 

dynamic programming [46]. In the last development phase T, the 

organization only needs to consider the immediate costs 

associated with the decision 
Td , and hence the organization’s 

optimal cost functions are defined by    

                         
,( , )T T T Tv vV b v b l−= , and   (2) 

                         
,( , )T T T v T vV b v b l− −− = .   (3) 

In development phase T-1, the organization’s optimal cost 

function 
1( )TV −   must consider the effects of the organization’s 

decision 
1Td −
 on the expected costs in development phase T. 

Since, Equations (2) and (3) define the minimum cost the 

organization can expect to incur in development phase T for any 

belief vector 
Tb  for each possible decision { , }T v vd  − , then to 

determine 
1( )TV −  , the organization only needs to determine the 

immediate expected cost of decision 
1Td −
, determine the 

transformation of 
1Tb −
 into 

Tb  as a result of the decision 
1Td −
, 

and then use ,( )T TV b v  and ( , )T TV b v−  to determine the 

minimum cost it can expect to incur in development phase T. 

Hence, in development phase T-1, the organization’s optimal cost 

function for its decision to verify is  

1 1 11 , 11 min{ }( , ) ( , ), ( , )v T v T T TT T v vT TV b v b l b vV b vV− −− − − −− = + −

   (4) 

and for its decision to not verify it is  

      
1 1 11 min{ }( , ) ( , ), ( , )T T vT TT T vV v V Vb b v b v− − −− −− − = − .   (5) 

The organization’s optimal cost functions for all other 

development phases can be determined in the same manner as 

the one presented above for development phase T-1. For t T , 

assume that the organization has already determined the optimal 

cost functions 
1 1( , )t tV b v+ +

 and 
1 1, )(t t vV b+ + −  for development 

phase 1t + . Then, in development phase t, the organization’s 

optimal cost function for its decision to verify is defined by  

      
1 1, min{ }( , ) ( , ), ( , )v t v v vt t t t t t tV bV Vb v b l b v v− + += + −    (6) 

and for its decision to not verify is defined by  

      
1 1)min{ }( , ) ( , , ( , )t vt t t tvtV b v b v b vV V+ +− −− = − .   (7) 

With the knowledge of the optimal cost functions for all 

development phases, the organization can then determine the set 

of optimal decision functions *

1

*

1 1{ ( ( }), , )Td b bd . We illustrate 

the procedure to determine * )(td   for a possible initial belief 

vector 1b̂ . In phase 1, the optimal decision for the organization 

is defined by  

                        
1

*

1 1 1 1 1
{ , }

( ) { ( , )}ˆ ˆarg max
v vd

d bVb d
 −

= .   (8) 

If 
*

1 1( ˆ ) vbd = , then we know 2 1
ˆ ˆ

vb b= , else 2 1
ˆ ˆ

vb b −=  holds 

true. Since we know the organization’s starting belief in phase 2 

is 2b̂ , it follows that     

                       
2

*

{ }
2 1 2 2 2

,
( ) { ( , )}ˆ ˆarg max

v vd
d bVb d

 −
= .   (9) 

We then determine 3b̂  from *

2 1( )d b  and 2b̂ , and the process 

repeats for all remaining development phases.  

The formulation presented above to determine the 

organization’s optimal verification strategy *

1

*

1 1{ ( ( }), , )Td b bd  

is similar in structure to partially observable Markov decision 

processes (POMDPs) [47]. However, unlike POMDPs, our 

model implicitly accounts for the observations. For a given set 

of parameter values for our model, the optimal verification 

strategy for the organization can be numerically determined 

using standard solution algorithms for POMDPs after adjusting 

for the differences in our model and the structure of POMDPs.  

It is analytically intractable to derive a closed form 

expression for *

1( )td b  that does not involve the maximum 

function. Instead, we will seek to solve our model numerically 

for a broad class of setup and rework cost functions to derive 

insights on the optimal verification strategy. To so, we will use 

the solution algorithm presented in the Appendix.  

  

4. IS FREQUENT VERIFICATION OPTIMAL? 
Frequent verification with respect to our model means that 

the organization verifies the system design in all development 

phases, irrespective of its belief in the true state of its system 

design. In this section, we derive the conditions under which 

frequent verification is an optimal strategy for the organization. 

We begin with a numerical illustration of our model for six 

different sets of values for the model parameters 
tc , 

tr  and 
Fr . 

The purpose of the numerical illustration is to show that frequent 

verification is not an optimal strategy in general. After the 

numerical illustration, we will derive theoretical lower bounds 

for 
tr  and 

Fr  that must be satisfied to ensure frequent 

verification is an optimal strategy for the organization. 

 

4.1 Numerical illustration: when frequent verification 
is not optimal 

The change in 
tc  and 

tr  with respect to t  can be broadly 

defined as: 1) constant, 2) linearly increasing, and 3) 
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exponentially increasing. Even if 
tc  is constant for the 

requirement of interest, in most real-world cases, 
tr  will increase 

with t  as the design matures. Hence, we study the remaining six 

combinations of the types of increase in 
tc  and 

tr . We will refer 

to each combination of the type of increase in 
tc  and 

tr  as a case. 

The six cases are presented in Table 1. 

  

TABLE 1: DESCRIPTION OF CASES FOR NUMERICAL 

ILLUSTRATION 

Case Type of increase 

in 
tc   

Type of increase 

in
tr   

1 Constant Linear 

2 Constant Exponential 

3 Linear Linear 

4 Linear Exponential 

5 Exponential Linear 

6 Exponential Exponential 

 

For the numerical illustration we notionally consider 6T =  

and 0.7 = . As mentioned before, we assume that the expected 

cost of failure 
F t tr rc + . Since 

tr  increases with t in all cases, 

we select the value of 
Fr  to ensure 

F T Tr c r + . The notional 

values of 
tc , 

tr  and 
Fr  for each case are listed in Table 2. 

 

TABLE 2: NOTIONAL PARAMETER VALUES 

Case 
tc   

tr   
Fr   

1 $5000 
$6000 

+ $1000*t 
$100,000 

2 $5000 $7000*
2t  $300,000 

3 
$4000 

+ $1000*t 

$6000 

+ $1000*t 
$300,000 

4 
$4000 

+ $1000*t 
$7000*

2t  $300,000 

5 $5000*
2t  

$6000 

+ $1000*t 
$1,000,000 

6 $5000*
2t  $7000*

2t  $1,000,000 

 

The optimal verification strategies for the six cases were 

numerically determined using the solution algorithm presented 

in Section 3.4 with the aid of MATLAB®. For all six cases, 

Figure 2 graphs the optimal decision function for the 

organization, * )(td  , for each of the 6 development phases (on 

the y-axis in each graph) given the organization’s initial belief in 

the ideal state of the system design, 
1  (on the x-axis for each 

graph).  

As shown in Figure 2, for cases 1, 3, and 5, the optimal 

verification strategy for the organization is to verify the system 

design in the final development phase, but not in any other 

development phase, irrespective of the organization’s initial 

belief in the ideal state of the system design, 
1 . In case 2, the 

optimal verification strategy requires the organization to verify 

in the last development phase, in the first three development 

phases depending on the value of 
1 , but not in development 

phases four and five. In case 4, the optimal verification strategy 

for the organization is to verify the system design only in 

development phases one, three and six. Finally, in case 6, the 

optimal verification strategy for the organization is to verify in 

first and last development phase, but not in any other 

development phase.  

 

 
FIGURE 2: OPTIMAL VERIFICATION STRATEGY FOR 6 

NOTIONAL CASES 
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The results of our numerical example suggest that when the 

expected cost to correct the errors in design, 
tr , increases 

linearly, as in cases 1, 3 and 5, the optimal verification strategy 

is to verify the system design once, in the final development 

phase. Only when 
tr  increases exponentially with each 

development phase, as in cases 2, 4 and 6, does our model 

suggest that verifying the system design in a development phase 

other than the final one can potentially be part of the optimal 

verification strategy.  

We hypothesize the cause of our numerical results with the 

following examples. For the results of cases 1, 3 and 5, consider 

an optical instrument with a requirement of interest being the 

cleanliness of its observing surface. The setup cost for verifying 

whether the sensor meets the requirement of interest may be 

constant, linearly increasing or exponentially increasing, 

depending on the design maturity. Due to the nature of the 

requirement of interest, the cost of correction during integration 

through to deployment just involves cleaning the surface. In this 

scenario, our model suggests that the requirement of interest for 

the sensor is to be verified once, in the final development phase, 

to maximize the organization’s final confidence in the instrument 

meeting the requirement of interest and minimizing verification 

costs.  

For cases 2, 4 and 6, consider a satellite’s solar panel with 

the requirement of interest being that the panel provides certain 

level of electrical power. The electrical power that the solar panel 

will provide will depend on several factors, such as surface area 

of the panel, efficiency of the solar cells, and survivability ratio 

after vibration testing. Hence, choosing incorrect surface 

dimensions for the solar panel in early phases may lead to costly 

rework later in later development phases. Thus, verifying 

whether the panel surface will accommodate sufficient solar cells 

to meet the electrical power provision requirement should 

probably be carried out in early development phases. However, 

if the organization is confident of its design process to determine 

panel surface so as to not requiring costly panel resizing in later 

development phases, then perhaps it is not cost-effective for the 

organization to verify the solar panel surface (i.e., requirement 

of interest) in every development phase.  

 

4.2 When is frequent verification optimal? 
The results of the numerical example presented in Section 

4.1 leads to the following question: if continuous verification of 

the system design is not a requirement enforced by stakeholders, 

under what conditions is it optimal for the organization to verify 

the system design in all development phases irrespective of its 

belief in the system design meeting the requirement of interest? 

To answer this question, we now study our model analytically.   

Let 
,0tb  and 

,1tb  denote the first and second element of belief 

vector 
tb , respectively. Consider development phase T. The 

organization’s optimal cost functions for its two decisions in 

development phase T are 

               
,1 1( ) ), (T T T T T TV cvb r  = − −−= , and   (10) 

                    
,1 ), (1( )T T T F TvV b r = − −= − .   (11) 

The organization will verify the system design in development 

phase T only if 
,1 ,1( ) ( ), ,T T T T T TV b V bv v = = −  

1 ) )( (1T T T F Trc r   −− − − −   

                  
*1

1( )T

F

T T

T

c

r r
 


  − =

−
.   (12) 

That is, the optimal verification strategy for the organization in 

the final development phase is to verify the system design if 
*

T T  . If * 1T  , then it is optimal for the organization to 

verify the system design in the final development phase for all 

values of 
T .  In turn, * 1T   only if 

1
1 1( )

F

T

T

c

r r
− 

−
  

                      
1

T
T TF rr c

c 


+ + 

−
.   (13) 

Now, assume that Condition (13) is satisfied, and it is 

optimal for the organization to verify the system design in the 

final development phase. Consider development phase T-1. With 

the prior knowledge that the organization will verify the system 

design in the final development phase, the organization’s optimal 

cost functions associated with its two decisions in development 

phase T-1 are  

   
1 1,1 1 1 1 1( , ) (1 ) )(1T T T T T T T TV b v c r c r   − − − − − −= = − − − − − − ,  

  (14) 

and  

              2

1 1,1 1 1( , ) )(1T T T T T TV b v c r  − − − −= − = − − − .   (15) 

The organization will verify the system design only if  

1 1,1 1 1 1,1 1( , ) ( , )T T T T T TV b v V b v − − − − − −= − =   

2

1 1 1 1() )(1 ) (1 1T T T T T T T Tc r c r c r    − − − − − − − − − − − − −  

                 
*1

1 1

1

1
1( )T

T T

TT

c

r r
 

 
−

− −

−

  − =
−

.   (16) 

Once again, the verifying the system design in development 

phase T-1 is always an optimal strategy only if *

1 1T −  . This in 

turn implies 1

1

1
1 1( )

T

T

T

c

r r 
−

−

− 
−

  

                   1

1 1

1

1
( )T

T T Trr c
c 

 
−

− − 
−

+ + .   (17) 

We see that it is optimal for the organization to verify the 

system design in development phase T-1 only if the expected 

repair cost in development phase T is greater than the lower 

bound defined by Condition (17). Else, *

1 1T −   and it will be 
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optimal for the organization to not verify the design for high 

values of 
1T −

.  

Using the procedure presented above for development phase 

T-1, we can derive the condition under which it is optimal for the 

organization to verify the system design in development phase 

t T . To this end, assume that it is optimal for the organization 

to verify the system design in development phase 1t + . Then, the 

optimal cost functions in development phase t are   

 
, 11 1( , ) (1 )) (1t tt t t t t tV b v c r c r   + += = − − − − − − , and   (18) 

              
1

2

,1 1 )( , ) (1t t t tt tV b v c r  + += − = − − − .   (19) 

The organization will verify the system design if 

,1 ,1( , ) ( , )t t t t ttV b v V b v = = −   

                  
1

*1
1( )t

t t

t t

c

r r
 

 +

  − =
−

.   (20) 

Hence, verifying in development phase t is always an optimal 

strategy if * 1t    

                   
1

1

1
( )t

t t t

c
rr c



 
+ + + 

−
.   (21)   

From Conditions (17) and (21), we see that the lower bound on 

the expected repair cost is recursive in nature. Using induction 

[48], we can further reduce Condition (21) as  

1

1

1
( )t

t t tr r c
c 

 
+ +

−
+   

1

1 1 1

1 1

1 1
( ( ) )t t

t t t t

c
r c c

c
r

 

   
−

+ − −+ + + + 
− −

  

                       1

1 1
1

1

(1 )

t
j

t t t j
j

r
cr

 
+ + −

=

 +
−

 .   (22) 

Conditions (13) and (22) impose a theoretical lower bound 

on the values of 
Fr  and 

tr  for frequent verification of the system 

design to be an optimal verification strategy for the organization. 

Previously, we had assumed that the expected cost of failure 
Fr  

is greater than 
t tc r+  for all t. However, Condition (13) places a 

stronger restriction for verification in the final development 

phase to be an optimal strategy for all belief values 
T : it is 

necessary for 
Fr  to be greater than 

T Tc r+  by a margin that is at 

least equal to / (1 )Tc  − . Similarly, Condition (22) suggests 

that for frequent verification to be optimal, 
tr  must be far greater 

than the sum of the expected repair cost in development phase 1 

and the setup costs in development phases 1, , 1t − . 

Consider again the 6 cases explored for the numerical 

illustration in section 4.1. We see that the notional values for 
Fr  

satisfy Condition (13) for all six cases. Whereas, the notional 

values for 
tr  do not satisfy Condition (22) for all cases. Hence, 

we conclude that verification in the final development phase 

being optimal for all cases in the numerical illustration resulted 

from Condition (13) being satisfied.  

Though Condition (22) was not satisfied for all cases, our 

numerical results did not suggest that verification of the system 

design in early development phases was sub-optimal. Indeed, in 

cases 2, 4 and 6, where 
tr  increased exponentially, our results 

suggest that verification in development phases other than the 

last one is part of the optimal verification strategy. This leads us 

to conjecture that as 
tr  approaches the theoretical bound defined 

by Condition (22), verification in early development phases 

becomes optimal for different belief values, and when 
tr  satisfies 

Condition (22), verification in all development phases of the 

system design is optimal.  

It is reasonable to assume that in most real-world scenarios, 

the expected cost of failure, 
Fr , will satisfy Condition (13), and 

it is optimal for the organization to verify the system design in 

the final development phase. However, it is not necessary for 

Condition (22) to be satisfied in all development phases. In such 

scenarios, it is perhaps better to adopt a belief-based approach to 

verification of the system design than follow conventional 

wisdom and risk misallocating limited resources to “over-

verifying” the system design.    

  

5. CONCLUSION 
In this paper, we used a belief-based model to determine if 

verifying a system frequently, using a single requirement as an 

abstraction, is an optimal strategy. The results of our analysis 

suggest that verifying the system design frequently is not an 

optimal strategy in general, and it is optimal only when the 

expected cost to correct errors in the system design increase at a 

certain rate as the design matures. Two important limitations of 

our model are that we assume that the organization’s confidence 

in the correctness of its design activities (or predictability of its 

design process) does not change as the design matures and we 

focus only on a single system requirement. At this point, we 

conjecture that relaxing the aforementioned constraints might 

expand the space of scenarios where frequent verification is 

optimal.  
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APPENDIX 
Assume that 

tc , 
tr , 

Fr  and   are given. Let 
,, v T vT v l −=  

and let 
, ,v v T vT l −− = . Then, in phase T, the organization’s 

optimal cost functions can be defined as  

                     
,min( )( , ) TT T T vbV b v = , and   (23) 

                     
,min( )( , )T T T T vbV b v  −− = .    (24) 
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The minimum function returns the lowest value of its vector 

argument and its use is redundant in equations (23) and (24), but 

this formulation will prove useful for the remaining development 

phases.  

In development phase 1T − , the organization’s optimal cost 

function for its decision to verify can be defined as 

1 1 1 1, 1 1min{ }( , ) ( , ), ( , )T T T v T v T T v T T vV b v b l V b v V b v− − − − − − −= + −   

1 1 ),(T TbV v− −    

      
1 1, 1 1, ,,min{ ( ), ( )}T v T v v T vT vv vv T Tl lb b − − − − − − −=  + + .  

Define 
1 , ,1, , 1,( ), ( )][T v v T v v vT v T vT v vl l  − − − − − −= + + . Then, 

optimal cost function for verifying the design in development 

phase 1T −  can be redefined as  

                      
1 1 1 1,min( )( , )T T T T vV b v b − − − −= .   (25) 

Similarly, the optimal cost to not verify the system design in 

development phase 1T −  can be redefined as  

                     
1 1 1 1,min( )( , )T T T T vV bb v − − − − −− = ,   (26) 

where 
, , ,1 [ , ]TT v v vv T v  − − −−− = .  

Proceeding in manner presented above for development 

phase 1T − , assume that the matrices 
1,t v +

 and 
1,t v + −

 have been 

previously computed. Then, the organization’s optimal cost 

functions in development phase t are defined by  

                   
,min( )( , )t t t t vbV b v = , and   (27) 

                   
,min( )( , )t t t t vbV b v  −− = ,   (28) 

where 
, ,, 1 1,,( ), ( )][ t vt v v t v v v t v t vvl l  + +− −−= + +   and 

, ,, 1 1[ , ]t v t vt v v v  − − −+ − += .  

By computing the matrices 
,t v  and 

,t v −
 for all 

development phases, we can determine the organization’s 

optimal cost function value for any belief vector 
tb , and this in 

turn enables us to determine the optimal verification strategy 
* *

1 1 1{ ( ), ( )}, Tdd b b . The space of all feasible initial belief 

vectors 
1b  is uncountable. Hence, * *

1 1 1{ ( ), ( )}, Tdd b b  must be 

computed for a finite set of belief vectors 1

1 1 },{ , Mb b =   that 

reasonably discretizes the space of initial belief vectors. The 

following table outlines the solution algorithm to numerically 

solve our model assuming all parameter values and the set   is 

known beforehand.  

 

TABLE 3: SOLUTION ALGORITHM 

Initialize 

tc , 
tr , 

Fr ,  , 
v
, 

v−
 ,  

,t vl , 
t vl −

 and         

1 Set  
, ,T v v T vl −=  and 

, ,T v v T vl − − −=  

2 For 1t T= − ; 0t    

 2a Set 
, ,, 1 1,,( ), ( )][ t vt v v t v v v t v t vvl l  + +− −−= + +   

2b Set 
, ,, 1 1[ , ]t v t vt v v v  − − −+ − +=   

2c Set 1t t= − , return to step 2  

3 For each 
1

xb  , Do  

 3a Set 
1

1 1b̂ b=   

3b For 1t = ; t T   

 3b-i Set *

1
{ , }

( ) { ( , )}ˆ ˆarg max
t

t
d v v

t t td b bV d
 −

=   

3b-ii If t T , then set 

*

1

1

ˆ ˆif ( )ˆ
ˆ otherwise

t v n

t

t v

b b
b

b

d v
+

−

 =



=

    

3b-iii Set 1t t= + , return to step 3b  

 Return to step 3 
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