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Abstract— This paper presents robust adaptive quadratic
program (QP) based control using control Lyapunov and
barrier functions for nonlinear systems subject to time-varying
and state-dependent uncertainties. An adaptive estimation law
is proposed to estimate the pointwise value of the uncertainties
with pre-computable estimation error bounds. The estimated
uncertainty and the error bounds are then used to formulate a
robust QP, which ensures that the actual uncertain system will
not violate the safety constraints defined by the control barrier
function. Additionally, the accuracy of the uncertainty estima-
tion can be systematically improved by reducing the estimation
sampling time, leading subsequently to reduced conservatism of
the formulated robust QP. The proposed approach is validated
in simulations on an adaptive cruise control problem and
through comparisons with existing approaches.

I. INTRODUCTION

Control Lyapunov functions (CLFs) provide a rigorous

approach to analyze the closed-loop stability and synthesize

stabilizing control signals for nonlinear systems without

resorting to an explicit feedback control law, [1], [2]. They

also facilitate optimization based control, e.g. via Quadratic

Programs (QPs) [3], which could explicitly consider input

constraints. On the other hand, inspired by the barrier func-

tions that are used to certify the forward invariance of a

set, control barrier functions (CBFs) are proposed to design

feedback control laws to ensure that the system states stay in

a safe set [4]. Unification of CLF and CBF conditions into

a single QP was studied in [5], which allows compromising

the CLF-defined control objectives to enforce safety.

Due to reliance on dynamic models, the performance of

CLF and/or CBF based control is deteriorted in the presence

of model uncertainties and disturbances. As an example,

the safety constraints defined using CBF and a nominal

model may be violated in the presence of uncertainties and

disturbances. The paper [6] studied the robustness of CBF

based control in the presence of bounded disturbance and es-

tablished formal bounds on violation of the CBF constraints.

Input-to-state safety in the presence of input disturbance was

studied in [7] to ensure system states stay in a set that is

close to the original safe set. However, in practice, safety

constraints may often need to be strictly enforced. Towards

this end, adaptive CBF approaches were proposed in [8],

[9] for systems with parametric uncertainties. Robust CLF
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and CBF based control was explored in [10], where the

state-dependent uncertainties were assumed to have known

uncertainty bounds that were used to formulate robust con-

straints. This approach can be rather conservative, as the

uncertainty bounds need to hold in the entire set of admis-

sible states, which can be overly large. Bayesian learning

based approaches using Gaussian process regression (GPR)

were also proposed to learn state-dependent uncertainties and

subsequently use the learned model to enforce probabilistic

safety constraints [11], [12]. Nevertheless, the expensive

computation associated with GPR prohibits the use of these

approaches for real-time control; additionally, the predicted

uncertainty for a state far away from the collected data points

can be quite poor, leading to overly conservative performance

or even infeasible QP problems.

We present an adaptive estimation based approach to

design of CLF and CBF based controllers via QPs in

the presence of time-varying and state-dependent nonlinear

uncertainties, while strictly enforcing the safety constraints.

With the proposed estimation scheme, the pointwise value

of the uncertainties can be estimated with pre-computable

error bounds. The estimated uncertainty and the error bounds

are then used to formulate a QP with robust constraints. We

also show that by reducing the estimation sampling time, the

estimated uncertainty can be arbitrarily accurate after a single

sampling interval, which implies that the conservatism of the

robust constraints can be arbitrarily small. The effectiveness

of the approach is demonstrated on an automotive cruise

control (ACC) problem in simulations.

We denote the n-dimensional real vector space by R
n. Let

Zi and Z
n
1 denote the integer sets {i, i + 1, i + 2, · · · } and

{1, 2, · · · , n}, respectively. We use‖·‖ (‖·‖
∞

) to denote the

2-norm (∞-norm ) of a vector or a matrix.

II. PRELIMINARIES

Consider a nonlinear control-affine system

ẋ = f(x) + g(x)u+ d(t, x), x(0) = x0, (1)

where x ∈ X ⊂ R
n, u ∈ U ⊂ R

m, f : R
n → R

n

and g : R
n → R

m are known and locally Lipschitz

continuous functions, d(t, x) represents the time-varying and

state-dependent uncertainties. Suppose X is a compact set,

and the control constraint set U is defined as U , {u ∈
R

m : u ≤ u ≤ ū}, where u, ū ∈ R
m denote the lower and

upper bounds of all control channels, respectively. Hereafter,

we sometimes write d(t, x) as d for brevity.



Assumption 1. There exist positive constants ld, lt, bd such

that for any x, y ∈ X and t, τ ≥ 0, the following inequalities

hold:

∥
∥d(t, x)− d(τ, y)

∥
∥ ≤ ld ‖x− y‖+ lt|t− τ | , (2)

∥
∥d(t, 0)

∥
∥ ≤ bd. (3)

Moreover, the constants ld, lt and bd are known.

Remark 1. This assumption essentially indicates that the

growth rate of the uncertainty d is bounded so that it can

be estimated by the estimation law (to be presented in

Section III-A) with quantifiable error bounds.

Lemma 1. Given Assumption 1, for any t ≥ 0, x ∈ X and

u ∈ U , we have

∥
∥d(t, x)

∥
∥ ≤ θ,

∥
∥ẋ(t)

∥
∥ ≤ φ, (4)

where

θ , ld max
x∈X

‖x‖+ bd, (5)

φ , max
x∈X,u∈U

∥
∥f(x) + g(x)u

∥
∥+ θ. (6)

Proof. Note that

∥
∥d(t, x)

∥
∥=

∥
∥d(t, x)− d(t, 0) + d(t, 0)

∥
∥

≤ ld‖x‖+
∥
∥d(t, 0)

∥
∥ ≤ ld‖x‖+ bd = θ,

where the two inequalities hold due to (2) and (3) in

Assumption 1. Therefore, the dynamics (1) implies that

‖ẋ‖≤
∥
∥f(x) + g(x)u

∥
∥+

∥
∥d(t, x)

∥
∥

≤ max
x∈X,u∈U

∥
∥f(x) + g(x)u

∥
∥+ θ = φ.

The proof is complete.

A. Control Lyapunov Function

Control Lyapunov function (CLF) provides a way to

analyze the closed-loop stability and synthesize a stabilizing

control signal without constructing an explicit control law

[1], [2]. A formal definition of CLF is given as follows.

Definition 1. A continuously differentiable function V :
R

n → R is a CLF for the system (1), if it is positive definite

and there exists a class K1 function α(·) such that

inf
u∈U

{LfV (x) + LgV (x)u+ Vx(x)d} ≤ −α(V (x)), (7)

for all t ≥ 0 and all x ∈ X , where Vx(x) ,
∂V (x)
∂x

,

LfV (x) , ∂V (x)
∂x

f(x) and LgV (x) , ∂V (x)
∂x

g(x).

Definition 1 allows us to consider the set of all stabilizing

control signals for every point x ∈ X and t ≥ 0:

Kclf(t, x) , {u ∈ U : LfV (x)+LgV (x)u+Vx(x)d(t, x)

≤ −α(V (x))}. (8)

1A function α : [0, a) → [0,∞) is said to belong to class K for some
a > 0, if it is strictly increasing and α(0) = 0.

B. Control Barrier Function

CBFs are introduced to ensure forward invariance (often

termed as safety in the literature) of a set, defined as some

superlevel set of a function: C , {x ∈ X : h(x) ≥ 0},
where h : Rn → R is a continuously differentiable function.

A formal definition of CBF is stated as follows [5].

Definition 2. A continuously differentiable function h :
R

n → R is a (zeroing) CBF for the system (1), if there

exists an extended class K function2 β(·) such that

sup
u∈U

{Lfh(x) + Lgh(x)u+ hx(x)d} ≥ −β(h(x)), (9)

for all x ∈ X and all t ≥ 0, where hx(x) ,
∂h(x)
∂x

, Lfh(x) ,
∂h(x)
∂x

f(x) and Lgh(x) ,
∂h(x)
∂x

g(x).

The existence of a CBF satisfying (9) ensures that if

x(0) ∈ C, i.e. h(x) ≥ 0, then there exists a control law

u(t) ∈ U such that for all t ≥ 0, x(t) ∈ C. Similarly,

Definition 2 allows us to consider all control signals for each

x ∈ X and t ≥ 0 that render C forward invariant:

Kcbf(t, x) , {u ∈ U : Lfh(x) + Lgh(x)u+ hx(x)d

≥ −β(h(x))}. (10)

Remark 2. Definitions 1 and 2 utilize the true uncertainty

d, which is not accessible in real applications. Therefore, it

is impossible to verify whether a given function is a CLF

(CBF) according to Definition 1 (Definition 2).

One way to resolve this issue is to derive a sufficient

and verifiable condition for (7) or (9) using the worst-case

bound on the uncertainty d in (4). The following lemma gives

such conditions. The proof is straightforward considering

the bound on d in (4) and subsequently the inequalities

Vx(x)d ≤
∥
∥Vx(x)

∥
∥ θ and hx(x)d ≤

∥
∥hx(x)

∥
∥ θ.

Lemma 2. A continuously differentiable function V : Rn →
R is a CLF for the uncertain system (1) under Assumption 1,

if it is positive definite and there exists a class K function

α(·) such that

inf
u∈U

{LfV (x) + LgV (x)u+
∥
∥Vx(x)

∥
∥ θ} ≤ −α(V (x)), (11)

for all t ≥ 0 and all x ∈ X . Similarly, a continuously

differentiable function h : Rn → R is a (zeroing) CBF for

the uncertain system (1) under Assumption 1, if there exists

an extended class K function β(·) such that

sup
u∈U

{Lfh(x) +Lgh(x)u−
∥
∥hx(x)

∥
∥ θ} ≥ −β(h(x)), (12)

for all x ∈ X and all t ≥ 0.

C. Standard QP Formulation

The admissible sets of control signals defined in (8) and

(10) inspire optimization based control. Recent work shows

2A function β : (−b, a) → (−∞,∞) is said to belong to extended class

K for some a, b > 0, if it is strictly increasing and β(0) = 0.



that CLF and CBF conditions can be unified into a QP [5]:

u?(t, x) = argmin
(u,δ)∈Rm+1

1

2
uTH(x)u+ pδ2 (QP)

s.t. LfV (x) + LgV (x)u+ Vx(x)d+ α(V (x)) < δ, (13)

Lfh(x) + Lgh(x)u+ hx(x)d+ β(h(x)) > 0, (14)

u ∈ U, (15)

where H(x) is a (pointwise) positive definite matrix and

δ is a positive constant to relax the CLF constraint that is

penalized by p > 0. In this formulation, the CBF condition

is often associated with safety and therefore is imposed as

a hard constraint. In contrast, the CLF constraint is related

to control objective (e.g. tracking a reference) and could be

relaxed to ensure the feasiblity of the QP when safety is a

major concern. Therefore, it is imposed as a soft constraint.

Remark 3. The constraints (13) and (14) in (QP) depend on

the true uncertainty d, which makes (QP) not implementable

in practice. Although the worst-case bound (4) can be used

to derive a robust version of (13) and (14) as done in [10],

the resulting constraints can be overly conservative, as shown

in Section IV.

III. ROBUST ADAPTIVE QP CONTROL USING CLBFS

In this section, we first introduce adaptive estimation

laws to estimate the uncertainty with pre-computable error

bounds, which can be systematically improved by reducing

the estimation sampling time. We then show how the esti-

mated uncertainty, as well as the error bounds, can be used to

formulate a robust QP, while the introduced conservatism can

be arbitrarily reduced, subject to only hardware limitations.

A. Adaptive Estimation of the Uncertainty

We extend the piecewise-constant adaptive (PWCA) law

in [13, Section 3.3] to estimate the pointwise value of

the uncertainty d(t, x(t)) at each time instant t. Similar

results are available in [14] which considers control non-

affine dynamics under slightly more sophisticated assump-

tions about the uncertainty, and in [15] which considers the

nominal dynamics described by a linear parameter-varying

model. The PWCA law consists of two elements, namely, a

state predictor and an adaptive law, which are explained as

follows. The state predictor is defined as:

˙̂x = f(x) + g(x)u+ d̂(t)− ax̃, x̂(0) = x0, (16)

where x̃ , x̂ − x is the prediction error, a is an arbitrary

positive constant. A discussion about the role of a available

in [15]. The adaptive estimation, d̂(t), is updated in a

piecewise-constant way:






d̂(t) = d̂(iT ), t ∈ [iT, (i+ 1)T ),

d̂(iT ) = − a

eaT − 1
x̃(iT ),

(17)

where T is the estimation sampling time, and i = 0, 1, 2, · · · .

Remark 4. Note that the PWCA law is not trying to estimate

the analytic expression of the uncertainty; instead it estimates

the pointwise value of the uncertainty at each time instant.

Next, we will show in Section III that the estimated pointwise

value of the uncertainty can be used to formulate a new QP

with robust constraints.

Let us first define:

γ(T ) , 2
√
nηT +

√
n(1− e−aT )θ, (18)

η , lt + ldφ, (19)

where θ and φ are defined in (5) and (6), respectively. We

next establish the estimation error bounds associated with

the estimation scheme in (16) and (17).

Lemma 3. Given the dynamics (1), and the estimation law

in (16) and (17), subject to Assumption 1, the estimation

error can be bounded as
∥
∥
∥d̂(t)− d(t, x(t))

∥
∥
∥ ≤

{
θ, ∀ 0 ≤ t < T,
γ(T ), ∀ t ≥ T,

(20)

Moreover, limT→0 γ(T ) = 0.

Proof. See Appendix.

Remark 5. Lemma 3 implies that the uncertainty estimation

can be made arbitrarily accurate for t ≥ T , by reducing T ,

the latter only subject to hardware limitations. Additionally,

the estimation cannot be arbitrarily accurate for t ∈ [0, T ).
This is because the estimate in [0, T ) depends on x̃(0)
according to (17). Considering that x̃(0) is purely determined

by the initial state of the system, x0, and the initial state of

the predictor, x̂0, it does not contain any information of the

uncertainty. Since T is usually very small in practice, lack

of a tight estimation error bound for the interval [0, T ) will

not cause an issue from a practical point of view.

B. Robust Adaptive QP Formulation

Let

ΨV (t, x, u) ,LfV (x) + LgV (x)u+ Vx(x)d̂(t),

+
∥
∥Vx(x)

∥
∥ γ(T ), (21)

Ψh(t, x, u) ,Lfh(x) + Lgh(x)u+ hx(x)d̂(t),

−
∥
∥hx(x)

∥
∥ γ(T ). (22)

We are ready to present the main result in the following

theorem.

Theorem 1. For any t ≥ T ,

1) the condition

inf
u∈U

ΨV (t, x, u) ≤ −α(V (x)) (23)

is a sufficient condition for (7), and also a necessary

condition for (7) when T → 0.

2) the condition

sup
u∈U

Ψh(t, x, u) ≥ −β(h(x)) (24)

is a sufficient condition for (9), and also a necessary

condition for (9) when T → 0.

Proof. Due to space limit, we only prove 2), while 1) can

be proved analogously. For proving that (24) is sufficient for



(9), comparison of (9) and (24) indicates that we only need

to show hx(x)d(t, x) ≥ hx(x)d̂(t) −
∥
∥hx(x)

∥
∥ γ(T ) for any

t ≥ T . The preceding inequality actually holds since

hx(x)d(t, x) = hx(x)
(

d̂(t) + d(t, x)− d̂(t)
)

≥ hx(x)d̂(t)−
∥
∥hx(x)

∥
∥

∥
∥
∥d(t, x)− d̂(t)

∥
∥
∥

≥ hx(x)d̂(t)−
∥
∥hx(x)

∥
∥ γ(T ),

where the last inequality is due to the bound in (20). For

proving the necessity, we notice that when T → 0, d̂(t) →
d(t, x) for any t ≥ T according to Lemma 3, which implies

that (LHS) of (9) equates (LHS) of (24) considering (22).

Therefore, (24) is also a necessary condition for (9) for t ≥ T
when T → 0.

Remark 6. Theorem 1 indicates that the condition (23) ((24))

that depends on the adaptive estimation is always a sufficient

condition for (7) ((9)) that depends on the true uncertainty

for t ≥ T . Additionally, the conservatism of the condition

(23) or (24) can be arbitrarily reduced by reducing T .

With the inequalities (23) and (24) that depend on the

adaptive estimation of the uncertainty, we can formulate a

robust QP, which we call Ra-QP:

u?(t, x) = argmin
(u,δ)∈Rm+1

1

2
uTH(x)u+ pδ2 (Ra-QP)

s.t. ΨV (t, x, u) + α(V (x)) < δ, (25)

Ψh(t, x, u) + β(h(x)) > 0, (26)

u ∈ U. (27)

Here, ΨV and Ψh are defined in (21) and (22), respectively.

Remark 7. The estimation sampling time T can be dif-

ferent from the sampling time Tqp for solving the (Ra-

QP) problem. Considering the effect of T on the estimation

accuracy, as well as the relatively low computational cost

of the adaptive estimation compared to solving the (Ra-QP)

problem, T can be set much smaller than Tqp.

IV. SIMULATION RESULTS

In this section, we validate the theoretical development

using the adaptive cruise control (ACC) problem from [5].

A. ACC Problem Setting

The lead and following vehicles are modeled as point

masses moving on a straight road. The following vehicle

is equipped with an ACC system, and and its objective is to

cruise at a given constant speed, while maintaining a safe

following distance as specified by a time headway. Let vl
and vf denote the speeds (in m/s) of the lead car and the

following car, respectively, and D be the distance (in m)

between the two vehicles. Denoting x = [vl, vf , D] as the

system state, the dynamics of the system can be described

as





v̇l
v̇f
Ḋ




 =





al
0

vl − vf





︸ ︷︷ ︸

f(x)

+





0
1/m
0





︸ ︷︷ ︸

g(x)

u+





0
−Fr/m+ d0(t)

0





︸ ︷︷ ︸

d(t,x)

, (28)

TABLE I: Parameter Settings

g 9.81 Ns2/m f2 0.25 Ns2/m τd 1.8 s p 100
m 1650 kg vd 22 m/s Tqp 0.01 s α(V ) 5V
f0 0.1 N x(0) [18 12 80] T 1 ms β(h) h
f1 5 Ns/m umax 0.4 mg a 1

TABLE II: γ(T ) versus T

T 10 ms 1 ms 0.1 ms 0.01 ms
γ(T ) 2.98 0.298 0.0298 0.00298

where u and m are the control input and the mass of the

following car, respectively, al is the acceleration of the lead

car, Fr = f0 + f1vf + f2v
2
f is the aerodynamic drag term

with unknown constants f0, f1 and f2, d0(t) is an external

disturbance term (reflecting the unmodeled road condition or

aerodynamic force).

The safety constraint requires the following car to keep

a safe distance from the lead car, which can be expressed

as D/vf ≥ τd with τd being the desired time headway.

Defining the function h = D − τdvf , the safety constraint

can be expressed as h ≥ 0. In terms of control objective,

the following car should achieve a desired speed vd when

adequate headway is ensured. This objective naturally leads

to the CLF, V = (vf − vd)
2.

The parameters used in the simulation are shown in Ta-

ble I, where m, f0, f1, f2, τd are selected following [5]. The

disturbance is set to d0(t) = 0.2g sin(2π10t) following [6].

The input constraints are set to −umax ≤ u ≤ umax, where

umax = 0.4 mg with g being the gravitational constant.

B. Uncertainty Estimation Setting

According to (18), given the estimation sampling time T ,

one would like to obtain the smallest values of the constants

in Assumption 1 to get the tightest estimation error bound,

γ(T ). For this ACC problem, the constants in Assumption 1

are selected as

lt = (0.2g(2π)10)ξ, ld = (f1 + 2f2vmax)ξ, bd = (0.2g)ξ,

where vmax = 160 km/h is the maximum speed considered,

ξ ≥ 1 is a constant to reflect the conservatism in estimating

the constants lt, ld and bd that satisfy (2) and (3) in Assump-

tion 1. We set ξ = 2. We further set a = 1 in (16). With

this setting, the estimation error bounds under different T
are computed according to (18) and listed in Table II. For

the simulation results in Section IV-D, T = 1 ms is selected.

C. QP Setting

We consider several QP controllers:

• A standard QP controller defined by (QP) using the true

uncertainty d(t, x),
• A standard QP controller ignoring the uncertainty, ob-

tained by setting d(t, x) ≡ 0 in (QP),

• A robust QP (R-QP) controller proposed in [10] using

the worst-case bound on d(t, x) in (4), which was

obtained by setting d̂(t) ≡ 0 in (Ra-QP), and

• A robust adaptive QP (Ra-QP) controller from (Ra-QP).





Since x̃(t) is continuous, the preceding equation implies

x̃((i+ 1)T ) = e
−aT

x̃(iT ) +

∫ (i+1)T

iT

e
−a((i+1)T−τ)

dτ d̂(iT )

−
∫ (i+1)T

iT

e
−a((i+1)T−τ)

d(τ)dτ.

= e
−aT

x̃(iT ) +
1

a
(1− e

−aT )d̂(iT )

−
∫ (i+1)T

iT

e
−a((i+1)T−τ)

d(τ)dτ

= −
∫ (i+1)T

iT

e
−a((i+1)T−τ)

d(τ)dτ, (31)

where the first and last equalities are due to the estimation law (17).

Since x(t) is continuous, d(t, x) is also continuous given

Assumption 1. Furthermore, considering that e−a((i+1)T−τ)

is always positive, we can apply the first mean value theorem

in an element-wise manner3 to (31), which leads to

x̃((i+ 1)T ) =−
∫ (i+1)T

iT

e−a((i+1)T−τ)dτ [dj(τ
∗
j )]

=− 1

a
(1− e−aT )[dj(τ

∗
j )], (32)

for some τ∗j ∈ (iT, (i+1)T ) with j ∈ Z
n
1 and i ∈ Z0, where

dj(t) is the j-th element of d(t), and

[dj(τ
∗
j )] , [d1(τ

∗
1 ), · · · , dn(τ∗n)]>.

The adaptive law (17) indicates that for any t in [(i+1)T, (i+
2)T ), we have d̂(t) = − a

eaT−1 x̃((i + 1)T ). The preceding

equality and (32) imply that for any t in [(i+1)T, (i+2)T )
with i ∈ Z0, there exist τ∗j ∈ (iT, (i + 1)T ) (j ∈ Z

n
1 ) such

that

d̂(t) = e−aT [dj(τ
∗
j )]. (33)

Note that
∥
∥
∥d(t))− [dj(τ

∗
j )]

∥
∥
∥ ≤

√
n
∥
∥
∥d(t)− [dj(τ

∗
j )]

∥
∥
∥
∞

=
√
n
∣
∣
∣dj̄t(t)− dj̄t(τ

∗

j̄t
)
∣
∣
∣ ≤

√
n
∥
∥
∥d(t)− d(τ∗j̄t)

∥
∥
∥ , (34)

where j̄t = argmaxj∈Z
n
1

∣
∣
∣dj(t)− dj(τ

∗
j )
∣
∣
∣. Similarly, we

have

∥

∥[dj(τ
∗

j )]
∥

∥ ≤
√
n
∥

∥[dj(τ
∗

j )]
∥

∥

∞

=
√
n
∣

∣

∣
dj̄(τ

∗

j̄ )
∣

∣

∣
≤

√
n
∥

∥

∥
d(τ∗

j̄ )
∥

∥

∥
,

(35)

where j̄ = argmaxj∈Z
n
1

∣
∣
∣dj(τ

∗
j )
∣
∣
∣. Therefore, for any t ∈

[(i+ 1)T, (i+ 2)T ) (i ∈ Z0), we have

∥
∥
∥d(t)− d̂(t)

∥
∥
∥ =

∥
∥
∥d(t)− e−aT [dj(τ

∗
j )]

∥
∥
∥

≤
∥
∥
∥d(t)− [dj(τ

∗
j )]

∥
∥
∥+ (1− e−aT )

∥
∥
∥[dj(τ

∗
j )]

∥
∥
∥

≤
√
n
∥
∥
∥d(t)− d(τ∗j̄t)

∥
∥
∥+ (1− e−aT )

√
n
∥
∥
∥d(τ∗j̄ )

∥
∥
∥ , (36)

3Note that the mean value theorem for definite integrals does not hold
for vector-valued functions.

for some τ∗
j̄t

∈ (iT, (i + 1)T ) and τ∗
j̄

∈ (iT, (i + 1)T )),
where the equality is due to (33), and the last inequality is
due to (34) and (35). The inequality (4) implies that
∥

∥

∥
x(t)− x(τ∗

j̄t
)
∥

∥

∥
≤

∫ t

τ∗

j̄t

∥

∥ẋ(τ)
∥

∥ dτ ≤
∫ t

τ∗

j̄t

φdτ = φ(t− τ
∗

j̄t
).

The preceding inequality and (2) indicate that
∥

∥

∥
d(t, x(t))− d(τ∗

j̄t
, x(τ∗

j̄t
))
∥

∥

∥
≤ lt(t− τ

∗

j̄t
) + ld

∥

∥

∥
x(t)− x(τ∗

j̄t
)
∥

∥

∥

≤(lt + ldφ)(t− τ
∗

j̄t
) = η(t− τ

∗

j̄t
) ≤ 2ηT, (37)

where η is defined in (19), and the last inequality is due to

the fact that t ∈ [(i+1)T, (i+2)T ) and τ∗
j̄t
∈ (iT, (i+1)T ).

Finally, plugging (37) into (36) leads to
∥

∥

∥
d(t, x(t))− d̂(t)

∥

∥

∥
≤ 2

√
nηT +

√
n(1− e

−aT )
∥

∥

∥
d(τ∗

j̄ , x(τ
∗

j̄ ))
∥

∥

∥

≤ 2
√
nηT +

√
n(1− e

−aT )θ = γ(T ), ∀t ≥ T, (38)

where the second inequality is due to (4). From (30) and (38),

we arrive at (20). Considering that X and U are compact,

the constants θ (defined in (5)), φ (defined in (6)) and η
(defined in (19)) are all finite, the definition of γ(T ) in (18)

immediately implies limT→0 γ(T ) = 0.

REFERENCES

[1] E. D. Sontag, “A Lyapunov-like characterization of asymptotic con-
trollability,” SIAM J. Control Optim., vol. 21, no. 3, pp. 462–471,
1983.

[2] Z. Artstein, “Stabilization with relaxed controls,” Nonlinear Analy-

sis: Theory, Methods & Applications, vol. 7, no. 11, pp. 1163 – 1173,
1983.

[3] K. Galloway, K. Sreenath, A. D. Ames, and J. W. Grizzle, “Torque sat-
uration in bipedal robotic walking through control Lyapunov function-
based quadratic programs,” IEEE Access, vol. 3, pp. 323–332, 2015.
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