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Abstract—In this paper, the problem of resilient observer-
based robust control is considered for discrete-time Markov
jump systems subject to asynchronous models and extended dis-
sipativity. The model uncertainty is in the interval type, which
has an ability to describe parameter fluctuating phenomenon
more accurately than using the norm-bounded uncertainty. A
hidden Markov chain is employed to depict the mismatch
between the original system and the observer-based controller.
Conditions are provided to ensure the stability of the result-
ing closed-loop system with a desired dissipation performance
regardless of the uncertainties. An example is presented to illus-
trate the effectiveness and potential of the proposed new design
techniques.

Index Terms—Extended dissipativity, hidden Markov model,
nonfragile control, observer-based controller.

I. INTRODUCTION

R
ECENTLY, a great deal of attention has been received

to investigate the Markov jump systems owing to its

powerful ability to model the practical engineering system

characterized with sudden changes and its widely applications,

including circuit systems, mathematical finance, robotics, and

so on. An extensive amount of work has been reported

on Markov jump systems [1]–[7]. For example, [1] was

devoted to designing a state estimator and discussing the

extended dissipative state estimation problem for Markov jump
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neural networks in the presence of unreliable communication

links. Reference [2] was devoted to designing a nonlinear

robust controller and addressing the problem for a single-

master multi-slave teleoperation systems in the presence of

semi-Markovian jump stochastic interval time-varying delayed

communication network. In [5], a robust state feedback control

approach is introduced for stability and stabilization analy-

sis of Markov jump systems with norm-bounded time-varying

uncertainties.

It is worth pointing out that all of the above-mentioned

work assumes that the to-be-designed controller/filter/state

estimator has full knowledge of mode information of original

systems at any time. Unfortunately, due to the network-induced

phenomena, including delays [8], packet loss [9], and cyber-

attack [10]–[12], this assumption is generally not practical

useful in practice which places a restriction on the application

and popularization of mode-dependent method. A practical

way has been proposed in [13] where a nonhomogeneous

Markov chain is employed to describe clearly the partially

known relationship between system mode and filter mode.

However, this approach is complicated to implement and needs

an additional assumption on nonhomogeneous Markov chain.

Very recently, hidden Markov model is employed to relax these

assumptions. Since hidden Markov model was first brought up

in [14], some relevant research achievements have emerged in

recent years, covering the filtering problem for fuzzy systems

with nonuniform sampling [15], the control problem for two-

dimensional Markov jump systems [16] and the fault detection

problem for fuzzy Markov jump systems with network data

losses [17], to name a few. There still exist many open

problems to be addressed on hidden Markov model.

Many literatures [18]–[20] reported that small parameter

perturbation exists extensively in design of controllers and has

a great impact on the control performance. Usually, parameter

uncertainty can be divided into two cases. The first case is

norm-bounded type of uncertainties which is relatively easy

to analyze [5], [13], [21], [22]. The second case is the interval

type of uncertainties of which the structure is more informa-

tive [23]–[25]. However, the former type of uncertainty cannot

accurately characterize the uncertain phenomenon caused by

the finite word length (FWL) effects which may destabilize

control systems. It is generally known that FWL effects are

inevitable in the digital control systems. The above obser-

vation and analysis lead us to conduct the work in this

paper.

This paper focuses on the problem of nonfragile observer-

based control of Markovian jump systems, taking into account
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asynchronous modes and extended dissipativity. To overcome

the immeasurability of some system states, dynamic observers

are designed to estimate unmeasurable states before proceed-

ing to controller design. Then, with the aid of the singular-

value decomposition, we can loosen the coupling between

slack matrix and observer/controller gains. Finally, new suffi-

cient conditions satisfying linear constraint are derived which

can guarantee the stability of the closed-loop system and

achieve a prescribed extended dissipation performance. The

novelty and innovation from this paper are highlighted as

follows.

1) An asynchronous observer-based controller via apply-

ing the hidden Markov model is introduced. In contrast

with piecewise homogeneous Markov model, the design

procedure of asynchronous controller can not only sim-

plify the theoretical derivation but also reduce the

conservatism due to the introduction of free matrix Pµν .

2) In order to overcome the unfavorable effect caused by

FWL, the interval type of uncertainty is introduced

to characterize the uncertain phenomenon in observer-

based controller.

3) We provide an unified framework for Markov jump

systems, which can be directly applied to solve many

control synthesis issues, including H∞ control, l2–l∞
control, and dissipative control.

Notation: R
n denotes the n-dimensional Euclidean space.

The notation P > 0 (≥0) means that P is real symmetric

and positive definite (positive semidefinite). I and 0 repre-

sent the identity matrix and the zero matrix with appropriate

dimensions, respectively. The superscript “T” represents the

transpose. Moreover, in symmetric block matrices, “∗” denotes

the term that is induced by symmetry, and diag{· · · } stands for

a block-diagonal matrix. Besides, E{x} and E{x|y} will, respec-

tively, mean expectation of x and expectation of x condition

on y. Pr{·} stands for the probability.

II. DEFINITIONS AND PRELIMINARY RESULTS

Let system parameter {sk, k ≥ 0} represent a discrete-

time Markov chain taking values in a finite state space

Ms = {1, 2, . . . , ms} with the mode transition probabil-

ity matrix � = {πµµ+}. For any µ,µ+ ∈ Ms, one has

πµµ+ = Pr{sk+1 = µ+|sk = µ}, where 0 ≤ πµµ+ ≤ 1 and
∑ms

µ+=1 πµµ+ = 1.

The controller parameter {ck, k ≥ 0} represents a discrete-

time hidden Markov chain taking values in a finite state space

Mc = {1, 2, . . . , mc} with conditional probability matrix � =

{�µν}. For any µ ∈ Ms, ν ∈ Mc, one has �µν = Pr{ck =

ν|sk = µ}, where 0 ≤ �µν ≤ 1 and
∑mc

ν=1 �µν = 1.

For brevity, in the following, we denote sk, sk+1, and ck as

µ,µ+, and ν, respectively. Then, the considered discrete-time

Markov jump systems are given as follows:
⎧

⎨

⎩

x(k + 1) = Aµx(k) + Bµu(k) + Dµω(k)

y(k) = Cµx(k)

z(k) = Eµx(k)

(1)

where x(k) ∈ R
nx , y(k) ∈ R

ny , and z(k) ∈ R
nz stand for the

system state vector, the measured output, and the controlled

output of Markov jump systems, respectively. ω(k) ∈ R
nω

is the external disturbance signal belonging to l2[0,∞). The

system matrices Aµ, Bµ, Cµ, Dµ, and Eµ are preknown real

matrices with appropriate dimensions.

For control systems, there are generally three types of con-

trollers, including the static output feedback controllers [26],

dynamic output feedback controllers [10], and observer-based

output feedback controllers [12], [27]–[29]. In consideration

of the unavailability of some system states, it is necessary to

construct a state observer before designing the controller. This

paper adopts the following full-order and mode-dependent

state observer for Markov jump systems (1):
⎧

⎨

⎩

x̂(k + 1) = Aµx̂(k) + Bµu(k)

+
(

Hµ + �Hµ

)(

y(k) − ŷ(k)
)

ŷ(k) = Cµx̂(k)

(2)

where x̂(k) ∈ R
nx and ẑ(k) ∈ R

nz denote the observer state vec-

tor and the observer output vector, respectively. Hµ represents

the observer gain to be determined later.

Remark 1: With the scale expansion of the controlled

systems, it is quite uneconomic to reconstruct all the system

states rather than some unmeasurable state variables. This

motivates us to consider the reduced-order observers [30] and

functional observers [31], [32] in our future work.

In a real application, it is nearly impossible for con-

troller to acquire the system mode all the time. Motivated

by the controller design approach in [12] and [23], in this

paper, the following asynchronous observer-based controller

is constructed:

u(k) = (Kν + �Kν)x̂(k) (3)

where Kν ∈ R
nu×nx are the gains of the observer-based con-

troller which will be determined in the next section. The

stochastic variable ν ∈ Mc is used to describe asynchroniza-

tion between the underlying system and the observer-based

controller.

The uncertain terms in (2) and (3) (i.e., �Hµ and �Kν)

denote the interval type of uncertainty and satisfy the following

forms:

�Hµ =
[

δHµ
ρ


]

nx×ny

, �Kν =
[

δKν
ρ


]

nu×nx

(4)

where |δ
Hµ
ρ
 | ≤ δ and |δKν

ρ
 | ≤ δ.

To ease the later derivation, define j-dimensional column

vector 1i|j � [ 0 . . . 0
︸ ︷︷ ︸

i−1

1 0 . . . 0]T with 1 ≤ i ≤ j. Then we

can obtain an equivalent form of (4)

�Hµ =

nx∑

ρ=1

ny
∑


=1

δHµ
ρ
 1ρ|nx 1T


|ny

�Kν =

nu∑

ρ=1

nx∑


=1

δKν
ρ
 1ρ|nu1T


|nx
.

Remark 2: In many existing papers, state observer and con-

troller can achieve a perfect implementation. However, in

many practical engineering, the small parameter perturbations

may occur owing to a variety of reasons, including numeri-

cal roundoff errors, FWL, programming errors, etc. [13], [21].

These parameter fluctuations of observer/controller, though
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small, have vast effects on system performance and even may

cause instability. To avoid this, it is necessary to design a

nonfragile observer-based controller which is insensitive to

parameter variations.

Remark 3: The norm-bounded method is widely used for

characterizing the phenomenon of parameter uncertainty.

However, owing to the FWL effects, the norm-bounded type

of uncertainty has a limited accuracy [24]. To overcome this

drawback, we introduce the interval type of uncertainty in this

paper.

Remark 4: Motivated by works in [16], we consider mode-

dependent state observer and asynchronous controller. In fact,

not only controller but also observer has great difficulty obtain-

ing the accurate system mode timely. It is worth mentioning

that two hidden Markov models lead to substantial difficul-

ties in the subsequent analysis and design. Introducing another

hidden Markov chain to characterize the asynchronous phe-

nomenon between the original system and state observer is

beyond the scope of this paper and will be left as our future

work.

Let X(k) =
[

xT(k) − x̂T(k) xT(k)
]T

, z̃(k) = z(k) − ẑ(k).

Then, from (1)–(3), the closed-loop system can be obtained

as the following compact form:
{

X(k + 1) = AµνX(k) + Dµω(k)

z(k) = EµX(k)
(5)

where Dµ =
[

DT
µ DT

µ

]T
, Eµ =

[

0 Eµ

]

, and

Aµν =

[

Aµ −
(

Hµ + �Hµ

)

Cµ 0

−Bµ(Kν + �Kν) Aµ + Bµ(Kν + �Kν)

]

.

The following definitions provide theoretical basis in the

sequel.

Definition 1 [33]: For any initial system mode s0 and con-

troller mode c0, the closed-loop system (5) is said to be

stochastically stable if for every initial state X(0), there exists

an observer-based controller (3), such that

E

{
∞
∑

k=0

XT(k)X(k)
∣
∣X(0), s0, c0

}

< ∞ (6)

without external disturbance (i.e., ω(k) ≡ 0).

Assume that matrices R1 = RT
1 = −(R+

1 )2 ≤ 0, R+
1 ≥ 0,

and R3 = RT
3 > 0. Define the supply rate r(z(k), ω(k)) =

zT(k)R1z(k) + 2zT(k)R2ω(k) + ωT(k)R3ω(k). Then, we give

the definition of extended dissipativity.

Definition 2 [34]: Given matrices R+
4 ≥ 0 and R4 = RT

4 =

(R+
4 )2 ≥ 0, under assumptions of (‖R1‖+‖R2‖) · ‖R4‖ = 0,

if for any T > 0, under the zero-initial condition, the inequality

shown below holds

T
∑

k=0

E{r(z(k), ω(k))} ≥ sup
0≤k≤T

E
{

zT(k)R4z(k)
}

(7)

then the resultant closed-loop system (5) is said to be extended

dissipative.

In the closed-loop system, we will design an observer-

based controller to make sure that the closed-loop systems (5)

are stochastically stable in the case of ω(k) = 0 and

achieve a prescribed extended dissipativity performance index.

To proceed further, the following lemmas will be needed to

be introduced.

Lemma 1 [24]: Let �, �1, and �2 be any known matri-

ces with appropriate dimensions. Denote the following two

κ-dimensional diagonal matrices:


1 = diag{
11, . . . , 
1κ }, 
2 = diag{
21, . . . , 
2κ }


1i ∈ [−δ, δ], 
2i ∈ {−δ, δ} ∀i ∈ {1, 2, . . . , κ}.

Then the following inequality

� + �1
1�2 + (�1
1�2)
T < 0 (8)

holds if and only if there exists a 2κ-dimensional symmetric

matrix � satisfies
[

� �1

�T
1 0

]

+

[

�2 0

0 I

]T

�

[

�2 0

0 I

]

< 0 (9)

[

I


2

]T

�

[

I


2

]

≥ 0, for any 
2. (10)

Remark 5: In order to ensure that condition (9) is linear

matrix inequality, �2 in Lemma 1 must be matrix without

variables. In some cases, where �1 is constant matrix and �2

has some unknown quantities, (9) can be transformed into

[

� �T
2

�2 0

]

+

[

�T
1 0

0 I

]T

�

[

�T
1 0

0 I

]

< 0. (11)

Note that uncertain terms must be preprocessed before

applying Lemma 1. Denote ⊗ as the Kronecker product and

define 1k = [ 1 . . . 1
︸ ︷︷ ︸

k

]. We then introduce the following

lemma.

Lemma 2 [25]: For any matrix R, one has

�uk �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 −�HµCµR 0 0

0 0 0 −Bµ�KνR Bµ�KνR 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= UvδHKUh (12)

where �Hµ, �Kν , Bµ, and Cµ are defined in (1) and (4)

Uv =
[

Uv
µ Uv

ν

]

, Uh =

[

Uh
µ

Uh
ν

]

, δHK =

[

δHµ 0

0 δKν

]

Uv
µρ =

[
(

1ρ|nx

)T
0 0 0 0 0

]T

Uh
µ
 =

[

0 0 0 −1T

|ny

CµR 0 0
]

Uv
µ =

[

1ny ⊗ Uv
µ1 1ny ⊗ Uv

µ2 . . . 1ny ⊗ Uv
µnx

]

Uh
µ = 1T

nx
⊗
[

UhT
µ1 UhT

µ2 . . . UhT
µny

]T

δHµ = diag
{

δ
Hµ
11 , δ

Hµ
12 , . . . , δ

Hµ
1ny

, . . . , δ
Hµ
k1 , δ

Hµ
k2 , . . . , δ

Hµ
kny

,

. . . , δ
Hµ
nx1 , δ

Hµ
nx2 , . . . , δHµ

nxny

}

Uv
νρ =

[

0
(

Bµ1ρ|nu

)T
0 0 0 0

]T

Uh
ν
 =

[

0 0 0 −1T

|nx

R 1T

|nx

R 0
]
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Uv
ν =

[

1nx ⊗ Uv
ν1 1nx ⊗ Uv

ν2 . . . 1nx ⊗ Uv
νnu

]

Uh
ν = 1T

nu
⊗
[

UhT
µ1 UhT

µ2 . . . UhT
µnx

]T

δKν = diag
{

δKν
11 , δKν

12 , . . . , δKν
1nx

, . . . , δKν
k1 , δKν

k2 , . . . , δKν
knx

,

. . . , δKν
nu1, δ

Kν
nu2, . . . , δ

Kν
nunx

}

.

III. MAIN RESULTS

The nonfragile controller will be figured out for Markov

jump systems subject to asynchronous modes and extended

dissipativity (1) in this section. We can see, the proposed

controller design method can make sure that the closed-

loop Markov jump systems are stochastically stable despite

interval gain uncertainty. Furthermore, the way of computing

the controller gains will be given in Theorems 2 and 3.

Theorem 1: Consider the discrete-time closed-loop

systems (5). For given matrices R
+
1 ≥ 0, R

+
4 ≥ 0 and

uncertain parameter δ > 0, if for any µ ∈ Ms, ν ∈ Mc, there

exist matrices P1µ > 0, P2µ > 0, P1µν > 0, P2µν > 0, Hµ,

and Kν satisfying the following conditions:

mc∑

ν=1

�µνPµν < Pµ (13)

⎡

⎢
⎢
⎣

−P̄−1
µ 0 Aµν Dµ

∗ −I R
+
1 Eµ 0

∗ ∗ −Pµν −ET
µR2

∗ ∗ ∗ −R3

⎤

⎥
⎥
⎦

< 0 (14)

[

−I R
+
4 Eµ

∗ −Pµ

]

< 0 (15)

where P̄µ = diag{P̄1µ, P̄2µ} =
∑ms

µ+=1 πµµ+diag{P1µ, P2µ}

and Pµν = diag{P1µν,P2µν}. Then, the closed-loop Markov

jump systems are stochastically stable and a predefined

extended dissipativity performance index.

Proof: Consider the following mode-dependent Lyapunov

function inspired by the work [14]:

V(X(k), µ) = XT(k)PµX(k) (16)

where Pµ = diag{P1µ, P2µ}.

Define Xω(k) = [XT(k) ωT(k)]T, then it can be concluded

that

�V(X(k), µ)

= E
{

XT(k + 1)P̄µX(k + 1)
}

− XT(k)PµX(k)

= E

{

XT
ω(k)

[

AT
µν

DT
µ

]

P̄µ

[

AT
µν

DT
µ

]T

Xω(k)

}

− XT(k)PµX(k)

=

mc∑

ν=1

�µνXT
ω(k)

[

AT
µν

DT
µ

]

P̄µ

[

AT
µν

DT
µ

]T

Xω(k)

− XT(k)PµX(k). (17)

Next, to prove the extended dissipativity of closed-loop

systems, we rewrite the supply rate r(z(k), ω(k)) as follows:

r(z(k), ω(k))

= zT(k)R1z(k) + 2zT(k)R2ω(k) + ωT(k)R3ω(k)

= XT
ω(k)

[

ET
µR1Eµ −ET

µR2

∗ −R3

]

Xω(k). (18)

Combining conditions (13), (17), and (18), one immediately

obtains

E

{

V(X(T + 1), µ+) − V(X(0), s0) −

T
∑

k=0

r(z(k), ω(k))

}

=

T
∑

k=0

E{�V(X(k), µ) − r(z(k), ω(k))}

≤

T
∑

k=0

mc∑

ν=1

�µνXT
ω(k)

{
[

AT
µν

DT
µ

]

P̄µ

[

AT
µν

DT
µ

]T

−

[

ET
µR1Eµ + Pµν ET

µR2

∗ R3

]}

Xω(k) (19)

in which the inequality holds due to condition (13). We

next investigate the stochastic stability condition. Under the

case of ω(k) = 0, in light of condition (13), the preceding

inequality (17) reduces to

�V(X(k), µ)

=

mc∑

ν=1

�µνXT(k)AT
µν P̄µAT

µνX(k) − XT(k)PµX(k)

≤

mc∑

ν=1

�µνXT(k)
{

AT
µν P̄µAT

µνX(k) − Pµν

}

X(k). (20)

Following the similar lines of [25], we can readily obtain

that the closed-loop systems are stochastically stable.

Now, we proceed with proving the extended dissipativity

of closed-loop systems. Under the zero-initial condition, it is

evident that V(X(0), s0) = 0. Based on the Schur complement,

applying condition (14) into (19) indicates

E{V(X(T + 1), µ+)} −

T
∑

k=0

E{r(z(k), ω(k))} ≤ 0. (21)

On the other hand, applying the Schur complement to (15),

it yields

zT(k)R4z(k) =

mc∑

ν=1

�µνXT(k)ET
µR4EµX(k)

<

mc∑

ν=1

�µνXT(k)PµX(k)

=

mc∑

ν=1

�µνV(X(k), µ). (22)

Recalling the inequality (21), it can be directly concluded

that zT(k)R4z(k) <
∑k−1

i=0 E{r(z(k), ω(k))}.

According to the work in [1] and [25], extended dissi-

pativity of the closed-loop systems can be guaranteed in a

similar way.

Due to the existence of multivariable coupling and uncer-

tain terms, controller designs cannot be achieved by using

the classic linear matrix inequality optimization techniques.

For multivariable coupling, with the aid of the singular-value

decomposition, we can loosen the coupling between slack

matrix and observer/controller gains in Theorem 2. For uncer-

tain terms, the method in [23, Th. 5] is unrealistic owing to
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enormous computation. To overcome this difficulty, we intro-

duce Lemmas 1 and 2 to derive the gain matrices of the

observer and controller in Theorem 3.

Assumption 1: For the output matrices Cµ, we assume

Rank
(

Cµ

)

= ny, Cµ = C ∀µ ∈ Ms. (23)

Formally, the singular-value decomposition of the output

matrices C is a factorization of the form C = C1[C2 0]CT
3

where C1 ∈ R
ny×ny , C2 ∈ R

ny×ny , C3 ∈ R
nx×nx , C1C

T
1 = I, and

C3C
T
3 = I.

Theorem 2: Consider the discrete-time closed-loop

systems (5). Under Assumption 1, for given matrices

R
+
1 ≥ 0, R+

4 ≥ 0 and uncertain parameter δ > 0, if for any

µ ∈ Ms, ν ∈ Mc, there exist matrices P̃1µ > 0, P̃2µ > 0,

P̃1µν > 0, P̃2µν > 0, R1, R2, R3, Hµ, and Kν satisfying the

following conditions:

mc∑

ν=1

�µνP̃µν < P̃µ (24)

� �

⎡

⎢
⎢
⎣

P̃µ − R̃T − R̃ 0 Ãµν Dµ

∗ −I R
+
1 Ẽµ 0

∗ ∗ −P̃µν −ẼT
µR2

∗ ∗ ∗ −R3

⎤

⎥
⎥
⎦

< 0 (25)

[

−I R
+
4 Ẽµ

∗ −P̃µ

]

< 0 (26)

in which R̃ = diag{R, R}, P̃µ = diag{P̃1µ, P̃2µ}, P̃µν =

diag{P̃1µν, P̃2µν}, Ẽµ = [0 Eµ]R, and

Ãµν =
[

AµR−Hµ[R1 0]CT
3 −�HµCµR 0

−Bµ(KνR+�KνR) Aµ+Bµ(Kν+�Kν )R

]

R = C3

[

C
−1
2 CT

1 R1 0

R2 R3

]

C
T
3 .

Then, a resilient controller can be designed to guarantee

the stochastic stability and prescribed extended dissipativity

performance of the closed-loop systems.

Proof: According to Assumption 1 and the definition of R,

one immediately obtains

HµCR = HµC1[C2 0]CT
3 C3

[

C
−1
2 CT

1 R1 0

R2 R3

]

C
T
3

= Hµ

[

R1 0
]

C
T
3 . (27)

On the other hand, as we know, (R−P̄−1
µ )TP̄µ(R−P̄−1

µ ) ≥ 0

which is equivalent to RTP̄µR − RT − R ≥ −P̄−1
µ .

Finally, we define
{

P̃1µ = RTP̄1µR, P̃2µ = RTP̄2µR

P̃1µν = RTP1µνR, P̃2µν = RTP2µνR.
(28)

Combining conditions from (27) to (28), performing a con-

gruence transformation to conditions (24)–(26) with R̃−T ,

diag{I, I, R̃−T , I}, and diag{I, R̃−T}, one immediately obtains

inequalities (13)–(15), respectively. This completes the proof

of Theorem 2.

Theorem 3: Consider the discrete-time closed-loop

systems (5). Under Assumption 1, for given matrices

R
+
1 ≥ 0, R+

4 ≥ 0 and uncertain parameter δ > 0, if for any

µ ∈ Ms, ν ∈ Mc, there exist symmetric matrices P̃1µ > 0,

P̃2µ > 0, P̃1µν > 0, P̃2µν > 0, � and matrices R1, R2, R3,

H̃µ, and K̃ν such that inequalities (24) and (26) hold

[

�kn UhT

Uh 0

]

+

[

UvT 0

0 I

]T

�

[

UvT 0

0 I

]

< 0 (29)

[

I

δHK

]T

�

[

I

δHK

]

≥ 0, for any δHK ∈ 
2 (30)

where � and 
2 are defined in Lemma 1, and

�kn �

⎡

⎢
⎢
⎣

P̃µ − R̃T − R̃ 0 Ãkn
µν Dµ

∗ −I R
+
1 Ẽµ 0

∗ ∗ −P̃µν −ẼT
µR2

∗ ∗ ∗ −R3

⎤

⎥
⎥
⎦

Ãkn
µν =

[

AµR −
[

H̃µ 0
]

CT
3 0

−BµK̃ν Aµ + BµK̃ν

]

.

Then, there exists a state observer and an observer-based con-

troller such that the closed-loop Markov jump systems are

stochastically stable and extended dissipative. Meanwhile, the

gain matrices of state observer and observer-based controller

are given by

Hµ = H̃µR−1
1 , Kν = K̃νR−1. (31)

Proof: Recalling Lemmas 1 and 2, it can directly result

from (29) and (30) that

� = �kn + UvδHKUh +
(

UvδHKUh
)T

= �kn + �uk +
(

�uk
)T

. (32)

By combining condition (31) with (32), it yields that

inequality (25) holds. Then, the proof is completed.

IV. NUMERICAL EXAMPLE

In this section, the correctness and validity of observer-

based controller design technique are validated with the dc

motor device. Consider discrete-time Markov jump systems (1)

with the following parameters:

A1 =

[

1.1 0

0.2 0.8

]

, A2 =

[

0.9 0.1

0 1

]

B1 =

[

0.2

0.5

]

, B2 =

[

0.3

0.2

]

, D1 =

[

0.2

0.2

]

, D2 =

[

0.4

0.4

]

C1 = C2 =

[

1 1

1 0.2

]

, E1 = E2 =
[

0.7 1
]

.

Remark 6: The number of conditions in terms of linear

matrix inequalities in (30) exhibits an exponential increase

with the vertices of all uncertain parameters (nx×ny+nx×nu).

Therefore, it is easy to see that for a high-dimensional systems,

the gain matrices of state observer and observer-based con-

troller almost cannot be solved due to the finite computation

ability.

The transition probabilities matrix of Markov chain sk and

ck are selected as follows:

� =

[

0.6 0.4

0.2 0.8

]

, � =

[

0.7 0.3

0 1

]

.
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TABLE I
COMPARISON OF βmin AND γmax UNDER DIFFERENT

LEVELS OF UNCERTAINTY δ

Fig. 1. Response curves of the exogenous disturbance input.

Fig. 2. Response curves of the open-loop system states.

We compare the minimum l2–l∞ performance indices βmin

(G1 = G2 = 0, G3 = β2I, and G4 = I) and the maximum

dissipative performance indices γmax (G1 = −0.25, G2 = 0.5,

G3 = 4−γ , and G4 = 0) under different levels of uncertainty.

From Table I, more uncertainty in controller and observer leads

to a more conservative performance.

Setting uncertain parameter δ = 0.1, dissipative coefficients

G1 = −0.25, G2 = 0.5, G3 = 4, and G4 = 0, and solving

a group of inequalities in Theorem 3, one can obtain optimal

performance index 3.2696 and following the gain matrices of

state observer and observer-based controller:

K1 =
[

−0.1784 −1.1548
]

, K2 =
[

0.1728 −0.8127
]

Fig. 3. Closed-loop system state x1(k) and its estimation.

Fig. 4. Closed-loop system state x2(k) and its estimation.

Fig. 5. Modes of system and controller.

H1 =

[

−0.0169 1.1109

0.7835 −0.5895

]

, H2 =

[

0.1731 0.7818

1.0651 −1.0007

]

.

The exogenous disturbance signal and initial conditions

taken as ω(k) = e−0.08k sin(0.3k) and x(0) = [2 −3]T,

respectively. The simulation results are shown in Figs. 1–5.

Fig. 1 depicts the exogenous disturbance input. Fig. 2 plots

the response curves of the open-loop system states which

are divergent. Figs. 3 and 4 describe the estimates of the

closed-loop system states. Fig. 5 plots the system modes and

controller modes. It can be observed from Fig. 5 that the con-

troller mode ck ≡ 2 at any time, as long as sk = 2 (i.e.,

the green histograms in the upper and lower subfigure are the

same).
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V. CONCLUSION

The work presented in this paper focused on a design

method of the nonfragile controller for discrete-time Markov

jump systems subject to asynchronous modes and extended

dissipativity. Sufficient conditions are derived to design a con-

trol such that the resultant closed-loop system is stability with

a desired performance. Note that the above-mentioned result is

obtained under the condition that the mode transition probabil-

ity is completely known. However, in practice, due to various

reasons, such as difficult to have accurate system model, sen-

sor error or failure, parameter and environmental change, etc.,

it is almost impossible to obtain an exact model to describe

the practical system. Considering the problem studied in this

paper with partially know transition probability matrix will be

one of our future focuses.
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