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Abstract—We investigate a novel duality for scalar Gaussian
multiple access channels and broadcast channels. The duality
we explore is based on shared partial information quantities
(e.g. synergy and redundancy). Using lattice theory, we establish
a crossover correspondence of the synergistic and redundant
components between these two channels. The dual channels are
similar to the traditional pairs based on capacity regions, though
the pairs we identify have equal transmission powers instead of
a sum constraint relating transmission powers.

I. INTRODUCTION

The information possessed by multiple agents in a system
may present different interactions. For example, two users may
have synergistic, redundant, and unique information about a
signal. Conversely, an information source can send information
to different users such that they perceive it in synergistic, re-
dundant, and unique manners. The partial information decom-
position framework proposed in [1] can be used to decouple
unique, redundant, and synergistic informations that combine
to form (joint) mutual and conditional mutual informations.

Gaussian Multiple-Input and Multiple-Output (MIMO)
communication channels are important examples of systems
of multiple interacting agents. One significant result in this
area is the duality relationship between the Gaussian multiple
access channel (MAC) and the Gaussian broadcast channel
(BC). The capacity region of one channel type of each can
be directly characterized by the capacity region of the other
channel type [2]–[4].

In this paper, we identify a different type of duality between
Gaussian MACs and BCs. Instead of shared achievable rates,
we identify dual pairs that share partial informations (e.g.
synergy and redundancy) between the transmitters in a MAC
and the receivers in a corresponding BC. In the (traditional)
duality based on capacity regions, MAC and BC channel pairs
that share channel gains, share uniform noise powers, but
have different transmission powers (with a sum constraint).
In contrast, for the duality based on partial informations that
we investigate, the channel pairs share channel gains, uniform
noise powers, and uniform transmission powers.

A number of partial information measures have been pro-
posed, including [1], [5]–[9]. These measures have been

This work was supported by NSF CCF-1566513 and by NSF CNS-1742847.

applied to various research areas. For example, the opera-
tional decomposition [6] was used to quantify information
modification in developing neural networks [10]; net synergy
was used to study how the correlations between neurons
are related to the stimulus [11]; Rauh [12] associated secret
sharing with partial information decomposition; and secret key
agreement rates were studied as an operational measure [8].
To our knowledge, no other work has explored invariant partial
informations in MIMO channels.

The remainder of this paper is organized as follows. We
briefly review the partial information decomposition in Section
II and the duality of the achievable rate regions in Section III.
In Section IV, we study the synergy and redundancy duality
for MAC and BC with two senders (receivers). In Section
V, we generalize the duality in the general case involving n
senders (receivers).

II. BACKGROUND AND NOTATION

A. Lattice and Set Notation

We first briefly describe lattice and set notation (see, for
example, [13]). Let [n] denote the set {1, 2, . . . , n} for a
positive natural number n. Let 2[n] to denote the power set
of [n]. A partial order on a set is a binary relation satisfying
reflexivity, antisymmetry, and transitivity. An anti-chain is a
set where any two elements are incomparable under the partial
order. We use A(2[n]) to denote the set of all the anti-chains
of the power set 2[n] under inclusion order. Given a set S and
a partial order ≤, the lower set ↓ x and the upper set ↑ x of
an element x ∈ S is defined as

↓ x := {y ∈ S : y ≤ x} and ↑ x := {y ∈ S : y ≥ x}.

B. Partial Information Decomposition

Consider two (interacting) agents X1 and X2, and a target
agent Y. The information possessed by the pair {X1, X2}
about Y is measured by the mutual information I(X1, X2;Y ).
It is commonly conjectured [1], [5]–[9] that I(X1, X2;Y )
should include the redundant information, R, which is avail-
able from either X1 or X2 alone; the synergistic information,
S, which is only available from the pair {X1, X2}; the unique
information of X1, U1, which is available from X1 alone



but not X2; and similarly the unique information of X2, U2.
Following this,

I(X1, X2;Y ) = U1 + U2 +R+ S

I(Xi;Y ) = Ui +R for i ∈ {1, 2}.
(1)

Equation (1) is under-determined. Using minimum mutual
information, Williams and Beer [1] were the first to give a
non-negative decomposition. In [5], a solution is derived using
projective information. In [6], an operational approach is used
based on max entropy. Other operational approaches were
proposed using the secret key agreement rate [7], [8]. Using
information geometry, [9] derived a measure that satisfies
smoothness properties for the exponential family distributions.
Among these measures, [1], [5]–[7], satisfy the following
property discovered in [14].

Property 1: For any (scalar) jointly Gaussian distribution
PX1,X2,Y ,

R = min{I(X1;Y ), I(X2;Y )},
S = min{I(X1;Y |X2), I(X2;Y |X1)}.

In this work we do not focus on a specific partial information
decomposition measure, but instead use this common property.

Although the setting of n = 2, resulting in (1), is simple to
describe, the general case of n ≥ 2 requires more care. For
example, a pair of variables can have synergistic and redundant
information with another variable. Suppose we have a set of
n ∈ N+ interacting agents X = {X1, X2, . . . , Xn}, and a
target agent Y. To fully describe all the different types of
interactions among X with respect to Y, Williams and Beer
[1] propose using a lattice (A(2[n]),≼) that consists of all the
anti-chains of the power set of [n], and the partial order ≼ is
defined such that α ≼ β if and only if ∀B ∈ β,∃A ∈ α, such
that A ⊆ B. As an example, consider the redundancy lattice
for n = 3 depicted in Figure 3. Suppose α = {{2}{1, 3}}
and β = {{1, 2}}. We have {{2}{1, 3}} ≼ {1, 2} since the
information that {2} and {1, 3} have in common about Y is
part of what {2} can provide and consequently its superset
{1, 2}.

Let I∩(·) denote the function measuring the information in
each anti-chain is defined on A(2[n]). It should satisfy that
for any single subset S ⊆ [n], I∩({S}) = I(XS ;Y ). Using
the Möbius transformation, we can break I∩ into the sum of
information quantities measuring the “partial” informations at
each element in the lower set: I∩(α) =

∑︁
β≼α I∂(β), where

I∂(·) is non-negative on the lattice. We define a function
I∪(·) on the lattice analogously as I∪(α) =

∑︁
α≼β I∂(β).

For example, consider the lattice A(2[2]), i.e., n = 2,

I(X2;Y ) = I∩({2}) = I∂({2}) + I∂({1}{2}) = U2 +R,

I(X1;Y |X2) = I(X1, X2;Y )− I(X2;Y )

= I∩({1, 2})− I∩({2})
= I∪({1}) = I∂({1}) + I∂({1, 2}) = U1 + S.

It was shown in [15] that the redundancy lattice is isomorphic
to the lattice of upper sets of X, (F(X),⊇) with the set
inclusion order.
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Fig. 1: The channel models of the MAC (left) and the BC
(right) defined in section III.

III. MAC AND BC RATE DUALITY

A. Channel Models

We first briefly describe system models for the scalar
Gaussian MAC and Gaussian BC. We then review the capacity
region based duality for scalar Gaussian MACs and BCs.
Diagrams of the models are shown in Figure 1.

For the MAC (Fig 1; left), there are n ≥ 2 agents who wish
to communicate independent messages to a common receiver.
Let N∼N (0, σ2) denote the noise and for each agent i ∈ [n]
let Xi∼N (0, Pi) be independent of the others and noise, with
Pi denoting the individual power constraint on agent i. Let Y
denote the received signal. Let H = (

√
h1,

√
h2, . . . ,

√
hn)

T

denote the constant channel gain matrix and suppose that it is
known perfectly at the transmitters and the receiver. Then the
MAC model is

Y = HT (X1, X2, . . . , Xn)
T +N. (2)

For the Gaussian BC (Fig 1; right), there is one transmitter
that wishes to communicate independent messages to n ≥ 2
receivers. Each receiver obtains the transmitted signal plus
noise. Let Ni

i.i.d.∼ N (0, σ) for i ∈ [n] denote the receiver
noises and let Y∼N (0, P ) denote the transmitted signal,
with power constraint P . Similar to the MAC, consider a
constant channel gain matrix H = (

√
h1,

√
h2, . . . ,

√
hn)

T

that is known perfectly at the transmitters and the receivers.
Following [2], the BC which is dual to the MAC (2) is defined
as

(X1, X2, . . . , Xn)
T = HY + (N1, N2, . . . , Nn)

T . (3)

B. Achievable Rate Duality

The achievable rate region of the MAC in general can be
characterized using a set of mutual information and conditional
mutual information quantities with different subsets of the n ≥
2 senders. For S ⊆ [n], let S = [n]\S denote the complement.
Let CMAC and CBC denote capacity regions for the MAC and
the BC respectively.

Theorem 3.1 ( [16]): For the MAC channel (2),

CMAC((P 1, . . . , Pn);H)

= {(r1, r2, . . . , rn) : 0≤
∑︂
i∈S

ri≤ I(XS ;Y |XS), ∀S ⊆ [n]}.

The duality of the capacity regions between the scalar
Gaussian MAC and BC was established in [2].



Theorem 3.2 ( [2]): For the channels defined in (2) and (3),

CBC(P ,HT ) =
⋃︂

{(P 1,...,Pn):∑︁n
i=1 P i=P}

CMAC((P 1, . . . , Pn);H) (4)

CMAC((P 1, . . . , Pn);H) (5)

=
⋂︂

{(α1,...,αn):
αi>0 ∀ i∈[n]}

CBC

(︄
n∑︂

i=1

P i

αi
;
√
α
T ×HT

)︄
, (6)

where the αi’s are scale factors and
√
α
T × HT denotes

(
√
α1h1, . . . ,

√
αnhn)

T .
Mathematically, the duality between the capacity regions can
also be viewed as the Lagrangian duality in minimax opti-
mization [3], [4].

Remark 1: Unfortunately, although there is an elegant dual-
ity between MAC and BC in the Gaussian MIMO setting,
and there are some extensions [17], [18], the duality does
not generalize to arbitrary MAC and BC [19]. We will also
restrict our attention to the Gaussian setting, where Property 1
is known to hold for several different PID measures.

IV. SYNERGY AND REDUNDANCY DUALITY FOR n = 2

In this section, we explore an alternative duality relation
between scalar Gaussian MACs (2) and BCs (3) for n = 2
agents (transmitters and receivers respectively) based on partial
information terms. We use superscripts for the partial infor-
mation terms, such as RMAC and UBC

i to distinguish which
channels they are associated with. Similar to duality arising
from capacity (i.e. Theorem 3.2), the channel gain matrix H
is shared and the noise powers are uniform. In contrast to
duality arising from capacity regions, the dual channels will
have uniform transmission power P

BC
= P

MAC

1 = P
MAC

2 ,
denoted by P , instead of the sum-power constraint.

Theorem 4.1: For the MAC and BC defined in (2) and (3)
respectively with equal transmission powers P ,

UMAC
i + SMAC = UBC

i +RBC , i ∈ {1, 2}.

Proof: Using the chain rule of mutual information and
equation (1), we can see that with respect to the channel
models and the input distributions, for i = 1 in the MAC
(i = 2 is symmetric),

UMAC
1 + SMAC = I(X1, X2;Y )− I(X2;Y )

= I(X1;Y |X2) =
1

2
log

(︄
1 +

h1P
MAC

1

σ2

)︄
,

and for the BC,

UBC
1 +RBC = I(X1;Y ) =

1

2
log

(︄
1+

h1P
BC

σ2

)︄
.

With P
BC

= P
MAC

1 = P
MAC

2 , the two sets of equations are
equal.

Theorem 4.1 relates sums of partial information terms. This
can be further refined to equality of individual terms.

(a) MAC

(b) BC

Fig. 2: Partial information decomposition using measures
based on marginal distributions such as [1], [5], [6] of the
MAC and dual BC defined in section IV. The mutual infor-
mation I(X1, X2;Y ) (dashed) is decomposed into the sum of
four partial information components. The synergy of the MAC
(yellow in 2a) corresponds to the redundancy of the dual BC
(blue in 2b), and the redundancy of the MAC (blue in 2a)
corresponds to the synergy of the dual BC (yellow in 2b).

Theorem 4.2: For the Gaussian MAC (2) and BC (3) with
equal transmission powers P = P

BC
= P

MAC

i with n = 2
agents

SMAC = RBC and RMAC = SBC .

Proof: The proof follows immediately from Theorem 4.1
and Property 1.

In Figure 2, we plot the partial information decomposition
for varying channel gains satisfying h1 + h2 = 1 when all
transmitters have unit power P = 1. The duality of the
synergy and redundancy between the MAC and BC is visually
manifested by the exchange of the yellow and blue curves in
Figure 2a and Figure 2b.

V. PARTIAL INFORMATION DUALITY FOR n ≥ 2

In this section, we generalize the dual channel models in
Section IV to the case with n ≥ 2 interacting agents.
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Fig. 3: The redundancy lattice (A(2[3]),≼). For simplicity,
we omit the outer brackets of the anti-chains. As an example,
consider the subset S = {2, 3} ⊆ [3]. Then, ↓ S =↓ {1}
is the lattice lower set shown in normal font in the graph.
The complement of the principal lower set ↓ S is exactly the
principal upper set ↑ {2}{3} drawn in boldface.

A. Transformation on the Redundancy Lattice

As a preparation, we prove a relation between certain
principal lower sets and upper sets. In the following theorem,
we pick an element S ∈ 2[n] of the power set, and consider
its complement S with respect to the power set 2[n]. So
for S = {2, 3}, S = {1}. Both S and S correspond to
elements in the anti-chain lattice, namely {S} ∈ A(2[n])
and {S} ∈ A(2[n]). Note further that the element S′ =
{{2}{3}} ∈ A(2[n]) has the interesting property that its upper
set is the complement of the lower set of S = 1. That is,
A(2[n]) \ ↓ {{1}} =↑ {{2}{3}}. As another example, that
relation holds for S = {2}, S = {1, 3} and S′ = {{2}}.
Not all complements of lower sets are upper sets; for instance
A(2[n]) \ ↓ {{1}{3}} is not an upper set of any element in
A(2[n]).

This property holds more generally. For a given S ⊆ [n],
define an S′ ∈ A(2[n]) as

S′ = {∪i∈S{i}} . (7)

Theorem 5.1: Given an S ∈ 2[n], with S′ defined in (7),
then

A(2[n])\ ↓ S =↑ S′.

A sketch of the proof is in Appendix A.
This theorem will be useful to prove a relation between

redundancy lattices for MACs and BCs.

B. Partial Information Duality for n ≥ 2

We next present a generalization of Theorem 4.1 for n ≥ 2.
It shows how sums of partial information terms in the redun-
dancy lattices for the MAC and BC are related. Specifically,

for any S ∈ 2[n], that the lower set of {S} for the BC lattice
has the same sum as the upper set of the element {∪i∈S{i}} in
the MAC lattice. Recall from Section II.B the definitions of I∩
and I∪ as summations over lower and upper sets respectively.

Theorem 5.2: For the MAC and BC defined in (2) and (3)
respectively with equal transmission powers P , for any S ⊆
[n], we have

IBC
∩ ({S}) = IMAC

∪ ({∪i∈S{i}}), and

IMAC
∩ ({S}) = IBC

∪ ({∪i∈S{i}}).

The proof is in Appendix B.
The duality in Theorem 5.2 holds for each subset S ⊆ [n],

meaning that we can establish 2n equations regarding the
MAC and BC partial informations, exactly the number of
conditional mutual informations in the form I(XS ;Y |XS)
that define the boundaries of the MAC in Theorem 3.1. When
n = 2, Theorem 4.2 provides a direct correspondence between
synergy and redundancy. When n > 2, however, the number
of synergy and redundancy elements in the lattice |A(2[n])|
is much more than 2[n], so they are not uniquely determined.
However, for specific partial decomposition measures (e.g.,
using more than Property 1), it may be possible more relations
can be identified.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this work, we studied invariant partial information quan-
tities in the Gaussian MIMO setting and identified a duality
between synergistic and redundant terms. For simplicity, we
focused on the same MAC (2) and BC (3) models as are used
in the standard channel-capacity duality. In the future we will
investigate how the informational duality we identified extends
for more general models.

The standard channel-capacity duality provides insights into
coding schemes (e.g. dirty paper decoding). Although the
duality we derived in Theorem 5.2 is different, the partial
information components are more expressive than the (condi-
tional) mutual informations. In the future, we will investigate
how the results presented here can provide additional insights
into coding schemes.
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APPENDIX A
PROOF SKETCH OF THEOREM 5.1

Proof: Let T = A(2[n])\ ↓ (S)A(2[n]). Define a {0, 1}-
homomorphism ϕS : A(2[n]) −→ {0, 1} (as in page 43 remark
2.17 of [13]) such that ∀α ∈ T, ϕS(T ) = 1,∀α ∈ T , ϕS(T ) =
0. Since T =↓ (S)A(2[n]) is an lower set in A(2[n]), according
to 2.21(2) in page 45 of [13], ϕ−1

S (1) is a upper set in A(2[n]).

To find S′, consider the order-embedding defined in Theo-
rem 3.1 of [15]:

g : 2[n] −→ A(2[n])

α −→ {α}.

We have, T = g(g−1(A(2[n])\ ↓ S)) = g(2[n]\ ↓ S) =
↑ (2[n]\ ↓ S).

APPENDIX B
PROOF OF THEOREM 5.2

Proof: The partial information sum of the BC can be
shown as follows.

IBC
∩ ({S})
= IBC(XS ;Y ) (8)
= h(XS)− h(XS |Y ) (9)

=
1

2
log detE

[︁
(HSY +NS)

T (HSY +NS)
]︁

− 1

2
log detE

[︁
(NS)

T (NS)
]︁

(10)

=
1

2
log det

[︁
HT

S HSP + σ2I|S|
]︁
− 1

2
log detσ2I|S| (11)

=
1

2
log σ2n det

[︃
HSH

T
S

P

σ2
+ I1

]︃
− n

2
log σ2 (12)

=
1

2
log det

[︄
P

σ2

∑︂
i∈S

hi + 1

]︄

=
1

2
log

[︄
1 +

P
∑︁

i∈S hi

σ2

]︄
,

where (8) relates IBC
∩ to mutual information (as discussed in

Section II-B), (9) uses differential entropy, (10) uses HS and
NS to denote channel gains and noise terms for the subset
XS , |S| denotes the cardinality of set S in (11), (12) follows
from the Weinstein-Aronszajn identity and cancels the log σ2

terms.
The partial information sum for the MAC can be shown as

follows.

IMAC
∪ ({∪i∈S{i}})
= IMAC

∪ (S′)

=
∑︂
S′≼β

IMAC
∂ (β)

=
∑︂

β∈↑S′

IMAC
∂ (β)

=
∑︂

β∈A(2[n])

IMAC
∂ (β)−

∑︂
β∈A(2[n])\↑S′

IMAC
∂ (β)

= IMAC(X[n];Y )−
∑︂
β∈↓S

IMAC
∂ (β) (13)

= IMAC(X[n];Y )− IMAC(XS ;Y )

= IMAC(XS ;Y |XS)

=
1

2
log(1 +

P

σ2

∑︂
i∈S

hi),

where (13) follows from Theorem 5.1. Thus, both sides of
Theorem 5.2 are equal to the same quantity. The second
identity can be derived similarly, e.g., replacing equation (9)
with h(Y )− h(Y |XS).


	Introduction
	Background and Notation
	Lattice and Set Notation
	Partial Information Decomposition

	MAC and BC Rate Duality
	Channel Models
	Achievable Rate Duality

	Synergy and Redundancy Duality for n=2
	Partial Information Duality for n≥2
	Transformation on the Redundancy Lattice
	Partial Information Duality for n≥2

	Conclusion and Future Directions
	References
	Appendix A: Proof Sketch of Theorem 5.1
	Appendix B: Proof of Theorem 5.2

