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ABSTRACT

Verification activities increase an engineering teams
confidence in its system design meeting system requirements,
which in turn are derived from stakeholder needs. Conventional
wisdom suggests that the system design should be verified
frequently to minimize the cost of rework as the system design
matures. However, this strategy is based more on experience of
engineers than on a theoretical foundation. In this paper, we
develop a belief-based model of verification of system design,
using a single system requirement as an abstraction, to
determine the conditions under which it is cost effective for an
organization to verify frequently. We study the model for a broad
set of growth rates in verification setup and rework costs. Our
results show that verifying a system design frequently is not
always an optimal verification strategy. Instead, it is only an
optimal strategy when the costs of reworking a faulty design
increase at a certain rate as the design matures.

Keywords: Belief-based modeling, system verification

NOMENCLATURE
T number of development phases
t generic development phase
St state of the system design
[ verification setup cost
I expected cost correcting design errors
TF expected cost of project failure
Bt belief value in ideal state of design
€ confidence retention factor
d; decision to verify or not verify
by belief vector
P, belief transformation matrix for verify
P, belief transformation matrix for not-verify
liv cost vector associated with verification
liv cost vector associated with not verifying
d(By) optimal decision given belief value

Vi(b:, dy) optimal cost function in development phase ¢

1. INTRODUCTION

Verification activities seek to determine if a system design
meets the system requirements. These system requirements
define the space of acceptable system solutions (or system
designs) [1], which the engineering teams explore during the
design process to arrive at the final system design. Through
verification activities, engineering teams can check if the current
system design is in the space of acceptable system solutions [2],
that is, verification activities are the means by which engineers
check if the system is being built “right” [3]. Furthermore,
verification activities enable design teams to detect errors early
in the design development, where an error is a violation of one
or more system requirements. Early error detection prevents
unwanted rework costs for the design teams in the future [4].
Thus, verification activities have been recognized as an integral
part of the system design process [5].

Verifying the system design frequently has been previously
advocated both in industry and research literature [6-8].
However, this strategy is derived more from experience than
from a theoretical foundation. Since verification activities are
cost and time intensive, verifying the system design more
frequently than necessary can result in misallocation of limited
resources [9]. An optimal verification strategy is one that
balances the cost of verification activities with the risks
associated with erroneous designs [10]. In this regard, a
significant challenge is to theoretically test whether it is optimal
to verify a system design frequently throughout the design
process.

In this paper, we lay the foundation to theoretically
determine the conditions under which frequent verification is an
optimal strategy in systems design. Our work explores if
frequent verification of a single system requirement by an
organization is an optimal strategy, or not, for different scenarios.
Each scenario is defined by growth rates in the setup costs to
execute verification activities and expected costs of corrective
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actions taken to address problems in the system design
potentially discovered through the execution of verification
activities. We develop a belief-based model of verification in
which the organization’s confidence in the system design
meeting its system requirements is modeled using belief
distributions. The organization’s optimal verification strategy is
then defined as the one that minimizes the organization’s
expected verification costs as a function of its belief in the true
state of its design.

2. BACKGROUND

Prior works on verification in systems engineering can be
broadly classified into conceptual approaches [11-14], empirical
approaches [4, 15-18], and probabilistic models of verification
[19, 20]. We define as conceptual approaches to verification
those that are based on guidelines, industry standards and best
practices. These guidelines are developed by studying the
failures of past projects. Problems are identified and then
correlated with verification activities that could have been
performed to identify early the observed failures. Though
conceptual approaches to verification activities have their merits,
a significant drawback is that they are rooted more in experience
and hindsight than mathematical analysis. Without a proper
understanding of the scientific foundation of verification,
adopting a conceptual approach to verification can result in
suboptimal verification strategies [21].

Empirical works on verification incorporate more
mathematical formalism by considering the costs and risks
associated with verification activities [4]. In this approach, pre-
defined verification strategies are applied in different systems
engineering projects, and the results of the same are observed.
The goal is then to use results from a wide range of systems
engineering projects and empirically deduce the characteristics
of optimal verification strategies. The drawback of empirical
approaches is that their solutions are only as good as the cases
they explore [22]. This prevents the results of empirical studies
from being extended to those systems engineering projects that
lie outside the original dataset.

The drawbacks of conceptual and empirical approaches to
verification are significantly reduced when probabilistic models
of verification are used [23, 24]. In this approach, the verification
process is assumed to reveal the errors in design according to a
predefined stochastic process. Examples include the software
reliability growth model to detect errors in software design [25,
26], the canonical model of verification for systems engineering
projects [9, 10, 27], and models for sequential and parallel testing
in new product development [28-30]. Though probabilistic
models of verification are grounded in mathematical analysis,
their use of stochastic processes in modeling verification
activities restricts them to those scenarios where there is prior
data by which the parameters of a model’s stochastic process can
be determined.

It has been previously recognized that designing systems is
a cognitive process [31]. Recent works [32] have identified that
engineers make design decisions based on subjective beliefs
about the true state of the system design. When engineers are

uncertain about whether their current design meets system
requirements, it is more due to a lack of confidence in how all
their design activities have combined than due to a belief in the
design process being inherently stochastic [33]. Thus, traditional
probability frameworks are not suited for capturing the epistemic
uncertainty in the system design process, and belief-based
frameworks are more appropriate [34]. Yet, the current body of
literature on verification in systems engineering largely ignores
the epistemic aspect of systems design.

To the best of our knowledge, only the recent works by
Salado et al. [35-38] have explicitly captured the epistemic
uncertainty in the design process by using beliefs to model
verification strategies. In their work, verification strategies are
derived based on the organization’s changing belief in the system
design meeting the system requirements. Using a belief-based
approach to derive verification strategies is advantageous since
beliefs better represent an organization’s knowledge in the
current state of its design, and this facilitates a more accurate
representation of the risk vs reward tradeoff in determining
optimal  verification  strategies. @~ We  leverage  this
conceptualization of verification strategies in this paper.

3. MODEL
3.1 Model environment

The system design process is often considered to progress
from a conceptual design, to preliminary design to detailed
design [39]. We model the system design process as a series of
design development phases, or simply development phases. We
say that two development phases are distinct if the system
designs at the end of the two phases are different in either design
attributes or design maturity. Here, design maturity refers to the
state of the current design, with blueprints and modeling
representing designs of low maturity and operational prototypes
representing designs of high maturity.

We divide each development phase into two periods: design
period and verification period. In the design period, design
activities are executed to take the current system design to the
next level of maturity, whereas in the verification period,
verification activities are carried out to determine whether the
current design meets the system requirements. Examples of
design activities include analysis, modeling, tradespace studies,
mock-ups, prototyping, and manufacturing. Examples of
verification activities include testing, inspection, demonstration,
and analysis. We assume that design activities will be executed
in each development phase, whereas verification activities will
be executed based on a strategy (that is, they may be executed in
some development phases and not in others).

Since design activities are assumed to be executed in each
development phase, we normalize all costs associated with
design activities to $0. For verification activities, we restrict our
attention to two high-level verification costs in each
development phase: setup cost for the verification activity in a
development phase and the expected cost to correct a faulty
design in a development phase, which we refer to as rework cost.
In addition to these two high-level verification costs, we assume
the organization incurs an expected cost of project failure if the

2 © 2019 by ASME



system design does not meet system requirements at the end of
all development phases.

In reality, there may be multiple organizations working on a
system design that has numerous requirements, with many of
these requirements being correlated [40]. To develop a model of
verification that is analytically tractable, in this paper, we restrict
our attention to a single organization and a single system
requirement, which we refer to as the requirement of interest. For
modeling simplicity, we assume that the organization classifies
the state of the design in each development phase as either the
system design satisfying the requirement of interest, or not
satisfying it.

To quantify the organization’s confidence in the system
design meeting the requirement of interest in each development
phase, we use belief distributions [41-43]. Belief distributions
enable us to model the organization’s subjective assessment of
its design meeting the requirement of interest. Per Dempster-
Shafer theory of evidence, belief distributions are transformed
by the evidence received from the environment [43]. In our
model, we implicitly account for evidence provided by the
environment, in this case the system design process, by defining
the transformation of the organization’s beliefs when it executes
design and verification activities. Specifically, we assume that
the organization’s belief in the system design meeting the
requirement of interest decreases when design activities are
executed, due to changes in the design attributes. Conversely, we
assume that the organization’s belief in the system design
meeting the requirement of interest increases through
verification activities either by obtaining successful verification
results or by performing a corrective action (i.e., rework) when
errors are found.

The organization’s goal is then to utilize its beliefs in the
current state of the system design to determine an optimal
verification strategy. The optimal verification strategy is defined
as one that minimizes the verification setup costs, expected costs
of correcting a faulty design upon verification, and the expected
cost of failure for the organization.

3.2 Model parameters

Let T denote the number of development phases. To denote
a generic development phase, we use the subscript ¢ €{l,...,T}.
As mentioned before, we assume the organization broadly
classifies the state of the system design as either meeting the
requirement of interest or not meeting the requirement of
interest. To denote the state of the system design at the start of
development phase ¢, we use the state variable s, € {0,1} , where
s, =1 denotes the system design meeting the requirement of
interest, and s, =0 denoting that the system design does not
meet the requirement of interest. We will refer to s, =1 as the
ideal state, and s, = 0 as the non-ideal state of the system design.

In development phase f, we denote the organization’s
decision by d, € {v,—v}, where v denotes the organization
verifies the system design, and —v denotes the organization does
not verify the system design. The setup cost for verification

activities is denoted by ¢, and the expected cost to correct any

errors in system design upon verification, or the rework cost, is
denoted by 7. We assume that if the organization chooses to

verify its design in development phase ¢ then it will incur the
setup cost ¢, for certain, whereas, the rework cost r, is only

incurred if the system design is found to be in the non-ideal state
upon verification. Furthermore, we denote the expected cost of
project failure by 7, . To avoid exploring trivial scenarios, in this

paper, we assume c, +7, <r, for all ¢. Hence, it is in the

organization’s interest to verify the system design in at least one
development phase.

We model the organization’s knowledge in the state of its
design using belief distributions. The organization’s belief in the
system design being in the ideal state at the start of development
phase t, or s, =1, is denoted by f, . In our model, we assume the

belief values over the state space add up to 1. This implies the
organization’s belief value in system design being in the non-
ideal state at start of development phase ¢ is equal to 1- 4, .

Furthermore, belief values adding up to 1 in our model implies
B €[0,1].

As per our model assumption, if the organization does not
verify the design in the current development phase, then the
changes in design with respect to the previous development
phase will decrease the organization’s belief in the system design
being in the ideal state at the end of the current development
phase. To model this, we assume that £, is transformed by a

factore to S after all the design activities are carried out in

development phase ¢. We refer to ¢ as the confidence retention
factor. The parameter & is a measure of the organization’s
confidence in the correctness of its design activities (in other
words, & can be understood as the predictability of the
organization’s design process). In this paper, we assume that
0 < & <1. This implies that our model assumes the organization
will not discover any error in the design during the design
process because we consider design activities to not generate
new information about the state of the system [44]. Hence, its
belief in the ideal state of the system design always reduces after
design activities.

The value of the confidence retention factor ¢ is a measure
of the rate of refinement in the system design with each passing
development phase. A low value of ¢ indicates that the system
design undergoes major refinement from conceptual design to
detailed design, whereas a high value of ¢ indicates the system
design undergoes minor refinement from conceptual design to
detailed design. In this paper, we restrict our attention to those
scenarios where the confidence retention factor ¢ is stationary
in all development phases. However, in practice, it is possible for
the value of ¢ to be dependent on either the verification strategy
or the design maturity.

For mathematical tractability, we restrict our analysis to
those scenarios where verification activities reveal the true state
of the system design and result in the organization having
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complete confidence in the ideal state of the system design at that
developmental stage. In general, this is not true, and verification
activities may only provide partial confidence in the system
design meeting the requirement of interest.

To model our assumption of verification activities leading to
complete confidence in the ideal state of the system design, we
say that if the organization chooses to verify its design in
development phase ¢, then S, =1, i.e., the organization has
complete confidence in the ideal state of the system design at the
start of development phase 7+1. Similarly, if the organization
chooses not to verify the design in development phase ¢, then its
belief in the ideal state of the system design at the start of
development phase t+1 is S, =pf&. The evolution of the
organization’s belief in development phase ¢ is graphically
represented in Figure 1.
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FIGURE 1: EVOLUTION OF THE ORGANIZATION’S BELIEFS
IN DEVELOPMENT PHASE ¢

For ease of discussion, we will utilize vector notation for the
remainder of this paper. To this end, let the row vector
b =(1-p,p) denote the vector of beliefs for the organization
at the start of development phase ¢ where the first element of
vector b, denotes the organization’s belief in the non-ideal state
of the system design, and the second element of vector denotes
the organization’s belief in the ideal state of the system design.
To represent the transformation of b, into b, for the two

alternatives of the verification decision d, € {v,—v}, we define

. . 1 0 0 1
the following matrices: P_ :( j and P :[ ]

Vll-e & 0 1
Then,
_|pP., ifd, =-v )
“U P, ifd =v
Let the column vectors /[ and [ denote the

t,v
organization’s vector of costs associated with its decisions to
verify and not verify, respectively. The organization’s cost vector
for verifying the system design in any development phase 7 is
defined by [, =(c, +7,,c,)', where the apostrophe denotes a

t,—=v

vector transpose. Based on our model assumptions, the
organization incurs no cost for not verifying the system design

in development phases ¢ <7 . Thus, forall 1 <7, |

v =(0,0).
At the end of the final development phase, if the system design
is in the non-ideal state, then the organization incurs the expected
cost of failure. We capture this by defining the organization’s
cost vector for not verifying the system design in the final

development phase T'as /., = (-7,,0)".

3.3 Optimal verification strategy based on beliefs

The organization can follow a pre-defined verification plan
(d,,...,d;), which defines a decision d, € {v,—v} in each
development phase. However, a pre-defined verification plan
ignores the organization’s changing belief in the true state of its
design, and can end up dictating the organization verify its
design even when the organization’s confidence in the ideal state
of the design is high [45]. In order to minimize verification costs
over the entire development, the organization must implement a
verification strategy, or a dynamic verification plan that specifies
a decision in each development phase while accounting for the
organization’s belief in the true state of its design in each
development phase [45].

Before we present a formal definition of an optimal
verification strategy, we elucidate two important features of a
pre-defined verification plan (d,,...,d, ). First, given the initial

belief vector b,, a verification plan completely defines the
organization’s belief vectors in all development phases. This is
so, since the belief vector b, is the result of the transformation
of the initial belief vector 5, through the decision d,. The belief
vector b, is the result of the transformation of b, through the
decision d,, and so on until the end of all development phases.
Second, the decision d, in a verification plan determines the

organization’s immediate costs in development phase ¢, and also
affects the organization’s verification costs in phases #+1,...7T .

This follows from the belief vector b,,, being a transformation
of b, through d,, b,
d

t+1°

Using the two properties of the verification plan mentioned
above, we now define the organization’s optimal decision in
development phase 7, denoted by d (b,) € {v,—v} , as the one that

being a transformation of 5,

through

and so on.

minimizes the organization’s expected verification costs over the
development phases #,7+1,...,T given the organization’s initial
belief vector is b, . Our definition is motivated by the fact that if
the organization’s decision in development phase ¢ affects the
overall costs over the development phases #,7+1,...,7 , then the

rational decision for the organization is the one that minimizes
the expected costs over the development phases ¢,z+1,...,7T .

Using the definitions and properties mentioned above, we now
define the optimal verification strategy for the organization as
the set of optimal decisions {d,(b,),...,d,(b)} in each

development phase.
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To determine d, (b)), the organization must know its

immediate and future expected costs resulting from a decision
d, and the belief transformation of b, into b,,, through the

t+1

decision d,. To this end, we define V,(b,,d,) as the lowest

possible cost the organization can expect to incur over
development phases ¢,z+1,...,T for the decision d, and belief

vector b,. We will refer to V,(-) as the organization’s optimal

cost function in development phase .

The optimal cost functions V() can be determined through
dynamic programming [46]. In the last development phase 7, the
organization only needs to consider the immediate costs
associated with the decision d,, and hence the organization’s

optimal cost functions are defined by
Ve(b,,v)=bP_ 1, ,and 2

Vilbr,—v)=bP_ I, _, . 3)

In development phase 7-/, the organization’s optimal cost
function ¥, () must consider the effects of the organization’s

decision d, , on the expected costs in development phase T.

Since, Equations (2) and (3) define the minimum cost the
organization can expect to incur in development phase 7 for any
belief vector b, for each possible decision d, € {v,—v}, then to

determine V, (), the organization only needs to determine the

immediate expected cost of decision d determine the

r-1°

transformation of b, , into b, as a result of the decision d,_,,

and then use V,(b,,v) and V,(b,,—v) to determine the
minimum cost it can expect to incur in development phase T.
Hence, in development phase 7-/, the organization’s optimal cost
function for its decision to verify is

Viabp ) =b P 1+ min{V; (b, P, ,v),V, (b, | P,,—v)}

“

and for its decision to not verify it is
Vo (br_y,—v) = mindV (b, P ,v), V; (b P, —v)} . (5)

The organization’s optimal cost functions for all other
development phases can be determined in the same manner as
the one presented above for development phase 7-/. For ¢t < T,
assume that the organization has already determined the optimal
cost functions V,, (b,,,v) and V,,(b,,,—v) for development
phase ¢+1. Then, in development phase ¢ the organization’s
optimal cost function for its decision to verify is defined by

V(b ) =bP., |, +min{V,  (BE,.).V,,(BP. )} (6)

t——v "ty t= v

+1° +1°

and for its decision to not verify is defined by
Vi(b,—v) =min{V, (P ,,v).V, (B ,-v)}. (7

With the knowledge of the optimal cost functions for all
development phases, the organization can then determine the set
of optimal decision functions {d, (b,),...,d,(b,)} . We illustrate

the procedure to determine d, (-) for a possible initial belief

vector 131 . In phase 1, the optimal decision for the organization
is defined by
d; (b) =arg max {#;(b.d))} . (8)

If d/ (l;l) =v, then we know 152 =1;11P’V, else l;z =Z;1JP’_‘, holds
true. Since we know the organization’s starting belief in phase 2
is b, , it follows that

dy(b) =arg max {V,(b,.d,)} ©)

We then determine bA3 from d,(b) and 52 , and the process

repeats for all remaining development phases.
The formulation presented above to determine the
organization’s optimal verification strategy {d, (5,),...,d; (b))}

is similar in structure to partially observable Markov decision
processes (POMDPs) [47]. However, unlike POMDPs, our
model implicitly accounts for the observations. For a given set
of parameter values for our model, the optimal verification
strategy for the organization can be numerically determined
using standard solution algorithms for POMDPs after adjusting
for the differences in our model and the structure of POMDPs.
It is analytically intractable to derive a closed form
expression for d (b)) that does not involve the maximum

function. Instead, we will seek to solve our model numerically
for a broad class of setup and rework cost functions to derive
insights on the optimal verification strategy. To so, we will use
the solution algorithm presented in the Appendix.

4. IS FREQUENT VERIFICATION OPTIMAL?

Frequent verification with respect to our model means that
the organization verifies the system design in all development
phases, irrespective of its belief in the true state of its system
design. In this section, we derive the conditions under which
frequent verification is an optimal strategy for the organization.
We begin with a numerical illustration of our model for six
different sets of values for the model parameters c,, » and 7.

The purpose of the numerical illustration is to show that frequent
verification is not an optimal strategy in general. After the
numerical illustration, we will derive theoretical lower bounds
for », and 7, that must be satisfied to ensure frequent

verification is an optimal strategy for the organization.

4.1 Numerical illustration: when frequent verification
is not optimal
The change in ¢, and 7, with respect to ¢ can be broadly

defined as: 1) constant, 2) linearly increasing, and 3)
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exponentially increasing. Even if ¢, is constant for the
requirement of interest, in most real-world cases, , will increase

with ¢ as the design matures. Hence, we study the remaining six
combinations of the types of increase in ¢, and 7, . We will refer

to each combination of the type of increase in ¢, and 7, as a case.

The six cases are presented in Table 1.

TABLE 1: DESCRIPTION OF CASES FOR NUMERICAL
ILLUSTRATION
Case Type of increase Type of increase
in c inr,

1 Constant Linear

2 Constant Exponential

3 Linear Linear

4 Linear Exponential

5 Exponential Linear

6 Exponential Exponential

For the numerical illustration we notionally consider 7 =6
and ¢ =0.7. As mentioned before, we assume that the expected
cost of failure 7. >c¢, +7, . Since r, increases with 7 in all cases,

we select the value of 7. to ensure r. >c; +r, . The notional

values of ¢,, 7, and 7, for each case are listed in Table 2.

TABLE 2: NOTIONAL PARAMETER VALUES

Case ¢ rt 7y

$6000

1 $5000 T $1000% $100,000

2 $5000 $7000% £* $300,000
$4000 $6000

3 + $1000%¢ + $1000%¢ $300,000

$4000 R

4 L 31000% | $7000% $300,000
) $6000

5 $5000* ¢ T $1000%¢ $1,000,000

6 $5000%* £ $7000%* £ $1,000,000

The optimal verification strategies for the six cases were
numerically determined using the solution algorithm presented
in Section 3.4 with the aid of MATLAB®. For all six cases,
Figure 2 graphs the optimal decision function for the
organization, d, (-) , for each of the 6 development phases (on

the y-axis in each graph) given the organization’s initial belief in
the ideal state of the system design, 3, (on the x-axis for each
graph).

As shown in Figure 2, for cases 1, 3, and 5, the optimal
verification strategy for the organization is to verify the system
design in the final development phase, but not in any other
development phase, irrespective of the organization’s initial

belief in the ideal state of the system design, /3, - In case 2, the

optimal verification strategy requires the organization to verify
in the last development phase, in the first three development
phases depending on the value of £, but not in development

phases four and five. In case 4, the optimal verification strategy
for the organization is to verify the system design only in
development phases one, three and six. Finally, in case 6, the
optimal verification strategy for the organization is to verify in
first and last development phase, but not in any other
development phase.

Case 1 Case 2

s

d, ()

s

d, ()

= N W b 01O
= N W b 0D

Case 3 Case 4

d, () d, ()

P N Wb O
= N W b 0O

Case 5 Case 6

* *

d, ()

L N Wb 0O

I

— yerification
=+sx10 g verification

FIGURE 2: OPTIMAL VERIFICATION STRATEGY FOR 6
NOTIONAL CASES
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The results of our numerical example suggest that when the
expected cost to correct the errors in design, 7, increases

linearly, as in cases 1, 3 and 5, the optimal verification strategy
is to verify the system design once, in the final development
phase. Only when 7 increases exponentially with each

development phase, as in cases 2, 4 and 6, does our model
suggest that verifying the system design in a development phase
other than the final one can potentially be part of the optimal
verification strategy.

We hypothesize the cause of our numerical results with the
following examples. For the results of cases 1, 3 and 5, consider
an optical instrument with a requirement of interest being the
cleanliness of its observing surface. The setup cost for verifying
whether the sensor meets the requirement of interest may be
constant, linearly increasing or exponentially increasing,
depending on the design maturity. Due to the nature of the
requirement of interest, the cost of correction during integration
through to deployment just involves cleaning the surface. In this
scenario, our model suggests that the requirement of interest for
the sensor is to be verified once, in the final development phase,
to maximize the organization’s final confidence in the instrument
meeting the requirement of interest and minimizing verification
costs.

For cases 2, 4 and 6, consider a satellite’s solar panel with
the requirement of interest being that the panel provides certain
level of electrical power. The electrical power that the solar panel
will provide will depend on several factors, such as surface area
of the panel, efficiency of the solar cells, and survivability ratio
after vibration testing. Hence, choosing incorrect surface
dimensions for the solar panel in early phases may lead to costly
rework later in later development phases. Thus, verifying
whether the panel surface will accommodate sufficient solar cells
to meet the electrical power provision requirement should
probably be carried out in early development phases. However,
if the organization is confident of its design process to determine
panel surface so as to not requiring costly panel resizing in later
development phases, then perhaps it is not cost-effective for the
organization to verify the solar panel surface (i.e., requirement
of interest) in every development phase.

4.2 When is frequent verification optimal?

The results of the numerical example presented in Section
4.1 leads to the following question: if continuous verification of
the system design is not a requirement enforced by stakeholders,
under what conditions is it optimal for the organization to verify
the system design in all development phases irrespective of its
belief in the system design meeting the requirement of interest?
To answer this question, we now study our model analytically.

Let b,, and b,, denote the first and second element of belief

vector b,, respectively. Consider development phase 7. The

organization’s optimal cost functions for its two decisions in
development phase T are

Vi(bpy = Br,v)=—c, —r,(1=- Br&) , and (10)

Vilbr, = Br,—v)=—r.(1-5,) . (11
The organization will verify the system design in development

phase T only if V;.(b,, = B;,v) 2V, (b, = Br,—V)
=—c, —r(1-ge)z-1r.(1-5;)

:ﬂTsl(l— T )=p. (12)
£ 7

Ve —

That is, the optimal verification strategy for the organization in
the final development phase is to verify the system design if
B, < B,. If B, >1, then it is optimal for the organization to
verify the system design in the final development phase for all

T )>1
i

values of B, . Intumn, S, >1 only if l(1 -
&

Tr

3rF2rT+cT+lci. (13)

Now, assume that Condition (13) is satisfied, and it is
optimal for the organization to verify the system design in the
final development phase. Consider development phase 7-/. With
the prior knowledge that the organization will verify the system
design in the final development phase, the organization’s optimal
cost functions associated with its two decisions in development
phase 7-1 are

Vi, = Broov)=—c, —t_ (1= pr_&)—c, —r(1-¢),

(14)

and
Vi (bT—l,l =Br,—v)=—c; —r (1 _:BT-lgz) . (15)

The organization will verify the system design only if

VT—I (bT—l,l = ﬁT—l ’V) 2 VT—] (bT—l,l = 13771 ’_V)

= ¢, —rp (=B a8)—¢, =1, (1= &) 2 —¢;, =1, (1= B, 67)
CT*I

jﬂT—l Si(l_—)zﬂ;-r (16)

}"TS - VT71
Once again, the verifying the system design in development

phase 71 is always an optimal strategy only if S, , >1. This in

|
turn implies — (1 - CT—") >1
& rEe-r1

1
=72 ;(rp1 +c , + TT_’I;:) ) (17)

We see that it is optimal for the organization to verify the
system design in development phase 7-/ only if the expected
repair cost in development phase 7 is greater than the lower
bound defined by Condition (17). Else, B, , <1 and it will be
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optimal for the organization to not verify the design for high
values of 3, ;.
Using the procedure presented above for development phase
T-1, we can derive the condition under which it is optimal for the
organization to verify the system design in development phase
t < T . To this end, assume that it is optimal for the organization
to verify the system design in development phase ¢ +1. Then, the
optimal cost functions in development phase ¢ are
Vt(bt,l = ﬂt’v) =-C-n ¢ —ﬂt{;‘) S _rt+1(1 —&), and (18)

Vt(br,l Zﬂt,—V)Z—CHI—I”Hl(l—ﬁlgz). (19)

The organization will verify the system design if
Vb, = B,,v) 2V (b, = p,.—v)

:/zsl(l— “ )=p. (20)
&

naé—n

Hence, verifying in development phase ¢ is always an optimal
strategy if g >1

1 ce
:”‘HIZZ(’;-’—C}-’_E)' (21)
From Conditions (17) and (21), we see that the lower bound on

the expected repair cost is recursive in nature. Using induction
[48], we can further reduce Condition (21) as

1 ceE
na 2=+, +—=)
& l1-¢&

1,1 & &
=T ZE(;(’”H +c +?;_1€)+cz + lcig)
n I & ¢
v, Z—l+ —/ 22
t+1 gr (1—6‘) ;gt+l_/ ( )

Conditions (13) and (22) impose a theoretical lower bound
on the values of 7, and r, for frequent verification of the system

design to be an optimal verification strategy for the organization.
Previously, we had assumed that the expected cost of failure 7,

is greater than ¢, +7 for all #. However, Condition (13) places a

stronger restriction for verification in the final development
phase to be an optimal strategy for all belief values g, : it is

necessary for 7. to be greater than ¢, +7, by a margin that is at
least equal to c,&/(1—¢). Similarly, Condition (22) suggests
that for frequent verification to be optimal, #, must be far greater

than the sum of the expected repair cost in development phase 1
and the setup costs in development phases 1,...,¢—1.

Consider again the 6 cases explored for the numerical
illustration in section 4.1. We see that the notional values for 7.
satisfy Condition (13) for all six cases. Whereas, the notional
values for r, do not satisfy Condition (22) for all cases. Hence,

we conclude that verification in the final development phase
being optimal for all cases in the numerical illustration resulted
from Condition (13) being satisfied.

Though Condition (22) was not satisfied for all cases, our
numerical results did not suggest that verification of the system
design in early development phases was sub-optimal. Indeed, in
cases 2, 4 and 6, where 7, increased exponentially, our results

suggest that verification in development phases other than the
last one is part of the optimal verification strategy. This leads us
to conjecture that as r, approaches the theoretical bound defined

by Condition (22), verification in early development phases
becomes optimal for different belief values, and when 7, satisfies

Condition (22), verification in all development phases of the
system design is optimal.

It is reasonable to assume that in most real-world scenarios,
the expected cost of failure, 7., will satisfy Condition (13), and

it is optimal for the organization to verify the system design in
the final development phase. However, it is not necessary for
Condition (22) to be satisfied in all development phases. In such
scenarios, it is perhaps better to adopt a belief-based approach to
verification of the system design than follow conventional
wisdom and risk misallocating limited resources to “over-
verifying” the system design.

5. CONCLUSION

In this paper, we used a belief-based model to determine if
verifying a system frequently, using a single requirement as an
abstraction, is an optimal strategy. The results of our analysis
suggest that verifying the system design frequently is not an
optimal strategy in general, and it is optimal only when the
expected cost to correct errors in the system design increase at a
certain rate as the design matures. Two important limitations of
our model are that we assume that the organization’s confidence
in the correctness of its design activities (or predictability of its
design process) does not change as the design matures and we
focus only on a single system requirement. At this point, we
conjecture that relaxing the aforementioned constraints might
expand the space of scenarios where frequent verification is
optimal.
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APPENDIX

Assume that c,, 7, 7, and ¢ are given. Let ¢, , =P /.,
and let ¢._ =P/ _ . Then, in phase 7 the organization’s

optimal cost functions can be defined as
V; (by,v) = min(b,¢, ), and (23)

Ve (br,—v) = min(byg; ) . (24)

8 ©2019 by ASME



The minimum function returns the lowest value of its vector
argument and its use is redundant in equations (23) and (24), but
this formulation will prove useful for the remaining development
phases.

In development phase 7 —1, the organization’s optimal cost
function for its decision to verify can be defined as
Vi (b ,v)=b, P, lrfl,v +min{ V, (b,_P,,v),V, (b, P,,—v)}

=V (b,v)

=min{b,_, - (P—vlT—l,v + ]P)v¢T,\r)’bT—l '(P—VIT—I,V + PV¢T‘7V)} .
Define ¢T—1,v = [(valel,v + H:DV¢T,V)’ (valel,v + ]P}V¢T,w )].  Then,

optimal cost function for verifying the design in development
phase 7 —1 can be redefined as

V(b y,v) = min(bT—1¢T—l,v) . (25)

Similarly, the optimal cost to not verify the system design in
development phase 7 —1 can be redefined as
Vi (bpys—v) = min(bT—]¢T—l,—v) > (26)

where ¢T71,7V = []P)—V¢T‘fv’]P>fv¢T,v] .
Proceeding in manner presented above for development
phase 7' —1, assume that the matrices ¢,,,, and ¢, have been

previously computed. Then, the organization’s optimal cost
functions in development phase ¢ are defined by

+1,v +1,—v

V,(b,.v)=min(bg,,) , and @7
V,(b,.—v) =min(b,_,). (28)
where ¢, =[P}, +P.g. ).(P. 1, +Pg., )] and

¢t,7v = []P)—v¢t+],—v’P—v¢t+l,v] .

By computing the matrices ¢,, and ¢ _, for all
development phases, we can determine the organization’s
optimal cost function value for any belief vector b,, and this in
turn enables us to determine the optimal verification strategy
{d;(b),...,d,(b)}. The space of all feasible initial belief
vectors b, is uncountable. Hence, {d, (b,),...,d,(b)} must be
computed for a finite set of belief vectors ¥ = {b/,...,5" } that

reasonably discretizes the space of initial belief vectors. The
following table outlines the solution algorithm to numerically
solve our model assuming all parameter values and the set ¥ is
known beforehand.

TABLE 3: SOLUTION ALGORITHM

Initialize
¢, , 1w, €, P, P

—v

[, and ¥

tv? “t—v

1 | Set ¢T,v :]P)—VIT,\: and ¢T,—v :valr,fv

Fort=T-1;1t>0

2a | Set g, =[P/, +Pd, )P L, +Pg, )]

LAY

Zb Set ¢t,7v = [va¢t+l,fv s va¢t+l,v]

2c Set ¢ =¢—1, return to step 2

Foreach b €Y, Do

3a | Set b =b

3b | Fort=1;t<T

30| set d) (B) =arg max {¥,(5,.d,)}

3b-ii If £ < T, then set

. |bP,  ifd(b)=v
o {Z;[]P’v otherwise
3b-iii | Set t =¢+1, return to step 3b

Return to step 3
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