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Abstract—This article studies discrete-time implemen-
tation of model predictive control (MPC) algorithms
in continuous-time nonlinear sampled-data systems. We
present a discrete-time and aperiodic nonlinear MPC al-
gorithm to stabilize continuous-time nonlinear dynamics,
based on the Lebesgue approximation model (LAM). In this
LAM-based MPC (LAMPC), the sampling instants are trig-
gered by a self-triggered scheme, and the predicted states
and transition time instants in the optimal control problem
are calculated in an aperiodic manner subject to the LAM.
Sufficient conditions are derived on feasibility and stability
of the resulting closed-loop systems. According to these
conditions, the parameters in LAMPC are designed with the
guarantee of exclusion of Zeno behavior. Meanwhile, it is
shown that the periodic task model is a special case in
our framework with appropriate choice of the parameters
in the LAM. Simulation results indicate that LAMPC can
dynamically adjust the computation periods and has the
potential to reduce the computational costs compared with
periodic approaches.

Index Terms—Lebesgue approximation model (LAM),
nonlinear model predictive control (NMPC), sampled-data
systems.

I. INTRODUCTION

N PAST decades, model predictive control (MPC) has estab-
lished itself as an efficient tool to control constrained systems
and has been used in a wide range of applications, such as process
control, power grids, transportation systems, and manufacturing,
to name a few [1]-[3]. It guarantees certain levels of optimality
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in the behavior of controlled systems subject to state and/or
input constraints. Standard implementation of MPC predicts the
(near) optimal control inputs based on a mathematical model
that attempts to approximate the actual dynamical system of
interest (though most of the time such a model cannot completely
represent the actual dynamics).

In computer-controlled systems, even when the physical pro-
cess is continuous-time, MPC algorithms have to be discrete-
time, given the digital environment for implementation. Such
discretization is twofold.

1) The time instants to sample the states and compute
the optimal solution to a finite-horizon optimal control
problem (FHOCP) should be triggered in a discrete-time
manner.

2) The computation of the FHOCP itself, including the pre-
dictive model and the cost function, should be discretized.

Most of the existing approaches focus only on 1). Traditional
methods often consider periodic sampling, in which the sam-
pling period is fixed [4]-[8]. This approach could be conserva-
tive in applications with limited computation resources because
it may trigger the computation of the solution to the FHOCP
more frequent than necessary and, therefore, lead to signifi-
cant overprovisioning to the processor. Aperiodic sampled-data
MPC, therefore, has received a lot of attentions recently, which
can reduce the frequency of solving the FHOCP. The work in [9]
and [10] considers uncertain continuous-time linear systems.
The maximum intersampling time interval must satisfy some lin-
ear matrix inequalities to ensure stability. A different approach
is event-triggered MPC. In this case, the sampling instants are
identified by occurrence of some predefined events [11]-[18].
Different from event-triggered methods, self-triggered MPC has
the next sampling time instant expressed explicitly as a function
of the past information [19]-[23]. In all this work, however,
either discrete-time plant is considered, which automatically
leads to a discrete-time model in the FHOCP, or the FHOCP di-
rectly takes continuous-time models. (In this case, the controller
still needs to solve a continuous-time FHOCP at each sampling
instant, which, by itself, is computationally expensive).

The work considering both 1) and 2) focuses on linear time-
invariant (LTT) systems with fixed sampling period [24], [25].
In [24], the FHOCP was reformulated to guarantee constraint
satisfaction using polytopic inclusions. Tubed-based approaches
were studied in [25] for sampled-data implementation of MPC.
Since both of them consider LTI systems, model discretization
becomes simple, given the fact that a continuous-time LTI
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system can be perfectly discretized without approximation errors
at the sampling time instants. Using this discretized system
model, one can directly develop discrete-time MPC algorithms,
with some treatments on the errors during the intersampling
period to avoid violations of the constraints. For nonlinear
systems, however, this approach does not work because there
is no perfect discretization for those systems in general. Even if
using a discrete-time approximation model instead, the compu-
tational cost raises another concern, because a relatively accurate
approximation model requires a small sampling period, which
implies more frequent execution of the FHOCP.

This article focuses on nonlinear MPC (NMPC), investigating
two questions: 1) how to schedule sampling and computation
tasks in MPC for continuous-time nonlinear systems? 2) how to
take advantage of aperiodic task models in prediction for possi-
ble computation reduction in solving the FHOCP? We address
these questions through the introduction of the Lebesgue approx-
imation model (LAM) [26] into NMPC, which presents aperi-
odic discretization of the continuous-time nonlinear dynamics.
The basic idea of LAM is to approximate the system dynamics
by updating the state and the related transition time instants
together only when the predicted state meets some thresholds.'
With the LAM, the prediction horizon, in the continuous-time
framework, may potentially be longer than that in periodic task
models, given the same number of steps in the FHOCP. In other
words, the controller can optimize the system performance over a
longer prediction horizon without increasing the number of steps
in the FHOCP. To interpret it in a different way, given the same
length of the prediction horizon, the LAM will take fewer state
transitions than periodic task models, which can dramatically
save computational costs when solving the discretized FHOCP.

The contributions of this article are listed as follows.

1) We present a completely discrete-time, aperiodic LAM-
based MPC (LAMPC) algorithm to stabilize continuous-
time nonlinear systems in the presence of state and input
constraints. In this algorithm, sampling is triggered by a
self-triggering scheme and the FHOCP is aperiodically
discretized based on the LAM with modified constraint
sets. To the best of our knowledge, this is the first work ex-
amining “completely” discrete-time and aperiodic NMPC
for continuous-time nonlinear systems. “Completely”
means that both the sampling instants and the FHOCP
are discrete-time so that continuous-time behaviors can
be eliminated in the controller. The aperiodic feature
has the potential to generate longer intersampling time
intervals and prediction horizons and, therefore, reduce
computational costs. Our preliminary results on LAMPC
were presented in [27].

2) Sufficient conditions are derived on feasibility and stabil-
ity of the resulting closed-loop systems. We also show that
under LAMPC, the state and input constraints will not be
violated. Based on these conditions, threshold functions
in the self-triggered sampling scheme and the LAM are
developed without exhibitions of Zeno behavior.

' A fundamental difference between the LAM and event/self-triggering is that
the latter only determines the time instants and the states are directly sampled
from the plant, while the former updates both the state and the time instants,
which is necessary for prediction.

3) As a special case of LAMPC, we study periodic task
models in NMPC and derive the bound on the maximum
allowable sampling period that meets the feasibility and
stability conditions.

4) A benchmark example is studied to evaluate performance
of the LAMPC algorithm. It is shown that LAMPC can
generate longer intersampling time intervals and predic-
tion horizons during the transience, compared with the pe-
riodic model. Meanwhile, it is robust to actuation delays.

The remainder of this article is organized as follows. Section II
formulates the problem. The LAMPC algorithm is introduced
in Section III. Feasibility and stability analysis can be found
in Section IV. Section V derives the thresholds that meet the
stability conditions developed in Section IV. Section VI shows
a special case where the LAM becomes periodic. Simulation
results are presented in Section VII. Section VIII summarizes
the results. All proofs are given in the Appendix.

Il. PROBLEM FORMULATION

Notations: We denote by R™ the n-dimensional real vector
space, by R¥ the set of the real positive numbers, and by R
the set of the real non-negative numbers. We use || - || to denote
the Euclidean norm of a vector and the induced 2-norm of
a matrix. The symbol “e” denotes the exponential function. *
denotes the predicted variable. -* denotes the optimal variable.
For all ABeR", Ao B={z€A:z+be A, forallbe
B}, B = {z € R" : ||z||2 < €} is the closed ball of || - || with
radius € > 0. To simplify the notations in subsequent sections,
for given scalar €, we denote the set X © B, as X' — €.

Definition 1: A continuous function o : Rf — R{ belongs
to class KC if it is strictly increasing and «(0) = 0. A function
a:R$ — R{ belongs to class K if it belongs to class K and
lim, o a(r) = 0.

Definition 2: The state x(t) of a system & = f(z) is called
uniformly ultimately bounded (UUB) with ultimate bound b if
there exist positive constants b and ¢, independent of ¢y > 0, and
foreverya € (0, ¢), thereisT = T'(a,b) > 0,independent of ¢,
such that || (to)|| < a implies ||z(t)|| < bforany t > to+ T.

Consider a nonlinear control system

B(t) = f (x(t), u(t))

l‘(to) = X

(1a)
(1b)

where z: R — X is the system state, u: R — U is the
control input, and f : R™ x R™ — R™ is a known continuous
function satisfying f(0,0) = 0. The compact sets X C R™ and
U C R™ describe the state and input constraints, respectively.
In other words

x(t) € X, X contains the origin 2)
u(t)y el (3)

must hold for any ¢ > 0. We assume that f(x,u) is Lipschitz
in x over X uniformly in u, i.e., there exists a positive constant
Ly such that for any z,y € X and any u € U/, the following
inequality holds:

1f(2,u) = fly, w)|| < Lyllz =yl )
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To stabilize the system subject to the state and input con-
straints, we use MPC. Let ¢, denote the time instant that triggers
the kth sampling of the state. It can be mathematically defined
by the following equation:

tk+1 = tk; + ¢($(tk)7 u(tk)) (5)

where ¢ : R™ x R™ — R is the function to predict the next
sampling time instant.

The main idea of MPC is described as follows: At time ¢,
the sensor samples the state x(t;). With the sampled state as
the initial condition, the controller solves an FHOCP over the
time interval [ty, t, + T}], where T}, is the horizon length of the
FHOCP at the kth computation. The solution to the FHOCP,
i.e., the optimal control input, will be sent for actuation over the
time interval [ty, t;11), where tg 1 <ty + T). Then, the hori-
zon window will move to the next computation cycle, starting
at tpq1.

When implementing MPC in digital environments, the algo-
rithm has to be discrete-time, which can be interpreted from two
aspects: 1) the sampling time instants that trigger the FHOCP
must be discrete; and 2) the calculation of the optimal solution
to the FHOCP must be completely discrete and based on a
discrete-time model.

Assume that the original continuous-time cost function of the
FHOCP is

te+Tk
Jlag|z(ty)] = /t C(2y(7), k(7)) dT + Vi (2k(te+T))
| (©6)

where £ : R® x R™ — R is the running cost function that is
continuous, positive definite, and locally Lipschitz, and Vy :
R™ — R is the terminal cost function. The predicted state and
input, 25 (¢) : RT™ — R™ and 4, (¢) : RT — R™, are subject to
the discrete-time model

Er(ty) = f (2 (th), ik (th)) (7a)
Bp(t)) = a(ty) (7b)
=t 4§ (2 (t]), ak(t},)) (7c)

£ =ty (7d)

where the to-be-determined functions f and ¢ describe the
transitions in state and time, respectively, and ¢, represents the
ith transition time instant at the kth computation of the FHOCP.
Notice that the predicted state (%) is the prediction of z(t%),
calculated at t;,. t;"' — ¢ is called the ith “intertransition time
interval” when computing the FHOCP for the kth time, and
tix+1 — tr is called the kth “intersampling time interval” (or
“sampling period” if sampling is periodic).

Since the cost function in (6) needs continuous-time & (7)
and 4y, (), the state and the input over [t t;+1) can be approx-
imated using interpolation methods. In this article, we simply
consider zero-order-hold (ZOH) as follows:

T(t) = & (ty) ®
an(t) = t(t},) 9)

}(* The kth Computation of the FHOCP H{

=t t2 t} th

| o | ww |auo] ww | ¢

41 (8 41)

v

0 - d 2 3 4
tpgr = thv1 ey S iy1

}(* The k + 1st Computation of the FHOCP %

Fig. 1. Relation between ¢; and ¢: .

for any t € [t%, tfjl). The discrete-time model in (7), together
with the interpolation in (8), is expected to approximate the
continuous-time plant in (1). The discretization of the cost func-
tion in (6) will be based on this discrete-time model with ZOH.

Remark 1: Once the function ¢ in (5) is defined, the
time instant ¢, will, then, be triggered by a self-triggering
scheme [28], [29]. A special case is to set ¢ = T where T is
a positive constant. Then, calculation of the FHOCP becomes
periodically triggered. Also, the discrete-time model in (7) is
general enough to include both aperiodic and periodic task
models. If §(2(¢},), 4 (ti.)) = T, the model becomes periodic.
Notice that the model in (7) is different from self-triggering.
In self-triggered control, only the time instants are iteratively
calculated and the states are directly sampled from the plant,
while in (7), both the state and the time instants are updated,
which is necessary in prediction.

Remark 2: The relation between t;, and t}; is described in
Fig. 1.Let N € N be the prediction horizon of the discrete-time
FHOCP. Then, at ¢, the model in (7a) will be iterated for IV steps
to obtain the optimal solution. Accordingly, the optimal solution
will generate a sequence of future time instants t%, t,lg,...,tkN s
based on (7¢) and (7d).

Remark 3: It is assumed in this article that there is no delay
in sampling, solving the FHOCP, and actuation. In this case, we
can focus more on the LAMPC algorithm itself. A more practical
assumption is to consider delays in the closed loop and inves-
tigate their impacts on system performance. In Section VII, we
examine actuation delays through simulations. A more rigorous
analysis on LAMPC of delayed systems will be provided in the
future.

The objective of this article is to design the self-triggered
scheduling scheme that triggers the FHOCP and develop the
discrete-time sporadic model used in the FHOCP, such that the
overall continuous-time system can be stabilized 1) without vio-
lating the state and input constraints and 2) in a computationally
cost-efficient way.

1. LAMPC ALGORITHM

This section presents the LAMPC algorithm. The key is to
identify the functions ¢ in (5) and f , g in (7). Meanwhile, the
parameters and the functions in the FHOCP, such as 7T}, V;, and
¢, also need to be appropriately chosen to ensure stability. First
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0
th =t t} th t

Fig. 2.  State trajectory generated by LAM.

of all, let us introduce the LAM, which will be used in solving
the FHOCRP. It is aperiodic discretization of the continuous-time
system in (1) in the case when ||dZ%|| > 0, where di € R™ is
a simplified notation to denote f (& (L), x(tL)), i-e., dif =

Fl@r(ty,), ar(ty,)

~i
dz;,

ER(teY) = @4 (th) + D T (10a)
k
T (1Y) = x(ty) (10b)
D'L
trl =l + ko (10¢)
P i)
0 =t (10d)

where b}c is the discretization (or quantization) level of the LAM
in the ith transition at time ¢. For the case ||d#%,|| = 0, it means
f(@x(th), 4k (th)) = 0 and the predicted state reaches the equi-
librium of the actual plant. In this case, we set & (£,7) = &y (£1)
and t?‘l = t}; + Wmax, Where wax 18 a positive constant that
defines the maximum intertransition time interval for safety
reasons. In the following discussion, we focus on the case when
di | > o.

We approximate the states between 3, (¢%) and 2 (t;"') by
2y (t},) such that (t) is continuous-time. It means &y (t) =
gy (t:) and @y, (t) = Gy (tL) forany t € [ti, "),

Remark 4: The trajectory of the states generated by the LAM
is plotted in Fig. 2. At time t;, the model starts from the
accurate measurement 7, (t9) = z(t)), which serves as the base
to generate the approximated states. Once we have 2y (t9),
ZOH approximation is used to approximate & (¢) until the next
triggering time. Notice that the states generated by the LAM will
not be exactly the same as the actual states but some predicted
values. For an aperiodic model, a critical issue is related to the
Zeno behavior [30], [31]. Since the time instants are generated

aperiodically according to (10c), the value —%— has to be strictly

Tt
greater than zero; otherwise, transitions mHay t!lke place infinite
times over a finite time horizon (Zeno). Thus, the quantization
level D} should be selected in a way to avoid Zeno behavior.
Since the parameter ﬁ}c may depend on the predicted state

and input, we define the positive function D : R™ x R"™ — R™

to describe such dependence

Dk = D (& (ty), a(t},) (1n
where the function D is to be determined.
Assumption 1: For any x € X and any u € U, |\?(; ;‘))H >0

ifx # 0and u # 0.

This assumption implies % H is strictly positive when 2 (})

Hd
and 4y, (¢} ) are nonzero. It is important for the discussions in this
section. We will discuss the selection of D(+, ) in Section V to
relax this assumption.

Let N € N be the prediction horizon of the LAM, i.e., the
number of steps in the FHOCP. Therefore, the horizon length
in the cost function (6) is Tj, = t& — t2 and J[dy|z(t))] can be
rewritten as

tN

Tinlott) = [

k

T ,ﬁk(’r)) dr + Vf(.fik(tk —+ Tk))

N-1

‘ T ,ﬂ,k(T))dT-i-Vf (i?k(t;iv)) .
i=0 Ytk

Since #x(7) = @x(t}) and ay(7) = @x(t},) are constant over

[ti,to"") based on the LAM, so is £(d(7), 4y (7)). Then, the

cost function can be further simplified as

Tieleft)] = S (o), (1) (57— ) Vs (38))
=0
N-1 Ai
N
— [ tk)) ”dw H +Vf( ( ))
(12)

where the last equivalence comes from (10c). For notational
simplicity, let 2} = 25 (t%) and i = a(¢5).

Notice that the cost function in (12) only depends on the
predicted states and inputs of the LAM, but does not explicitly
depend on the time index ¢. With this observation, the FHOCP
at t;, can be formally stated as a discrete-time optimal control
problem

V(z(ty)) = min Sy ()2 (tr)]
), i clf, i=0,...,N—1
. .. dat
subjectto 2}t =2} + Zﬁ (13a)
k
ay = x(tr) (13b)
iieX,i=1,...,N—1 (13¢)
iy € Xy = Xy (13d)

where X; are the compact sets to be determined. The state 2},
must stay inside areduced set from XX’ due to the model difference
between the continuous-time system and the LAM. This point
will be further discussed in the later sections. Let ﬂ;* for
i =0,..., N — 1be the optimal solution to the FHOCP and :i;*
be the corresponding optimal state. Then, to map the predicted
discrete-time states back to the continuous-time horizon, we
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use (10c) to identify the related time instants

t;’:—l,* iy DZ_’*
lld " |
t%* =1

where D = D(2}",4y")
fore, the prediction horizon is T}, =t Nox
input u(t) will be

and dil* = f(&)",4)"). There-
— 9 and the actual

u(t) =iy Ve 17,07 (14)
With this equation, it is natural to set the next computation time
as

O, *
bt =1 O
B D (x(tr), u(tr))
=t e aw) ] )

which indicates a self-triggered feedback scheme.

V. FEASIBILITY AND STABILITY ANALYSIS
A. State Constraints

This section discusses how the state constraints can be en-
sured. Notice that at the kth computation, i,ﬁ =Tk (tgt1) € X
does not guarantee x(tx+1) € X due to the modeling error be-
tween the LAM in (10) and the actual continuous-time plant (1).
Therefore, to ensure z(t) € X, we make X a reduced set from
X. The basic idea is to quantify the difference between x(¢51)
and ;ﬁ}c and, then, reduce the constraint sets in Problem (13) such
that 2. € Xy implies z(t) € X for any ¢ € [ty tg11].

In order to derive the upper bound on the state error, we
construct a continuous-time system over [tx, t5+1]

at) = dat = f (207, 3)7) = £ (2(te), ult))
2 (tr) = o(ty). (16)
Notice that
21 (t) = 2 (t) + di) (= ty) Yt € [tr,tra]  (17)
2(thgn) = z(ty) + day" (tesr — tr)
x(ty) + diy”* D’% =&y (18)
1" |

where the last two equivalence come from (15) and (13a),
respectively.

We consider the error between z(t) and x(t) over the time
interval [ty t;+1]. Notice that both z(t) and zj,(¢) are generated
by the same control input 122’*, starting at the same state x(¢y,).
The state error appears only because of their difference in
models.

Lemma 1: Consider system (1) and the state generated by
(16). For any t € [ty, t;+1], the following inequality holds:

() =z (O] < e = D (w(te), ulty))

< L
X
forany t € [tg, tg+1]-
Proof: The proof is similar to the proof of [26, Prop. 5.3]
and, therefore, omitted. [ ]
With the upper bound on the state error derived in 1, we can
define the constraint set X in (13c) and ensure x(t) € X over
the entire time horizon. This is formally stated as follows.
Theorem 1: Suppose that there exists a positive constant e
such that

D(z(fk) u(tk))

Fr(etuE))l — 1) (19)

L D(x,u)
D(a,u) (M T 1) < e (20)
forany x € X and any u € U. If z(ty) € X — e and
X=X — 2 (21)

then, z(t) € X for any ¢ > t; under the LAMPC in (13).
Remark 5: Inequality (20) places the uniform bound € on
[lz(t) — 2z (¢)|]. It is used to guarantee x(t) € X for any ¢ €
(tg,tk+1). This cannot be achieved by using time-varying
bounds on [|z(t) — zx(t)]], (ty) € X
but not those intermediate states, x(t¢), between x(t;) and
x(tg+1)- Notice that if x(¢,) € X and u(ty) € U, then ¢, < e.

B. Feasibility

This section discusses feasibility of the LAMPC. We first in-
troduce some assumptions on the constraint sets and the terminal
function V(z), which are similar to those in the standard MPC
approaches:

Assumption 2: There exist a class Ko function o : Rf —
R, and a function h : R™ — R™ with h(0) = 0 such that:

i) Xp+e(Ls+1)NPC Ay 2 {re Xy l|h(z) €U},
and 0 € int(Xy);

i) If z€Xp+e(Lg+1)N 1,
f(ﬂf:~,h(ﬂﬂ))H € Xy;

then x+ D(z,h(x))

iii) The following inequality holds:
(z, h(z))
Vi <:r + D(x, h(m))Hfh(x))> V@)
D(z, h(z))
—(z, h(x))m 22)
Vi(x) < afl|z]). o)

With Assumption 2, we can construct control inputs for the
discrete-time model in (13a) with the initial condition :%2 1=
2 (tx+1), which will be admissible to the FHOCP at ¢,

{”“*, i=0,1...,N—2 o1
U1 = AN—1 .
(), i=N-1.
Let the resulting state be denoted by &0, |, &} q,..., 0 -

Before presenting the main result on feasibility, we introduce
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Fig. 3. Reduced sets in the FHOCP.

the following lemma to quantify the difference between 2%, 41
and 7 Al+1 *

Lemma 2: If % is Lipschitz in z over X uniformly
in u, ie., for any x € X and u € U, there exists a positive
constant L such that

D(z,u)f(z,u)
I1f (@, w)l
holds, then

D(y,u)f(y,u)
£y, w)]

\sum—w 25)

1851 = &1 < en(Ls +1)°
fori =0,1,..., N — 1, where ¢, is defined in (19).
To guarantee feasibility, we still need to define X; for i =
1,2,3,..., N — 1 given the bounds derived in Theorem 1 and
Lemma 2. They are basically the reduced sets from A" due to
state error between z(¢) and &},

A | X2 1=1
X A _
Xfe(2;:2(Ls+1)P*1+2) i=2,...

(26)

N —1.
27

The basic idea is demonstrated in Fig. 3.

Theorem 2 (Feasbility): Assume that the hypotheses in The-
orem 1 and Lemma 2 hold. Also assume that Assumption 2
holds. Then, the LAMPC problem in (13) is feasible for k =
0,1,2,....

With the definition of X;, the LAMPC algorithm can be
summarized as follows.

Algorithm 1: LAMPC at the kth Computation of the
FHOCP.
Input:
The initial time instant of the kth FHOCP 9 = t;
The initial state of the kth FHOCP, 29 = z(t);
The constraint sets, X; defined in (27), A’y defined in
Assumption 2, and U;
Output:
The k£ + 1 st sampling instant, ¢;; (which is also the
initial time instant of the & + 1 st FHOCP;
The control input over [tx, txt1), u(t);
1:  Solve FHOCP in (13) for the optimal time and control

sequences, {tk N, and {ay }No
Settpy1 = tk ;
~0,%

Set u(k) = w,”" over the time interval [ty, tj41);
At time t5 1, sample the state x(t511);

The horizon window will move to the next
computation cycle, starting at t;41 and z(tgy1).

C. Stability

The following theorem presents the stability result of the
closed-loop system under LAMPC.

Theorem 3 (Stability): Suppose that the hypotheses in Theo-
rem 2 hold. If forany z,y € X' /{0} and u € U/{0}, there exist
positive constants L., Ly, ,7 € R*, p € (0,1) and a class K
function 3 : Ry — R such that

Vi(x) = Vi(y)| < Lv,llz =yl (28)
Uz, w)D(@,u) My, w)D(y,w)| o\ -
’ el ] | = Lol @9

Uz, u)D(x,u)
e e e 30
el > B(llzl) (30)

Y|zl > 7, Pz ( Litfeh 1)
1f(z,uw)]] =
(31)
(L+1)N-1-1

hold where 6 = + Ly, (Ls + 1)V, the sys-
tem in (1) under the MPC algorithm (13) is UUB with the
ultimate bound 71 (a(r)).

Remark 6: Notice thatif inequality (31) holds for r = 0, then
the closed-loop system is asymptotically stable. Of course, we
can intentionally pick D(x,u) satisfying inequality (31) with
r = 0. Then, we must examine if the selected D (z, u) will lead
to Zeno behavior. If so, the threshold D(x, u) must be modified.

D. Example

In this example, we will show how the results can be applied
to a simple system

Z1(t)
Za(t)

[
o
—~~
8 8
= A
SRS
=
£ =
= A
~
=
=z =
[
B
N
R
’,:SH‘
=
8
S
=
~
=
=
|
8
)
P
=
+
=
/—\
=

where f(z,u) = [fi(2,u) fo(w,u)]", @ = |21 22]", which
must satisfy |x;(t)] < 3 for any ¢ = 1, 2. The input constraint
is —3 <|u(t)| < 3. The running cost function is ¢(x,u) =
x"z + 0.01 v wand the terminal cost functionis V¢ (z) = =" z.

In the following, we will calculate the relevant Lipschitz

constants and verify the necessary assumptions:

(@) — Fy)]
gﬂ%x(mgj”)w@ym
0 1
= Ig?ea)?(k <l_ COS(331) —2x2]> : ||(I - y)“
= max {—xg — /23 — cos(z1),
- @<mmﬁwmm

<B+V324+1)-|(x—
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Then, we have L; = 3 + /10
[Vi(x) = Vi(y —y'yl

=l(z+y) (= -yl

< (=l + llyDllz = -

= lz"z

Then, we have va = 6v/2.
According to (31), the quantization size D(x,u) can be se-
lected as

ey

D(z,u) = I

Then, inequality (31) will be satisfied
H Uz, u)D(w,u) Ly, w)D(y, u)

Hf T U)II £ (y, w)l
Y, u)
Ly
f Hx —yll
Then, we have L. = Bi\/\/%o‘ Furthermore, % =
[(I’:—fu) > 3jj}”’m,which means the satisfaction of inequality (30)

D(y,u) f(y,u)

H D(x,u)f(x,u)

1/ (@, u)| £ (y, w)
_ @) fy,u)
= I,
<l =yl
Therefore, Ly = 1.

V. THRESHOLD DESIGN

This section studies the design of the threshold D(xz, u). By
the results discussed in the previous sections, we know that,
in order to ensure feasibility and stability, D (x, u) must satisfy
inequalities (20), (25), and (29)—(31). Besides these inequalities,
D(z,u) should also be selected in a way to avoid Zeno behavior.
To do so, we can choose D(z,u) as the function such that
D(z,u) = 0only when x = 0 and u = 0. Meanwhile

D(z,u)
limg 40 777—— .
w7 (32)

In this case, since z(t), u(t) are always inside compact sets, the
intertransition time interval will be always greater than a positive
constant, given (10c).

Let us first consider the satisfaction of inequality (31). Obvi-
ously, if we let

pl(a,u)
0l f ()

inequality (31) will be trivially satisfied with » = 0, which
implies asymptotic stability.

D(z,u) =

LI
og

+1 33
I [ > 59

Remark 7: In fact, it is enough to choose the threshold as

@)l ( pl(, u)
Ly OI|f (2, w)]|
as long as Lipschitz conditions and continuity of D(z, ) can be

guaranteed. Meanwhile, Zeno behavior must be avoided.
With this threshold, as long as

0z, u)
1f (2, w)l

then (32) holds and Zeno behavior can be avoided. So we can
present the following result.

Theorem 4: Given the threshold in (33), if (35) holds and
there exists a class I function 7(]|z||) such that ¢(z,u) >
n(||z]]) for any € X and any u € U, then inequalities (25)
and (29)—(31) hold. Also, the intertransition time intervals are
greater than a positive constant.

To ensure inequality (20), we can simply pick p such that

D(x,u) < + 1) (34)

£0 (35)

liminf, 0777

L, D

max D(x,u) (e F TGl — 1) =€
zeX,ucld

with D(x,u) defined in (33). Notice that such a threshold will

guarantee asymptotic stability since = 0 in this case.

Lu))” 0, we may need to slightly modify the

If limg, -0 I
threshold in order to avoid Zeno behavior. For example, we can
pick a small enough positive constant § and define the threshold

as

[1f (z, Wl ( X{ pl(z; u) } )
Ly o | ma 9||f(x,U)H’5 A
(36)

In this case, inequality (31) will not hold for = 0, but a positive
constant . As a result, the system will become UUB instead of
asymptotically stable.

Remark 8: In the presence of noise, ‘?((m u))H may approach
to the infinity, which will lead to infinite 1ntersamp11ng time
intervals and prediction horizons. To avoid this case, we can in-
troduce a proper positive constant d,,,, and define the threshold
as

D(z,u) =

| f (@, w)|
TIO

. pE(:c,u)
. <m{m{9Hf()H6}5m} “)'
(37)

Recalling the definition wy,,x below (10), if the predicted
state reaches an equilibrium of the actual plant (i.e., f(z,u) =
0), then

D(z,u) =

. : 3 1
t;:—l _ t’]i + Wax = t;‘c =+ ff log (51nax + 1) .

VI. PERIODIC CASE

The previous sections present a general framework for
LAMPC where the LAM is aperiodic discretization of the
continuous-time system in (1). In this section, we study a special

case where the LAM takes the periodic model, i.e. =T

° Hdrl [
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where 7' is a positive constant as the period. Therefore, the LAM
in (10) can be simplified as follows, with which the sufficient
conditions for feasibility and stability can be further simplified.
To distinguish it from the general LAM, we use ¥ instead of &
in the following discussion for this special case:

() = 2 () + dzi T (38a)
Tp(t)) = x(ty) (38b)
titt =t + T (38¢)

th =ty (38d)

where dz§, = f(Z(t}), ux(ti)). For convenience, in the follow-
ing, let T = Ty (t%) and @ = (¢} ). With preceding model,
the FHOCP in (13) reduces to

V(z(ty)) = min Iz (ty)]
uy €U, 1=0,..., N-1
N-1
= 1 é , T
st B vy 2 ¢ ()
+ Vi (f{vv)
subject to

(38a) and (38Db) (39a)

Th= 2ty +iT)€X;, i=1,...,N—1
(39b)

Ty =Z(ty + NT) € Xy = ;. (39¢)

The results are presented in the following corollaries. The
proofs of these corollaries are similar to those for the general
LAMPC and, therefore, omitted due to space limit.

To guarantee the satisfaction of the state constraints, i.e.,
x(t) € X, we have the following corollary that is directly from
Theorem 1.

Corollary 1 (State Constraints): Suppose that there exists a
positive constant € such that

| f(z,0)||T (™7 —1) <€ (40)
forany x € X and any v € U. Let
X, ﬁx-g(Z(LfTﬂ)Pl +2>. (41)
p=2

If z(tg) € X — ¢, then x(t) € X for any ¢ >ty under the
LAMPC in (39).

Remark 9: Notice that f(z,u) is bounded because f is lo-
cally Lipschitz and X',U/ are compact sets. So inequality (40)
can always be satisfied. Meanwhile, € can be arbitrarily small as
long as 7" is small enough.

To guarantee feasibility, we make the following assumption.

Assumption 3: There exist a class Ko function & : Rf —
R, and a function  : R — R™ with ~(0) = 0 such that

D) Xp+e(LyT+ 1)V C Xy £ {zeXy_y|h(z) €
U}, and 0 € int(Xy);

2) If 2 € Xy +&( LT+ 1)NL, then z + f(x, h(z))T €
Xf;

3) The following inequality holds:
Vi (z + f(z,h(2)T) — Vi(x) < —l(z, h(z))T (42)
Vi(z) < a(llz|)- 43)

Corollary 2 (Feasbility): Assume that the hypotheses in
Corollary 1 and Assumption 3 hold. Then, the LAMPC problem
in (39) is feasible for k = 0,1, 2, ...

The following corollary presents the result on stability of the
closed-loop system under the LAMPC in (39), which directly
follows Theorem 3.

Corollary 3 (Stability): Suppose that the hypotheses in
Corollary 2 hold. If for any =,y € X and u € U, there exist
positive constants L., Ly,,r € R*,p € (0,1) and a class Ky
function 3 : ]Rar — RS‘ such that

Vi(z) = Vi(y)| < Ly, llz =y (44)
[(z,u) — Ly, u)|T < Le|lz — y| (45)
Oz, u)T > B(|l]]) (46)
,OE(JZ,U) n(.L¢T
V|z|| > 7, ol > (el T — 1 (47)
Il > 7 iz 207 )
hold where 0 = L% + Ly, (LT +1)N"1, the

system in (1) under the LAMPC algorithm (39) is UUB with
the ultimate bound 3~ (a(r)).

Remark 10: Notice that in the periodic LAM, inequality (25)
is automatically satisfied because f(x,w) is locally Lipschitz.
Inequality (29) is replaced by a weaker assumption that ¢(z, u)
is locally Lipschitz. Meanwhile, inequality (30) is simplified
by the positive definiteness of ¢(x,u). Finally, inequality (47)

provides a rule to choose the period where 7" must satisfy 7" <

: 1 £(w,u)
MNgex /B(r),ueld T, log( éﬁf&z)“ +1).

VII. SIMULATIONS

This section presents the simulation results to demonstrate
the performance of the LAMPC. We adopt the example in [32]
and consider a crane with the horizontal trolley position
x1(t), the trolley velocity x2(t), the excitation angle x3(t),
and the angular velocity of the mass point x4(t). Let z:(t) =
[21(t) 22(t) w3(t) 24(t)]T € R*, where x;(t) is the ith co-
ordinate of x(t). Then, the crane model is governed by the
following differential equations:

l‘g(t)
z(t) = f(x,u)= u(t)
(t)= S w) o
—gsin(zs(t)) — u(t) cos(xs(t)) — bxy(t)
20 =0 -1 0 01]

where g = 9.81 m/s? and b = 0.2 Js. The state and input con-
straints are assumed to be

=3 <ay(t) <3
—0.5 < wu(t) <0.5.

Notice that the open-loop system is unstable.
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Fig. 4. State and input trajectories of the closed-loop system under the
LAMPC algorithm.
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Fig. 5. History of the intersampling time intervals and the prediction

horizons generated by the LAMPC algorithm.

The prediction horizon in (12) is chosen as N = 5. The
running cost function and the terminal cost function are defined
as follows:

Oz(t), u(t)) = £ @), u®)]| (lz@) >+ lu@)[*+1) 48)
Vi(z) = 10]|lz(t)||. (49)

With this choice, (35) is satisfied, which avoids Zeno behavior.

To examine the LAMPC algorithm, the threshold function
D(z,u) takes the form in (33). We use the fmincon solver in
MATLAB optimization toolbox to solve the nonlinear FHOCP.
Fig. 4 plots the state and input trajectories of the closed-loop
system. Both of them approach zero, which indicates the system
is stabilized. Also, notice that both state and input constraints are
met. Meanwhile, the Lyapunov function is strictly decreasing as
shown in Fig. 6. Fig. 5 plots the history of the intersampling time
intervals generated by the self-triggered scheme (top) and the
prediction horizons at each sampling instants (bottom). It is clear
that those intervals are time-varying and strictly greater than
zero. One thing worth mentioning is that both of them seem to
converge to positive constants as the state and the input approach

6 :
— V()
51
4
S37
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s
0 . . . . .
0 10 20 30 40 50 60
Time
Fig. 6. Time history of the Lyapunov function V.
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(b)
Fig. 7. System under the LAMPC that generates the maximum aver-

age inter-sampling time interval. (a) State and input trajectories of the
closed-loop system. (b) History of the inter-sampling time intervals and
the prediction horizons.

zero. It is consistent with the theoretical findings because based
on (10c) and the definitions of £(x, u) in (48) and D (z, u) in (33),
we have limx,u_,()”lf)((f%,’s))“ = L% log(4 +1).

By varying the parameter p in (33) with the guarantee of the
feasibility and stability conditions, we simulate the system and
generate different sets of the intersampling time intervals. We
calculate the average intersampling time interval based on the
data in each set. The maximum of these average intersampling
time intervals is 0.4602 s (see Fig. 7). Meanwhile, the maximum
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average intersampling time interval during the transience (over a . ‘ ‘ ‘ ‘ ‘
the time interval [0,45]) is 0.5528 s. 0 10 20 30 40 50 60
We then study the special case of the periodic LAM and Time
compare the performance between this case and the general g 10 |ntersampling time intervals and the prediction horizons in the

LAMPC. By simulations, we find that the maximum allowable
period, for which the system is stable, is a value between 0.46 and
0.47 [see Fig. 8(a) and (b)], which is very close to the maximum
average intersampling time intervals obtained in the previous
section.

By comparing Figs. 7(a) and 8(a), it can be observed that the
aperiodic model has a little larger overshoot. Also, we find that
the aperiodic model triggers fewer times solving the FHOCP
(81 times) during the transience, compared with the periodic
model (98 times). Based on this simulation, we see that the
aperiodic LAMPC algorithm may generate longer intersampling
time intervals than the periodic case during the transience at the
expense of incremental overshoot.

Finally, we investigate the impact of actuation delay on the
control performance, where the state equations can be rewritten
as

za(t)
u(t)
4(t)
—gsin(x3(t)) — u(t — tq) cos(xs(t)) — bay(t)

presence of actuation delays.

Fig. 9 plots the state and input trajectories of the system when
the delay is set to be ¢4 = 0.3. It is shown that although system
stability is still preserved, the state and input signals oscillate
a lot during the transience. Fig. 10 plots the history of the
intersampling time intervals and the prediction horizons. A
significant decrease is found in the length of these intervals,
compared with the delay-free case in the first simulation. It
means that the FHOCP is triggered more frequently, which
requires more computational resources.

Fig. 11 plots the relation between the actuation delays and the
average intersampling time intervals generated by the LAMPC.
The average intersampling time interval is taken to be the
maximum allowable average interval for stability and feasibility
under a specific value of ¢4. It shows that as the actuation delay
tq4 increases, the allowable average intersampling time interval
decreases. There is a dramatic drop in the average intersampling
time interval when ¢4 > 0.2. From these simulation results, we
can see that the actuation delay has negative impacts on both
control performance and computational efficiency.
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Fig. 11.  Relation between actuation delays and average intersampling
time intervals.

VIIL

This article presents the LAMPC algorithm for nonlinear
sampled-data systems. The LAMPC samples the state follow-
ing a self-triggering mechanism in order to reduce the fre-
quency of solving the FHOCP. More importantly, the FHOCP
itself is also discretized in an aperiodic manner based on the
LAM, which makes the algorithm completely discrete-time and
computer-friendly. The aperiodic nature in the FHOCP enables
the controller to optimize the system performance over a longer
prediction horizon without increasing the number of transitions.
We show sufficient conditions for feasibility and stability of the
resulting closed-loop systems.

There are still many open problems to be addressed in the
future. Notice that the parameters in the LAM may be over-
conservative due to the global nature of the Lipschitz constants
(We compute the Lipschitz constants over the entire state and
input constraint sets). An alternative way is to refine Lips-
chitz constants at each computation of the FHOCP. As the
state approaches the origin, we can use the Lipschitz constants
calculated based on a smaller neighborhood of the sampled
state. By this way, the Lipschitz constants will become smaller
and smaller, which makes the approach less conservative The
work in [33] also provides three possible methods to reduce
conservativeness of Lipschitz constants, which certainly deserve
further investigation. One important problem is to further reduce
the complexity in solving the FHOCP. It is shown that the
choice of the threshold function and the cost function may affect
the complexity. Appropriate cost function and threshold can
significantly simplify the computation and, therefore, reduce
the complexity. Another interesting problem is to quantify the
impact of disturbances and delays, such as measurement noises,
actuation errors, and sensing/actuation delays, in LAMPC. Fol-
lowing the spirit of the work in [33], a possible solution is to fur-
ther reduce the constraint sets, and redefine appropriate terminal
cost functions and terminal sets, so that the system can preserve
enough feasibility and stability margins to tolerate the negative
impacts raised by disturbances and delays. Besides deterministic
formulations, a stochastic framework for robust LAMPC over

CONCLUSION

the probability space is also worth investigation [34], [35]. We
will study both cases in the future work.

APPENDIX
PROOFS

A. Proof of Theorem 1

Proof: First of all, notice that given (17), for any ¢ €
[tr,trs1] and any k € Z7, zx(t) can be written as

Zk(t) = (1 — G)Zk(tk) + sz(tkﬂ)

where 0 = ; :t_’“tk € [0,1].

Then, we prove the statement in a recursive way. For k =
0, we have z(tg) = zo(to) = :co € X — € by the assumption.
Also notice that zo (t1) = :vo € X1 = X — 2eby (18). Because
X — eis still compact and zo(to), z0(t1) € X — €, (50) implies
29(t) € X — eforany t € [to, t1]. By Lemma 1

(50)

D(a(tg),u(tg)) )

lz(t) = 20(t)|| < D (2(to), u(to)) (eLf [Tty wtonT — 1

<e

over [tg, 1], where the second inequality comes from (20) since
x(tp) € X — € and u(tyg) € U by (13). Thus, zo(t) € X —€
implies x(t) € X forany ¢ € [to, 1]

For k = 1, by (21), & = zo(t1) € X — 2e. By Lemma 1,
we know ||z(t1) — zo(t))|| < e So z(ty) = 20" =z (t) €
X —e. Also z(t2) = #;" € X — 2¢ holds by (13c). There-
fore, (50) implies that z; (¢) stays in X — € for any ¢ € [t1, t2].
Again, by Lemma 1 and inequality (20), ||z(t) — z1(t)|| < €
holds and, therefore, x(t) € X forany ¢ € [t1, t2]. Keeping this
process, we show that z(t) € X for any ¢ € [ty, tx+1] and any
kezZg. [ |

B. Proof of Lemma 2

Proof: We prove the statement by mathematical induction.
By Lemma 1, we know ||@(txt1) — 2k (tkt1)|| < €. Since
(tg1) = i’%H and zj, (tg41) = &, we know inequality (26)
holds for ¢ = 0.

Assume that inequality (26) holds for¢ = p — 1, i.e.,
10,5 — &2 < ex(Ls + 1)P7 (51)

We now show that this inequality also holds for ¢ = p. Notice
that by (13a)

f@ )
£ (@R ag )l

1 p,
Ap,*) f(xk-‘rl’uzl:: )

I1f (@ )l

Az+1 * Ap, + D(xi’*7 ~D )

S ~D—
Ty = T + D@,

hold. Therefore

Ap+l,
125, — 27|
F@E )
< 4P~ 1 —|—D($ P ) k+1 _ qP*
Lht1 k+1 k 1 _p, k
, Hf(xkﬂa " |
AP A
— D&y A )||f lﬁ,*’%,
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< HAp 1 AP, ||+ ( 1 ~p,* ) f(karll?ﬁ’z’)
Ty — 2y Ty, Uy T
\|f(:rk+1,u£ i
FED 0
_ D(a:p’* ﬁZL ) k 7Ak H
||f (@, ay")l

< (L4 Lllagyy — 2771 < e(Ls + 1)P

where the third inequality is obtained because of inequal-
ity (25) and the last inequality comes from inequality (51). By
mathematical induction, inequality (26) holds and the proof is
completed. |

C. Proof of Theorem 2

Proof: We will prove that if #}* € X; fori =1,2,..., N,
there is a feasible solution of the optlmlzatlon problemin k + 1,
which is ﬂ}c 1 defined in (24), based on the optimal solution in

First, we show that @}, € U fori =0,1,..., N — 1. Based
att e Ufori = 0,1,. N—2becauseof

the feasibility of @ uk .ByLemma 2 and 1nequality (20), we know

on (24), ﬁ}'ﬁ_l =

[y

N = < en(Ls + )N < e(Ly +1)N

Since @), € Xy, i € Xy + €(Ls + 1)V ! holds. By con-
dition (i) in Assumption 2

k+1 leXr+e(Ls+ )N C Xy

and, therefore, ﬂ,iv " 11 cu.

Next, we show that 7} ,, € &; for i=1,...,N —1 and
iN ., € Xy, Because &, € Xj+e(Ls+ 1)V, we have
&y ', 1 € Xy by condition (ii) in Assumption 2. Also, by Lemma 2
Li+1)
ceXip1=4&—
N -2 and i, " €

and inequality (20), we know |2}, — | < e
for i =1,...,N — 1. Also notice that z} """
E(ZZH(L —|—1)p L4+ 2) for z:l,...7
Xf g XN 1- So

By € X1 +e(Ls + 1)

—X—¢ (i(LS +1)P! +2> = X

p=2

fori=1,...,N — 1. |

D. Proof of Theorem 3
Proof: Consider

a1 ()2 (tr+1)] —

Vi(x(tr))

Dk+1
{ @l ) ]
+

2

+ Vi (#741) — V((te))

I
i{ng

2

. A D
_92 1 ~1 k+1 ~N—1
0 (@1 Uiy i Vi (#11)

* A0,% [A)O*
+/ (I’g ,uO ) Hda‘a’:‘i”H —V(x(ty))

N
Il
=]

AN -1
N ~ k+1 P ~
+ K (x;cv-i-ll?ullcv-‘rll) HdA — || + Vf($;€v+1) - Vf(xilev-‘rll)
k+1
0, 0 DO*
(e ap) ||dA0*||' (52)

By inequality (22) in Assumption 2
N-1
D k1

ldazy |

Oyt i) + Vi) = Ve(@n ) <0
(53)

because ﬂkNJr_ll = h(igﬂl) and

AN AN-1 N-1 digﬁl
L1 = Ty +Dk+1 HdA]iv T
1

@ )
IF @t el

Consider ®. Notice that V' (x(¢x)) can be rewritten as

Z o (aapt) D?L*| + v (3Y7).

4N-1 AN-1 AN-1
gt + D (@ e

i=—1 ”di;:l,*
Therefore
P — g Dk+1 Ve (#N-1
= Z (#)1s Uhsr) Taa (@r51)
—~ [d&} 44l
N-2 i
Az+1 * Az+1 * D’,Lg+1’* ~ N %
Z t » U il Vi@
= ldz, |
N_2 i " ~ . Aerl* Az+1 ) 41,
< 0 (g1 Whsr) it B ¢ (mk D
e [z 4 | IIdch“’ [
AN— N,
+ ’Vf (&) = Vs (xk *)
N-2
Lidl, AN— AN,
< 3 Lt — a0 4 L o - o
i=0

Leew(Ls + 1) + Ly, ep(Ls + 1)V !

0
Ly+1N1-1 _
= € (L(,(I)/ + va(Ls + 1)N 1) = €0

(]

where the second inequality comes from inequality (29) and
the last inequality is obtained using Lemma 2. Applying the
inequality above and inequality (53) into (52) yields

St 1 ()2 (trr1)] = V(2 (te))
) jo,*’aO* ﬁ()*
< (B ) ey +
= —0(2(t), u(ty)) Da(ts), u(te)) + 0.

I1f ((tr), u(tr)l]
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Therefore
Vi((tes1)) — Viz(te)) = Amir(lt) Jig1 (8|2 (te+1)]
Uk+1
— V(z(tk))
DO,*
< (@) At ) —E— 40
( ) a2y

= L (x(tr), u(ty))
= —D (x(tg), u(tr))
0 (t), u(ty))
1 f(a(te), ute))|

where the last equivalence is obtained by the definition of ¢
in (19). By (31), we know that for any || (t;)|| > r

V(z(trt1)) — Vi(z(te))

_ D (2(tr), ultr)) (1 = p)(z(tr), u(tr))
- I[f (@ (tr), u(tr)l]

—(L=p)B(lz(tr))
holds. By Assumption 2, we know

D(z(tg),u(ty))

—0 eLf 17 (2 () ult))l — 1

IN

(54)

Vi (a5Th) = Vp(@h) < —0(i, h(i},))

Thus, by the definition of V' (x(tx))
D(#}. (&)
I1f (2, h(2

< Vp(R) = Vi(z(tr)) < alllz(t)l)

holds, which, together with inequality (54), implies that (¢ )
will ultimately stay in the set Q = {z|V(z) < a(r)}. Since
V(z(t)) < V(x(tg)) for any ¢ € (tg,tx+1), we can conclude
that z(t) will eventually stay in €2, which means that the re-
sulting closed-loop system is UUB. Also notice that V(z) >

K(m,u)% > B(||x||). Then, we can derive the ultimate

bound as 71 (a(r)). [ ]

N-1
V(z(ty) < Y Uik, h(i)
i=0

Eald
N
~—

(55)

E. Proof of Theorem 4

Proof: First of all, by the definition of D(z,u) in (33),
inequality (31) will be trivially satisfied with r» = 0.

Since {(x,u) and f(x,u) are continuous, % is contin-
uous over X x U/{(0,0)}. This, together with (35), implies
that there exists a positive constant £ such that % > £ for
any z € X and any u € U. Applying this inequality into (33)
means that the intertransition time intervals are bounded from
below by some positive constant. Therefore, Zeno behavior can

be avoided.

To show the satisfaction of inequality (25), we can simply
apply (33) into 225 @1) 6 replace D(z, u). Because £(z, )

[/ (zu)]
and f(x,u) are locally Lipschitz, W is also locally

Lipschitz. Therefore, inequality (25) holds. By a similar anal-

ysis, we can show that 2ZW4=Y ¢ 1ocq]ly Lipschitz and

[f (@ u)]
inequality (29) holds.
Finally, by the assumption that £(x, u) > n(]|z||), we have
Uz, 0)D(a,u) _ lz,u) log( pllau) 1)
[1f (2, w)| Ly 01l (z, u)|
n(l]}) /23
> 1 —=+1].
= g\ g T
Thus, inequality (30) is satisfied. [ |
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