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Abstract—This article studies discrete-time implemen-
tation of model predictive control (MPC) algorithms
in continuous-time nonlinear sampled-data systems. We
present a discrete-time and aperiodic nonlinear MPC al-
gorithm to stabilize continuous-time nonlinear dynamics,
based on the Lebesgue approximation model (LAM). In this
LAM-based MPC (LAMPC), the sampling instants are trig-
gered by a self-triggered scheme, and the predicted states
and transition time instants in the optimal control problem
are calculated in an aperiodic manner subject to the LAM.
Sufficient conditions are derived on feasibility and stability
of the resulting closed-loop systems. According to these
conditions, the parameters in LAMPC are designed with the
guarantee of exclusion of Zeno behavior. Meanwhile, it is
shown that the periodic task model is a special case in
our framework with appropriate choice of the parameters
in the LAM. Simulation results indicate that LAMPC can
dynamically adjust the computation periods and has the
potential to reduce the computational costs compared with
periodic approaches.

Index Terms—Lebesgue approximation model (LAM),
nonlinear model predictive control (NMPC), sampled-data
systems.

I. INTRODUCTION

I
N PAST decades, model predictive control (MPC) has estab-

lished itself as an efficient tool to control constrained systems

and has been used in a wide range of applications, such as process

control, power grids, transportation systems, and manufacturing,

to name a few [1]–[3]. It guarantees certain levels of optimality
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in the behavior of controlled systems subject to state and/or

input constraints. Standard implementation of MPC predicts the

(near) optimal control inputs based on a mathematical model

that attempts to approximate the actual dynamical system of

interest (though most of the time such a model cannot completely

represent the actual dynamics).

In computer-controlled systems, even when the physical pro-

cess is continuous-time, MPC algorithms have to be discrete-

time, given the digital environment for implementation. Such

discretization is twofold.

1) The time instants to sample the states and compute

the optimal solution to a finite-horizon optimal control

problem (FHOCP) should be triggered in a discrete-time

manner.

2) The computation of the FHOCP itself, including the pre-

dictive model and the cost function, should be discretized.

Most of the existing approaches focus only on 1). Traditional

methods often consider periodic sampling, in which the sam-

pling period is fixed [4]–[8]. This approach could be conserva-

tive in applications with limited computation resources because

it may trigger the computation of the solution to the FHOCP

more frequent than necessary and, therefore, lead to signifi-

cant overprovisioning to the processor. Aperiodic sampled-data

MPC, therefore, has received a lot of attentions recently, which

can reduce the frequency of solving the FHOCP. The work in [9]

and [10] considers uncertain continuous-time linear systems.

The maximum intersampling time interval must satisfy some lin-

ear matrix inequalities to ensure stability. A different approach

is event-triggered MPC. In this case, the sampling instants are

identified by occurrence of some predefined events [11]–[18].

Different from event-triggered methods, self-triggered MPC has

the next sampling time instant expressed explicitly as a function

of the past information [19]–[23]. In all this work, however,

either discrete-time plant is considered, which automatically

leads to a discrete-time model in the FHOCP, or the FHOCP di-

rectly takes continuous-time models. (In this case, the controller

still needs to solve a continuous-time FHOCP at each sampling

instant, which, by itself, is computationally expensive).

The work considering both 1) and 2) focuses on linear time-

invariant (LTI) systems with fixed sampling period [24], [25].

In [24], the FHOCP was reformulated to guarantee constraint

satisfaction using polytopic inclusions. Tubed-based approaches

were studied in [25] for sampled-data implementation of MPC.

Since both of them consider LTI systems, model discretization

becomes simple, given the fact that a continuous-time LTI
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system can be perfectly discretized without approximation errors

at the sampling time instants. Using this discretized system

model, one can directly develop discrete-time MPC algorithms,

with some treatments on the errors during the intersampling

period to avoid violations of the constraints. For nonlinear

systems, however, this approach does not work because there

is no perfect discretization for those systems in general. Even if

using a discrete-time approximation model instead, the compu-

tational cost raises another concern, because a relatively accurate

approximation model requires a small sampling period, which

implies more frequent execution of the FHOCP.

This article focuses on nonlinear MPC (NMPC), investigating

two questions: 1) how to schedule sampling and computation

tasks in MPC for continuous-time nonlinear systems? 2) how to

take advantage of aperiodic task models in prediction for possi-

ble computation reduction in solving the FHOCP? We address

these questions through the introduction of the Lebesgue approx-

imation model (LAM) [26] into NMPC, which presents aperi-

odic discretization of the continuous-time nonlinear dynamics.

The basic idea of LAM is to approximate the system dynamics

by updating the state and the related transition time instants

together only when the predicted state meets some thresholds.1

With the LAM, the prediction horizon, in the continuous-time

framework, may potentially be longer than that in periodic task

models, given the same number of steps in the FHOCP. In other

words, the controller can optimize the system performance over a

longer prediction horizon without increasing the number of steps

in the FHOCP. To interpret it in a different way, given the same

length of the prediction horizon, the LAM will take fewer state

transitions than periodic task models, which can dramatically

save computational costs when solving the discretized FHOCP.

The contributions of this article are listed as follows.

1) We present a completely discrete-time, aperiodic LAM-

based MPC (LAMPC) algorithm to stabilize continuous-

time nonlinear systems in the presence of state and input

constraints. In this algorithm, sampling is triggered by a

self-triggering scheme and the FHOCP is aperiodically

discretized based on the LAM with modified constraint

sets. To the best of our knowledge, this is the first work ex-

amining “completely” discrete-time and aperiodic NMPC

for continuous-time nonlinear systems. “Completely”

means that both the sampling instants and the FHOCP

are discrete-time so that continuous-time behaviors can

be eliminated in the controller. The aperiodic feature

has the potential to generate longer intersampling time

intervals and prediction horizons and, therefore, reduce

computational costs. Our preliminary results on LAMPC

were presented in [27].

2) Sufficient conditions are derived on feasibility and stabil-

ity of the resulting closed-loop systems. We also show that

under LAMPC, the state and input constraints will not be

violated. Based on these conditions, threshold functions

in the self-triggered sampling scheme and the LAM are

developed without exhibitions of Zeno behavior.

1A fundamental difference between the LAM and event/self-triggering is that
the latter only determines the time instants and the states are directly sampled
from the plant, while the former updates both the state and the time instants,
which is necessary for prediction.

3) As a special case of LAMPC, we study periodic task

models in NMPC and derive the bound on the maximum

allowable sampling period that meets the feasibility and

stability conditions.

4) A benchmark example is studied to evaluate performance

of the LAMPC algorithm. It is shown that LAMPC can

generate longer intersampling time intervals and predic-

tion horizons during the transience, compared with the pe-

riodic model. Meanwhile, it is robust to actuation delays.

The remainder of this article is organized as follows. Section II

formulates the problem. The LAMPC algorithm is introduced

in Section III. Feasibility and stability analysis can be found

in Section IV. Section V derives the thresholds that meet the

stability conditions developed in Section IV. Section VI shows

a special case where the LAM becomes periodic. Simulation

results are presented in Section VII. Section VIII summarizes

the results. All proofs are given in the Appendix.

II. PROBLEM FORMULATION

Notations: We denote by R
n the n-dimensional real vector

space, by R
+ the set of the real positive numbers, and by R

+
0

the set of the real non-negative numbers. We use ‖ · ‖ to denote

the Euclidean norm of a vector and the induced 2-norm of

a matrix. The symbol “e” denotes the exponential function. ·̂
denotes the predicted variable. ·∗ denotes the optimal variable.

For all A,B ∈ R
n, A�B = {z ∈ A : z + b ∈ A, for all b ∈

B}, Bε = {x ∈ R
n : ‖x‖2 ≤ ε} is the closed ball of ‖ · ‖2 with

radius ε > 0. To simplify the notations in subsequent sections,

for given scalar ε, we denote the set X � Bε as X − ε.
Definition 1: A continuous function α : R

+
0 → R

+
0 belongs

to class K if it is strictly increasing and α(0) = 0. A function

α : R
+
0 → R

+
0 belongs to class K∞ if it belongs to class K and

limr→∞ α(r) = ∞.

Definition 2: The state x(t) of a system ẋ = f(x) is called

uniformly ultimately bounded (UUB) with ultimate bound b if

there exist positive constants b and c, independent of t0 ≥ 0, and

for everya ∈ (0, c), there isT = T (a, b) ≥ 0, independent of t0,

such that ‖x(t0)‖ ≤ a implies ‖x(t)‖ ≤ b for any t ≥ t0 + T .

Consider a nonlinear control system

ẋ(t) = f (x(t), u(t)) (1a)

x(t0) = x0 (1b)

where x : R
+
0 → X is the system state, u : R

+
0 → U is the

control input, and f : R
n × R

m → R
n is a known continuous

function satisfying f(0, 0) = 0. The compact sets X ⊆ R
n and

U ⊆ R
m describe the state and input constraints, respectively.

In other words

x(t) ∈ X , X contains the origin (2)

u(t) ∈ U (3)

must hold for any t ≥ 0. We assume that f(x, u) is Lipschitz

in x over X uniformly in u, i.e., there exists a positive constant

Lf such that for any x, y ∈ X and any u ∈ U , the following

inequality holds:

‖f(x, u)− f(y, u)‖ ≤ Lf‖x− y‖. (4)
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To stabilize the system subject to the state and input con-

straints, we use MPC. Let tk denote the time instant that triggers

the kth sampling of the state. It can be mathematically defined

by the following equation:

tk+1 = tk + φ(x(tk), u(tk)) (5)

where φ : R
n × R

m → R
+ is the function to predict the next

sampling time instant.

The main idea of MPC is described as follows: At time tk,

the sensor samples the state x(tk). With the sampled state as

the initial condition, the controller solves an FHOCP over the

time interval [tk, tk + Tk], where Tk is the horizon length of the

FHOCP at the kth computation. The solution to the FHOCP,

i.e., the optimal control input, will be sent for actuation over the

time interval [tk, tk+1), where tk+1 ≤ tk + Tk. Then, the hori-

zon window will move to the next computation cycle, starting

at tk+1.

When implementing MPC in digital environments, the algo-

rithm has to be discrete-time, which can be interpreted from two

aspects: 1) the sampling time instants that trigger the FHOCP

must be discrete; and 2) the calculation of the optimal solution

to the FHOCP must be completely discrete and based on a

discrete-time model.

Assume that the original continuous-time cost function of the

FHOCP is

J [ûk|x(tk)] =
∫ tk+Tk

tk

� (x̂k(τ), ûk(τ)) dτ + Vf (x̂k(tk+Tk))

(6)

where � : R
n × R

m → R
+ is the running cost function that is

continuous, positive definite, and locally Lipschitz, and Vf :
R

n → R
+ is the terminal cost function. The predicted state and

input, x̂k(t) : R
+ → R

n and ûk(t) : R
+ → R

m, are subject to

the discrete-time model

x̂k(t
i+1
k ) = f̂

(

x̂k(t
i
k), ûk(t

i
k)
)

(7a)

x̂k(t
0
k) = x(tk) (7b)

ti+1
k = tik + ĝ

(

x̂k(t
i
k), ûk(t

i
k)
)

(7c)

t0k = tk (7d)

where the to-be-determined functions f̂ and ĝ describe the

transitions in state and time, respectively, and tik represents the

ith transition time instant at the kth computation of the FHOCP.

Notice that the predicted state x̂k(t
i
k) is the prediction of x(tik),

calculated at tk. ti+1
k − tik is called the ith “intertransition time

interval” when computing the FHOCP for the kth time, and

tk+1 − tk is called the kth “intersampling time interval” (or

“sampling period” if sampling is periodic).

Since the cost function in (6) needs continuous-time x̂k(τ)
and ûk(τ), the state and the input over [tk, tk+1) can be approx-

imated using interpolation methods. In this article, we simply

consider zero-order-hold (ZOH) as follows:

x̂k(t) = x̂k(t
i
k) (8)

ûk(t) = ûk(t
i
k) (9)

Fig. 1. Relation between tk and t
i

k
.

for any t ∈ [tik, t
i+1
k ). The discrete-time model in (7), together

with the interpolation in (8), is expected to approximate the

continuous-time plant in (1). The discretization of the cost func-

tion in (6) will be based on this discrete-time model with ZOH.

Remark 1: Once the function φ in (5) is defined, the

time instant tk+1 will, then, be triggered by a self-triggering

scheme [28], [29]. A special case is to set φ ≡ Ts where Ts is

a positive constant. Then, calculation of the FHOCP becomes

periodically triggered. Also, the discrete-time model in (7) is

general enough to include both aperiodic and periodic task

models. If ĝ(x̂(tik), ûk(t
i
k)) ≡ Ts, the model becomes periodic.

Notice that the model in (7) is different from self-triggering.

In self-triggered control, only the time instants are iteratively

calculated and the states are directly sampled from the plant,

while in (7), both the state and the time instants are updated,

which is necessary in prediction.

Remark 2: The relation between tk and tik is described in

Fig. 1. Let N ∈ N be the prediction horizon of the discrete-time

FHOCP. Then, at tk, the model in (7a) will be iterated forN steps

to obtain the optimal solution. Accordingly, the optimal solution

will generate a sequence of future time instants t0k, t1k,...,tNk ,

based on (7c) and (7d).

Remark 3: It is assumed in this article that there is no delay

in sampling, solving the FHOCP, and actuation. In this case, we

can focus more on the LAMPC algorithm itself. A more practical

assumption is to consider delays in the closed loop and inves-

tigate their impacts on system performance. In Section VII, we

examine actuation delays through simulations. A more rigorous

analysis on LAMPC of delayed systems will be provided in the

future.

The objective of this article is to design the self-triggered

scheduling scheme that triggers the FHOCP and develop the

discrete-time sporadic model used in the FHOCP, such that the

overall continuous-time system can be stabilized 1) without vio-

lating the state and input constraints and 2) in a computationally

cost-efficient way.

III. LAMPC ALGORITHM

This section presents the LAMPC algorithm. The key is to

identify the functions φ in (5) and f̂ , ĝ in (7). Meanwhile, the

parameters and the functions in the FHOCP, such as Tk, Vf , and

�, also need to be appropriately chosen to ensure stability. First
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Fig. 2. State trajectory generated by LAM.

of all, let us introduce the LAM, which will be used in solving

the FHOCP. It is aperiodic discretization of the continuous-time

system in (1) in the case when ‖dx̂i
k‖ > 0, where dx̂i

k ∈ R
n is

a simplified notation to denote f(x̂k(t
i
k), ûk(t

i
k)), i.e., dx̂i

k =
f(x̂k(t

i
k), ûk(t

i
k))

x̂k(t
i+1
k ) = x̂k(t

i
k) + D̂i

k

dx̂i
k

‖dx̂i
k‖

(10a)

x̂k(t
0
k) = x(tk) (10b)

ti+1
k = tik +

D̂i
k

‖dx̂i
k‖

(10c)

t0k = tk (10d)

where D̂i
k is the discretization (or quantization) level of the LAM

in the ith transition at time tk. For the case ‖dx̂i
k‖ = 0, it means

f(x̂k(t
i
k), ûk(t

i
k)) = 0 and the predicted state reaches the equi-

librium of the actual plant. In this case, we set x̂k(t
i+1
k ) = x̂k(t

i
k)

and ti+1
k = tik +�max, where �max is a positive constant that

defines the maximum intertransition time interval for safety

reasons. In the following discussion, we focus on the case when

‖dx̂i
k‖ > 0.

We approximate the states between x̂k(t
i
k) and x̂k(t

i+1
k ) by

x̂k(t
i
k) such that x̂k(t) is continuous-time. It means x̂k(t) =

x̂k(t
i
k) and ûk(t) = ûk(t

i
k) for any t ∈ [tik, t

i+1
k ).

Remark 4: The trajectory of the states generated by the LAM

is plotted in Fig. 2. At time tk, the model starts from the

accurate measurement x̂k(t
0
k) = x(tk), which serves as the base

to generate the approximated states. Once we have x̂k(t
0
k),

ZOH approximation is used to approximate x̂k(t) until the next

triggering time. Notice that the states generated by the LAM will

not be exactly the same as the actual states but some predicted

values. For an aperiodic model, a critical issue is related to the

Zeno behavior [30], [31]. Since the time instants are generated

aperiodically according to (10c), the value
D̂i

k

‖dx̂i
k
‖ has to be strictly

greater than zero; otherwise, transitions may take place infinite

times over a finite time horizon (Zeno). Thus, the quantization

level D̂i
k should be selected in a way to avoid Zeno behavior.

Since the parameter D̂i
k may depend on the predicted state

and input, we define the positive function D : R
n × R

m → R
+

to describe such dependence

D̂i
k = D

(

x̂k(t
i
k), ûk(t

i
k)
)

(11)

where the function D is to be determined.

Assumption 1: For any x ∈ X and any u ∈ U ,
D(x,u)
‖f(x,u)‖ > 0

if x �= 0 and u �= 0.

This assumption implies
D̂i

k

‖dx̂i
k
‖ is strictly positive when x̂k(t

i
k)

and ûk(t
i
k) are nonzero. It is important for the discussions in this

section. We will discuss the selection of D(·, ·) in Section V to

relax this assumption.

Let N ∈ N be the prediction horizon of the LAM, i.e., the

number of steps in the FHOCP. Therefore, the horizon length

in the cost function (6) is Tk = tNk − t0k and J [ûk|x(tk)] can be

rewritten as

J [ûk|x(tk)] =
∫ tN

k

t0
k

� (x̂k(τ), ûk(τ)) dτ + Vf (x̂k(tk + Tk))

=

N−1
∑

i=0

∫ ti+1
k

ti
k

� (x̂k(τ), ûk(τ)) dτ + Vf

(

x̂k(t
N
k )
)

.

Since x̂k(τ) = x̂k(t
i
k) and ûk(τ) = ûk(t

i
k) are constant over

[tik, t
i+1
k ) based on the LAM, so is �(x̂k(τ), ûk(τ)). Then, the

cost function can be further simplified as

J [ûk|x(tk)] =
N−1
∑

i=0

�
(

x̂k(t
i
k), ûk(t

i
k)
)

(ti+1
k − tik)+Vf

(

x̂k(t
N
k )
)

=
N−1
∑

i=0

�
(

x̂k(t
i
k), ûk(t

i
k)
) D̂i

k

‖dx̂i
k‖

+ Vf

(

x̂k(t
N
k )
)

(12)

where the last equivalence comes from (10c). For notational

simplicity, let x̂i
k = x̂k(t

i
k) and ûi

k = ûk(t
i
k).

Notice that the cost function in (12) only depends on the

predicted states and inputs of the LAM, but does not explicitly

depend on the time index t. With this observation, the FHOCP

at tk can be formally stated as a discrete-time optimal control

problem

V (x(tk)) = min
ûi
k
∈U, i=0,...,N−1

J [ûk(t)|x(tk)]

subject to x̂i+1
k = x̂i

k + D̂i
k

dx̂i
k

‖dx̂i
k‖

(13a)

x̂0
k = x(tk) (13b)

x̂i
k ∈ Xi, i = 1, . . . , N − 1 (13c)

x̂N
k ∈ XN = Xf (13d)

where Xi are the compact sets to be determined. The state x̂1
k

must stay inside a reduced set fromX due to the model difference

between the continuous-time system and the LAM. This point

will be further discussed in the later sections. Let ûi,∗
k for

i = 0, . . . , N − 1 be the optimal solution to the FHOCP and x̂i,∗
k

be the corresponding optimal state. Then, to map the predicted

discrete-time states back to the continuous-time horizon, we
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use (10c) to identify the related time instants

ti+1,∗
k = ti,∗k +

D̂i,∗
k

‖dx̂i,∗
k ‖

t0,∗k = tk

where D̂i,∗
k = D(x̂i,∗

k , ûi,∗
k ) and dx̂i,∗

k = f(x̂i,∗
k , ûi,∗

k ). There-

fore, the prediction horizon is Tk = tN,∗
k − t0k and the actual

input u(t) will be

u(t) = û0,∗
k ∀t ∈

[

t0,∗k , t1,∗k

)

. (14)

With this equation, it is natural to set the next computation time

as

tk+1 = t1,∗k = t0,∗k +
D̂0,∗

k

‖dx̂0,∗
k ‖

= tk +
D (x(tk), u(tk))

‖f (x(tk), u(tk)) ‖
(15)

which indicates a self-triggered feedback scheme.

IV. FEASIBILITY AND STABILITY ANALYSIS

A. State Constraints

This section discusses how the state constraints can be en-

sured. Notice that at the kth computation, x̂1
k = x̂k(tk+1) ∈ X

does not guarantee x(tk+1) ∈ X due to the modeling error be-

tween the LAM in (10) and the actual continuous-time plant (1).

Therefore, to ensure x(t) ∈ X , we make X1 a reduced set from

X . The basic idea is to quantify the difference between x(tk+1)
and x̂1

k and, then, reduce the constraint sets in Problem (13) such

that x̂1
k ∈ X1 implies x(t) ∈ X for any t ∈ [tk, tk+1].

In order to derive the upper bound on the state error, we

construct a continuous-time system over [tk, tk+1]

żk(t) = dx̂0,∗
k = f

(

x̂0,∗
k , û0,∗

k

)

= f (x(tk), u(tk))

zk(tk) = x(tk). (16)

Notice that

zk(t) = zk(tk) + dx̂0,∗
k (t− tk) ∀t ∈ [tk, tk+1] (17)

zk(tk+1) = zk(tk) + dx̂0,∗
k (tk+1 − tk)

= x(tk) + dx̂0,∗
k

D̂0,∗
k

‖dx̂0,∗
k ‖

= x̂1,∗
k (18)

where the last two equivalence come from (15) and (13a),

respectively.

We consider the error between zk(t) and x(t) over the time

interval [tk, tk+1]. Notice that both x(t) and zk(t) are generated

by the same control input û0,∗
k , starting at the same state x(tk).

The state error appears only because of their difference in

models.

Lemma 1: Consider system (1) and the state generated by

(16). For any t ∈ [tk, tk+1], the following inequality holds:

‖x(t)− zk(t)‖ ≤ εk � D (x(tk), u(tk))

×
(

e
Lf

D(x(tk),u(tk))
‖f(x(tk),u(tk))‖ − 1

)

(19)

for any t ∈ [tk, tk+1].
Proof: The proof is similar to the proof of [26, Prop. 5.3]

and, therefore, omitted. �

With the upper bound on the state error derived in 1, we can

define the constraint set X1 in (13c) and ensure x(t) ∈ X over

the entire time horizon. This is formally stated as follows.

Theorem 1: Suppose that there exists a positive constant ε
such that

D(x, u)
(

e
Lf

D(x,u)
‖f(x,u)‖ − 1

)

≤ ε (20)

for any x ∈ X and any u ∈ U . If x(t0) ∈ X − ε and

X1 = X − 2ε (21)

then, x(t) ∈ X for any t ≥ t0 under the LAMPC in (13).

Remark 5: Inequality (20) places the uniform bound ε on

‖x(t)− zk(t)‖. It is used to guarantee x(t) ∈ X for any t ∈
(tk, tk+1). This cannot be achieved by using time-varying

bounds on ‖x(t)− zk(t)‖, which may only ensure x(tk) ∈ X
but not those intermediate states, x(t), between x(tk) and

x(tk+1). Notice that if x(tk) ∈ X and u(tk) ∈ U , then εk ≤ ε.

B. Feasibility

This section discusses feasibility of the LAMPC. We first in-

troduce some assumptions on the constraint sets and the terminal

function Vf (x), which are similar to those in the standard MPC

approaches:

Assumption 2: There exist a class K∞ function α : R
+
0 →

R
+
0 , and a function h : R

n → R
m with h(0) = 0 such that:

i) Xf + ε(Ls + 1)N−1 ⊆ XU � {x ∈ XN−1|h(x) ∈ U},

and 0 ∈ int(Xf );
ii) If x ∈ Xf + ε(Ls + 1)N−1, then x+D(x, h(x))

f(x,h(x))
‖f(x,h(x))‖ ∈ Xf ;

iii) The following inequality holds:

Vf

(

x+D(x, h(x))
f(x, h(x))

‖f(x, h(x))‖

)

− Vf (x)

≤ −�(x, h(x))
D(x, h(x))

‖f(x, h(x))‖ (22)

Vf (x) ≤ α(‖x‖). (23)

With Assumption 2, we can construct control inputs for the

discrete-time model in (13a) with the initial condition x̂0
k+1 =

x(tk+1), which will be admissible to the FHOCP at tk+1

ûi
k+1 =

{

ûi+1,∗
k , i = 0, 1 . . . , N − 2

h
(

x̂N−1
k+1

)

, i = N − 1.
(24)

Let the resulting state be denoted by x̂0
k+1, x̂

1
k+1, . . . , x̂

N
k+1.

Before presenting the main result on feasibility, we introduce

Authorized licensed use limited to: University of South Carolina. Downloaded on November 13,2020 at 15:32:23 UTC from IEEE Xplore.  Restrictions apply. 



4052 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 10, OCTOBER 2020

Fig. 3. Reduced sets in the FHOCP.

the following lemma to quantify the difference between x̂i
k+1

and x̂i+1,∗
k .

Lemma 2: If
D(x,u)f(x,u)

‖f(x,u)‖ is Lipschitz in x over X uniformly

in u, i.e., for any x ∈ X and u ∈ U , there exists a positive

constant Ls such that
∥

∥

∥

∥

D(x, u)f(x, u)

‖f(x, u)‖ − D(y, u)f(y, u)

‖f(y, u)‖

∥

∥

∥

∥

≤ Ls‖x− y‖ (25)

holds, then

‖x̂i
k+1 − x̂i+1,∗

k ‖ ≤ εk(Ls + 1)i (26)

for i = 0, 1, . . . , N − 1, where εk is defined in (19).

To guarantee feasibility, we still need to define Xi for i =
1, 2, 3, . . . , N − 1 given the bounds derived in Theorem 1 and

Lemma 2. They are basically the reduced sets from X due to

state error between x(t) and x̂i
k

Xi �

{

X − 2ε i = 1

X − ε
(

∑i
p=2(Ls + 1)p−1 + 2

)

i = 2, . . . , N − 1.

(27)

The basic idea is demonstrated in Fig. 3.

Theorem 2 (Feasbility): Assume that the hypotheses in The-

orem 1 and Lemma 2 hold. Also assume that Assumption 2

holds. Then, the LAMPC problem in (13) is feasible for k =
0, 1, 2, . . ..

With the definition of Xi, the LAMPC algorithm can be

summarized as follows.

Algorithm 1: LAMPC at the kth Computation of the

FHOCP.
Input:

The initial time instant of the kth FHOCP, t0k = tk;

The initial state of the kth FHOCP, x̂0
k = x(tk);

The constraint sets, Xi defined in (27), Xf defined in

Assumption 2, and U ;

Output:

The k + 1 st sampling instant, tk+1 (which is also the

initial time instant of the k + 1 st FHOCP;

The control input over [tk, tk+1), u(t);
1: Solve FHOCP in (13) for the optimal time and control

sequences, {ti,∗k }Ni=0 and {ûi,∗
k }N−1

i=0 ;

2: Set tk+1 = t1,∗k ;

3: Set u(k) = û0,∗
k over the time interval [tk, tk+1);

4: At time tk+1, sample the state x(tk+1);
5: The horizon window will move to the next

computation cycle, starting at tk+1 and x(tk+1).

C. Stability

The following theorem presents the stability result of the

closed-loop system under LAMPC.

Theorem 3 (Stability): Suppose that the hypotheses in Theo-

rem 2 hold. If for any x, y ∈ X/{0} and u ∈ U/{0}, there exist

positive constants Lc, LVf
, r ∈ R

+, ρ ∈ (0, 1) and a class K∞
function β : R

+
0 → R

+
0 such that

|Vf (x)− Vf (y)| ≤ LVf
‖x− y‖ (28)

∣

∣

∣

∣

�(x, u)D(x, u)

‖f(x, u)‖ − �(y, u)D(y, u)

‖f(y, u)‖

∣

∣

∣

∣

≤ Lc‖x− y‖ (29)

�(x, u)D(x, u)

‖f(x, u)‖ ≥ β(‖x‖) (30)

∀‖x‖ > r,
ρ�(x, u)

‖f(x, u)‖ ≥ θ
(

e
Lf

D(x,u)
‖f(x,u)‖ − 1

)

(31)

hold where θ = Lc
(Ls+1)N−1−1

Ls
+ LVf

(Ls + 1)N−1, the sys-

tem in (1) under the MPC algorithm (13) is UUB with the

ultimate bound β−1(α(r)).
Remark 6: Notice that if inequality (31) holds for r = 0, then

the closed-loop system is asymptotically stable. Of course, we

can intentionally pick D(x, u) satisfying inequality (31) with

r = 0. Then, we must examine if the selected D(x, u) will lead

to Zeno behavior. If so, the threshold D(x, u) must be modified.

D. Example

In this example, we will show how the results can be applied

to a simple system

ẋ1(t) = f1(x(t), u(t)) = x2(t)

ẋ2(t) = f2(x(t), u(t)) = − sin(x1(t))− x2
2(t) + u(t)

where f(x, u) = [f1(x, u) f2(x, u)]
�, x = [x1 x2]

�, which

must satisfy |xi(t)| ≤ 3 for any i = 1, 2. The input constraint

is −3 ≤ |u(t)| ≤ 3. The running cost function is �(x, u) =
x�x+ 0.01 u�u and the terminal cost function isVf (x) = x�x.

In the following, we will calculate the relevant Lipschitz

constants and verify the necessary assumptions:

‖f(x, u)− f(y, u)‖

≤ max
x∈X

λ

(

∂f(x, u)

∂x

)

· ‖(x− y)‖

= max
x∈X

λ

([

0 1

− cos(x1) −2x2

])

· ‖(x− y)‖

= max
x∈X

{

−x2 −
√

x2
2 − cos(x1),

− x2 +
√

x2
2 − cos(x1)

}

· ‖(x− y)‖

≤ (3 +
√

32 + 1) · ‖(x− y)‖.
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Then, we have Lf = 3 +
√
10

‖Vf (x)− Vf (y)‖ = ‖x�x− y�y‖

= ‖(x+ y)�(x− y)‖
≤ (‖x‖+ ‖y‖)‖x− y‖.

Then, we have LVf
= 6

√
2.

According to (31), the quantization size D(x, u) can be se-

lected as

D(x, u) =
‖f(x, u)‖

Lf
.

Then, inequality (31) will be satisfied
∥

∥

∥

∥

�(x, u)D(x, u)

‖f(x, u)‖ − �(y, u)D(y, u)

‖f(y, u)‖

∥

∥

∥

∥

=

∥

∥

∥

∥

�(x, u)

Lf
− �(y, u)

Lf

∥

∥

∥

∥

≤ LVf

Lf
‖x− y‖.

Then, we have Lc =
6
√
2

3+
√
10

. Furthermore,
�(x,u)D(x,u)

‖f(x,u)‖ =
�(x,u)
Lf

≥ x�x
3+

√
10

, which means the satisfaction of inequality (30)

∥

∥

∥

∥

D(x, u)f(x, u)

‖f(x, u)‖ − D(y, u)f(y, u)

‖f(y, u)‖

∥

∥

∥

∥

=

∥

∥

∥

∥

f(x, u)

Lf
− f(y, u)

Lf

∥

∥

∥

∥

≤ ‖x− y‖.

Therefore, Ls = 1.

V. THRESHOLD DESIGN

This section studies the design of the threshold D(x, u). By

the results discussed in the previous sections, we know that,

in order to ensure feasibility and stability, D(x, u) must satisfy

inequalities (20), (25), and (29)–(31). Besides these inequalities,

D(x, u) should also be selected in a way to avoid Zeno behavior.

To do so, we can choose D(x, u) as the function such that

D(x, u) = 0 only when x = 0 and u = 0. Meanwhile

limx,u→0
D(x, u)

‖f(x, u)‖ �= 0. (32)

In this case, since x(t), u(t) are always inside compact sets, the

intertransition time interval will be always greater than a positive

constant, given (10c).

Let us first consider the satisfaction of inequality (31). Obvi-

ously, if we let

D(x, u) =
‖f(x, u)‖

Lf
log

(

ρ�(x, u)

θ‖f(x, u)‖ + 1

)

(33)

inequality (31) will be trivially satisfied with r = 0, which

implies asymptotic stability.

Remark 7: In fact, it is enough to choose the threshold as

D(x, u) ≤ ‖f(x, u)‖
Lf

log

(

ρ�(x, u)

θ‖f(x, u)‖ + 1

)

(34)

as long as Lipschitz conditions and continuity of D(x, u) can be

guaranteed. Meanwhile, Zeno behavior must be avoided.

With this threshold, as long as

lim infx,u→0
�(x, u)

‖f(x, u)‖ �= 0 (35)

then (32) holds and Zeno behavior can be avoided. So we can

present the following result.

Theorem 4: Given the threshold in (33), if (35) holds and

there exists a class K function η(‖x‖) such that �(x, u) ≥
η(‖x‖) for any x ∈ X and any u ∈ U , then inequalities (25)

and (29)–(31) hold. Also, the intertransition time intervals are

greater than a positive constant.

To ensure inequality (20), we can simply pick ρ such that

max
x∈X ,u∈U

D(x, u)
(

e
Lf

D(x,u)
‖f(x,u)‖ − 1

)

= ε

with D(x, u) defined in (33). Notice that such a threshold will

guarantee asymptotic stability since r = 0 in this case.

If limx,u→0
�(x,u)

‖f(x,u)‖ = 0, we may need to slightly modify the

threshold in order to avoid Zeno behavior. For example, we can

pick a small enough positive constant δ and define the threshold

as

D(x, u) =
‖f(x, u)‖

Lf
log

(

max

{

ρ�(x, u)

θ‖f(x, u)‖ , δ
}

+ 1

)

.

(36)

In this case, inequality (31) will not hold for r = 0, but a positive

constant r. As a result, the system will become UUB instead of

asymptotically stable.

Remark 8: In the presence of noise,
D(x,u)
‖f(x,u)‖ may approach

to the infinity, which will lead to infinite intersampling time

intervals and prediction horizons. To avoid this case, we can in-

troduce a proper positive constant δmax and define the threshold

as

D(x, u) =
‖f(x, u)‖

Lf
log

×
(

min

{

max

{

ρ�(x, u)

θ‖f(x, u)‖ , δ
}

, δmax

}

+ 1

)

.

(37)

Recalling the definition �max below (10), if the predicted

state reaches an equilibrium of the actual plant (i.e., f(x, u) =
0), then

ti+1
k = tik +�max = tik +

1

Lf
log (δmax + 1) .

VI. PERIODIC CASE

The previous sections present a general framework for

LAMPC where the LAM is aperiodic discretization of the

continuous-time system in (1). In this section, we study a special

case where the LAM takes the periodic model, i.e.,
D̂i

k

‖dx̂i
k
‖ = T
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where T is a positive constant as the period. Therefore, the LAM

in (10) can be simplified as follows, with which the sufficient

conditions for feasibility and stability can be further simplified.

To distinguish it from the general LAM, we use x̄ instead of x̂
in the following discussion for this special case:

x̄k(t
i+1
k ) = x̄k(t

i
k) + dx̄i

kT (38a)

x̄k(t
0
k) = x(tk) (38b)

ti+1
k = tik + T (38c)

t0k = tk (38d)

wheredx̄i
k = f(x̄k(t

i
k), ūk(t

i
k)). For convenience, in the follow-

ing, let x̄i
k = x̄k(t

i
k) and ūi

k = ūk(t
i
k). With preceding model,

the FHOCP in (13) reduces to

V (x(tk)) = min
ūi
k
∈U, i=0,...,N−1

J [ūk|x(tk)]

= min
ūi
k
∈U, i=0,...,N−1

N−1
∑

i=0

�
(

x̄i
k, ū

i
k

)

T

+ Vf

(

x̄N
k

)

subject to

(38a) and (38b) (39a)

x̄i
k = x̄k(tk + iT ) ∈ X̄i, i = 1, . . . , N − 1

(39b)

x̄N
k = x̄k(tk +NT ) ∈ X̄N = X̄f . (39c)

The results are presented in the following corollaries. The

proofs of these corollaries are similar to those for the general

LAMPC and, therefore, omitted due to space limit.

To guarantee the satisfaction of the state constraints, i.e.,

x(t) ∈ X , we have the following corollary that is directly from

Theorem 1.

Corollary 1 (State Constraints): Suppose that there exists a

positive constant ε̄ such that

‖f(x, u)‖T
(

eLfT − 1
)

≤ ε̄ (40)

for any x ∈ X and any u ∈ U . Let

X̄i � X − ε̄

(

i
∑

p=2

(LfT + 1)p−1 + 2

)

. (41)

If x(t0) ∈ X − ε̄, then x(t) ∈ X for any t ≥ t0 under the

LAMPC in (39).

Remark 9: Notice that f(x, u) is bounded because f is lo-

cally Lipschitz and X ,U are compact sets. So inequality (40)

can always be satisfied. Meanwhile, ε̄ can be arbitrarily small as

long as T is small enough.

To guarantee feasibility, we make the following assumption.

Assumption 3: There exist a class K∞ function ᾱ : R
+
0 →

R
+
0 , and a function h̄ : R

n → R
m with h̄(0) = 0 such that

1) X̄f + ε̄(LfT + 1)N−1 ⊆ X̄U � {x ∈ X̄N−1|h̄(x) ∈
U}, and 0 ∈ int(X̄f );

2) If x ∈ X̄f + ε̄(LfT + 1)N−1, then x+ f(x, h̄(x))T ∈
X̄f ;

3) The following inequality holds:

Vf

(

x+ f(x, h̄(x))T
)

− Vf (x) ≤ −�(x, h̄(x))T (42)

Vf (x) ≤ ᾱ(‖x‖). (43)

Corollary 2 (Feasbility): Assume that the hypotheses in

Corollary 1 and Assumption 3 hold. Then, the LAMPC problem

in (39) is feasible for k = 0, 1, 2, . . .
The following corollary presents the result on stability of the

closed-loop system under the LAMPC in (39), which directly

follows Theorem 3.

Corollary 3 (Stability): Suppose that the hypotheses in

Corollary 2 hold. If for any x, y ∈ X and u ∈ U , there exist

positive constants Lc, LVf
, r ∈ R

+, ρ ∈ (0, 1) and a class K∞
function β̄ : R

+
0 → R

+
0 such that

|Vf (x)− Vf (y)| ≤ LVf
‖x− y‖ (44)

|�(x, u)− �(y, u)|T ≤ Lc‖x− y‖ (45)

�(x, u)T ≥ β̄(‖x‖) (46)

∀‖x‖ > r,
ρ�(x, u)

‖f(x, u)‖ ≥ θ̄
(

eLfT − 1
)

(47)

hold where θ̄ = Lc
(LfT+1)N−1−1

LfT
+ LVf

(LfT + 1)N−1, the

system in (1) under the LAMPC algorithm (39) is UUB with

the ultimate bound β̄−1(ᾱ(r)).
Remark 10: Notice that in the periodic LAM, inequality (25)

is automatically satisfied because f(x, u) is locally Lipschitz.

Inequality (29) is replaced by a weaker assumption that �(x, u)
is locally Lipschitz. Meanwhile, inequality (30) is simplified

by the positive definiteness of �(x, u). Finally, inequality (47)

provides a rule to choose the period where T must satisfy T ≤
minx∈X/B(r),u∈U

1
Lf

log( ρ�(x,u)

θ̄‖f(x,u)‖ + 1).

VII. SIMULATIONS

This section presents the simulation results to demonstrate

the performance of the LAMPC. We adopt the example in [32]

and consider a crane with the horizontal trolley position

x1(t), the trolley velocity x2(t), the excitation angle x3(t),
and the angular velocity of the mass point x4(t). Let x(t) =
[x1(t) x2(t) x3(t) x4(t)]

� ∈ R
4, where xi(t) is the ith co-

ordinate of x(t). Then, the crane model is governed by the

following differential equations:

ẋ(t) = f(x, u)=

⎡

⎢

⎢

⎢

⎣

x2(t)

u(t)

x4(t)

−g sin(x3(t))− u(t) cos(x3(t))− bx4(t)

⎤

⎥

⎥

⎥

⎦

x(0) =
[

1 −1 0 0.1
]�

where g = 9.81 m/s2 and b = 0.2 Js. The state and input con-

straints are assumed to be

−3 ≤ xi(t) ≤ 3

−0.5 ≤ u(t) ≤ 0.5.

Notice that the open-loop system is unstable.
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Fig. 4. State and input trajectories of the closed-loop system under the
LAMPC algorithm.

Fig. 5. History of the intersampling time intervals and the prediction
horizons generated by the LAMPC algorithm.

The prediction horizon in (12) is chosen as N = 5. The

running cost function and the terminal cost function are defined

as follows:

�(x(t), u(t)) = ‖f(x(t), u(t))‖
(

‖x(t)‖2+‖u(t)‖2+1
)

(48)

Vf (x) = 10‖x(t)‖2. (49)

With this choice, (35) is satisfied, which avoids Zeno behavior.

To examine the LAMPC algorithm, the threshold function

D(x, u) takes the form in (33). We use the fmincon solver in

MATLAB optimization toolbox to solve the nonlinear FHOCP.

Fig. 4 plots the state and input trajectories of the closed-loop

system. Both of them approach zero, which indicates the system

is stabilized. Also, notice that both state and input constraints are

met. Meanwhile, the Lyapunov function is strictly decreasing as

shown in Fig. 6. Fig. 5 plots the history of the intersampling time

intervals generated by the self-triggered scheme (top) and the

prediction horizons at each sampling instants (bottom). It is clear

that those intervals are time-varying and strictly greater than

zero. One thing worth mentioning is that both of them seem to

converge to positive constants as the state and the input approach

Fig. 6. Time history of the Lyapunov function V .

Fig. 7. System under the LAMPC that generates the maximum aver-
age inter-sampling time interval. (a) State and input trajectories of the
closed-loop system. (b) History of the inter-sampling time intervals and
the prediction horizons.

zero. It is consistent with the theoretical findings because based

on (10c) and the definitions of �(x, u) in (48) andD(x, u) in (33),

we have limx,u→0
D(x,u)
‖f(x,u)‖ = 1

Lf
log(ρθ + 1).

By varying the parameter ρ in (33) with the guarantee of the

feasibility and stability conditions, we simulate the system and

generate different sets of the intersampling time intervals. We

calculate the average intersampling time interval based on the

data in each set. The maximum of these average intersampling

time intervals is 0.4602 s (see Fig. 7). Meanwhile, the maximum
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Fig. 8. State and input trajectories of the closed-loop system with
different sampling periods. (a) T = 0.46. (b) T = 0.47.

average intersampling time interval during the transience (over

the time interval [0,45]) is 0.5528 s.

We then study the special case of the periodic LAM and

compare the performance between this case and the general

LAMPC. By simulations, we find that the maximum allowable

period, for which the system is stable, is a value between 0.46 and

0.47 [see Fig. 8(a) and (b)], which is very close to the maximum

average intersampling time intervals obtained in the previous

section.

By comparing Figs. 7(a) and 8(a), it can be observed that the

aperiodic model has a little larger overshoot. Also, we find that

the aperiodic model triggers fewer times solving the FHOCP

(81 times) during the transience, compared with the periodic

model (98 times). Based on this simulation, we see that the

aperiodic LAMPC algorithm may generate longer intersampling

time intervals than the periodic case during the transience at the

expense of incremental overshoot.

Finally, we investigate the impact of actuation delay on the

control performance, where the state equations can be rewritten

as

ẋ(t) =

⎡

⎢

⎢

⎢

⎣

x2(t)

u(t)

x4(t)

−g sin(x3(t))− u(t− td) cos(x3(t))− bx4(t)

⎤

⎥

⎥

⎥

⎦

.

Fig. 9. State and input trajectories of the closed-loop system with
actuation delays.

Fig. 10. Intersampling time intervals and the prediction horizons in the
presence of actuation delays.

Fig. 9 plots the state and input trajectories of the system when

the delay is set to be td = 0.3. It is shown that although system

stability is still preserved, the state and input signals oscillate

a lot during the transience. Fig. 10 plots the history of the

intersampling time intervals and the prediction horizons. A

significant decrease is found in the length of these intervals,

compared with the delay-free case in the first simulation. It

means that the FHOCP is triggered more frequently, which

requires more computational resources.

Fig. 11 plots the relation between the actuation delays and the

average intersampling time intervals generated by the LAMPC.

The average intersampling time interval is taken to be the

maximum allowable average interval for stability and feasibility

under a specific value of td. It shows that as the actuation delay

td increases, the allowable average intersampling time interval

decreases. There is a dramatic drop in the average intersampling

time interval when td > 0.2. From these simulation results, we

can see that the actuation delay has negative impacts on both

control performance and computational efficiency.
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Fig. 11. Relation between actuation delays and average intersampling
time intervals.

VIII. CONCLUSION

This article presents the LAMPC algorithm for nonlinear

sampled-data systems. The LAMPC samples the state follow-

ing a self-triggering mechanism in order to reduce the fre-

quency of solving the FHOCP. More importantly, the FHOCP

itself is also discretized in an aperiodic manner based on the

LAM, which makes the algorithm completely discrete-time and

computer-friendly. The aperiodic nature in the FHOCP enables

the controller to optimize the system performance over a longer

prediction horizon without increasing the number of transitions.

We show sufficient conditions for feasibility and stability of the

resulting closed-loop systems.

There are still many open problems to be addressed in the

future. Notice that the parameters in the LAM may be over-

conservative due to the global nature of the Lipschitz constants

(We compute the Lipschitz constants over the entire state and

input constraint sets). An alternative way is to refine Lips-

chitz constants at each computation of the FHOCP. As the

state approaches the origin, we can use the Lipschitz constants

calculated based on a smaller neighborhood of the sampled

state. By this way, the Lipschitz constants will become smaller

and smaller, which makes the approach less conservative The

work in [33] also provides three possible methods to reduce

conservativeness of Lipschitz constants, which certainly deserve

further investigation. One important problem is to further reduce

the complexity in solving the FHOCP. It is shown that the

choice of the threshold function and the cost function may affect

the complexity. Appropriate cost function and threshold can

significantly simplify the computation and, therefore, reduce

the complexity. Another interesting problem is to quantify the

impact of disturbances and delays, such as measurement noises,

actuation errors, and sensing/actuation delays, in LAMPC. Fol-

lowing the spirit of the work in [33], a possible solution is to fur-

ther reduce the constraint sets, and redefine appropriate terminal

cost functions and terminal sets, so that the system can preserve

enough feasibility and stability margins to tolerate the negative

impacts raised by disturbances and delays. Besides deterministic

formulations, a stochastic framework for robust LAMPC over

the probability space is also worth investigation [34], [35]. We

will study both cases in the future work.

APPENDIX

PROOFS

A. Proof of Theorem 1

Proof: First of all, notice that given (17), for any t ∈
[tk, tk+1] and any k ∈ Z

+
0 , zk(t) can be written as

zk(t) = (1− θ)zk(tk) + θzk(tk+1) (50)

where θ = t−tk
tk+1−tk

∈ [0, 1].

Then, we prove the statement in a recursive way. For k =
0, we have x(t0) = z0(t0) = x̂0,∗

0 ∈ X − ε by the assumption.

Also notice that z0(t1) = x̂1,∗
0 ∈ X1 = X − 2ε by (18). Because

X − ε is still compact and z0(t0), z0(t1) ∈ X − ε, (50) implies

z0(t) ∈ X − ε for any t ∈ [t0, t1]. By Lemma 1

‖x(t)− z0(t)‖ ≤ D (x(t0), u(t0))

(

e
Lf

D(x(t0),u(t0))

‖f(x(t0),u(t0))‖ − 1

)

≤ ε

over [t0, t1], where the second inequality comes from (20) since

x(t0) ∈ X − ε and u(t0) ∈ U by (13). Thus, z0(t) ∈ X − ε
implies x(t) ∈ X for any t ∈ [t0, t1].

For k = 1, by (21), x̂1,∗
0 = z0(t1) ∈ X − 2ε. By Lemma 1,

we know ‖x(t1)− z0(t1)‖ ≤ ε. So x(t1) = x̂0,∗
1 = z1(t1) ∈

X − ε. Also z1(t2) = x̂1,∗
1 ∈ X − 2ε holds by (13c). There-

fore, (50) implies that z1(t) stays in X − ε for any t ∈ [t1, t2].
Again, by Lemma 1 and inequality (20), ‖x(t)− z1(t)‖ ≤ ε
holds and, therefore, x(t) ∈ X for any t ∈ [t1, t2]. Keeping this

process, we show that x(t) ∈ X for any t ∈ [tk, tk+1] and any

k ∈ Z
+
0 . �

B. Proof of Lemma 2

Proof: We prove the statement by mathematical induction.

By Lemma 1, we know ‖x(tk+1)− zk(tk+1)‖ ≤ εk. Since

x(tk+1) = x̂0
k+1 and zk(tk+1) = x̂1,∗

k , we know inequality (26)

holds for i = 0.

Assume that inequality (26) holds for i = p− 1, i.e.,

‖x̂p−1
k+1 − x̂p,∗

k ‖ ≤ εk(Ls + 1)p−1. (51)

We now show that this inequality also holds for i = p. Notice

that by (13a)

x̂p+1,∗
k = x̂p,∗

k +D(x̂p,∗
k , ûp,∗

k )
f(x̂p,∗

k , ûp,∗
k )

‖f(x̂p,∗
k , ûp,∗

k )‖

x̂p
k+1 = x̂p−1

k+1 +D(x̂p−1
k+1, û

p,∗
k )

f(x̂p−1
k+1, û

p,∗
k )

‖f(x̂p−1
k+1, û

p,∗
k )‖

hold. Therefore

‖x̂p
k+1 − x̂p+1,∗

k ‖

≤
∥

∥

∥

∥

∥

x̂p−1
k+1 +D(x̂p−1

k+1, û
p,∗
k )

f(x̂p−1
k+1, û

p,∗
k )

‖f(x̂p−1
k+1, û

p,∗
k )‖

− x̂p,∗
k

− D(x̂p,∗
k , ûp,∗

k )
f(x̂p,∗

k , ûp,∗
k )

‖f(x̂p,∗
k , ûp,∗

k )‖

∥

∥

∥

∥
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≤ ‖x̂p−1
k+1 − x̂p,∗

k ‖+
∥

∥

∥

∥

∥

D(x̂p−1
k+1, û

p,∗
k )

f(x̂p−1
k+1, û

p,∗
k )

‖f(x̂p−1
k+1, û

p,∗
k )‖

− D(x̂p,∗
k , ûp,∗

k )
f(x̂p,∗

k , ûp,∗
k )

‖f(x̂p,∗
k , ûp,∗

k )‖

∥

∥

∥

∥

≤ (1 + Ls)‖x̂p−1
k+1 − x̂p,∗

k ‖ ≤ εk(Ls + 1)p

where the third inequality is obtained because of inequal-

ity (25) and the last inequality comes from inequality (51). By

mathematical induction, inequality (26) holds and the proof is

completed. �

C. Proof of Theorem 2

Proof: We will prove that if x̂i,∗
k ∈ Xi for i = 1, 2, . . . , N ,

there is a feasible solution of the optimization problem in k + 1,

which is ûi
k+1 defined in (24), based on the optimal solution in

k, ûi,∗
k .

First, we show that ûi
k+1 ∈ U for i = 0, 1, . . . , N − 1. Based

on (24), ûi
k+1 = ûi+1,∗

k ∈ U for i = 0, 1, . . . , N − 2 because of

the feasibility of ûi,∗
k . By Lemma 2 and inequality (20), we know

‖x̂N−1
k+1 − x̂N,∗

k ‖ ≤ εk(Ls + 1)N−1 ≤ ε(Ls + 1)N−1.

Since x̂N,∗
k ∈ Xf , x̂N−1

k+1 ∈ Xf + ε(Ls + 1)N−1 holds. By con-

dition (i) in Assumption 2

x̂N−1
k+1 ∈ Xf + ε(Ls + 1)N−1 ⊆ XU

and, therefore, ûN−1
k+1 ∈ U .

Next, we show that x̂i
k+1 ∈ Xi for i = 1, . . . , N − 1 and

x̂N
k+1 ∈ Xf . Because x̂N−1

k+1 ∈ Xf + ε(Ls + 1)N−1, we have

x̂N
k+1 ∈ Xf by condition (ii) in Assumption 2. Also, by Lemma 2

and inequality (20), we know ‖x̂i
k+1 − x̂i+1,∗

k ‖ ≤ ε(Ls + 1)i

for i = 1, . . . , N − 1. Also notice that x̂i+1,∗
k ∈ Xi+1 = X −

ε(
∑i+1

p=2(Ls + 1)p−1 + 2) for i = 1, . . . , N − 2 and x̂N,∗
k ∈

Xf ⊆ XN−1. So

x̂i
k+1 ∈ Xi+1 + ε(Ls + 1)i

= X − ε

(

i
∑

p=2

(Ls + 1)p−1 + 2

)

= Xi

for i = 1, . . . , N − 1. �

D. Proof of Theorem 3

Proof: Consider

J [ûk+1(t)|x(tk+1)]− V (x(tk))

=

N−1
∑

i=0

�
(

x̂i
k+1, û

i
k+1

) D̂i
k+1

‖dx̂i
k+1‖

+ Vf

(

x̂N
k+1

)

− V (x(tk))

=

N−2
∑

i=0

�
(

x̂i
k+1, û

i
k+1

) D̂i
k+1

‖dx̂i
k+1‖

+ Vf

(

x̂N−1
k+1

)

+�
(

x̂0,∗
k , û0,∗

k

)

D̂0,∗
k

‖dx̂0,∗
k

‖ − V (x(tk))

⎫

⎪

⎬

⎪

⎭

Φ

+ �
(

x̂N−1
k+1 , û

N−1
k+1

) D̂N−1
k+1

‖dx̂N−1
k+1 ‖

+ Vf (x̂
N
k+1)− Vf (x̂

N−1
k+1 )

− �
(

x̂0,∗
k , û0,∗

k

) D̂0,∗
k

‖dx̂0,∗
k ‖

. (52)

By inequality (22) in Assumption 2

�
(

x̂N−1
k+1 , û

N−1
k+1

) D̂N−1
k+1

‖dx̂N−1
k+1 ‖

+ Vf (x̂
N
k+1)− Vf (x̂

N−1
k+1 ) ≤ 0

(53)

because ûN−1
k+1 = h(x̂N−1

k+1 ) and

x̂N
k+1 = x̂N−1

k+1 + D̂N−1
k+1

dx̂N−1
k+1

∥

∥dx̂N−1
k+1

∥

∥

= x̂N−1
k+1 +D

(

x̂N−1
k+1 , û

N−1
k+1

) f
(

x̂N−1
k+1 , û

N−1
k+1

)

∥

∥f
(

x̂N−1
k+1 , û

N−1
k+1

)
∥

∥

.

Consider Φ. Notice that V (x(tk)) can be rewritten as

V (x(tk)) =

N−2
∑

i=−1

�
(

x̂i+1,∗
k , ûi+1,∗

k

) D̂i+1,∗
k

‖dx̂i+1,∗
k ‖

+ Vf

(

x̂N,∗
k

)

.

Therefore

Φ =

N−2
∑

i=0

�
(

x̂i
k+1, û

i
k+1

) D̂i
k+1

‖dx̂i
k+1‖

+ Vf

(

x̂N−1
k+1

)

−
N−2
∑

i=0

�
(

x̂i+1,∗
k , ûi+1,∗

k

) D̂i+1,∗
k

‖dx̂i+1,∗
k ‖

− Vf

(

x̂N,∗
k

)

≤
N−2
∑

i=0

∣

∣

∣

∣

∣

∣

�
(

x̂i
k+1, û

i
k+1

)

D̂i
k+1

‖dx̂i
k+1‖

−
�
(

x̂i+1,∗
k , ûi+1,∗

k

)

D̂i+1,∗
k

‖dx̂i+1,∗
k ‖

∣

∣

∣

∣

∣

∣

+
∣

∣

∣
Vf

(

x̂N−1
k+1

)

− Vf

(

x̂N,∗
k

)∣

∣

∣

≤
N−2
∑

i=0

Lc

∥

∥

∥
x̂i
k+1 − x̂i+1,∗

k

∥

∥

∥
+ LVf

∥

∥

∥
x̂N−1
k+1 − x̂N,∗

k

∥

∥

∥

≤
N−2
∑

i=0

Lcεk(Ls + 1)i + LVf
εk(Ls + 1)N−1

= εk

(

Lc
(Ls + 1)N−1 − 1

Ls
+ LVf

(Ls + 1)N−1

)

= εkθ

where the second inequality comes from inequality (29) and

the last inequality is obtained using Lemma 2. Applying the

inequality above and inequality (53) into (52) yields

J [ûk+1(t)|x(tk+1)]− V (x(tk))

≤ −�
(

x̂0,∗
k , û0,∗

k

) D̂0,∗
k

‖dx̂0,∗
k ‖

+ εkθ

= −�(x(tk), u(tk))
D̂(x(tk), u(tk))

‖f(x(tk), u(tk))‖
+ εkθ.
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Therefore

V (x(tk+1))− V (x(tk)) = min
ûk+1(t)

J [ûk+1(t)|x(tk+1)]

− V (x(tk))

≤ −�
(

x̂0,∗
k , û0,∗

k

) D̂0,∗
k

‖dx̂0,∗
k ‖

+ εkθ

= −� (x(tk), u(tk))
D(x(tk), u(tk))

‖f(x(tk), u(tk))‖
+ εkθ

= −D (x(tk), u(tk))

·
(

�(x(tk), u(tk))

‖f(x(tk), u(tk))‖
− θ

(

e
Lf

D(x(tk),u(tk))
‖f(x(tk),u(tk))‖ − 1

))

where the last equivalence is obtained by the definition of εk
in (19). By (31), we know that for any ‖x(tk)‖ ≥ r

V (x(tk+1))− V (x(tk))

≤ −D (x(tk), u(tk)) (1− ρ)�(x(tk), u(tk))

‖f(x(tk), u(tk))‖
≤ −(1− ρ)β(‖x(tk)‖) (54)

holds. By Assumption 2, we know

Vf

(

x̂i+1
k

)

− Vf (x̂
i
k) ≤ −�(x̂i

k, h(x̂
i
k))

D(x̂i
k, h(x̂

i
k))

‖f(x̂i
k, h(x̂

i
k))‖

.

Summing up the inequality above for i = 0, 1, . . . , N − 1

Vf

(

x̂N
k

)

− Vf (x̂
0
k) ≤ −

N−1
∑

i=0

�(x̂i
k, h(x̂

i
k))

D(x̂i
k, h(x̂

i
k))

‖f(x̂i
k, h(x̂

i
k))‖

.

Thus, by the definition of V (x(tk))

V (x(tk)) ≤
N−1
∑

i=0

�(x̂i
k, h(x̂

i
k))

D(x̂i
k, h(x̂

i
k))

‖f(x̂i
k, h(x̂

i
k))‖

+ Vf

(

x̂N
k

)

≤ Vf (x̂
0
k) = Vf (x(tk)) ≤ α(‖x(tk)‖) (55)

holds, which, together with inequality (54), implies that x(tk)
will ultimately stay in the set Ω � {x|V (x) ≤ α(r)}. Since

V (x(t)) ≤ V (x(tk)) for any t ∈ (tk, tk+1), we can conclude

that x(t) will eventually stay in Ω, which means that the re-

sulting closed-loop system is UUB. Also notice that V (x) ≥
�(x, u) D(x,u)

‖f(x,u)‖ ≥ β(‖x‖). Then, we can derive the ultimate

bound as β−1(α(r)). �

E. Proof of Theorem 4

Proof: First of all, by the definition of D(x, u) in (33),

inequality (31) will be trivially satisfied with r = 0.

Since �(x, u) and f(x, u) are continuous,
�(x,u)

‖f(x,u)‖ is contin-

uous over X × U/{(0, 0)}. This, together with (35), implies

that there exists a positive constant ξ such that
�(x,u)

‖f(x,u)‖ ≥ ξ for

any x ∈ X and any u ∈ U . Applying this inequality into (33)

means that the intertransition time intervals are bounded from

below by some positive constant. Therefore, Zeno behavior can

be avoided.

To show the satisfaction of inequality (25), we can simply

apply (33) into
D(x,u)f(x,u)

‖f(x,u)‖ to replace D(x, u). Because �(x, u)

and f(x, u) are locally Lipschitz,
D(x,u)f(x,u)

‖f(x,u)‖ is also locally

Lipschitz. Therefore, inequality (25) holds. By a similar anal-

ysis, we can show that
D(x,u)�(x,u)

‖f(x,u)‖ is locally Lipschitz and

inequality (29) holds.

Finally, by the assumption that �(x, u) ≥ η(‖x‖), we have

�(x, u)D(x, u)

‖f(x, u)‖ =
�(x, u)

Lf
log

(

ρ�(x, u)

θ‖f(x, u)‖ + 1

)

≥ η(‖x‖)
Lf

log

(

ρξ

θ
+ 1

)

.

Thus, inequality (30) is satisfied. �
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