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Understanding rhizospheric processes is limited by the need for imaging complex molecular transformations at 
relevant spatial scales within the root soil continuum. Here, we demonstrate a method to enable this analysis by 
first extracting organic compounds from the rhizosphere onto a PVDF membrane while maintaining their 2D dis­
tribution and then imaging the distribution of chemical compounds using matrix-assisted laser desorption/ioniza­
tion mass spectrometry (MALDI-MS). This approach permitted us to visualize and identify compounds on the root 
surface and presumed root exudates in the rhizosphere. Within a 1.8 cm X 0.6 cm sampling area of a switchgrass 
rhizosphere, we could observe at least four chemically distinct zones. Using high performance Fourier transform 
ion cyclotron MS, we were able to accurately annotate numerous molecules co-localized to each of these zones.

The rhizosphere is a highly dynamic environment, hosting numerous 
biogeochemical processes linked to root growth, plant-derived carbon 
inputs, and microbial activity within small spatial zones surrounding 
plant roots (Philippot et ah, 2013). Molecular composition within the 
rhizosphere is commonly studied using bulk analysis-based mass spec­
trometry approaches, which can identify a breadth of molecules with 
great sensitivity and accuracy (White et ah, 2017). However, these 
methods are unable to provide accurate spatial distribution of analytes 
within a sample.

Emerging techniques in mass spectrometry imaging (MSI) can pro­
vide spatial localization of biomolecules, but utilizing MSI methods for 
in situ rhizosphere analyses is largely confounded by the inability to 
probe these samples directly (due to interference from soil) and/or 
in maintaining the spatial organization of the molecular constituents 
(Clode et ah, 2009; Jones et ah, 2013; Debois et ah, 2014; Velick- 
ovic and Anderton, 2017; Velickovic et ah, 2019a, 2019b). In­
stead, imaging of organic molecules linked to rhizosphere processes is 
commonly performed by isolating individual components, where, for 
example, roots are removed from the soil, washed, and sectioned be­
fore MSI analysis (Velickovic et ah, 2019a, 2019b) or are grown in 
soil-free media (e.g. agar) compatible with MSI techniques (Debois et 
ah, 2014). Recent advances in high-spatial resolution secondary ion 
MSI enable the extensive visualization of nutrient use and transport in 
the rhizosphere (Nunez et ah, 2017; Vidal et ah, 2018), but still re­

quire cross-linking fixatives which limits the ability to identify metabo­
lite chemical structures.

Here, we demonstrate a novel method that spatially transfers rhi- 
zosphere-related compounds to a membrane amenable to matrix-as­
sisted laser desorption/ionization (MALDI) MSI. This indirect imaging 
approach was adapted from analyses of other challenging samples like 
skin (Prideaux et ah, 2007), leaf surfaces (Li et ah, 2011), and lipids 
separated by thin layer chromatography (Goto-Inoue et ah, 2008). 
We grew switchgrass in 15.2 cm x 20.3 cm x 0.95 cm black high-den- 
si ty polyethylene rhizoboxes with removable side panels (Fig. 1). Af­
ter 8 weeks of plant growth, we removed a side panel from the rhi- 
zobox and installed a prewetted polyvinylidene fluoride (PVDF) mem­
brane against the soil/root interface, then reattached the plexiglass 
cover while taking care to limit any movement of the membrane dur­
ing the blotting period (48 h). Immediately after removal from the rhi- 
zobox, the PVDF membrane was mounted on a 384-well MALDI target 
plate (Bruker Daltonics) using double-sided copper tape and fully se­
cured to the plate by rolling the membrane flat using a 20 mh scintilla­
tion vial. Soil particles were removed by blowing a stream of nitrogen 
over membrane. MALDI matrix (organic compounds that enable ioniza­
tion of analytes) application was performed using a TM-Sprayer (HTX 
Technologies), where 40 mg/mh of 2,5-dihydroxybenzoic acid (DHB) in 
50% MeOH was sprayed with 16 passes at 50 ph/min, 80 °C, a spray 
spacing of 3 mm, and a spray velocity of 1200 mm/min. MSI was per­
formed on a 15 T Fourier transform ion cyclotron resonance (FTICR)-
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Fig. 1. Example workflow for indirect MALDI-MSI analysis of the root-soil interface. Here, A) Cave-in-Rock switchgrass (Panicum virgatum L. from the USDA National Plant Germplasm 
System) was grown in high-density polyethylene rhizoboxes with removable side panels containing soil (sandy loam Alfrsol harvested from plots under continuous switchgrass cultivation 
for over a decade and sieved at 4 mm) from Kellogg Biological Station, Michigan, USA. Plants were grown in a Conviron walk-in growth chamber (model no. GR48) at 24 "C with 50% 
humidity during the day and 18 "C with 40% humidity at night (16 h light, 8 h dark) B) Eight weeks after planting, roots were blotted by placing pre-wetted membranes against the 
soil-root interface for 48 h. The membranes were then removed from the soil, and C) were taped to a steel MALDI target plate using double-sided adhesive copper tape. D) Imaging of 
the imprinted membrane using MALDI-15 T-FTICR-MS, where the gray spots illustrate ablation areas (ca 30 |im diameter) from laser probing (using 100 |im step size). E) Representative 
MALDI-MS ion image showing the spatial distribution of kinetin, a plant hormone.

MS (SolariX, Bruker Daltonics), equipped with a SmartBeam II laser 
source (355 nm, 2 kHz), in positive ion mode using 200 shots/pixel and 
a 100 pm pitch between pixels. The instrument was operated to collect 
ions with m/z 92-1000 at a mass resolution of —130,000 at m/z 400. To 
complement the results obtained with MALDI-MSI, multiple membrane 
pieces were extracted in methanol:water (80:20) and subsequently sub­
jected to LC-MS analysis (Rivas-Ubach et al., 2019).

The ultrahigh mass resolution of the 15 T-FTICR-MS enabled us to 
annotate exact molecular formulas of ions ablated from the PVDF mem­
brane, and orthogonal LC-MS analysis of bulk membrane pieces assisted 
us in confident molecular identification of a subset of those ions (Fig. 
2 and Supplementary Table 1). These results show we were able to 
transfer and detect a broad repertoire of small organic compounds from 
living roots and the surrounding soil. In addition to chemical identifica­
tion, the combination of membrane blotting and MALDI-based analysis 
revealed heterogeneous spatial distribution of these compounds in the 
rhizosphere (Fig. 2A-B). Based on the observed spatial distributions, us­
ing SCILS MS imaging processing software, we could define and classify 
four different groups of rhizosphere related molecules in the example 
1.8 cm x 0.6 cm rooting sample we analyzed (Fig. 2C).

The chemically distinct areas that strongly co-localized with the en­
tire root zone (Pearson's correlation coefficient > 0.4) contained the 
most abundant group of molecules (zones in magenta, Fig. 2C). These 
molecules include various secondary metabolites, purine and pyrimi­
dine metabolites, and phytohormones (Kuzyakov and Blagodatskaya, 
2015). Their spatial distribution suggests a plant origin or production 
by active rhizosphere microorganisms. The second group comprises of 
nitrosoglutathione, barman, methyl hydroxy ferulate, and urocanate; 
these areas occupy small hot spots of — 1 mm x 2 mm ellipse-like zones 
in proximity (< 1 mm) to the main root (zones in yellow, Fig. 2C). 
Notably, nitrosoglutathione is an abundant S-nitrosothiol in plant cells 
and serves as a mobile reservoir of nitric oxide (NO) (Kailasam et al., 
2018), so this localization may denote intense NO bioactivity in these 
rhizosphere microregions. Similarly, concentrated urocanate signal in 
the same areas shows intense histidine catabolism (Bender, 2012). For 
the third group (zones in green, Fig. 2C), we were only able to an­
notate arginine. This group was distributed in relatively large islets far 
away (> 2 mm) from any visible root imprint. Arginine is a nitrogen 
storage compound (Winter et al., 2015) that can be readily visual­
ized in the plant tissues by MALDI-MSI (Walker et al., 2016; Velick­
ovic et al., 2018a, 2018b). However, arginine localization in this 
sample suggests that it is originated from sources in the surrounding 
soil rather than the plant root. Lastly, distributed hot spots of —2-12 
imaging pixels in size (areas of 100 pm x 200 pm-300 pm x 400 pm, 
respectively) comprise the fourth group (zones

in cyan, Fig. 2C), and reflect the distribution of carnitine and glutamine. 
Based on their wide distribution within the sample, we hypothesize that 
these molecules are not plant exudates, but rather reveal the localiza­
tion of abundant microbial aggregates within the rhizosphere. This is 
supported by numerous studies that shows carnitine metabolism by soil 
microbiome (Meadows and Wargo, 2015).

LC-metabolomic data (as presented in Supplementary information) 
shows we are also able to spatially transfer, from the rhizosphere to 
membrane, molecules that are commonly detected in bulk soil analyses 
(e.g., sugars and organic acids) (White et al., 2017). Howevr, our cur­
rent limitation to detect these molecules in situ by MSI is reflected in the 
incompatibility of the surface chemistry of the blotting membrane with 
negative ionization mode analysis, which is generally better for detect­
ing these compounds.

In summary, our findings demonstrate the potential to elucidate the 
spatial distribution of multiple classes of organic compounds within rhi­
zosphere systems. Although certain common compounds in soils (i.e. 
sugars, organic acids) were not imaged, we anticipate that further stud­
ies utilizing different membrane materials, matrices, and MSI conditions 
will adequately capture the richness of organic molecules within the rhi­
zosphere. In this work, we focused on an actively growing root with 
lower lignification than more mature root areas, but a notable advan­
tage of this approach over other rhizosphere chemical imaging method­
ologies (Jones et al., 2013; Kaiser et al., 2015; Vidal et al., 2018) 
is that it allows spatiotemporal molecular mapping of living and devel­
oping roots in the rhizosphere since a fresh membrane can be used at 
different stages of root growth. Lastly, our approach offers a path for 
moving beyond bulk-omic analyses, providing a deeper understanding 
of rhizosphere processes on the submillimeter scale.
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Fig. 2. Indirect MALDI-FTICR-MS imaging of the rhizosphere. A) Black rectangle shows position of analyzed area in rhizobox (left), root-soil interface (middle), root-soil interface im­
printed on PVDF membrane (right). B) Ion images and putative molecular annotations of species detected by MALDI-FTICR-MSI of an imprinted rhizosphere on a PVDF membrane (top 
left, black box indicates area of analysis). Note that the ion images are displayed after 90° clockwise rotation compared to panel A. The number ascribed to each molecular annotation 
represents the major metabolic pathway where the molecule is found as either a reactant, product, or intermediate, specifically: [1] pyrimidine metabolism; [2] biosynthesis of secondary 
metabolites; [3] purine metabolism; [4] nicotinate and nicotinamide metabolism; [5] biosynthesis of amino acids; [6] Vitamin B6 metabolism; [7] thermogenesis; [8] fructose and man­
nose metabolism; [9] phytohormone; or [10] NO reservoir. The identity of ions labeled by “*” was confirmed by LC-MS analysis of PVDF membrane extracts using an internal database. 
All ion images were acquired with a 100 qm step size. C) Distribution of four chemically different areas observed in MALDI-FTICR-MSI of the rhizobox imprinted on PVDF membrane 
represented by different colors. These four areas co-localize with specific anatomical or molecular features. Specifically, areas containing chemical features that correlate with the root 
can be observed in magenta, whereas chemical features that correlate with nitrosogluthatione, arginine, and carnitine are observed in yellow, green, and cyan areas, respectively. The far 
right image shows localization of the 4 chemical zones in the rhizobox. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this 
article.)
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.soilbio. 2020.107804.
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