
 1 © 2019 by ASME

Proceedings of the ASME 2020

International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference

IDETC/CIE 2020
August 16-19, 2020, St. Louis, MO, USA

IDETC2020-22582

IS VERIFYING FREQUENTLY AN OPTIMAL STRATEGY? A BELIEF-BASED MODEL OF
VERIFICATION

Aditya U. Kulkarni1, Alejandro Salado1, Christian Wernz2, Peng Xu1

1Virginia Tech, Blacksburg, VA, USA
2Virginia Commonwealth University, Richmond, VA, USA

ABSTRACT
Verification activities increase an engineering team’s

confidence in its system design meeting system requirements,

which in turn are derived from stakeholder needs. Conventional

wisdom suggests that the system design should be verified

frequently to minimize the cost of rework as the system design

matures. However, this strategy is based more on experience of

engineers than on a theoretical foundation. In this paper, we

develop a belief-based model of verification of system design,

using a single system requirement as an abstraction, to

determine the conditions under which it is cost effective for an

organization to verify frequently. We study the model for a broad

set of growth rates in verification setup and rework costs. Our

results show that verifying a system design frequently is not

always an optimal verification strategy. Instead, it is only an

optimal strategy when the costs of reworking a faulty design

increase at a certain rate as the design matures.

Keywords: Belief-based modeling, system verification

NOMENCLATURE
T number of development phases

t generic development phase

st state of the system design

ct verification setup cost

rt expected cost correcting design errors

rF expected cost of project failure

βt belief value in ideal state of design

ε confidence retention factor

dt decision to verify or not verify

bt belief vector

Pv belief transformation matrix for verify

P-v belief transformation matrix for not-verify

lt,v cost vector associated with verification

lt,-v cost vector associated with not verifying

d*
t(βt) optimal decision given belief value

Vt(bt , dt) optimal cost function in development phase t

1. INTRODUCTION
Verification activities seek to determine if a system design

meets the system requirements. These system requirements

define the space of acceptable system solutions (or system

designs) [1], which the engineering teams explore during the

design process to arrive at the final system design. Through

verification activities, engineering teams can check if the current

system design is in the space of acceptable system solutions [2],

that is, verification activities are the means by which engineers

check if the system is being built “right” [3]. Furthermore,

verification activities enable design teams to detect errors early

in the design development, where an error is a violation of one

or more system requirements. Early error detection prevents

unwanted rework costs for the design teams in the future [4].

Thus, verification activities have been recognized as an integral

part of the system design process [5].

Verifying the system design frequently has been previously

advocated both in industry and research literature [6-8].

However, this strategy is derived more from experience than

from a theoretical foundation. Since verification activities are

cost and time intensive, verifying the system design more

frequently than necessary can result in misallocation of limited

resources [9]. An optimal verification strategy is one that

balances the cost of verification activities with the risks

associated with erroneous designs [10]. In this regard, a

significant challenge is to theoretically test whether it is optimal

to verify a system design frequently throughout the design

process.

In this paper, we lay the foundation to theoretically

determine the conditions under which frequent verification is an

optimal strategy in systems design. Our work explores if

frequent verification of a single system requirement by an

organization is an optimal strategy, or not, for different scenarios.

Each scenario is defined by growth rates in the setup costs to

execute verification activities and expected costs of corrective

 2 © 2019 by ASME

actions taken to address problems in the system design

potentially discovered through the execution of verification

activities. We develop a belief-based model of verification in

which the organization’s confidence in the system design

meeting its system requirements is modeled using belief

distributions. The organization’s optimal verification strategy is

then defined as the one that minimizes the organization’s

expected verification costs as a function of its belief in the true

state of its design.

2. BACKGROUND
Prior works on verification in systems engineering can be

broadly classified into conceptual approaches [11-14], empirical

approaches [4, 15-18], and probabilistic models of verification

[19, 20]. We define as conceptual approaches to verification

those that are based on guidelines, industry standards and best

practices. These guidelines are developed by studying the

failures of past projects. Problems are identified and then

correlated with verification activities that could have been

performed to identify early the observed failures. Though

conceptual approaches to verification activities have their merits,

a significant drawback is that they are rooted more in experience

and hindsight than mathematical analysis. Without a proper

understanding of the scientific foundation of verification,

adopting a conceptual approach to verification can result in

suboptimal verification strategies [21].

Empirical works on verification incorporate more

mathematical formalism by considering the costs and risks

associated with verification activities [4]. In this approach, pre-

defined verification strategies are applied in different systems

engineering projects, and the results of the same are observed.

The goal is then to use results from a wide range of systems

engineering projects and empirically deduce the characteristics

of optimal verification strategies. The drawback of empirical

approaches is that their solutions are only as good as the cases

they explore [22]. This prevents the results of empirical studies

from being extended to those systems engineering projects that

lie outside the original dataset.

The drawbacks of conceptual and empirical approaches to

verification are significantly reduced when probabilistic models

of verification are used [23, 24]. In this approach, the verification

process is assumed to reveal the errors in design according to a

predefined stochastic process. Examples include the software

reliability growth model to detect errors in software design [25,

26], the canonical model of verification for systems engineering

projects [9, 10, 27], and models for sequential and parallel testing

in new product development [28-30]. Though probabilistic

models of verification are grounded in mathematical analysis,

their use of stochastic processes in modeling verification

activities restricts them to those scenarios where there is prior

data by which the parameters of a model’s stochastic process can

be determined.

It has been previously recognized that designing systems is

a cognitive process [31]. Recent works [32] have identified that

engineers make design decisions based on subjective beliefs

about the true state of the system design. When engineers are

uncertain about whether their current design meets system

requirements, it is more due to a lack of confidence in how all

their design activities have combined than due to a belief in the

design process being inherently stochastic [33]. Thus, traditional

probability frameworks are not suited for capturing the epistemic

uncertainty in the system design process, and belief-based

frameworks are more appropriate [34]. Yet, the current body of

literature on verification in systems engineering largely ignores

the epistemic aspect of systems design.

To the best of our knowledge, only the recent works by

Salado et al. [35-38] have explicitly captured the epistemic

uncertainty in the design process by using beliefs to model

verification strategies. In their work, verification strategies are

derived based on the organization’s changing belief in the system

design meeting the system requirements. Using a belief-based

approach to derive verification strategies is advantageous since

beliefs better represent an organization’s knowledge in the

current state of its design, and this facilitates a more accurate

representation of the risk vs reward tradeoff in determining

optimal verification strategies. We leverage this

conceptualization of verification strategies in this paper.

3. MODEL
3.1 Model environment

The system design process is often considered to progress

from a conceptual design, to preliminary design to detailed

design [39]. We model the system design process as a series of

design development phases, or simply development phases. We

say that two development phases are distinct if the system

designs at the end of the two phases are different in either design

attributes or design maturity. Here, design maturity refers to the

state of the current design, with blueprints and modeling

representing designs of low maturity and operational prototypes

representing designs of high maturity.

We divide each development phase into two periods: design

period and verification period. In the design period, design

activities are executed to take the current system design to the

next level of maturity, whereas in the verification period,

verification activities are carried out to determine whether the

current design meets the system requirements. Examples of

design activities include analysis, modeling, tradespace studies,

mock-ups, prototyping, and manufacturing. Examples of

verification activities include testing, inspection, demonstration,

and analysis. We assume that design activities will be executed

in each development phase, whereas verification activities will

be executed based on a strategy (that is, they may be executed in

some development phases and not in others).

Since design activities are assumed to be executed in each

development phase, we normalize all costs associated with

design activities to $0. For verification activities, we restrict our

attention to two high-level verification costs in each

development phase: setup cost for the verification activity in a

development phase and the expected cost to correct a faulty

design in a development phase, which we refer to as rework cost.

In addition to these two high-level verification costs, we assume

the organization incurs an expected cost of project failure if the

 3 © 2019 by ASME

system design does not meet system requirements at the end of

all development phases.

In reality, there may be multiple organizations working on a

system design that has numerous requirements, with many of

these requirements being correlated [40]. To develop a model of

verification that is analytically tractable, in this paper, we restrict

our attention to a single organization and a single system

requirement, which we refer to as the requirement of interest. For

modeling simplicity, we assume that the organization classifies

the state of the design in each development phase as either the

system design satisfying the requirement of interest, or not

satisfying it.

To quantify the organization’s confidence in the system

design meeting the requirement of interest in each development

phase, we use belief distributions [41-43]. Belief distributions

enable us to model the organization’s subjective assessment of

its design meeting the requirement of interest. Per Dempster-

Shafer theory of evidence, belief distributions are transformed

by the evidence received from the environment [43]. In our

model, we implicitly account for evidence provided by the

environment, in this case the system design process, by defining

the transformation of the organization’s beliefs when it executes

design and verification activities. Specifically, we assume that

the organization’s belief in the system design meeting the

requirement of interest decreases when design activities are

executed, due to changes in the design attributes. Conversely, we

assume that the organization’s belief in the system design

meeting the requirement of interest increases through

verification activities either by obtaining successful verification

results or by performing a corrective action (i.e., rework) when

errors are found.

The organization’s goal is then to utilize its beliefs in the

current state of the system design to determine an optimal

verification strategy. The optimal verification strategy is defined

as one that minimizes the verification setup costs, expected costs

of correcting a faulty design upon verification, and the expected

cost of failure for the organization.

3.2 Model parameters
Let T denote the number of development phases. To denote

a generic development phase, we use the subscript {1, , }t T  .

As mentioned before, we assume the organization broadly

classifies the state of the system design as either meeting the

requirement of interest or not meeting the requirement of

interest. To denote the state of the system design at the start of

development phase t, we use the state variable {0,1}ts  , where

1ts = denotes the system design meeting the requirement of

interest, and 0ts = denoting that the system design does not

meet the requirement of interest. We will refer to 1ts = as the

ideal state, and 0ts = as the non-ideal state of the system design.

In development phase t, we denote the organization’s

decision by { , }t v vd  − , where v denotes the organization

verifies the system design, and v− denotes the organization does

not verify the system design. The setup cost for verification

activities is denoted by
tc and the expected cost to correct any

errors in system design upon verification, or the rework cost, is

denoted by
tr . We assume that if the organization chooses to

verify its design in development phase t, then it will incur the

setup cost
tc for certain, whereas, the rework cost

tr is only

incurred if the system design is found to be in the non-ideal state

upon verification. Furthermore, we denote the expected cost of

project failure by
Fr . To avoid exploring trivial scenarios, in this

paper, we assume
t t Fc r r+  for all t. Hence, it is in the

organization’s interest to verify the system design in at least one

development phase.

We model the organization’s knowledge in the state of its

design using belief distributions. The organization’s belief in the

system design being in the ideal state at the start of development

phase t, or 1ts = , is denoted by
t . In our model, we assume the

belief values over the state space add up to 1. This implies the

organization’s belief value in system design being in the non-

ideal state at start of development phase t is equal to 1 t− .

Furthermore, belief values adding up to 1 in our model implies

[0,1]t  .

As per our model assumption, if the organization does not

verify the design in the current development phase, then the

changes in design with respect to the previous development

phase will decrease the organization’s belief in the system design

being in the ideal state at the end of the current development

phase. To model this, we assume that
t is transformed by a

factor  to
t  after all the design activities are carried out in

development phase t. We refer to  as the confidence retention

factor. The parameter  is a measure of the organization’s

confidence in the correctness of its design activities (in other

words,  can be understood as the predictability of the

organization’s design process). In this paper, we assume that

0 1  . This implies that our model assumes the organization

will not discover any error in the design during the design

process because we consider design activities to not generate

new information about the state of the system [44]. Hence, its

belief in the ideal state of the system design always reduces after

design activities.

The value of the confidence retention factor  is a measure

of the rate of refinement in the system design with each passing

development phase. A low value of  indicates that the system

design undergoes major refinement from conceptual design to

detailed design, whereas a high value of  indicates the system

design undergoes minor refinement from conceptual design to

detailed design. In this paper, we restrict our attention to those

scenarios where the confidence retention factor  is stationary

in all development phases. However, in practice, it is possible for

the value of  to be dependent on either the verification strategy

or the design maturity.

For mathematical tractability, we restrict our analysis to

those scenarios where verification activities reveal the true state

of the system design and result in the organization having

 4 © 2019 by ASME

complete confidence in the ideal state of the system design at that

developmental stage. In general, this is not true, and verification

activities may only provide partial confidence in the system

design meeting the requirement of interest.

To model our assumption of verification activities leading to

complete confidence in the ideal state of the system design, we

say that if the organization chooses to verify its design in

development phase t, then
1 1t + = , i.e., the organization has

complete confidence in the ideal state of the system design at the

start of development phase 1t + . Similarly, if the organization

chooses not to verify the design in development phase t, then its

belief in the ideal state of the system design at the start of

development phase 1t + is
1t t  + = . The evolution of the

organization’s belief in development phase t is graphically

represented in Figure 1.

FIGURE 1: EVOLUTION OF THE ORGANIZATION’S BELIEFS

IN DEVELOPMENT PHASE t

For ease of discussion, we will utilize vector notation for the

remainder of this paper. To this end, let the row vector

)1 ,(t t tb  = − denote the vector of beliefs for the organization

at the start of development phase t, where the first element of

vector
tb denotes the organization’s belief in the non-ideal state

of the system design, and the second element of vector denotes

the organization’s belief in the ideal state of the system design.

To represent the transformation of
tb into

1tb +
 for the two

alternatives of the verification decision { , }t v vd  − , we define

the following matrices:
0

1

1
v

 
−

 
 


=
− 

 and
0 1

0 1
v

 
 


=


.

Then,

 1

if

if

t v t

t

t v t

b d v
b

b d v

−

+





= −
=

=
. (1)

Let the column vectors
,t vl and

,t vl −
 denote the

organization’s vector of costs associated with its decisions to

verify and not verify, respectively. The organization’s cost vector

for verifying the system design in any development phase t is

defined by
, (,) 't v t t tl c r c= + , where the apostrophe denotes a

vector transpose. Based on our model assumptions, the

organization incurs no cost for not verifying the system design

in development phases t T . Thus, for all t T ,
, (0,0)t vl − = .

At the end of the final development phase, if the system design

is in the non-ideal state, then the organization incurs the expected

cost of failure. We capture this by defining the organization’s

cost vector for not verifying the system design in the final

development phase T as
, (,0) 'T v Fl r− = − .

3.3 Optimal verification strategy based on beliefs
The organization can follow a pre-defined verification plan

1(,), Td d , which defines a decision { , }t v vd  − in each

development phase. However, a pre-defined verification plan

ignores the organization’s changing belief in the true state of its

design, and can end up dictating the organization verify its

design even when the organization’s confidence in the ideal state

of the design is high [45]. In order to minimize verification costs

over the entire development, the organization must implement a

verification strategy, or a dynamic verification plan that specifies

a decision in each development phase while accounting for the

organization’s belief in the true state of its design in each

development phase [45].

Before we present a formal definition of an optimal

verification strategy, we elucidate two important features of a

pre-defined verification plan
1(,), Td d . First, given the initial

belief vector
1b , a verification plan completely defines the

organization’s belief vectors in all development phases. This is

so, since the belief vector
2b is the result of the transformation

of the initial belief vector
1b through the decision

1d . The belief

vector
3b is the result of the transformation of

2b through the

decision
2d , and so on until the end of all development phases.

Second, the decision
td in a verification plan determines the

organization’s immediate costs in development phase t, and also

affects the organization’s verification costs in phases 1,t T+  .

This follows from the belief vector
1tb +
 being a transformation

of
tb through

td ,
2tb +

 being a transformation of
1tb +
 through

1td +
, and so on.

Using the two properties of the verification plan mentioned

above, we now define the organization’s optimal decision in

development phase t, denoted by *

1 { ,(})td vb v − , as the one that

minimizes the organization’s expected verification costs over the

development phases , 1 ,, Tt t +  given the organization’s initial

belief vector is
1b . Our definition is motivated by the fact that if

the organization’s decision in development phase t affects the

overall costs over the development phases , 1 ,, Tt t +  , then the

rational decision for the organization is the one that minimizes

the expected costs over the development phases , 1 ,, Tt t +  .

Using the definitions and properties mentioned above, we now

define the optimal verification strategy for the organization as

the set of optimal decisions *

1

*

1 1{ ((}), ,)Td b bd in each

development phase.

1

0

t

1

0 1

0

1
t 

1 1t + =

1t t  + =

Design

Period

Verification

Period

v−

v

Confidence

degradation

Start of

phase t

Start of

phase t + 1

1 t− 1 t −

11 t +−

 5 © 2019 by ASME

To determine
1

* ()td b , the organization must know its

immediate and future expected costs resulting from a decision

td and the belief transformation of
tb into

1tb +
 through the

decision
td . To this end, we define (,)t t tV b d as the lowest

possible cost the organization can expect to incur over

development phases , 1 ,, Tt t +  for the decision
td and belief

vector
tb . We will refer to)(tV  as the organization’s optimal

cost function in development phase t.

The optimal cost functions)(tV  can be determined through

dynamic programming [46]. In the last development phase T, the

organization only needs to consider the immediate costs

associated with the decision
Td , and hence the organization’s

optimal cost functions are defined by

,(,)T T T Tv vV b v b l−= , and (2)

,(,)T T T v T vV b v b l− −− = . (3)

In development phase T-1, the organization’s optimal cost

function
1()TV −  must consider the effects of the organization’s

decision
1Td −
 on the expected costs in development phase T.

Since, Equations (2) and (3) define the minimum cost the

organization can expect to incur in development phase T for any

belief vector
Tb for each possible decision { , }T v vd  − , then to

determine
1()TV −  , the organization only needs to determine the

immediate expected cost of decision
1Td −
, determine the

transformation of
1Tb −
 into

Tb as a result of the decision
1Td −
,

and then use ,()T TV b v and (,)T TV b v− to determine the

minimum cost it can expect to incur in development phase T.

Hence, in development phase T-1, the organization’s optimal cost

function for its decision to verify is

1 1 11 , 11 min{ }(,) (,), (,)v T v T T TT T v vT TV b v b l b vV b vV− −− − − −− = + −

 (4)

and for its decision to not verify it is

1 1 11 min{ }(,) (,), (,)T T vT TT T vV v V Vb b v b v− − −− −− − = − . (5)

The organization’s optimal cost functions for all other

development phases can be determined in the same manner as

the one presented above for development phase T-1. For t T ,

assume that the organization has already determined the optimal

cost functions
1 1(,)t tV b v+ +

 and
1 1,)(t t vV b+ + − for development

phase 1t + . Then, in development phase t, the organization’s

optimal cost function for its decision to verify is defined by

1 1, min{ }(,) (,), (,)v t v v vt t t t t t tV bV Vb v b l b v v− + += + − (6)

and for its decision to not verify is defined by

1 1)min{ }(,) (, , (,)t vt t t tvtV b v b v b vV V+ +− −− = − . (7)

With the knowledge of the optimal cost functions for all

development phases, the organization can then determine the set

of optimal decision functions *

1

*

1 1{ ((}), ,)Td b bd . We illustrate

the procedure to determine *)(td  for a possible initial belief

vector 1b̂ . In phase 1, the optimal decision for the organization

is defined by

1

*

1 1 1 1 1
{ , }

() { (,)}ˆ ˆarg max
v vd

d bVb d
 −

= . (8)

If
*

1 1(ˆ) vbd = , then we know 2 1
ˆ ˆ

vb b= , else 2 1
ˆ ˆ

vb b −= holds

true. Since we know the organization’s starting belief in phase 2

is 2b̂ , it follows that

2

*

{ }
2 1 2 2 2

,
() { (,)}ˆ ˆarg max

v vd
d bVb d

 −
= . (9)

We then determine 3b̂ from *

2 1()d b and 2b̂ , and the process

repeats for all remaining development phases.

The formulation presented above to determine the

organization’s optimal verification strategy *

1

*

1 1{ ((}), ,)Td b bd

is similar in structure to partially observable Markov decision

processes (POMDPs) [47]. However, unlike POMDPs, our

model implicitly accounts for the observations. For a given set

of parameter values for our model, the optimal verification

strategy for the organization can be numerically determined

using standard solution algorithms for POMDPs after adjusting

for the differences in our model and the structure of POMDPs.

It is analytically intractable to derive a closed form

expression for *

1()td b that does not involve the maximum

function. Instead, we will seek to solve our model numerically

for a broad class of setup and rework cost functions to derive

insights on the optimal verification strategy. To so, we will use

the solution algorithm presented in the Appendix.

4. IS FREQUENT VERIFICATION OPTIMAL?
Frequent verification with respect to our model means that

the organization verifies the system design in all development

phases, irrespective of its belief in the true state of its system

design. In this section, we derive the conditions under which

frequent verification is an optimal strategy for the organization.

We begin with a numerical illustration of our model for six

different sets of values for the model parameters
tc ,

tr and
Fr .

The purpose of the numerical illustration is to show that frequent

verification is not an optimal strategy in general. After the

numerical illustration, we will derive theoretical lower bounds

for
tr and

Fr that must be satisfied to ensure frequent

verification is an optimal strategy for the organization.

4.1 Numerical illustration: when frequent verification
is not optimal

The change in
tc and

tr with respect to t can be broadly

defined as: 1) constant, 2) linearly increasing, and 3)

 6 © 2019 by ASME

exponentially increasing. Even if
tc is constant for the

requirement of interest, in most real-world cases,
tr will increase

with t as the design matures. Hence, we study the remaining six

combinations of the types of increase in
tc and

tr . We will refer

to each combination of the type of increase in
tc and

tr as a case.

The six cases are presented in Table 1.

TABLE 1: DESCRIPTION OF CASES FOR NUMERICAL

ILLUSTRATION

Case Type of increase

in
tc

Type of increase

in
tr

1 Constant Linear

2 Constant Exponential

3 Linear Linear

4 Linear Exponential

5 Exponential Linear

6 Exponential Exponential

For the numerical illustration we notionally consider 6T =

and 0.7 = . As mentioned before, we assume that the expected

cost of failure
F t tr rc + . Since

tr increases with t in all cases,

we select the value of
Fr to ensure

F T Tr c r + . The notional

values of
tc ,

tr and
Fr for each case are listed in Table 2.

TABLE 2: NOTIONAL PARAMETER VALUES

Case
tc

tr
Fr

1 $5000
$6000

+ $1000*t
$100,000

2 $5000 $7000*
2t $300,000

3
$4000

+ $1000*t

$6000

+ $1000*t
$300,000

4
$4000

+ $1000*t
$7000*

2t $300,000

5 $5000*
2t

$6000

+ $1000*t
$1,000,000

6 $5000*
2t $7000*

2t $1,000,000

The optimal verification strategies for the six cases were

numerically determined using the solution algorithm presented

in Section 3.4 with the aid of MATLAB®. For all six cases,

Figure 2 graphs the optimal decision function for the

organization, *)(td  , for each of the 6 development phases (on

the y-axis in each graph) given the organization’s initial belief in

the ideal state of the system design,
1 (on the x-axis for each

graph).

As shown in Figure 2, for cases 1, 3, and 5, the optimal

verification strategy for the organization is to verify the system

design in the final development phase, but not in any other

development phase, irrespective of the organization’s initial

belief in the ideal state of the system design,
1 . In case 2, the

optimal verification strategy requires the organization to verify

in the last development phase, in the first three development

phases depending on the value of
1 , but not in development

phases four and five. In case 4, the optimal verification strategy

for the organization is to verify the system design only in

development phases one, three and six. Finally, in case 6, the

optimal verification strategy for the organization is to verify in

first and last development phase, but not in any other

development phase.

FIGURE 2: OPTIMAL VERIFICATION STRATEGY FOR 6

NOTIONAL CASES

1
0 1

1

2

3

4

5

6

*)(td 

Case 1

1
0 1

1

2

3

4

5

6

*)(td 

Case 2

1
0 1

1

2

3

4

5

6

*)(td 

Case 3

1
0 1

1

2

3

4

5

6

*)(td 

Case 4

1
0 1

1

2

3

4

5

6

*)(td 

Case 5

1
0 1

1

2

3

4

5

6

*)(td 

Case 6

 7 © 2019 by ASME

The results of our numerical example suggest that when the

expected cost to correct the errors in design,
tr , increases

linearly, as in cases 1, 3 and 5, the optimal verification strategy

is to verify the system design once, in the final development

phase. Only when
tr increases exponentially with each

development phase, as in cases 2, 4 and 6, does our model

suggest that verifying the system design in a development phase

other than the final one can potentially be part of the optimal

verification strategy.

We hypothesize the cause of our numerical results with the

following examples. For the results of cases 1, 3 and 5, consider

an optical instrument with a requirement of interest being the

cleanliness of its observing surface. The setup cost for verifying

whether the sensor meets the requirement of interest may be

constant, linearly increasing or exponentially increasing,

depending on the design maturity. Due to the nature of the

requirement of interest, the cost of correction during integration

through to deployment just involves cleaning the surface. In this

scenario, our model suggests that the requirement of interest for

the sensor is to be verified once, in the final development phase,

to maximize the organization’s final confidence in the instrument

meeting the requirement of interest and minimizing verification

costs.

For cases 2, 4 and 6, consider a satellite’s solar panel with

the requirement of interest being that the panel provides certain

level of electrical power. The electrical power that the solar panel

will provide will depend on several factors, such as surface area

of the panel, efficiency of the solar cells, and survivability ratio

after vibration testing. Hence, choosing incorrect surface

dimensions for the solar panel in early phases may lead to costly

rework later in later development phases. Thus, verifying

whether the panel surface will accommodate sufficient solar cells

to meet the electrical power provision requirement should

probably be carried out in early development phases. However,

if the organization is confident of its design process to determine

panel surface so as to not requiring costly panel resizing in later

development phases, then perhaps it is not cost-effective for the

organization to verify the solar panel surface (i.e., requirement

of interest) in every development phase.

4.2 When is frequent verification optimal?
The results of the numerical example presented in Section

4.1 leads to the following question: if continuous verification of

the system design is not a requirement enforced by stakeholders,

under what conditions is it optimal for the organization to verify

the system design in all development phases irrespective of its

belief in the system design meeting the requirement of interest?

To answer this question, we now study our model analytically.

Let
,0tb and

,1tb denote the first and second element of belief

vector
tb , respectively. Consider development phase T. The

organization’s optimal cost functions for its two decisions in

development phase T are

,1 1()), (T T T T T TV cvb r  = − −−= , and (10)

,1), (1()T T T F TvV b r = − −= − . (11)

The organization will verify the system design in development

phase T only if
,1 ,1() (), ,T T T T T TV b V bv v = = −

1))((1T T T F Trc r   −− − − −

*1

1()T

F

T T

T

c

r r
 


  − =

−
. (12)

That is, the optimal verification strategy for the organization in

the final development phase is to verify the system design if
*

T T  . If * 1T  , then it is optimal for the organization to

verify the system design in the final development phase for all

values of
T . In turn, * 1T  only if

1
1 1()

F

T

T

c

r r
− 

−

1

T
T TF rr c

c 


+ + 

−
. (13)

Now, assume that Condition (13) is satisfied, and it is

optimal for the organization to verify the system design in the

final development phase. Consider development phase T-1. With

the prior knowledge that the organization will verify the system

design in the final development phase, the organization’s optimal

cost functions associated with its two decisions in development

phase T-1 are

1 1,1 1 1 1 1(,) (1))(1T T T T T T T TV b v c r c r   − − − − − −= = − − − − − − ,

 (14)

and

 2

1 1,1 1 1(,))(1T T T T T TV b v c r  − − − −= − = − − − . (15)

The organization will verify the system design only if

1 1,1 1 1 1,1 1(,) (,)T T T T T TV b v V b v − − − − − −= − =

2

1 1 1 1())(1) (1 1T T T T T T T Tc r c r c r    − − − − − − − − − − − − −

*1

1 1

1

1
1()T

T T

TT

c

r r
 

 
−

− −

−

  − =
−

. (16)

Once again, the verifying the system design in development

phase T-1 is always an optimal strategy only if *

1 1T −  . This in

turn implies 1

1

1
1 1()

T

T

T

c

r r 
−

−

− 
−

 1

1 1

1

1
()T

T T Trr c
c 

 
−

− − 
−

+ + . (17)

We see that it is optimal for the organization to verify the

system design in development phase T-1 only if the expected

repair cost in development phase T is greater than the lower

bound defined by Condition (17). Else, *

1 1T −  and it will be

 8 © 2019 by ASME

optimal for the organization to not verify the design for high

values of
1T −

.

Using the procedure presented above for development phase

T-1, we can derive the condition under which it is optimal for the

organization to verify the system design in development phase

t T . To this end, assume that it is optimal for the organization

to verify the system design in development phase 1t + . Then, the

optimal cost functions in development phase t are

, 11 1(,) (1)) (1t tt t t t t tV b v c r c r   + += = − − − − − − , and (18)

1

2

,1 1)(,) (1t t t tt tV b v c r  + += − = − − − . (19)

The organization will verify the system design if

,1 ,1(,) (,)t t t t ttV b v V b v = = −

1

*1
1()t

t t

t t

c

r r
 

 +

  − =
−

. (20)

Hence, verifying in development phase t is always an optimal

strategy if * 1t 

1

1

1
()t

t t t

c
rr c



 
+ + + 

−
. (21)

From Conditions (17) and (21), we see that the lower bound on

the expected repair cost is recursive in nature. Using induction

[48], we can further reduce Condition (21) as

1

1

1
()t

t t tr r c
c 

 
+ +

−
+

1

1 1 1

1 1

1 1
(())t t

t t t t

c
r c c

c
r

 

   
−

+ − −+ + + + 
− −

 1

1 1
1

1

(1)

t
j

t t t j
j

r
cr

 
+ + −

=

 +
−

 . (22)

Conditions (13) and (22) impose a theoretical lower bound

on the values of
Fr and

tr for frequent verification of the system

design to be an optimal verification strategy for the organization.

Previously, we had assumed that the expected cost of failure
Fr

is greater than
t tc r+ for all t. However, Condition (13) places a

stronger restriction for verification in the final development

phase to be an optimal strategy for all belief values
T : it is

necessary for
Fr to be greater than

T Tc r+ by a margin that is at

least equal to / (1)Tc  − . Similarly, Condition (22) suggests

that for frequent verification to be optimal,
tr must be far greater

than the sum of the expected repair cost in development phase 1

and the setup costs in development phases 1, , 1t − .

Consider again the 6 cases explored for the numerical

illustration in section 4.1. We see that the notional values for
Fr

satisfy Condition (13) for all six cases. Whereas, the notional

values for
tr do not satisfy Condition (22) for all cases. Hence,

we conclude that verification in the final development phase

being optimal for all cases in the numerical illustration resulted

from Condition (13) being satisfied.

Though Condition (22) was not satisfied for all cases, our

numerical results did not suggest that verification of the system

design in early development phases was sub-optimal. Indeed, in

cases 2, 4 and 6, where
tr increased exponentially, our results

suggest that verification in development phases other than the

last one is part of the optimal verification strategy. This leads us

to conjecture that as
tr approaches the theoretical bound defined

by Condition (22), verification in early development phases

becomes optimal for different belief values, and when
tr satisfies

Condition (22), verification in all development phases of the

system design is optimal.

It is reasonable to assume that in most real-world scenarios,

the expected cost of failure,
Fr , will satisfy Condition (13), and

it is optimal for the organization to verify the system design in

the final development phase. However, it is not necessary for

Condition (22) to be satisfied in all development phases. In such

scenarios, it is perhaps better to adopt a belief-based approach to

verification of the system design than follow conventional

wisdom and risk misallocating limited resources to “over-

verifying” the system design.

5. CONCLUSION
In this paper, we used a belief-based model to determine if

verifying a system frequently, using a single requirement as an

abstraction, is an optimal strategy. The results of our analysis

suggest that verifying the system design frequently is not an

optimal strategy in general, and it is optimal only when the

expected cost to correct errors in the system design increase at a

certain rate as the design matures. Two important limitations of

our model are that we assume that the organization’s confidence

in the correctness of its design activities (or predictability of its

design process) does not change as the design matures and we

focus only on a single system requirement. At this point, we

conjecture that relaxing the aforementioned constraints might

expand the space of scenarios where frequent verification is

optimal.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National

Science Foundation under Grant No. CMMI-1762883 and

CMMI-1762336.

APPENDIX
Assume that

tc ,
tr ,

Fr and  are given. Let
,, v T vT v l −=

and let
, ,v v T vT l −− = . Then, in phase T, the organization’s

optimal cost functions can be defined as

,min()(,) TT T T vbV b v = , and (23)

,min()(,)T T T T vbV b v  −− = . (24)

 9 © 2019 by ASME

The minimum function returns the lowest value of its vector

argument and its use is redundant in equations (23) and (24), but

this formulation will prove useful for the remaining development

phases.

In development phase 1T − , the organization’s optimal cost

function for its decision to verify can be defined as

1 1 1 1, 1 1min{ }(,) (,), (,)T T T v T v T T v T T vV b v b l V b v V b v− − − − − − −= + −

1 1),(T TbV v− −

1 1, 1 1, ,,min{ (), ()}T v T v v T vT vv vv T Tl lb b − − − − − − −=  + + .

Define
1 , ,1, , 1,(), ()][T v v T v v vT v T vT v vl l  − − − − − −= + + . Then,

optimal cost function for verifying the design in development

phase 1T − can be redefined as

1 1 1 1,min()(,)T T T T vV b v b − − − −= . (25)

Similarly, the optimal cost to not verify the system design in

development phase 1T − can be redefined as

1 1 1 1,min()(,)T T T T vV bb v − − − − −− = , (26)

where
, , ,1 [,]TT v v vv T v  − − −−− = .

Proceeding in manner presented above for development

phase 1T − , assume that the matrices
1,t v +

 and
1,t v + −

 have been

previously computed. Then, the organization’s optimal cost

functions in development phase t are defined by

,min()(,)t t t t vbV b v = , and (27)

,min()(,)t t t t vbV b v  −− = , (28)

where
, ,, 1 1,,(), ()][t vt v v t v v v t v t vvl l  + +− −−= + + and

, ,, 1 1[,]t v t vt v v v  − − −+ − += .

By computing the matrices
,t v and

,t v −
 for all

development phases, we can determine the organization’s

optimal cost function value for any belief vector
tb , and this in

turn enables us to determine the optimal verification strategy
* *

1 1 1{ (), ()}, Tdd b b . The space of all feasible initial belief

vectors
1b is uncountable. Hence, * *

1 1 1{ (), ()}, Tdd b b must be

computed for a finite set of belief vectors 1

1 1 },{ , Mb b =  that

reasonably discretizes the space of initial belief vectors. The

following table outlines the solution algorithm to numerically

solve our model assuming all parameter values and the set  is

known beforehand.

TABLE 3: SOLUTION ALGORITHM

Initialize

tc ,
tr ,

Fr ,  ,
v
,

v−
 ,

,t vl ,
t vl −

 and 

1 Set
, ,T v v T vl −= and

, ,T v v T vl − − −=

2 For 1t T= − ; 0t 

 2a Set
, ,, 1 1,,(), ()][t vt v v t v v v t v t vvl l  + +− −−= + +

2b Set
, ,, 1 1[,]t v t vt v v v  − − −+ − +=

2c Set 1t t= − , return to step 2

3 For each
1

xb  , Do

 3a Set
1

1 1b̂ b=

3b For 1t = ; t T

 3b-i Set *

1
{ , }

() { (,)}ˆ ˆarg max
t

t
d v v

t t td b bV d
 −

=

3b-ii If t T , then set

*

1

1

ˆ ˆif ()ˆ
ˆ otherwise

t v n

t

t v

b b
b

b

d v
+

−

 =



=



3b-iii Set 1t t= + , return to step 3b

 Return to step 3

REFERENCES

1. Salado, A., R. Nilchiani, and D. Verma, A contribution

to the scientific foundations of systems engineering:

Solution spaces and requirements. Journal of Systems

Science and Systems Engineering, 2017. 26(5): p. 549-

589.

2. Salado, A. and R. Nilchiani, On the Evolution of

Solution Spaces Triggered by Emerging Technologies.

Procedia Computer Science, 2015. 44: p. 155-163.

3. INCOSE, Systems Engineering Handbook: A Guide for

System Life Cycle Processes and Activities. version 4.0

ed. 2015, Hoboken, NJ, USA: John Wiley and Sons,

Inc.

4. Shabi, J., Y. Reich, and R. Diamant, Planning the

verification, validation, and testing process: a case

study demonstrating a decision support model. Journal

of Engineering Design, 2017. 28(3): p. 171-204.

5. Sage, A.P. and W.B. Rouse, Handbook of systems

engineering and management. 2014: John Wiley &

Sons.

6. Chang, T.-f., et al. "Continuous verification" in mission

critical software development. in Proceedings of the

Thirtieth Hawaii International Conference on System

Sciences. 1997. IEEE.

7. Klingstam, P. and B.-G. Olsson. Using simulation

techniques for continuous process verification in

industrial system development. in 2000 Winter

Simulation Conference Proceedings (Cat. No.

00CH37165). 2000. IEEE.

8. Maropoulos, P.G. and D. Ceglarek, Design verification

and validation in product lifecycle. CIRP annals, 2010.

59(2): p. 740-759.

9. Engel, A., Verification, validation, and testing of

engineered systems. Vol. 73. 2010: John Wiley & Sons.

 10 © 2019 by ASME

10. Engel, A. and M. Barad, A methodology for modeling

VVT risks and costs. Systems Engineering, 2003. 6(3):

p. 135-151.

11. McGarry, F. and G. Page, Performance evaluation of an

independent software verification and integration

process. NASA Goddard, Greenbelt, MD, SEL Sill 0,

1982.

12. Nagano, S., Space systems verification program and

management process: Importance of Implementing a

Distributed‐Verification Program with Standardized

Modular‐Management Process. Systems Engineering,

2008. 11(1): p. 27-38.

13. Powell, P.B., Software validation, verification, and

testing technique and tool reference guide. 1982.

14. Wallace, D.R. and R.U. Fujii, Software verification and

validation: an overview. Ieee Software, 1989. 6(3): p.

10-17.

15. Cook, T.D. and C.S. Reichardt, Qualitative and

quantitative methods in evaluation. 1979.

16. Lee, A.S., A scientific methodology for MIS case

studies. MIS quarterly, 1989: p. 33-50.

17. McCutcheon, D.M. and J.R. Meredith, Conducting case

study research in operations management. Journal of

Operations Management, 1993. 11(3): p. 239-256.

18. Tahera, K., C.F. Earl, and C.M. Eckert, Integrating

virtual and physical testing to accelerate the

engineering product development process. IJITM,

2014. 13(2/3): p. 154-175.

19. Barad, M. and A. Engel, Optimizing VVT strategies: a

decomposition approach. Journal of the Operational

Research Society, 2006. 57(8): p. 965-974.

20. Yamada, S., T. Ichimori, and M. Nishiwaki, Optimal

allocation policies for testing-resource based on a

software reliability growth model. Mathematical and

Computer Modelling, 1995. 22(10-12): p. 295-301.

21. Schipper, S., Diagnosing verification and validation

problems in public civil engineering projects: How"

building the right system right" can go wrong. 2016,

University of Twente.

22. Mendling, J., Empirical studies in process model

verification, in Transactions on petri nets and other

models of concurrency II. 2009, Springer. p. 208-224.

23. Ahmadi, R. and R.H. Wang, Managing development

risk in product design processes. Operations Research,

1999. 47(2): p. 235-246.

24. Goel, A.L. and K. Okumoto, Time-dependent error-

detection rate model for software reliability and other

performance measures. IEEE Transactions on

Reliability, 1979. 28(3): p. 206-211.

25. Hossain, S.A. and R.C. Dahiya, Estimating the

parameters of a non-homogeneous Poisson-process

model for software reliability. IEEE Transactions on

Reliability, 1993. 42(4): p. 604-612.

26. Ohba, M., Inflection S-shaped software reliability

growth model, in Stochastic Models in Reliability

Theory. 1984, Springer. p. 144-162.

27. Engel, A. and M. Last, Modeling software testing costs

and risks using fuzzy logic paradigm. Journal of

Systems and Software, 2007. 80(6): p. 817-835.

28. Ha, A.Y. and E.L. Porteus, Optimal timing of reviews in

concurrent design for manufacturability. Management

Science, 1995. 41(9): p. 1431-1447.

29. Loch, C.H., C. Terwiesch, and S. Thomke, Parallel and

sequential testing of design alternatives. Management

Science, 2001. 47(5): p. 663-678.

30. Thomke, S. and D.E. Bell, Sequential testing in product

development. Management Science, 2001. 47(2): p.

308-323.

31. Ullman, D.G. and T.A. Dietterich, Mechanical design

methodology: implications on future developments of

computer-aided design and knowledge-based systems.

Engineering with computers, 1987. 2(1): p. 21-29.

32. Agarwal, H., et al., Uncertainty quantification using

evidence theory in multidisciplinary design

optimization. Reliability Engineering & System Safety,

2004. 85(1-3): p. 281-294.

33. Thunnissen, D.P. Uncertainty classification for the

design and development of complex systems. in 3rd

annual predictive methods conference. 2003. Newport

Beach CA.

34. Christensen, B.T. and L.J. Ball, Fluctuating epistemic

uncertainty in a design team as a metacognitive driver

for creative cognitive processes. CoDesign, 2018.

14(2): p. 133-152.

35. Salado, A. and H. Kannan, A mathematical model of

verification strategies. Systems Engineering, 2018. 21:

p. 583-608.

36. Salado, A. and H. Kannan, Elemental patterns of

verification strategies. Systems Engineering, 2019.

22(5): p. 370-388.

37. Salado, A., H. Kannan, and F. Farkhondehmaal,

Capturing the Information Dependencies of

Verification Activities with Bayesian Networks, in

Conference on Systems Engineering Research (CSER).

2018: Charlottesville, VA, USA.

38. Xu, P. and A. Salado. A Concept for Set-based Design

of Verification Strategies. in INCOSE International

Symposium. 2019. Orlando, FL, USA.

39. Raymer, D., Aircraft design: a conceptual approach.

2012: American Institute of Aeronautics and

Astronautics, Inc.

40. Sommerville, I. and P. Sawyer, Requirements

engineering: a good practice guide. 1997: John Wiley

& Sons, Inc.

41. Smets, P., What is Dempster-Shafer’s model. Advances

in the Dempster-Shafer theory of evidence, 1994: p. 5-

34.

42. Smets, P., The transferable belief model and other

interpretations of Dempster-Shafer's model. arXiv

preprint arXiv:1304.1120, 2013.

43. Sentz, K. and S. Ferson, Combination of evidence in

Dempster-Shafer theory. Vol. 4015. 2002: Citeseer.

 11 © 2019 by ASME

44. Salado, A. An Elemental Decomposition of Systems

Engineering. in 2018 IEEE International Systems

Engineering Symposium (ISSE). 2018. IEEE.

45. Xu, P. and A. Salado. A Concept for Set‐based Design

of Verification Strategies. in INCOSE International

Symposium. 2019. Wiley Online Library.

46. Bertsekas, D.P., et al., Dynamic programming and

optimal control. Vol. 1. 1995: Athena scientific

Belmont, MA.

47. Sondik, E.J., The optimal control of partially

observable Markov processes over the infinite horizon:

Discounted costs. Operations Research, 1978. 26(2): p.

282-304.

48. Graham, R.L., et al., Concrete mathematics: a

foundation for computer science. Computers in

Physics, 1989. 3(5): p. 106-107.

