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Nonfragile Observer-Based Control for Markovian
Jump Systems Subject to Asynchronous Modes

Jie Tao ', Chaoyou Wei, Jun Wu, Xiaofeng Wang

Abstract—In this paper, the problem of resilient observer-
based robust control is considered for discrete-time Markov
jump systems subject to asynchronous models and extended dis-
sipativity. The model uncertainty is in the interval type, which
has an ability to describe parameter fluctuating phenomenon
more accurately than using the norm-bounded uncertainty. A
hidden Markov chain is employed to depict the mismatch
between the original system and the observer-based controller.
Conditions are provided to ensure the stability of the result-
ing closed-loop system with a desired dissipation performance
regardless of the uncertainties. An example is presented to illus-
trate the effectiveness and potential of the proposed new design
techniques.

Index Terms—Extended dissipativity, hidden Markov model,
nonfragile control, observer-based controller.

I. INTRODUCTION

ECENTLY, a great deal of attention has been received
Rto investigate the Markov jump systems owing to its
powerful ability to model the practical engineering system
characterized with sudden changes and its widely applications,
including circuit systems, mathematical finance, robotics, and
so on. An extensive amount of work has been reported
on Markov jump systems [1]-[7]. For example, [1] was
devoted to designing a state estimator and discussing the
extended dissipative state estimation problem for Markov jump
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neural networks in the presence of unreliable communication
links. Reference [2] was devoted to designing a nonlinear
robust controller and addressing the problem for a single-
master multi-slave teleoperation systems in the presence of
semi-Markovian jump stochastic interval time-varying delayed
communication network. In [5], a robust state feedback control
approach is introduced for stability and stabilization analy-
sis of Markov jump systems with norm-bounded time-varying
uncertainties.

It is worth pointing out that all of the above-mentioned
work assumes that the to-be-designed controller/filter/state
estimator has full knowledge of mode information of original
systems at any time. Unfortunately, due to the network-induced
phenomena, including delays [8], packet loss [9], and cyber-
attack [10]-[12], this assumption is generally not practical
useful in practice which places a restriction on the application
and popularization of mode-dependent method. A practical
way has been proposed in [13] where a nonhomogeneous
Markov chain is employed to describe clearly the partially
known relationship between system mode and filter mode.
However, this approach is complicated to implement and needs
an additional assumption on nonhomogeneous Markov chain.
Very recently, hidden Markov model is employed to relax these
assumptions. Since hidden Markov model was first brought up
in [14], some relevant research achievements have emerged in
recent years, covering the filtering problem for fuzzy systems
with nonuniform sampling [15], the control problem for two-
dimensional Markov jump systems [16] and the fault detection
problem for fuzzy Markov jump systems with network data
losses [17], to name a few. There still exist many open
problems to be addressed on hidden Markov model.

Many literatures [18]-[20] reported that small parameter
perturbation exists extensively in design of controllers and has
a great impact on the control performance. Usually, parameter
uncertainty can be divided into two cases. The first case is
norm-bounded type of uncertainties which is relatively easy
to analyze [5], [13], [21], [22]. The second case is the interval
type of uncertainties of which the structure is more informa-
tive [23]-[25]. However, the former type of uncertainty cannot
accurately characterize the uncertain phenomenon caused by
the finite word length (FWL) effects which may destabilize
control systems. It is generally known that FWL effects are
inevitable in the digital control systems. The above obser-
vation and analysis lead us to conduct the work in this
paper.

This paper focuses on the problem of nonfragile observer-
based control of Markovian jump systems, taking into account
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asynchronous modes and extended dissipativity. To overcome
the immeasurability of some system states, dynamic observers
are designed to estimate unmeasurable states before proceed-
ing to controller design. Then, with the aid of the singular-
value decomposition, we can loosen the coupling between
slack matrix and observer/controller gains. Finally, new suffi-
cient conditions satisfying linear constraint are derived which
can guarantee the stability of the closed-loop system and
achieve a prescribed extended dissipation performance. The
novelty and innovation from this paper are highlighted as
follows.

1) An asynchronous observer-based controller via apply-
ing the hidden Markov model is introduced. In contrast
with piecewise homogeneous Markov model, the design
procedure of asynchronous controller can not only sim-
plify the theoretical derivation but also reduce the
conservatism due to the introduction of free matrix Py,.

2) In order to overcome the unfavorable effect caused by
FWL, the interval type of uncertainty is introduced
to characterize the uncertain phenomenon in observer-
based controller.

3) We provide an unified framework for Markov jump
systems, which can be directly applied to solve many
control synthesis issues, including Ho, control, lh—I
control, and dissipative control.

Notation: R" denotes the n-dimensional Euclidean space.
The notation P > 0 (>0) means that P is real symmetric
and positive definite (positive semidefinite). / and O repre-
sent the identity matrix and the zero matrix with appropriate
dimensions, respectively. The superscript “T” represents the
transpose. Moreover, in symmetric block matrices, “x” denotes
the term that is induced by symmetry, and diag{- - - } stands for
a block-diagonal matrix. Besides, £{x} and £{x|y} will, respec-
tively, mean expectation of x and expectation of x condition
on y. Pr{-} stands for the probability.

II. DEFINITIONS AND PRELIMINARY RESULTS

Let system parameter {s;,k > 0} represent a discrete-
time Markov chain taking values in a finite state space
Ms; = {1,2,...,ms} with the mode transition probabil-
ity matrix IT = {m,, }. For any u,uy € M,, one has
Tup, = Pr{sip1 = puylsgy = n}, where 0 < my,. < 1 and

The controller parameter {cx, k > 0} represents a discrete-
time hidden Markov chain taking values in a finite state space
M. ={1,2, ..., m:} with conditional probability matrix & =
{E,v}. For any u € Mg, v € M, one has 8, = Pr{c;y =
v|sk =}, where 0 < 8,y < 1 and Y ¢, 8y = 1.

For brevity, in the following, we denote sk, Sk+1, and cx as
W, i+, and v, respectively. Then, the considered discrete-time

Markov jump systems are given as follows:
x(k+1) = Ayx(k) + Byu(k) + Dyw(k)
y(k) = Cpx(k) (D
2(k) = E x(k)
where x(k) € R™, y(k) € R™, and z(k) € R’= stand for the
system state vector, the measured output, and the controlled
output of Markov jump systems, respectively. w(k) € R™
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is the external disturbance signal belonging to /5[0, co). The
system matrices Ay, By, C,, Dy, and E, are preknown real
matrices with appropriate dimensions.

For control systems, there are generally three types of con-
trollers, including the static output feedback controllers [26],
dynamic output feedback controllers [10], and observer-based
output feedback controllers [12], [27]-[29]. In consideration
of the unavailability of some system states, it is necessary to
construct a state observer before designing the controller. This
paper adopts the following full-order and mode-dependent
state observer for Markov jump systems (1):

X(k+1) = Ay x(k) + Byu(k)
+ (Hu + AH,) (y(k) — $(K)) )
(k) = Cpi(k)

where x(k) € R™ and z(k) € R™ denote the observer state vec-
tor and the observer output vector, respectively. H,, represents
the observer gain to be determined later.

Remark 1: With the scale expansion of the controlled
systems, it is quite uneconomic to reconstruct all the system
states rather than some unmeasurable state variables. This
motivates us to consider the reduced-order observers [30] and
functional observers [31], [32] in our future work.

In a real application, it is nearly impossible for con-
troller to acquire the system mode all the time. Motivated
by the controller design approach in [12] and [23], in this
paper, the following asynchronous observer-based controller
is constructed:

u(k) = (Ky + AK,)x(k) 3)

where K, € R™*" are the gains of the observer-based con-
troller which will be determined in the next section. The
stochastic variable v € M, is used to describe asynchroniza-
tion between the underlying system and the observer-based
controller.

The uncertain terms in (2) and (3) (i.e., AH, and AK,)
denote the interval type of uncertainty and satisfy the following
forms:

AH =[5Hﬂ] . AK =[3KV] 4
" re Ny Xny v Pe |y xny “)

where 552 < 8 and [5KY| < 6.
To ease the later derivation, define j-dimensional column
vector 1;; £ [0 ... 0 10 ... 0]T with 1 <i <. Then we
e

i—1
can obtain an equivalent form of (4)

ny My
H T
AHu =) ) 850 Loin Lo,

p=1o=1
ny Ny

MKy = 30D Sl
p=1p=1

Remark 2: In many existing papers, state observer and con-
troller can achieve a perfect implementation. However, in
many practical engineering, the small parameter perturbations
may occur owing to a variety of reasons, including numeri-
cal roundoff errors, FWL, programming errors, etc. [13], [21].
These parameter fluctuations of observer/controller, though
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small, have vast effects on system performance and even may
cause instability. To avoid this, it is necessary to design a
nonfragile observer-based controller which is insensitive to
parameter variations.

Remark 3: The norm-bounded method is widely used for
characterizing the phenomenon of parameter uncertainty.
However, owing to the FWL effects, the norm-bounded type
of uncertainty has a limited accuracy [24]. To overcome this
drawback, we introduce the interval type of uncertainty in this
paper.

Remark 4: Motivated by works in [16], we consider mode-
dependent state observer and asynchronous controller. In fact,
not only controller but also observer has great difficulty obtain-
ing the accurate system mode timely. It is worth mentioning
that two hidden Markov models lead to substantial difficul-
ties in the subsequent analysis and design. Introducing another
hidden Markov chain to characterize the asynchronous phe-
nomenon between the original system and state observer is
beyond the scope of this paper and will be left as our future
work.

Let X(b) = [T — Tk «T(0)]", 2k = z(k) — 2(k).
Then, from (1)-(3), the closed-loop system can be obtained
as the following compact form:

2(k) = E, X (k)

where D, = [D;E D};]T, E, = [0 Eﬂ], and

A = |Aw— (Hu+ AHL)C, 0
- —B, (K, + AK,) Ay +Bu(Ky + AKy) |

The following definitions provide theoretical basis in the
sequel.

Definition 1 [33]: For any initial system mode sy and con-
troller mode cp, the closed-loop system (5) is said to be
stochastically stable if for every initial state X(0), there exists
an observer-based controller (3), such that

o
E{ZXT(k)X(k) X(0), 50, co} < (6)
k=0

without external disturbance (i.e., w (k) = 0).

Assume that matrices R = R? = —(7?,?)2 <0, RT >0,
and R3 = R;r > 0. Define the supply rate r(z(k), w(k)) =
L) R1z(k) + 227 (k)Row (k) + o' (k) R3w (k). Then, we give
the definition of extended dissipativity.

Definition 2 [34]: Given matrices R} > 0 and R4 = R} =
(R;)? = 0, under assumptions of (|Ry[l+[Rz2[)- R4l = 0,
if for any T > 0, under the zero-initial condition, the inequality
shown below holds

T
Y Elrc), 0k} = sup E{T(RRaz)} (D)
k=0 0<k<T
then the resultant closed-loop system (5) is said to be extended
dissipative.

In the closed-loop system, we will design an observer-
based controller to make sure that the closed-loop systems (5)
are stochastically stable in the case of w(k) = 0 and
achieve a prescribed extended dissipativity performance index.

To proceed further, the following lemmas will be needed to
be introduced.

Lemma 1 [24]: Let Q, Q1, and Q27 be any known matri-
ces with appropriate dimensions. Denote the following two
k-dimensional diagonal matrices:

A}, Ay =diag{Aog, ..., Ao}
Ay e{=68,8} Vie{l, 2, ..., k}.

Ay = diag{A1y, ..

Then the following inequality
Q+ QA0+ (QA2)T <0 (8)

holds if and only if there exists a 2«x-dimensional symmetric
matrix W satisfies

Q Ql} [Qz OT [Qz o}
+ v 0 9
[sz{ 0 0 I 0o 1|~ ©)

11 1
[A2i| \IJ|:A2i| >0, for any Aj.

Remark 5: In order to ensure that condition (9) is linear
matrix inequality, €2, in Lemma 1 must be matrix without
variables. In some cases, where €2; is constant matrix and 2,
has some unknown quantities, (9) can be transformed into

Q I, [ef o' [ef o
2 1 1
[Qz o]+[o 1]‘1’ o 1]=°
Note that uncertain terms must be preprocessed before
applying Lemma 1. Denote ® as the Kronecker product and

(10)

(11

define 1y = [l ... 1]. We then introduce the following
~———
k
lemma.
Lemma 2 [25]: For any matrix R, one has

0 0 0 —-AH,CLR 0 0

0 0 0 -—-By,AK,R B,AK,R 0

ok & 0 0 O 0 0 0

0O 0 O 0 0 0

0O 0 O 0 0 0

0O 0 O 0 0 0
stk (12)

where AH,,, AK,, B, and C, are defined in (1) and (4)

u” st 0
UV — UV UV , Uh — |: /,L:|’ 8HK — |: i|
(UL V] u” 0 sk
v T T
Uup = I:(lp\nx) 0O 0 0 O 0]
h _1T
Uk, = [0 0 0 —17,C.R 0 o]
U;VL - [1”y ® U;‘il lny ® U;VLZ 1”}' ® Ulvwx]
T
U =15 e|Ul Ul v, |
i = ding{s{1, 61, Ll LS S o
H H
s, il |
v T T
Uy =[0 Butm)" 0 0 0 0]
h _1T T
Uk, = [0 o 0o -1, R 17, R o]
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U =[l,oU), 1,®U; .. 1,®U),]
h T hT hT h
ul=17 e[Ulf U U,jx]
857 = diag{sfy", 68y ... o0 8t 8L 8k
Kv K
AT RN i 3

III. MAIN RESULTS

The nonfragile controller will be figured out for Markov
jump systems subject to asynchronous modes and extended
dissipativity (1) in this section. We can see, the proposed
controller design method can make sure that the closed-
loop Markov jump systems are stochastically stable despite
interval gain uncertainty. Furthermore, the way of computing
the controller gains will be given in Theorems 2 and 3.

Theorem 1: Consider the discrete-time closed-loop
systems (5). For given matrices RT > 0, RI > 0 and
uncertain parameter § > 0, if for any u € M, v € M., there
exist matrices Py, > 0, P2, > 0, Py > 0, Poyy > 0, Hy,
and K, satisfying the following conditions:

me
> EBuwPu <Py (13)
v=I
—-P;' 0 A+,w D,
* -1 R[E, 0
¥ % —Pu —EIRy| " 0 (14)
* * * —R3 |
~1 RJE,]
[* e < 0 (15)

where Py, = diag{P1, Pou} = D7 _) T, diag{Piy, Poy}
and Py, = diag{Piuv, P2uv}. Then, the closed-loop Markov
jump systems are stochastically stable and a predefined
extended dissipativity performance index.

Proof: Consider the following mode-dependent Lyapunov
function inspired by the work [14]:

V(X(k), n) = X (k)P X (k)

where P, = diag{P1,, P2,}.
Define X, (k) = [XT(k) oTk)]T
that

AV (X(k), w)
= E{XT(k+ DP Xk + 1)} — X (k)P X (k)

T T T
!XT(k)[A e b Xw(/o} ~ X" WP, XK
w

me T
4 AT _ AT
=2 %XZ(k)[for”]Pu[D“T”] Xo(®)
Iz M

(16)

, then it can be concluded

— XY ()P, X (k). (17)

Next, to prove the extended dissipativity of closed-loop
systems, we rewrite the supply rate r(z(k), w(k)) as follows:

r(z(k), o(k))
=2 ()R1z(k) + 22" (D Raw(k) + o' (k) R3w (k)

T T
=XT (0 [EME‘E" _EﬂRz}xw@). (1)

—Rs
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Combining conditions (13), (17), and (18), one immediately
obtains

S{V(X(T + D, uy) = V(X(0), s0) —

T
> rk), a)(k))}

k=0

T
Z {AV(X(K), ) — r(z(k), @(K))}

T m

< All5 AL

<y 3=l [ 3]

=0 v=1 s

- [FERE e B
R3

in which the inequality holds due to condition (13). We
next investigate the stochastic stability condition. Under the
case of w(k) = 0, in light of condition (13), the preceding
inequality (17) reduces to

19)

AV(X(k) 1)

= Z 20X (WA, PuAL X (k) — X (k)P X (k)

v=1
me

:‘
=1

Followmg the similar lines of [25], we can readily obtain
that the closed-loop systems are stochastically stable.

Now, we proceed with proving the extended dissipativity
of closed-loop systems. Under the zero-initial condition, it is
evident that V(X(0), sg) = 0. Based on the Schur complement,
applying condition (14) into (19) indicates

X () {A},PuAL X(k) — Py X (k). (20)

T

EWVX(T + 1), up)} = Y Elrzk), w(k))} < 0.
k=0

2n

On the other hand, applying the Schur complement to (15),
it yields
L () Raz(k) = Z 20X (OE), R4E, X (k)

v=1

me
< Z 20X ()P, X (k)

v=1
ZE VEX(K). ). (22)

Recalling the inequality (21), it can be directly concluded
that 7T () Raz(k) < Y5 E(rz(h), @ (k).

According to the work in [1] and [25], extended dissi-
pativity of the closed-loop systems can be guaranteed in a
similar way. |

Due to the existence of multivariable coupling and uncer-
tain terms, controller designs cannot be achieved by using
the classic linear matrix inequality optimization techniques.
For multivariable coupling, with the aid of the singular-value
decomposition, we can loosen the coupling between slack
matrix and observer/controller gains in Theorem 2. For uncer-
tain terms, the method in [23, Th. 5] is unrealistic owing to
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enormous computation. To overcome this difficulty, we intro-
duce Lemmas 1 and 2 to derive the gain matrices of the
observer and controller in Theorem 3.

Assumption 1: For the output matrices Cy,, we assume

Rank(Cu) =ny, C,=C VYueM, (23)

Formally, the singular-value decomposition of the output
matrices C is a factorization of the form C = C[C; O]C3T
where C; € R, Cp € R, C3 € R, clclT =1, and
CgcT =1

Theorem 2: Consider the  discrete-time closed-loop
systems (5). Under Assumption 1, for given matrices
RT > 0, 7'\’,;1F > 0 and uncertain parameter § > 0, if for any
w e M, v e M., there exist matrices f’m > 0, f’zﬂ > 0,
”ﬁl,w > 0, 752,W > 0, Ri, Ry, R3, Hy, and K, satisfying the
following conditions:

me

D EBwPuw < Pu (24)

v=I

P,—R"'—R 0 Ay, D, T
_ +R
02 * PRiEe 0 g s
* —Puv —EM'Rz
* * -R3
- R{ES o
* —Pp |
in which R = diag{R. R}, P, = diag{P1,.Po}. Puy =

diag{P1,0, Payv}, Eu = [0 E, IR, and

Ay = [A/‘R_H#[R' 0IC3 —AH, CuR 0 ]
my —B (KuR+AK,R) Ap+Bu(Ky+AK,)R
_1 T

C;, CiRy 0 :|CT

R = .
63[ R R3]

Then, a resilient controller can be designed to guarantee
the stochastic stability and prescribed extended dissipativity
performance of the closed-loop systems.
Proof: According to Assumption 1 and the definition of R,
one immediately obtains
0 |-t
R3i|c3

—1,T
H,CR = H,C1[C> 01CTCs [Cz RC; Ry

=H,[R 0]c]. 27)

On the other hand, as we know, (R—P;l)TI_JM (R—I_’;l) >0
which is equivalent to RTP,LR —RT—R> —1_3;1.
Finally, we define

. . X -
{Iilﬂ =R"P\4R, Py, =R"Py,R (28)

Pl,uv = RTP]/},VR, 752;1\) = RTPZ//,VR-

Combining conditions from (27) to (28), performing a con-
gruence transformation to conditions (24)—(26) with RT,
diag{I, 1, R™T, I}, and diag{l, R~T}, one immediately obtains
inequalities (13)—(15), respectively. This completes the proof
of Theorem 2. |

Theorem 3: Consider the discrete-time closed-loop
systems (5). Under Assumption 1, for given matrices
RT > 0, Rj > 0 and uncertain parameter § > 0, if for any
uw € Mg, v € M., there exist symmetric matrices P, uw >0,

IE’ZM > 0,~751,w > 0, Payy > 0, ¥ and matrices Ry, Ra, R3,
H,, and K, such that inequalities (24) and (26) hold

@kn UhT UVT 0 T UvT 0

|:Uh 0 ]+[0 1] ‘I’[o 1}<0 29
T

[51‘114 \y[s,ﬂ,(} >0, for any 87K e A, (30)

where W and A, are defined in Lemma 1, and

P,—R"-R 0 A}, D,
@kn 2 * —1I RtEH ~0
* * =Py —E,TLRZ
B * * * —R3
i _ [AnR — [Hy 0]C5 o 1
w1l —BuK, A, + BuK,

Then, there exists a state observer and an observer-based con-
troller such that the closed-loop Markov jump systems are
stochastically stable and extended dissipative. Meanwhile, the
gain matrices of state observer and observer-based controller
are given by

H,=H,R;", K,=KR" 31)

Proof: Recalling Lemmas 1 and 2, it can directly result
from (29) and (30) that

0 = o 1 U 1 (UL

T

— @kn+®uk+(®uk) ) (32)
By combining condition (31) with (32), it yields that
inequality (25) holds. Then, the proof is completed. |

IV. NUMERICAL EXAMPLE

In this section, the correctness and validity of observer-
based controller design technique are validated with the dc
motor device. Consider discrete-time Markov jump systems (1)
with the following parameters:

1.1 0 09 0.1
A= [0.2 0.8]’ A= [ 0o 1 }
0.2 0.3 0.2 0.4
&_bJ’&_LJ’m_kJ’M_bJ
1 1
Ci=C = [1 0.2}’ Ei=E=[07 1]

Remark 6: The number of conditions in terms of linear
matrix inequalities in (30) exhibits an exponential increase
with the vertices of all uncertain parameters (n, X iy +ny, X n,).
Therefore, it is easy to see that for a high-dimensional systems,
the gain matrices of state observer and observer-based con-
troller almost cannot be solved due to the finite computation
ability.

The transition probabilities matrix of Markov chain s; and
ci are selected as follows:

q_[o6 04] __To7 03
“lo2 o8] TTlo 1
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TABLE I
COMPARISON OF Bin AND Ymax UNDER DIFFERENT
LEVELS OF UNCERTAINTY §
6=0 6=01 6=02
minimum [2-lo, performance
0.0972  0.2092 0.3370
indices Bmin
maximum dissipative performance
3.3828  3.2696 3.0233
indices Ymax
0.8
—_—w(k)
0.6 ” 1
0.4 1
0.2 1
O L
-0.21 1
-0.4 ‘ . .
0 50 100 150 200
Time (k)
Fig. 1. Response curves of the exogenous disturbance input.
120 T
100
80
60
40
20
0
20 ‘ ‘ ‘
0 50 100 150 200

Time (k)

Fig. 2. Response curves of the open-loop system states.

We compare the minimum /-5, performance indices Bmin
G =G, =0, G3 = ﬂzl, and G4 = I) and the maximum
dissipative performance indices ymax (G1 = —0.25, G, = 0.5,
G3 =4—y, and G4 = 0) under different levels of uncertainty.
From Table I, more uncertainty in controller and observer leads
to a more conservative performance.

Setting uncertain parameter § = 0.1, dissipative coefficients
G; = —0.25, G, = 0.5, G3 = 4, and G4 = 0, and solving
a group of inequalities in Theorem 3, one can obtain optimal
performance index 3.2696 and following the gain matrices of
state observer and observer-based controller:

Ki = [-0.1784

—1.1548], K> =[0.1728 —0.8127]
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The exogenous disturbance signal and initial conditions
taken as w(k) = e %% in(0.3k) and x(0) = [2 —3]T,
respectively. The simulation results are shown in Figs. 1-5.
Fig. 1 depicts the exogenous disturbance input. Fig. 2 plots
the response curves of the open-loop system states which
are divergent. Figs. 3 and 4 describe the estimates of the
closed-loop system states. Fig. 5 plots the system modes and
controller modes. It can be observed from Fig. 5 that the con-
troller mode ¢y = 2 at any time, as long as s = 2 (i.e.,
the green histograms in the upper and lower subfigure are the
same).
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V. CONCLUSION

The work presented in this paper focused on a design
method of the nonfragile controller for discrete-time Markov
jump systems subject to asynchronous modes and extended
dissipativity. Sufficient conditions are derived to design a con-
trol such that the resultant closed-loop system is stability with
a desired performance. Note that the above-mentioned result is
obtained under the condition that the mode transition probabil-
ity is completely known. However, in practice, due to various
reasons, such as difficult to have accurate system model, sen-

SOor

error or failure, parameter and environmental change, etc.,

it is almost impossible to obtain an exact model to describe

the

practical system. Considering the problem studied in this

paper with partially know transition probability matrix will be
one of our future focuses.
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