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Abstract—This paper presents robust adaptive quadratic
program (QP) based control using control Lyapunov and
barrier functions for nonlinear systems subject to time-varying
and state-dependent uncertainties. An adaptive estimation law
is proposed to estimate the pointwise value of the uncertainties
with pre-computable estimation error bounds. The estimated
uncertainty and the error bounds are then used to formulate a
robust QP, which ensures that the actual uncertain system will
not violate the safety constraints defined by the control barrier
function. Additionally, the accuracy of the uncertainty estima-
tion can be systematically improved by reducing the estimation
sampling time, leading subsequently to reduced conservatism of
the formulated robust QP. The proposed approach is validated
in simulations on an adaptive cruise control problem and
through comparisons with existing approaches.

I. INTRODUCTION

Control Lyapunov functions (CLFs) provide a rigorous
approach to analyze the closed-loop stability and synthesize
stabilizing control signals for nonlinear systems without
resorting to an explicit feedback control law, [1], [2]. They
also facilitate optimization based control, e.g. via Quadratic
Programs (QPs) [3], which could explicitly consider input
constraints. On the other hand, inspired by the barrier func-
tions that are used to certify the forward invariance of a
set, control barrier functions (CBFs) are proposed to design
feedback control laws to ensure that the system states stay in
a safe set [4]. Unification of CLF and CBF conditions into
a single QP was studied in [5], which allows compromising
the CLF-defined control objectives to enforce safety.

Due to reliance on dynamic models, the performance of
CLF and/or CBF based control is deteriorted in the presence
of model uncertainties and disturbances. As an example,
the safety constraints defined using CBF and a nominal
model may be violated in the presence of uncertainties and
disturbances. The paper [6] studied the robustness of CBF
based control in the presence of bounded disturbance and es-
tablished formal bounds on violation of the CBF constraints.
Input-to-state safety in the presence of input disturbance was
studied in [7] to ensure system states stay in a set that is
close to the original safe set. However, in practice, safety
constraints may often need to be strictly enforced. Towards
this end, adaptive CBF approaches were proposed in [8],
[9] for systems with parametric uncertainties. Robust CLF
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and CBF based control was explored in [10], where the
state-dependent uncertainties were assumed to have known
uncertainty bounds that were used to formulate robust con-
straints. This approach can be rather conservative, as the
uncertainty bounds need to hold in the entire set of admis-
sible states, which can be overly large. Bayesian learning
based approaches using Gaussian process regression (GPR)
were also proposed to learn state-dependent uncertainties and
subsequently use the learned model to enforce probabilistic
safety constraints [11], [12]. Nevertheless, the expensive
computation associated with GPR prohibits the use of these
approaches for real-time control; additionally, the predicted
uncertainty for a state far away from the collected data points
can be quite poor, leading to overly conservative performance
or even infeasible QP problems.

We present an adaptive estimation based approach to
design of CLF and CBF based controllers via QPs in
the presence of time-varying and state-dependent nonlinear
uncertainties, while strictly enforcing the safety constraints.
With the proposed estimation scheme, the pointwise value
of the uncertainties can be estimated with pre-computable
error bounds. The estimated uncertainty and the error bounds
are then used to formulate a QP with robust constraints. We
also show that by reducing the estimation sampling time, the
estimated uncertainty can be arbitrarily accurate after a single
sampling interval, which implies that the conservatism of the
robust constraints can be arbitrarily small. The effectiveness
of the approach is demonstrated on an automotive cruise
control (ACC) problem in simulations.

We denote the n-dimensional real vector space by R™. Let
Z; and Z} denote the integer sets {4,7 + 1,4 + 2,---} and
{1,2,--- ,n}, respectively. We use ||| (||-||, ) to denote the
2-norm (oo-norm ) of a vector or a matrix.

II. PRELIMINARIES

Consider a nonlinear control-affine system

&= f(2) + gle)u + d(t,z), 2(0) = o, (1)

where z € X C R, u e U C R™, f : R — R"
and ¢ R™ — R™ are known and locally Lipschitz
continuous functions, d(t, x) represents the time-varying and
state-dependent uncertainties. Suppose X is a compact set,
and the control constraint set U is defined as U = {u €
R™ :u < u < @}, where u, @ € R™ denote the lower and
upper bounds of all control channels, respectively. Hereafter,
we sometimes write d(t,z) as d for brevity.



Assumption 1. There exist positive constants l4, [;, bg such
that for any x,y € X and ¢, 7 > 0, the following inequalities
hold:

|d(t,z) —d(r,y)|| < lallx =yl + Lt — 7|,

[|d(t,0)|| < ba-

2
3)

Moreover, the constants [y, I; and by are known.

Remark 1. This assumption essentially indicates that the
growth rate of the uncertainty d is bounded so that it can
be estimated by the estimation law (to be presented in
Section III-A) with quantifiable error bounds.

Lemma 1. Given Assumption 1, for any t > 0, x € X and
u € U, we have

ldt,2)|| <6, [l#@t)] < ¢, )
where
0= 1q I;lea)?HxH + ba, 5)
¢ £ max || f(z)+ g(x)ul| + 6. (6)

zeX,uclU

Proof. Note that

d(t, )||= | d(t, z) — d(t,0) + d(t,0)||
< lgllz|| +]|d(t, 0)|| < lallz]| + ba = 0,

where the two inequalities hold due to (2) and (3) in
Assumption 1. Therefore, the dynamics (1) implies that

< |1f (@) H+Hd<t7x>H
< me%aerHf oyl +0=0.
The proof is complete. O

A. Control Lyapunov Function

Control Lyapunov function (CLF) provides a way to
analyze the closed-loop stability and synthesize a stabilizing
control signal without constructing an explicit control law
[1], [2]. A formal definition of CLF is given as follows.

Definition 1. A continuously differentiable function V :
R™ — R is a CLF for the system (1), if it is positive definite
and there exists a class ' function a(-) such that

u
for all + > 0 and all * € X, where V,(x) = 8%55”)7

LyV(x) & 75 f () and LV (x) & 75 g(x).
Definition 1 allows us to consider the set of all stabilizing
control signals for every point z € X and ¢ > O:
Kae(t,z) 2 {u € U : LyV(2)+ L,V (z)u+Vy(z)d(t, x)
< —a(V(z))}. ®)

A function « : [0,a) — [0, 00) is said to belong to class K for some
a > 0, if it is strictly increasing and c(0) = 0.

B. Control Barrier Function

CBFs are introduced to ensure forward invariance (often
termed as safety in the literature) of a set, defined as some
superlevel set of a function: C £ {z € X : h(x) > 0},
where h : R™ — R is a continuously differentiable function.
A formal definition of CBF is stated as follows [5].

Definition 2. A continuously differentiable function h :
R™ — R is a (zeroing) CBF for the system (1), if there
exists an extended class K function? 3(-) such that

sup{Lsh(z) + Lyh(z)u+ hy(x)d} > —B(h(x)), 9)
uelU
forall x € X and all ¢ > 0, where h,(z) £ 82(;”), Lih(z) £

Bié(;c)f(l‘) and Lyh(x) = %@g(m).

The existence of a CBF satisfying (9) ensures that if
x(0) € C, i.e. h(x) > 0, then there exists a control law
u(t) € U such that for all ¢ > 0, z(t) € C. Similarly,
Definition 2 allows us to consider all control signals for each
x € X and t > 0 that render C forward invariant:

Kat(t,x) £ {u € U : Lyh(z) + Lyh(x)u + hy(z)d

> —B(h(x))}. (10)

Remark 2. Definitions 1 and 2 utilize the true uncertainty
d, which is not accessible in real applications. Therefore, it
is impossible to verify whether a given function is a CLF
(CBF) according to Definition 1 (Definition 2).

One way to resolve this issue is to derive a sufficient
and verifiable condition for (7) or (9) using the worst-case
bound on the uncertainty d in (4). The following lemma gives
such conditions. The proof is straightforward considering
the bound on d in (4) and subsequently the inequalities
Va(z)d <||Va(2)|| 6 and hy(x)d <||hq(2)]] 6.

Lemma 2. A continuously differentiable function V : R™ —
R is a CLF for the uncertain system (1) under Assumption 1,
if it is positive definite and there exists a class K function
a(-) such that

inf {LyV (@) + LV (@)u +[|Va(2)[| 0} < —a(V(2)), (11)
for all t > 0 and all x € X. Similarly, a continuously
differentiable function h : R™ — R is a (zeroing) CBF for
the uncertain system (1) under Assumption 1, if there exists
an extended class IC function B(-) such that

sup{Lsh(z)+ Lyh(z || 0} > —pB(h(z)),

uelU

forall x € X and all t > 0.

Ju —||ha(z (12)

C. Standard QP Formulation
The admissible sets of control signals defined in (8) and

(10) inspire optimization based control. Recent work shows

2A function 8 : (—b,a) — (—o00, 00) is said to belong to extended class
K for some a,b > 0, if it is strictly increasing and 8(0) = 0.



that CLF and CBF conditions can be unified into a QP [5]:

1
uw*(t,z) = argmin —ul H(z)u+ ps®> (QP)
(u,8)eRm+1 2

s.t. LpV(x) + LV (x)u+ Vy(z)d + a(V(z)) < 4, (13)
Lih(z) + Lyh(z)u + hy(x)d + B(h(z)) > 0, (14)
u € U, (15)

where H(z) is a (pointwise) positive definite matrix and
0 is a positive constant to relax the CLF constraint that is
penalized by p > 0. In this formulation, the CBF condition
is often associated with safety and therefore is imposed as
a hard constraint. In contrast, the CLF constraint is related
to control objective (e.g. tracking a reference) and could be
relaxed to ensure the feasiblity of the QP when safety is a
major concern. Therefore, it is imposed as a soft constraint.

Remark 3. The constraints (13) and (14) in (QP) depend on
the true uncertainty d, which makes (QP) not implementable
in practice. Although the worst-case bound (4) can be used
to derive a robust version of (13) and (14) as done in [10],
the resulting constraints can be overly conservative, as shown
in Section IV.

III. ROBUST ADAPTIVE QP CONTROL USING CLBFS

In this section, we first introduce adaptive estimation
laws to estimate the uncertainty with pre-computable error
bounds, which can be systematically improved by reducing
the estimation sampling time. We then show how the esti-
mated uncertainty, as well as the error bounds, can be used to
formulate a robust QP, while the introduced conservatism can
be arbitrarily reduced, subject to only hardware limitations.

A. Adaptive Estimation of the Uncertainty

We extend the piecewise-constant adaptive (PWCA) law
in [13, Section 3.3] to estimate the pointwise value of
the uncertainty d(¢,x(t)) at each time instant ¢. Similar
results are available in [14] which considers control non-
affine dynamics under slightly more sophisticated assump-
tions about the uncertainty, and in [15] which considers the
nominal dynamics described by a linear parameter-varying
model. The PWCA law consists of two elements, namely, a
state predictor and an adaptive law, which are explained as
follows. The state predictor is defined as:

i=f(z)+g@)u+dt) —az, 20)=z,  (16)

where # £ & — x is the prediction error, a is an arbitrary
positive constant. A discussion about the role of a available
in [15]. The adaptive estimation, (f(t), is updated in a
piecewise-constant way:

d(t) = d(T), te [iT,(i+1)T),

d(T) = ——7—3(T), a7

where 7' is the estimation sampling time, and 1 = 0,1,2,---.
Remark 4. Note that the PWCA law is not trying to estimate
the analytic expression of the uncertainty; instead it estimates
the pointwise value of the uncertainty at each time instant.

Next, we will show in Section III that the estimated pointwise
value of the uncertainty can be used to formulate a new QP
with robust constraints.

Let us first define:
Y(T) 2 2¢/nnT + V/n(1 — e 1),
n = lt + ld¢7

where 6 and ¢ are defined in (5) and (6), respectively. We
next establish the estimation error bounds associated with
the estimation scheme in (16) and (17).

(18)
19)

Lemma 3. Given the dynamics (1), and the estimation law
in (16) and (17), subject to Assumption 1, the estimation
error can be bounded as

-sioo (U, TR

Moreover, limp_,oy(T) = 0.

(20)

Proof. See Appendix.

Remark 5. Lemma 3 implies that the uncertainty estimation
can be made arbitrarily accurate for ¢ > T, by reducing 7T,
the latter only subject to hardware limitations. Additionally,
the estimation cannot be arbitrarily accurate for ¢t € [0,T).
This is because the estimate in [0,7") depends on Z(0)
according to (17). Considering that Z(0) is purely determined
by the initial state of the system, x(, and the initial state of
the predictor, 2, it does not contain any information of the
uncertainty. Since 7' is usually very small in practice, lack
of a tight estimation error bound for the interval [0,7") will
not cause an issue from a practical point of view.

B. Robust Adaptive QP Formulation
Let

Uy (t,z,u) 2LV () + L,V (x)u + Vi (z)d(t),

+H|Va (@) || (D), 1)
\I/h(tv T, u) éth(m) + Lgh(x)u + hm(x)(i(t)’
— [ () || ¥(T). 22)

We are ready to present the main result in the following
theorem.

Theorem 1. For any t > T,
1) the condition

inf Oy (¢, z,u) < —a(V(z))

uelU 23)

is a sufficient condition for (7), and also a necessary
condition for (7) when T — 0.
2) the condition

sup Uy, (t,x,u) > —B(h(z))
uelU

(24)
is a sufficient condition for (9), and also a necessary
condition for (9) when T" — 0.

Proof. Due to space limit, we only prove 2), while 1) can
be proved analogously. For proving that (24) is sufficient for



(9), comparison of (9) and (24) indicates that we only need
to show h,(x)d(t,z) > hy(z)d(t) — thg(x)H ~(T) for any
t > T. The preceding inequality actually holds since

he(2)d(t, ) = hy(z) (oi(t) rd(t,z) — d(t))
> o (@)d(t) ~[|ho @) || d(t, 2) — (o)

> he(@)d(t) = ||l (@) A(T),

where the last inequality is due to the bound in (20). For
proving the necessity, we notice that when 7' — 0, d(t) —
d(t,z) for any t > T according to Lemma 3, which implies
that (LHS) of (9) equates (LHS) of (24) considering (22).
Therefore, (24) is also a necessary condition for (9) for¢t > T
when T — 0. O

Remark 6. Theorem 1 indicates that the condition (23) ((24))
that depends on the adaptive estimation is always a sufficient
condition for (7) ((9)) that depends on the true uncertainty
for ¢ > T. Additionally, the conservatism of the condition
(23) or (24) can be arbitrarily reduced by reducing 7T'.
With the inequalities (23) and (24) that depend on the

adaptive estimation of the uncertainty, we can formulate a
robust QP, which we call Ra-QP:

1
u*(t,z) = argmin —u’ H(z)u + ps® (Ra-QP)
(u,0)eRm+1

s.t. Uy (t,z,u) + a(V(z)) <6, (25)
Up(t,z,u) + B(h(z)) > 0, (26)
ue U 27

Here, ¥y and ¥y, are defined in (21) and (22), respectively.

Remark 7. The estimation sampling time 7' can be dif-
ferent from the sampling time T,, for solving the (Ra-
QP) problem. Considering the effect of 1" on the estimation
accuracy, as well as the relatively low computational cost
of the adaptive estimation compared to solving the (Ra-QP)
problem, T' can be set much smaller than T,

IV. SIMULATION RESULTS

In this section, we validate the theoretical development
using the adaptive cruise control (ACC) problem from [5].

A. ACC Problem Setting

The lead and following vehicles are modeled as point
masses moving on a straight road. The following vehicle
is equipped with an ACC system, and and its objective is to
cruise at a given constant speed, while maintaining a safe
following distance as specified by a time headway. Let v;
and vy denote the speeds (in m/s) of the lead car and the
following car, respectively, and D be the distance (in m)
between the two vehicles. Denoting z = [v, vy, D] as the
system state, the dynamics of the system can be described
as

’L}l a; 0 0
vp| = 0 + |1/m| u+t |—=F./m+do(t)|, (28)
D U — Uf 0 0

N—_——

f(z) g(x)

d(t,x)

TABLE I: Parameter Settings

g 981Ns2/m f» 025Ns?/m 74 18s p 100

m 1650 kg vg 22 m/s Typ 001s a(V) 5V
fo 0.IN 2(0) (181280 T 1ms B(h) h
f1 5 Ns/m Umax 0.4 mg a 1

TABLE II: v(T) versus T

T 10 ms
¥(T) 298

0.01 ms
0.00298

0.1 ms
0.0298

1 ms
0.298

where u and m are the control input and the mass of the
following car, respectively, a; is the acceleration of the lead
car, I\, = fo + fivy + fg’UJ% is the aerodynamic drag term
with unknown constants fo, f1 and fo, do(t) is an external
disturbance term (reflecting the unmodeled road condition or
aerodynamic force).

The safety constraint requires the following car to keep
a safe distance from the lead car, which can be expressed
as D/vy > 74 with 74 being the desired time headway.
Defining the function h = D — 74vy, the safety constraint
can be expressed as h > 0. In terms of control objective,
the following car should achieve a desired speed v; when
adequate headway is ensured. This objective naturally leads
to the CLF, V = (vy — vq)%.

The parameters used in the simulation are shown in Ta-
ble I, where m, fo, f1, f2, 7q are selected following [5]. The
disturbance is set to dy(t) = 0.2¢gsin(2710¢) following [6].
The input constraints are set t0 —Umax < U < Umax, Where
Umax = 0.4 mg with g being the gravitational constant.

B. Uncertainty Estimation Setting

According to (18), given the estimation sampling time 7',
one would like to obtain the smallest values of the constants
in Assumption 1 to get the tightest estimation error bound,
~(T). For this ACC problem, the constants in Assumption 1
are selected as

lt - (029(27T)10)£, ld - (fl + 2f2vmax)£a bd = (029)57

where vyax = 160 km/h is the maximum speed considered,
& > 1 is a constant to reflect the conservatism in estimating
the constants ¢, [; and by that satisfy (2) and (3) in Assump-
tion 1. We set & = 2. We further set a = 1 in (16). With
this setting, the estimation error bounds under different 7’
are computed according to (18) and listed in Table II. For
the simulation results in Section IV-D, T = 1 ms is selected.

C. QP Setting

We consider several QP controllers:

o A standard QP controller defined by (QP) using the true
uncertainty d(t,x),

o A standard QP controller ignoring the uncertainty, ob-
tained by setting d(t,z) = 0 in (QP),

« A robust QP (R-QP) controller proposed in [10] using
the worst-case bound on d(t,x) in (4), which was
obtained by setting o?(t) =0 in (Ra-QP), and

« A robust adaptive QP (Ra-QP) controller from (Ra-QP).



Note that the first controller is not implementable due to
its reliance on the true uncertainty model (see Remark 3),
and is included to merely show the ideal performance.
The objectives in both (QP) and (Ra-QP) are set to be
min § Hu? + $pé?, where H = 1/m?, p = 100. We further
set «(V') = 5V and (h) = h. Under the above settings, the
conditions (11) and (12) in Lemma 2 can be verified, which
indicates that V' and h are indeed a CLF and CBF for the
uncertain system, respectively. We set T, = 0.01 second.

D. Simulation Results

The results are shown in Fig. 1-3. As expected, the QP
controller using the true uncertainty d(¢,z) achieved good
performance in tracking the desired speed when enforcing
safety was not a major concern, while maintaining the safety
(h was above 0) throughout the simulation with minimal
conservatism (h was quite close to 0 when enforcing safety
was a major concern). On the other hand, the QP controller
ignoring the uncertainty did not provide satisfactory tracking
performance (note the relatively large tracking error between
25 and 32 seconds in Fig. 1) even when there was adequate
headways; it also failed to guarantee the safety throughout the
simulation (h was below 0 during some intervals). Although
the R-QP controller did provide safety guarantee as shown
by the trajectory of h in Fig. 2, it yielded rather conservative
performance: (1) h was constantly far way from 0; (2)
speed tracking objective was often compromised more than
necessary (note the speed decrease between 2 and 5 seconds).

—lead car — QP: true d --- QP: ignoring d - -R-QP - -Ra-QP

[\
[

n
o

Speed (m/s)
o

—
o

Control input (mg)

Time (s)
Fig. 1: Trajectories of the following car speed (top) and

control input (bottom). Black dashed lines denote the desired
speed (top) and input limits (bottom).

Finally, utilizing the estimated uncertainty, the Ra-QP con-
troller almost recovered the performance of the QP controller
using the true uncertainty, in terms of both the car speed and
control input. It also maintained the safety throughout the
simulation with slightly increased conservatism compared to
the performance of the QP controller using the true uncer-
tainty, as shown in Fig. 2. Figure 3 depicts the trajectories
of the true and estimated uncertainties with error bounds
also displayed. One can see that the estimated uncertainty
overlaps the true uncertainty after a single sampling interval,
T. Additionally, the true uncertainty always lies within a

tube determined by the estimated uncertainty and the error
bounds defined in (20), which is consistent with Lemma 3.

'z \ ' ! —QP:‘ true d
L S S / QP: ignoring d
40 ol [ S_RQP 7
g 5 10 15 20 25 -~ - -Ra-QP
A __/\.__
0 ——1—\ F——
0 10 20 30 40 50
Time (s)

Fig. 2: Trajectories of the barrier function
61T 10 ; : -
- oF---- _d2(t, x) - -dg(t)
L4 :

I

22

.8

<

50

Q

=]

)

0 10 20 30 40 50
Time (s)

Fig. 3: Trajectories of the estimated and true uncertainties.
Blue dash-dotted lines denote the estimation error bounds
computed according to (20). da(t,x) (da(t)) is the second
element of d(t,z) (d(t)).

V. CONCLUSIONS

This paper summarizes an adaptive estimation inspired
approach to control Lyapunov and barrier functions based
control via QPs in the presence of time-varying and state-
dependent uncertainties. An adaptive estimation law is pro-
posed to estimate the pointwise value of the uncertainties
with pre-computable error bounds. The estimated uncertainty
and the error bounds are then used to formulate a robust
quadratic program, which ensures that the actual uncertain
system will not violate the safety constraints. It is also shown
both theoretically and numerically that the estimation error
bound and the conservatism of the robust constraints can be
systematically reduced by reducing the estimation sampling
time. The proposed approach is validated on an adaptive
cruise control problem through comparisons with existing
approaches.

APPENDIX

Proof of Lemma 3: From (1) and (16), the prediction error

dynamics are obtained as

i=—ai+d(t)—d(tz), #(0)=0. (29)
Therefore, d(t) = 0 for any ¢t € [0,7") according to (17).
Further considering the bound on d in (4), we have

H(i(t) - d(t,sc)H <0, vtelo,T). (30)

We next derive the bound on Hd(t) —d(t,x) H for ¢t > T'. For

notation brevity, we often write d(¢,z(t)) as d(t) hereafter.
For any t € [iT, (i + 1)T') (i € Zy), we have

B(t) = e T E(T) + /

iT

e (d(r) — d(7))dr.



Since Z(t) is continuous, the preceding equation implies

(i+1)T

(i +1)T) = e *TE(T) +/ e~ T 4 d(iT)

iT
(i+1)T
_ / o
iT

e TE(T) + 2(1

(i+1)T
_ / o
iT

G+nr
— / e~ T () dr, 31)

i T

(GHOT=7) q(7)dr.

e”"")d(iT)

a((i+1)T—7) d(T)dT

where the first and last equalities are due to the estimation law (17).

Since z(t) is continuous, d(t,z) is also continuous given
Assumption 1. Furthermore, considering that ¢~ ((+1)7T=7)
is always positive, we can apply the first mean value theorem
in an element-wise manner’ to (31), which leads to

Z((i+1D)T) =— /:+1)T e—a((i+1)T—T)dT[dj ()]
= 21— D7)

for some 7 € (¢7, (i+1)T) with j € Z} and i € Zo, where
d;(t) is the j-th element of d(t), and

[d; ()] = [du (7). -

The adaptive law (17) indicates that for any ¢ in [(i+1)T, (i+
2)T), we have d(t) = ——ar=2(( + 1)T'). The preceding
equality and (32) imply that for any ¢ in [(i +1)T, (i +2)T)
with i € Zj, there exist 7} € (iT, (i + 1)T') (j € Z}) such
that

(32)

d(t) = e~ Tld; (7))]. (33)
Note that
) - [d-w)]H < v/ ||a - [d-(ﬁ)]Hm
ﬂfldh d;, ( ’<f”d @l e

where j; = Similarly, we

have

1d; (w1 <vn || 1d; ()]

arg max;ezn d;(t) — dj(ij") .

Hoo

4| < valae)|.

where j = arg maxjezlb‘dj (T;)‘. Therefore, for any ¢t €
[(i+ 1T, (i +2)T) (i € Zg), we have

‘puy-awHZHdt
ng(t) — T*)]H + (1 —eT)
<vn|d(t) -

145
i)

— =T, ()

d(T;t)H F(l—e0 . (36)

3Note that the mean value theorem for definite integrals does not hold
for vector-valued functions.

for some 75 € (iT, (i + 1)T) and 77 € (iT, (i + 1)T)),
where the equality is due to (33), and the last inequality is
due to (34) and (35). The inequality (4) implies that

t t
Hx(t) —a(r5) ‘ < / ||l&(m)|| dr < / pdr = ¢t — 73,).

The preceding inequality and (2) indicate that

|t 2(t)) = d(rs, a5 )|| <ttt = ) + la}2t) = (75,
<l + lad)(t —

75,) =n(t —75,) < 2T, (37
where 7 is defined in (19), and the last inequality is due to
the fact that ¢ € [(i+1)T\, (i+2)T) and 77 € (iT, (i+1)T).

Finally, pluggmg (37) into (36) leads i
Hdta: H<2f77T+fl—e“T Hd
g%®ﬁ+ﬁﬂ—e”ﬁ=%ﬂ,wzﬂ (38)
where the second inequality is due to (4). From (30) and (38),
we arrive at (20). Considering that X and U are compact,
the constants 6 (defined in (5)), ¢ (defined in (6)) and 7

(defined in (19)) are all finite, the definition of «(7') in (18)
immediately implies lim7_,ov(T') = 0. O

7-_ H
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