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Abstract

We develop a novel iterative solution method for the incompressible Navier—Stokes equations with boundary conditions
coupled with reduced models. The iterative algorithm is designed based on the variational multiscale formulation and the
generalized-a scheme. The spatiotemporal discretization leads to a block structure of the resulting consistent tangent matrix
in the Newton—Raphson procedure. As a generalization of the conventional block preconditioners, a three-level nested block
preconditioner is introduced to attain a better representation of the Schur complement, which plays a key role in the overall
algorithm robustness and efficiency. This approach provides a flexible, algorithmic way to handle the Schur complement
for problems involving multiscale and multiphysics coupling. The solution method is implemented and benchmarked against
experimental data from the nozzle challenge problem issued by the US Food and Drug Administration. The robustness,
efficiency, and parallel scalability of the proposed technique are then examined in several settings, including moderately high
Reynolds number flows and physiological flows with strong resistance effect due to coupled downstream vasculature models.
Two patient-specific hemodynamic simulations, covering systemic and pulmonary flows, are performed to further corroborate
the efficacy of the proposed methodology.
© 2020 Elsevier B.V. All rights reserved.

Keywords: Variational multiscale method; Saddle-point problem; Nested block preconditioner; Hemodynamics; Geometric multiscale modeling;
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1. Introduction

1.1. Motivation and literature survey

Fast-growing interest in cardiovascular modeling [1,2] and ever-increasing computing power [3] has created a
pressing need to efficiently simulate flow physics with high resolution. Running hemodynamic simulations with
millions of unknowns has now become a routine part of scientific and clinical research and is now being used
routinely in clinical decision-making [4,5]. More and more, there is a growing consensus that proper design of
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the preconditioning techniques has become a critical issue for flow simulations, and in particular, hemodynamic
simulations. In our opinion, under the setting of parallel computing, a desirable preconditioning technique for flow
problems, and especially for hemodynamics, should possess the following attributes.

1. The algorithm should be robust with respect to physical parameters as well as spatiotemporal discretization
methodologies.

2. The algorithm should be scalable in terms of fixed-size (strong) scalability as well as isogranular (weak)
scalability.

3. The algorithm should require minimum user interventions. Ideally, users should not need to implement new
matrices for the definition of the preconditioner.

To achieve the above-mentioned goals, different approaches have been devised to precondition the matrix problem
in the setting of the Krylov subspace method. There is a school that favors the idea of domain decomposition
(DD) methods because they can be conveniently implemented in the parallel setting with the existing algebraic-
based solver reused [6-9]. Although the DD method can be used as a black-box technique with almost no user
intervention, its locality nature limits its parallel scalability [10,11], and employing incomplete factorization in
subdomains renders it non-robust for saddle-point problems [12]. The recently introduced multi-level DD method
borrows concepts from the multigrid method and seems to be a promising direction to overcome the scalability
issue [13,14].

The physics-based block preconditioning technique, as an alternative approach, has attracted concentrated
research for flow problems [15]. Consider solving a fully implicit scheme for the incompressible Navier—Stokes
equations using the consistent Newton—Raphson method, the problem boils down to repeatedly solving a linear
system of equations with a 2 x 2 block structure,

A B
ac[s 8]
In the above, A, B, and C can be regarded as a discrete convection—diffusion—reaction operator, a discrete gradient
operator, and a discrete divergence operator, with additional numerical modeling terms, respectively. The matrix D

arises purely due to the subgrid-scale modeling. The matrix A can be factored into a lower triangular, a diagonal,
and an upper triangular matrices as follows,

I O][A O][1 A'B
A:‘CDu:[CA‘l IHO s][o I }

with S :== D — CA~'B being the Schur complement. Therefore, the design of the preconditioner for A reduces to
solving smaller systems associated with A and S. This technique is attractive because it combines the merits of the
Chorin-Teman projection method [16,17] used in the finite volume community and the fully implicit method [18,19]
used in the finite element community. Roughly speaking, the physics-based block preconditioner can be regarded as
an algebraic procedure that wraps the projection method inside the Krylov iteration. The Schur complement S can
be viewed as an algebraic manifestation of the pressure Poisson equation in the fully implicit scheme. Unlike the
classical projection method, the separation of the physical fields does not take place inside the temporal scheme,
thus avoiding considerations of artificial pressure boundary conditions and time step size control [20].

A solution method is deemed to be robust with respect to physical parameters if there is no significant impact on
its convergence rate with varying physical parameters. For flow problems, this parameter is typically the Reynolds
number, which, in hemodynamic simulations, ranges from O(10~%) in the capillary vessels to O(10°) in the aorta.
The classical SIMPLE preconditioner extracts the diagonal of A to define a sparse approximation of the Schur
complement. This approach ignores the convection information and is therefore non-robust with respect to the
Reynolds number. In fact, it has been a major research thrust to search for a preconditioner that is insensitive to
the Reynolds number and at the same time remains scalable in the computational fluid dynamics (CFD) community
using fully implicit schemes [10,11,21-27]. Representative examples include the pressure convection—diffusion
(PCD) preconditioner [24] and the least-squares commutator (LSC) preconditioner [23]. Both are known to be
scalable with respect to discretization resolution and are mildly affected by the Reynolds number. However, they
are not without shortcomings. The major drawback of the PCD preconditioner is that it requires the assembly of
a new matrix, which is implementationally inconvenient and computationally inefficient. The LSC preconditioner
was proposed to remedy that issue by only using the existing blocks in .A. However, the LSC preconditioner was
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Fig. 1. Illustration of the hemodynamic simulation setting and the structure of the sub-matrix A. This sub-matrix can be approximately
decomposed into matrices arising from the transient term (A,,), the convection term (A.), the viscous term (A,;s), the reduced models on
the outflow boundaries (K;), and the wall stiffness term if one is considering FSI (Ay). These terms involve physical parameters and the
typical magnitude of the physical parameters in cardiovascular simulations is given in the centimeter—gram—second (CGS) units.

proposed and tested based on a mixed formulation using inf—sup stable elements. It has been recently noticed that the
LSC preconditioner is quite sensitive to the spatial discretization method, as it cannot converge for the stabilized
formulation using equal-order interpolations [11]. The drawbacks of the PCD and LSC preconditioners indicate
that the satisfaction of the three attributes listed at the beginning of this section remains a challenging task for the
incompressible Navier—Stokes equations.

1.2. A three-level nested block preconditioner

In the setting of blood flow simulations, the situation is more complicated. In addition to the convection term,
the downstream vasculature is often modeled as a reduced model [28], which is coupled to the three-dimensional
problem via the outflow boundary conditions. This coupling strategy is also referred to as the geometric multiscale
modeling [29], and it leads to a modification of the original matrix problem with rank-one matrices multiplied
by a factor proportional to the resistance value on the outlet surfaces (see Section 2.5). For realistic problems,
the resistance value is not small, and correspondingly the reduced models have a significant impact on the matrix
properties. If we look one step further, more challenges arise in the setting of fluid—structure interaction (FSI).
Considering the coupled momentum formulation as an example, an additional wall stiffness matrix enters into
the tangent matrix [30]. Again, this modification cannot be neglected because the physiologically realistic Young’s
modulus is by no means small. The contributions to the tangent matrix from different physical sources are illustrated
in Fig. 1. Consequently, over and above the long-lasting efforts for preconditioning the incompressible Navier—
Stokes equations, special consideration needs to be further exercised so that the geometric multiscale models and
multiphysics coupling, such as FSI, can be properly taken into account in the preconditioner design.

If one examines the resulting algebraic system carefully, it can be noticed that the rank-one matrices and the wall
stiffness matrix enter into the block matrix A only, without affecting the other three block matrices. This means that
the matrix A contains multiple contributions, including the transient term, the viscous term, the convection term,
the subgrid scale modeling terms, the rank-one modifications defined on the outlet surfaces, and the stiffness matrix
defined on the wall surface if one is solving an FSI problem. The true difficulty comes from designing an effective
sparse approximation of the Schur complement that incorporates the information from the above terms. Due to the
special algebraic structure of the rank-one matrices, the Sherman—Morrison formula has been utilized to design a
Schur complement approximation for hemodynamic simulations [31]. That approach, together with the bi-partitioned
iterative algorithm (BIPN) [32], constitutes the backbone solver technology in the current svSolver [33], the CFD
solver in the SimVascular package [34]. Yet, it is known that the same solver technology performs poorly when
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the vessel wall is deformable, and the reason is apparently due to the ignorance of the wall stiffness matrix in the
sparse approximation of the Schur complement. Also, one may reasonably expect performance degradation when
simulating strong convection problems with svSolver since it does not account for the convection terms [31].
As mentioned above, designing a robust and scalable preconditioner for the convection term alone remains an
unsettled issue. Therefore, it will be quite challenging, if not impossible, to explicitly construct an algebraic form of
the preconditioning technique accounting for all aforementioned terms simultaneously. This leads us to alternatively
consider constructing the Schur complement approximation via an algorithm, rather than an algebraic form.

Recently, it has been realized that one may apply the so-called Schur complement reduction procedure (SCR)
to serve as a preconditioning technique. In the original SCR procedure, one solves the sub-matrices A and S to
a prescribed tolerance and thereby solves the linear problem associated with A in one pass [15,35]. Although
the excessive memory cost for storing the Schur complement can be resolved by using a matrix-free algorithm to
define the action of S on a vector, solving a linear system associated with S to a high precision is still prohibitively
expensive. To alleviate this issue, one may use the SCR procedure as a preconditioning technique by wrapping it
inside an iterative solution method, which leads to a three-level nested algorithm structure (see Section 3.1). In the
outer level, the iterative method strives to solve A either via a static iterative method or a Krylov subspace method;
in the intermediate level, the sub-matrices A and S are solved (not necessarily to high precision) as a preconditioning
technique to accelerate the outer iteration; in the inner level, the matrix-free algorithm for S necessitates solving
A. The inner level solver can be a key ingredient when the matrix A involves complex contributions from non-
traditional sources. Although the introduction of an inner solver may ostensibly increase the computational burden,
it can in fact dramatically enhance the solver robustness without losing efficiency if the setting for the inner solver is
properly tuned (see Section 4.3). In the conventional physics-based block preconditioner, the sparse approximation
of S is explicitly constructed without invoking the inner level solver, and thence exhibits a two-level structure [36].
In theory, the proposed three-level nested preconditioning technique can be viewed as a generalization of the
conventional block preconditioners.

The SCR procedure has been used as a preconditioning technique for CFD problems within the Richardson
iteration scheme [37,38] and the biconjugate gradient stabilized method [39]. Those results clearly justified the
advantage of using SCR as a preconditioning technique over several standard preconditioners. In our prior work,
we investigated the use of FGMRES [40] preconditioned by the SCR procedure for hyperelasticity [41], based
on a unified continuum modeling framework [42,43]. New ingredients were added to further enhance the three-
level nested algorithm previously introduced in [37-39]. In addition to using the FGMRES algorithm as the outer
solver, we applied the GMRES algorithm preconditioned by the algebraic multigrid (AMG) preconditioner at the
intermediate and inner levels. This combined the merits of both the conventional block preconditioner [10,11,22]
and the nested algorithm proposed in [37-39]. Also, a sparse matrix was constructed to precondition and accelerate
the matrix-free solution procedure for S. In this work, we further investigate the efficacy of this solution method
for hemodynamic problems, by examining its performance when convection and the geometric multiscale coupling
contributions are significant. This study serves as a stepping stone towards a novel iterative solution method for
FSI problems, based on our recently proposed FSI framework [42,44] and related iterative solution method for
hyperelasticity [41].

1.3. Remarks on the numerical formulation

We want to point out that the numerical formulation adopted in this work is different from those reported in the
existing literature in several aspects. First, in several prior works [30,45], an integration-by-parts was performed
for the divergence operator in the continuity equation. This approach is not favored because it contradicts with the
setting of the pressure function space in the Galerkin formulation [18]. Second, the pressure variable has traditionally
been evaluated by the backward Euler method in the generalized-o scheme [46]. This choice will degrade the
temporal accuracy, and this issue has recently been rectified by evaluating the pressure at the intermediate time
step [47]. Third, in the same vein, the traction forces used to couple the three-dimensional model with the reduced
model on the outlet surfaces are evaluated at the intermediate step as well, in contrast to the prior approach [48].
Fourth, the definition of the stabilization parameter in the variational multiscale formulation is modified for simplex
elements. This modification makes the stabilization parameter remain invariant under node renumbering and is
recently introduced in [49,50].
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2. Governing equations and the spatiotemporal discretizations
In this section, we introduce the strong-form problem and the fully discrete problem generated by the variational
multiscale formulation and the generalized-o method.

2.1. Strong-form problem

Let 2 C R? be a fixed bounded open set with sufficiently smooth (e.g. Lipschitz) boundary I" := 342. The time
interval is denoted (0, T) C R with T > 0. The governing equations for the incompressible flow of a Newtonian
fluid can be stated as follows.

d
0=p3—';+pv-Vv—V~a—pf, in 2 x (0, T), 2.1
0=V-v, in 2 x (0, T), (2.2)
wherein
1 T
o =2uew)—pI, &)= 3 (Vo +wo'). (2.3)

In the above, p is the fluid density, v is the velocity field, o is the Cauchy stress, f is the body force, u is the
dynamic viscosity, € is the rate-of-strain tensor, p is the pressure, and I is the second-order identity tensor. The
initial condition is given by a divergence-free velocity field v, as

v(-, 0) = vo(+), in £2. (2.4)
The boundary I' can be partitioned into two non-overlapping subdivisions, that is,
I'=T,Ul}, and § = I, N I}. (2.5)

In the above, the subscripts g and /4 indicate the Dirichlet and Neumann partitions, respectively. The unit outward
normal vector to [ is denoted as n. Given the Dirichlet data g and the boundary traction &, the boundary conditions
can be stated as

v=g on I, x (0,7), (2.6)
on=~nh on I}, x (0, T). 2.7

2.2. The boundary conditions and geometric multiscale modeling

In the mathematical modeling of cardiovascular biofluids, the description of the boundaries needs to be further
refined. We consider that I, can be further partitioned into two non-overlapping subdivisions: I’y = I, U Ly
On [, the velocity is specified by a prescribed velocity profile vi,, while on ['y,;, we impose no-slip boundary

condition. This suggests that the Dirichlet data g can be explicitly defined as,

Vip  on [in,
g =
0 on [; wall -
The velocity profiles on the inlet surfaces are typically Poiseuille or Womersley. For patient-specific geometries,
the inlet surfaces do not necessarily have a circular shape, and we invoke a special mapping technique introduced
in [51] to generate the desired inflow profile on I3j,.

Specialized downstream boundary conditions are essential for capturing the physiologically realistic flow and
pressure conditions, and here we use lumped parameter models as the geometric multiscale model to describe
the downstream circulation in this work, though other reduced models (e.g. one-dimensional models) can also be
employed. Consider the Neumann boundary I, that assumes n,, non-overlapping planar surfaces,

Nout

D=k TN Tl=0 forl <ij<nu.i#j.
k=1
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Fig. 2. Schematic representation of the three element Windkessel electric model.

On each outlet surface, the traction boundary condition is defined as

h(t) = —P*(t)n on I'*

out?

wherein P¥(-) : R, — R is a scalar function of time. The flow rate on an outlet surface is defined as

0k(1) == / v-ndl. (2.8)
Tou
Invoking the Dirichlet-to-Neumann method, the values of P¥ at each time instant are determined by solving a set of
algebraic-differential equations with the flow rates as inputs. As an example, we consider the following equations
known as the three-element Windkessel model,

iy oo I 0k
7 = FUI* (1), 0° (1)) == _@"LT’ (2.9)
PX(t) = Ry Q" (1) + IT*(t) + Py (o). (2.10)

In the above, C¥, R’(j, and R’; are constants and represent the compliance, distal resistance, and proximal resistance
of the downstream vasculature to each outlet I'X,, IT¥(¢) represents the pressure drop across the distal resistor, and
P(f(t) represents the distal reference pressure. An electric circuit analogue of this model is illustrated in Fig. 2. For

this Windkessel model, one may obtain an analytic representation of P*(¢) in terms of Q*(¢) as follows,

t
RECH

' _ k
P (1) =/0 (exp(—t 5,2 (s))ds+R’;Qk(t)+P§(z)+exp(— )(P"(O) ~REQHO) - Pg‘(O)). @.11)

R’(jCk Ck
As a special case, when Ck — 0%, the three-element Windkessel model (2.9)—(2.10) reduces to a simpler resistance
boundary condition,

PX(t) = R QF () + P (1), (2.12)
with R¥ := RE +RY.

Remark 1. In this work, we focus on using the Dirichlet-to-Neumann method to model the physics of the
downstream domain. There exists another coupling approach, in which the flow rates are solved via a set of
algebraic-differential equations and are passed to the three-dimensional model by imposing velocity profiles on
boundary surfaces. This approach, for example, can be used when coupling a heart model with the inlet of an aorta.

2.3. Variational multiscale formulation

The semi-discrete formulation is constructed based on the residual-based variational multiscale method [46]. Let
S, and S, denote the trial solution spaces of the fluid velocity and pressure, and let V, and V, be the corresponding
test function spaces. These spaces are spanned by finite element basis functions, and in this work, linear polynomials.
The Dirichlet boundary condition (2.6) is built into the definition of S,. The union of element interiors is denoted
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as (2. The semi-discrete formulation can be stated as follows. Find y,(¢) := {v,(?), O} €S, x S, such that

B, (wi: 4, ¥4) =0, Yw, € V,, (2.13)
B, (qn: ¥ y4) =0, Vg, € Vy, (2.14)
where
B, (wi: ¥1o ¥1,) = By (wis 340 ¥4) +Bhs (was 34 ¥i) + By (i 30 ) » (2.15)
. ov
By (wy: . yy) = f wy - p (a_th + v, - Vo, — b) ds? —/ V- wy,ppd +/ 2pe(wy) @ e(v,)d 2
(7 2 ]
_f Vwy, : (pv' ® vy) d!2+/ Vo, : (pw, ®v')d 12 —/ Vw, : (pv' @ v') d —/ V-w,pdf,
Q2 Q' Q' Q'
(2.16)
BYC (wis ¥y ¥1) = —/ wy, - hdT, .17
Fh
BY (wh: yi. yi) = —/ pB (vy - n)_wy, - v,d T, (2.18)
Iy
B, (qn: - Y1) 1=/ th'vth—/ Vg -v'df, (2.19)
2 (02
vy,
vi=—1y (p% + pvy - Vo + Vp, — pAvt — pb) , (2.20)
p = —1cV -y, (2.21)
Ty =1y, (2.22)
_1
1 C 2 2
T = — —T2+vh-Guh+cl<ﬁ) G:G| |, (2.23)
p \ At o
1
= 2.24
te nutrG ( )
3
9 9
Gij = ﬁMklj, (2.25)
X an
k=1
2 101
2
M = [My] = % 12 1], (2.26)
11 2
3
G:G:=)Y GGy (2.27)
ij=1
3
oG = G, (2.28)
i=1
on— vy - . if vy, - 0,
(0 - 1) = v, -n— vy, n|: v, -n 1 v, on < (2.29)
2 0 if v, -n>0.

In the above, & = {S,-}?zl are the coordinates of an element in the parent domain; the value of Cj relies on the
polynomial order of the interpolation basis functions and takes the value of 36 for linear interpolations [52,53]; the
value of Cr is taken to be 4. The term B is an additional term added to enhance the overall numerical robustness
in the presence of locally reversed flows near the outlet surfaces [54]. The parameter § is non-dimensional, and its
value is fixed to be 0.2 in this work, following the practices in svSolver [33].

Remark 2. In (2.26), M is introduced for simplex elements because their standard reference elements are not
symmetric, and nodal permutations may lead to changes in the definition G without using M. The entries of M
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are obtained by mapping the reference element to a regular simplex without changing the element volume. For a
detailed derivation of M and its variants in two- and four-dimensions, readers are referred to [49,50].

Remark 3. The term (2.18) is introduced as a modification of the Neumann boundary condition to compensate
for the incoming energy due to locally reversed flows. It can be shown that choosing § = 1.0 leads to an energy
stable formulation [55]. In practice, it is found numerically that choosing 8 smaller than 1.0 is often sufficient for
robust performances [56] and is apparently less intrusive for flow physics. For a recent summary of the treatment
for backflow instabilities, readers are referred to [57].

2.4. Temporal discretization

To derive the fully discrete formulation for problems with geometric multiscale coupled boundary conditions, we
apply two time-stepping schemes for the three-dimensional and zero-dimensional domains separately. In the three-
dimensional domain, the generalized-o method is applied; in the zero-dimensional domain, an explicit fourth-order
Runge—Kutta method is utilized with subdivided time intervals [48].

2.4.1. Temporal discretization of the three-dimensional problem

Let the time interval (0, T') be divided into a set of Ny subintervals of size At, := t,,1 — t,, which is delimited
by a discrete time vector {f, f:":SO The approximations to the solution vector and its first time derivative evaluated
at the time step #, are denoted as y, = {v,, o}’ and ¥y, = {v,, Pn}’. The approximation to h(r) at time 1, is
denoted as h,,. Let e; be the Cartesian basis vector with i = 1,2, 3 and N4 be the basis function of the discrete

function spaces for the velocity component as well as pressure. We may then define the residual vectors as

R (3,.,) = {Bxfl (Naeis 3. ¥0)} RY (3,.5,) = {Bf’,f (Nae€i; 3. 30)}
RY (3,5 ¥,) =B (Naeis 3,. y,)} - Roi (3,0 ¥) = {Bu (Naeis 3. 3,) }
R, (3,0 ¥,) = {By (Nas 3,. y,)} -
With the above notations, we have Ry, (¥, ¥,) = R} (3, ¥,) + R (9, ,) + RS (9, ¥,,) due to their definitions.

m m m

The fully discrete scheme can be stated as follows. At time step ¢,, given y,, y,, and the time step size Az,, find
Yn41 and y, . such that

Ri(Vntopr Ynva,) =0, (2.30)
Ry Vntap: Yntay) =0, (2.31)
Yot = Yn + Atu +7 Dty (30 — 32) » (2.32)
Vntam = Yn + m (Fus1 = ) (2.33)
Yuva; = Yu + g (Yug1 = Ya)- (2.34)

In the above system, there are three parameters «,,, oy and y, whose values determine critical numerical properties
of the discrete dynamic system. To ensure second-order accuracy and unconditional stability (for linear problems),
and optimal high frequency dissipation, they are parametrized as

1 <3 — Qoo> 1 1
Ay = = , oy = , Y= ,
2\ 1400 1+ 000 1+ 00
wherein o, € [0, 1] denotes the spectral radius of the amplification matrix at the highest mode [19,58]. Except the
simulations presented in Section 4.1, we choose o, = 0.5 in the generalized-o method.

Remark 4. In the literature, the pressure is often collocated at the time step n + 1 rather than n + oy within the
generalized-« scheme [30,45,46,48]. In a recent investigation, we found that the widely-adopted choice leads to a
first-order temporal accuracy, at least, for the pressure [47]. Evaluating the pressure at the intermediate time step
n + oy not only recovers the second order accuracy but also simplifies the implementation.
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2.4.2. Temporal discretization of the zero-dimensional problem

Considering the implicitly coupled outflow boundary condition given by the Windkessel model (2.30), one needs
to evaluate the values of the proximal pressure at time 7,44 ,. Although an analytic solution (2.11) exists for the
specific model considered in this work, it is typically unavailable for general lumped parameter models. Therefore,
we consider performing a time integration for the algebraic-differential equations (2.9)—(2.10) for its evaluation.
Following the framework proposed in [48], we solve the ordinary differential equations (2.9) via an explicit fourth-
order Runge—Kutta method by subdividing the time interval (%,, #,+) into n equal-sized subintervals (¢, ,, t;.m+1)
that satisfies
At,

Ns

thm =1ty +mh, form=0,... ns, withh:=

We denote by H,f’m the approximations to I7%(t, ), and we may define the approximation to the flow rate at the
intermediate time step #, ,, by linear interpolations,

ok, = i Q,,0+ Qf;,nts_ . ok + = Qn+1, form=0,...,ng.
Nys Ns

In the above, the values of Q% and Qn 41 are explicitly calculated by

ok, =0t = /k v, -ndl', QF, =0, = /k Vpi1 -ndl.
FOU[ out
Given the values of I, k Qn, and Qk 41 as the input data, the algorithm for obtaining P, +1, the approximation t0
P* (t,41), is stated in Algorlthm 1. To 51mp11fy notations, we denote the dependency of P, +1 on the input data IT
O, and Qk+1 through Algorithm 1 as P, | = = GUIF, ok, Qle) in the following text.

Algorithm 1 The fourth-order Runge—Kutta method for solving Egs. (2.9)—(2.10).

1: Set Hr{(,() <~ H,{{, Ql;l <~ Qn: and Qn s Qn+1

2. for m=0tons—1 do

3: Calculate K; <—.7:( nm,Q )

4: Calculate K, < F (IIf, + 1K\h, 305, + 1 0% m+1)
5

6

7

Calculate K3 < F (Hk th + KZhv 3 Qn m Qn m+1)
(Hk +K1h K2h+K'5h Qn m+l)
— IIf, + 3 Kih + 3Koh + 3 K3h + g Kyh

Calculate K4 < F
Calculate ITF

: n,m+1 n,m
8: end for
9: return PY < REQN |+ IIF, + Pi(tys1)

2.5. Predictor multi-corrector algorithm

The system of Egs. (2.30)—(2.34) are solved using the Newton—Raphson method with consistent linearization.
At the time step #,4, the solution vector y, . is solved by the following predictor multi-corrector algorithm. We

T . . .
denote y, .y = {v,,H,(;), an,(,)} as the solution vector for the three-dimensional problem evaluated at the
Newton—Raphson iteration step [ = 0, ..., .. The residual vectors evaluated at the iteration stage / are denoted
as
T

Ry = {Ru)- Ry}

with
1 : b .
R, o) =R (yn+am,(1>vyn+af,<l>)’ Ry () =Ry (J’n+am,<l>7yn+af,u>)v
bf ._pbf (s — : —
R, ) =R, (yn+am,(1>v yn+af,<l>) ; Ri0) = Ry (yn+am,<z>» yl’l+f¥f»(])) =R, + R ) + Ry,

R, =R, (y11+an1,(1)’ yn+af,(1)) .
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In the above, the term R ) can be explicitly written as

m
Nout Nout
b k k k
RY ) = Z/Fk Prro, yNanidI" = Z/Fk (I —ap)Pf+ayPl, o) Nanidl.
k=1 out k=1 out

With v,41,¢), the corresponding flow rate at the I'X, surface is denoted by Q% a)- We use Pt

o w1,y tO represent the
solution of the zero-dimensional problem solved with II¥, O, and Q* +1.0) as the input data for Algorithm 1. The

consistent tangent matrix associated with the above residual vectors is

Ay By
= , 2.35
Ao [Cm D) (2:33)
wherein
Ao =Fo + Ko, (2.36)
IR} (5’»1+am,(1)v yn+01f»(l)) R (yn+a,71,(l>» yn+af,<l>)
F(l) = . + ()lfj/Aln (2.37)
OVt (1) OVntar.0)
R} (j’n-kotm,(l)’ yn+a,~,<l>>
+ oy Aty , (2.38)
8vil+af,(l)
OR)Y (j}n+am,(1)’ J’n+a_,,<l>>
K([) = Olf)/Aln s (2.39)
8vn-‘,—ozf,(l)
IR} (yn+am,(1)» yn+a_f,<l>)
B(l) = le)/Aln s (2.40)
8pn+af,(l)
IR, <5’n+a ) Yn+a (1)) iR, <J" >y )
s f ntam, () Fntagr,)
C(l) = O - + O{f)/At,, s 2.41)
Vo (1) Mntap.t)
8RP (yl’lJrOtm,(l)’ yn+af,(l)>
Dy =ayy Aty . (2.42)
3p11+otf,(l)
Specifically, K can be explicitly expressed as
Nout
Ko = a;y At, Z (mé‘,)aka”) , (2.43)
k=1
wherein a* is a column vector with its entries defined as
at, = |:/ NAni.‘dF:| ,
Fk
out
and mfl) is a scalar variable defined as
k k k k k
ke aPrH—Ot_/,(Z) _ 8Pn+a_/,(l) 3Pn+1,(1) 8Qn+1,(l) —a 8Pn+1,(l) 1 _ 8Prf+l,(l)
o) — - - o ank

k k k k f k - k :
3Qn+af,u) 8Pn+1,</) 8Qn+1,(1) 8Qn+af,(1) 3Qn+1,(1) ay 8Qn+l,(1)

The matrix K is a weighted sum of rank-one matrices a*a*”, with weights being o fyAt,,mé‘l). When the outflow
boundaries are prescribed by the resistance boundary condition (2.12), we directly have m’(‘l) = R¥. Yet, for general

reduced models, the values of m’(‘l) can only be obtained through a difference approximation. One first obtains

ﬁf+1’(1) = g(ﬂfa Qﬁv Q§+1,(]) + 6/2) and ﬁl‘llc+1,(l) = g(]]’l‘{c’ Q]:l’ Qﬁ+1,(1) - 6/2)
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by calling Algorithm | and then calculates

-
koo +1.() +1.() : . k
mg, ~ ~ “ , with € := max {eabs, 6rel|Qn+1’(1)|} . (2.44)

€

Following the choice made in the svSolver, we fiX €,,s = 108 and €, = 107°. Based on the above discussion,
the predictor multi-corrector algorithm for solving the nonlinear algebraic equations in each time step can be
summarized as follows.

Predictor stage: Set:

. y—1.
Yui1,0 = V> Yur1,0 = Tyn'

Multi-corrector stage: Repeat the following steps for I = 1, ..., [t

1.

o]

10.

. Assemble the res1dual vectors R,, ¢y and R, ) using y,., £y Yotay,. ) and Pk

Calculate the flow rate

k .
Oy = f Vut1,q) - RdI.
Tk

out

. Calculate

k k k
n+1 o — g(ﬂn ’ Qn’ Qn+1,(l))’

. 1
Py = 9Ly, Q8 Qn gy + 56)’

1
Pn+l o= g1, an Qn+l ) — S€),

2
by invoking Algorithm 1.

. Calculate mfl) from the difference quotient (2.44).
. Evaluate the solution vectors at the intermediate stages:

Yntap, ) = Yn +ay (J’n+1,(171) - yn) . J"n+a,,,,(1) =Yy, tan (J"n+1,(171) - }"n) .

. Evaluate P,,+a w=0—apPi+asPl, .

n+oy,(l)*

. Let |Ry)|l2 denote the *-norm of the residual vector. If either one of the following stopping criteria

IRl 2
IRl 2

is satisfied for two prescribed tolerances tolg, tola, set the solution vector at time Step Z,41 aS ¥,,1.1 = Ypi1.0-1)
and y,1 = Y,41.0-1), and exit the multi-corrector stage; otherwise, continue to step 8.

< tolg, IRplle < tola,

. Assemble the tangent matrices (2.35)—(2.42).
. Solve the following linear system of equations for Ap,+ ¢y and Av,4 ),

Ay By || Dbyt R,

e ] _ _ [Ruo] 245
[Ca) D) | [APn+1.0) Ry.0) (2.49)
Let Ay, = {Avysr,0, Ap,,JrL(,)}T. Update the solution vectors as

Yuirr.) = Yorroo T YA AV 10 Yosr.) = Ynrroy T AVt

and return to step 1.

For the numerical simulations presented in this work, unless otherwise specified, we adopt the tolerances for the
nonlinear iteration as tolg = toly = 107° and the maximum number of iterations as /., = 20. Notice that in step 5,
we evaluated the pressure from the reduced model at the intermediate time step n + « to make it consistent with
the generalized-ov scheme given in Section 2.4.1. This is different from the approach adopted in prior studies [48],
in which the pressure from the reduced model and the pressure in the three-dimensional problem are both collocated
at the time step n + 1.
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Remark 5. In the literature, the modified Newton—Raphson method is often used by neglecting some terms
in Ay [46, p. 183]. This gives a better conditioned tangent matrix while sacrificing the quadratic convergence
characteristic of the Newton—Raphson method. In this work, the consistent Newton—Raphson method is utilized.

3. Iterative solution method with the nested block preconditioning

In this section, we focus on developing the iterative solution method for (2.45), which is the most time consuming
part in the predictor multi-corrector algorithm. For notational simplicity, we neglect the subscript (/) used to
represent the iteration steps in the multi-corrector stage. In this section, we consider the linear system Ax = r,
where the matrix and vectors adopt the following block structure,

_|A B | xe e
a=le v) ==[x] =[1)

with
Nout

A=F+K, and K=a;yA, Y (m'a'a'").
k=1

For a sparse non-symmetric matrix like A, the GMRES algorithm and its variants [40,59], with a suitable
preconditioning technique, are among the most effective general-purpose solution method. In this work, we consider
using the FGMRES [40] as the iterative solution method, since the proposed preconditioner varies over iterations.
Let P denote the preconditioning matrix in the ith iteration. In the FGMRES algorithm with right preconditioning,
one strives to generate a subspace by repeatedly applying .A’F’(j)l to a vector, and search for an approximate solution
by minimizing the residual over the subspace. This procedure is referred to as the outer solver in this work. Similar
to the GMRES algorithm, the FGMRES algorithm is restarted every m steps and is denoted as FGMRES(m). It
is worth mentioning that there are also caveats associated with the FGMRES algorithm. It requires slightly more
memory to store the generated subspace. More critically, there is no general convergence theory for it, since it
does not generate a standard Krylov subspace. In practice, one might observe stagnation or even divergence due
to an improper choice of the preconditioner. Therefore, a suitable design of P, has become the crux. With the
understanding that the preconditioners may vary over the iterations, we neglect the subscript (i) for notational
simplicity. In Section 3.1, we focus on designing a preconditioning technique based on the SCR procedure, denoted
as Pscr. Following that, we will review the SIMPLE preconditioner PsmprLg in Section 3.2 and the iterative
algorithm used in the current svSolver [33] in Section 3.3.

3.1. Schur complement reduction

In this section, we introduce the concept of SCR and design a preconditioning technique based on it. The matrix
A can be factorized as follows,

I O][A O[T A'B
AZCDu:[CA‘ IHO s} [0 I } 3.1

with S :== D — CA~!B being the Schur complement of A. This implies that we may solve .Ax = r by considering

_ A B Xv| _ -1, I (0] - ry | _ I o ry | _ Iy
Dllx = |:O S:| |:x,,:| =L r= [CA1 Ii| |:r,,:| o |:—CA1 I:| [rpi| B [r[, —CAlr,,]'

The above system of equations can then be solved by a back substitution, which results in the SCR procedure
[15,35]. Therefore, the design of the solution method for the matrix problem A reduces to the design of solution
methods for matrices A and S. Since the algebraic form of the matrix A is available, one may apply GMRES(my)
with a suitable preconditioner P4 to solve it. In this work, we consider two options for the preconditioner. We use
AMBG for robust and scalable performances, and we use the Jacobi preconditioner to achieve efficient performances.
The stopping criteria for solving A include the tolerance for the relative error §,, the tolerance for the absolute error
8%, and the maximum number of iterations njy**.

The difficulty of the SCR procedure comes from solving the equations associated with S because the Schur

complement S is defined as a composition of all four block matrices. The appearance of A~! inevitably makes S
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a dense matrix. Therefore, forming S algebraically is impractical primarily due to the limit of computer memory
sizes. Recall that for all iterative methods, one just needs to repeatedly perform matrix—vector multiplications.
Therefore, the application of S on a vector can be achieved without an algebraic definition of it, and this procedure
is summarized as the matrix-free algorithm in Algorithm 2. Notice that in this algorithm one has to solve an equation
associated with A. This procedure is referred to as the inner solver, as it resides inside the solution procedure for S.
In practice, we invoke the same iterative method and the same preconditioning technique for equations associated
with A in the inner solver with a potentially different tolerance for the relative error é;. One may call a GMRES(ms)
algorithm to solve S using Algorithm 2 to define the action of the matrix on a vector. We may further accelerate
the algorithm by providing a preconditioner for this GMRES iteration. A sparse matrix S=D-C (diag (A))"'B
can be constructed as an approximation to S, and then an AMG preconditioner based on S can be constructed
and applied as a left preconditioner in the GMRES iterations. This preconditioner is denoted by Ps. The stopping
criteria for solving S include the tolerance for the relative error g, the tolerance for the absolute error §, and the

max

maximum number of iterations ng

Algorithm 2 The matrix-free algorithm for the multiplication of S with a vector x,.

1: Compute the matrix-vector multiplication X, < Dx,.
2: Compute the matrix-vector multiplication X, < Bx,.
3: Solve for X, from the linear system

Ax, =%, (3.2)

max

by GMRES (my) preconditioned by Py with §f, 8%, and n}** prescribed.
4: Compute the matrix--vector multiplication ¥, < Cx,. > The vector X, is reused.
5. return X, —X,,.

With the solution method for the matrices A and S defined, we may define the preconditioner Pgscr. Given the
solution method GMRES(m,), GMRES(ms), the preconditioner Py, Ps, the relative tolerances 6}, dg, and 47, the
absolute tolerances 8¢, 8¢, and the maximum number of iterations nT®, n, the action of Pyl on a vector can

be summarized as Algorithm 3 in below.

Algorithm 3 The action of ’PS_CIR on a vector s := [s,; s,]” with the output being y := [y,; y,1”.

I: Solve for an intermediate velocity y, from the equation
Aj, =, (3.3)

by GMRES (m,) preconditioned by Py with &}, 64, and n}®* prescribed.
2: Update the continuity residual by s, < s, — Cy,.
3: Solve for y, from the equation

Sy, =sp 3.4)

by Algorithm 2 and GMRES (mg) preconditioned by Ps with 85, &3, and ng®* prescribed.
4: Update the momentum residual by s, < s, — By, .
5: Solve for y, from the equation

Ayv =Sy (3.5)

max

by GMRES (m,) preconditioned by Py with &}, 64, and n}>* prescribed.

The three solution procedures for (3.3)—(3.5) are referred to as intermediate solvers. The preconditioner Pscr is
implicitly defined through the intermediate solvers, and therefore it varies over iterations. In this work, the absolute
tolerances are set to be 84 = §§ = 107, When the preconditioners P, and Pg are constructed by AMG, we adopt
the implementation of the BoomerAMG preconditioner from the Hypre package, with its settings summarized in
Table 1. Unless otherwise specified, we choose mp = mg = nj}** = ng™ = 200.
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Table 1

Settings of the BoomerAMG preconditioner [60]. These choices are made based on
the balance of robustness and efficiency. Interested readers are referred to [61,62]
for a discussion of these options.

Cycle type V-cycle

Coarsening method HMIS

Interpolation method Extended method (ext + 1)
Smoother Hybrid Gauss—Seidel
Truncation factor for the interpolation 0.3

Threshold for being strongly connected 0.5

Maximum number of elements per row for interp. 5

The number of levels for aggressive coarsening 2

On the outer level, we invoke the FGMRES(m) to minimize the residual for Ax = r, and, unless otherwise
specified, we fix m as 200, the absolute tolerance 6¢ as 1079, and the maximum number of iterations n™* as 200.
With these settings, the stopping criterion is completely determined by the relative tolerance §”.

Remark 6. In the construction of the Pgycr, the full factorization of A is utilized. This indicates that the algebraic
representation of Pscr is identical to A, while the actual definition of Pgscr is determined by the choices of
the intermediate and inner solvers in Algorithm 3. In the meantime, we note that it is possible to use part of the
block factorization to devise a preconditioner [63—65]. For instance, assuming exact arithmetic, using D as the
preconditioner leads to convergence in 4 iterations; using DU guarantees convergence within 2 iterations; the full
factorization warrants convergence in 1 iteration. In our experience, using the full factorization effectively mitigates
the number of solving the Schur complement, which is the most expensive part in Algorithm 3. The price paid is
additional iterations needed in the solution procedure associated with A, which can be conveniently and efficiently
addressed by AMG or even simpler candidates (see the discussion in Section 4.4).

Remark 7. When using higher-order elements, it is often economical to avoid explicitly constructing the tangent
matrix. Instead, the action of the tangent matrix on a vector can be achieved through a matrix-free manner using,
e.g., the partial assembly approach [66] or the Newton—Raphson—Krylov technique [67]. In the meantime, a matrix
can be created using low-order elements on the same mesh to construct preconditioners. Although this work focuses
on the low-order finite element discretization of the incompressible Navier—Stokes equations, it may serve as a
competitive candidate for higher-order methods [68—70].

3.2. The SIMPLE preconditioner

The SIMPLE preconditioner is an algebraic analogue of the Semi-Implicit Method for Pressure Linked Equations
(SIMPLE) [71]. Together with its variants, it is among the most popular choices for CFD [11,22], FSI [72], and
other multiphysics problems [73,74]. It is partly inspired from the block factorization (3.1) and can be represented
as follows,

P _[ 1 O][A O][1 (diag(A))"'B] _[A Adiag(A)"'B
SIMPLE = 1 cA-! 1{|0 §||O I ~lc D ‘

Remember that S := D — C (diag (A)) "' B is a sparse approximation of S. The purpose of choosing (diag (A)) ™!
in the upper diagonal matrix is to ensure that the mass equation is not perturbed [10,75]. The action of Pgpprk
on a vector can be implemented in a way similar to Algorithm 3 with modifications to the steps 3 and 4. Roughly
speaking, one may view the SIMPLE preconditioner as a simplification of the SCR approach without invoking the
inner solver. Similar to the SCR preconditioner, one may invoke a Krylov subspace method preconditioned with
multigrid [10,11] or domain decomposition preconditioners [72] on the intermediate level to define the action of
’PS_I}VIPLE. Since the actual algebraic definition of the SIMPLE preconditioner also varies over successive iterations,
one still has to use the FGMRES method as the outer solver. In this work, the settings of the outer and intermediate
solvers in PsvpLg always follow the settings used in Pgcr in each specific example.
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3.3. The bi-partitioned iterative algorithm

In the current svSolver, the linear system of equations is solved by the BIPN algorithm [32] used in conjunction
with a specifically designed preconditioner for the resistance-type boundary condition [31]. The action of this
preconditioner on a vector is achieved through a five-step procedure similar to the one given in Algorithm 3, with the
following differences. First, in step 3, the following equation is solved by an unpreconditioned conjugate gradient
method,

Sx, =r,, (3.6)

B , | Nout . bkka

S=D-B diag ()™ —ary A, m , 3.7
(diag (F)) Y k; ey Ao 5T 3.7)

b* = (diag (F)) "' a". (3.8)

The definition of S is inspired from the Sherman—Morrison formula for inverting a matrix with rank-one
modifications [76]. Second, on the outer level, the svSolver solves a least-square problem to minimize the residual
by inverting a normal matrix.

It has been demonstrated that this preconditioner is an effective candidate for hemodynamic simulations since
the contributions from the outflow boundary conditions are taken into account. However, this method is not without
shortcomings. Firstly, the equation associated with S is solved without a preconditioner because the rank-one
matrices in S are not explicitly constructed. The rank-one matrix is a dense block matrix defined on each outlet
surface, necessitating a non-trivial sparsity pattern in the matrix allocation stage. It is quite inconvenient to assemble
this matrix in a standard finite element code. However, the action of a rank-one matrix on a vector can be efficiently
calculated as a vector inner product in the parallel setting [54, p. 3547], which leads to a matrix-free definition
of the matrices A and S. Using a matrix-free algorithm can be convenient and efficient for small- or medium-
sized problems. However, without using a preconditioner, we may reasonably expect a loss of scalability in the
performance of svSolver as the problem size gets larger. Secondly, similar to PsmvpLE, the convection information
is still missing in the definition of this preconditioner, rendering the method ineffective for strong convection
problems. Thirdly, the usage of a normal matrix to minimize the residual will inevitably lead to a nearly singular
problem with an increased size of the subspace (see Fig. 7). Thereby the outer solver is typically limited to at most
ten iterations in svSolver [33]. This signifies a numerical robustness issue and poses a limit on the accuracy that the
current svSolver can attain. Lastly, the svSolver underperforms for FSI problems using the coupled momentum
method. The reason is apparently that the wall stiffness matrix is not reflected in S. Indeed, for more complicated
problems, the definition of A may involve contributions from different physics. This motivates us to consider using
the matrix-free algorithm (i.e. Algorithm 2) to attain a better representation of the Schur complement.

Remark 8. There exist variants of the SIMPLE preconditioner, such as the SIMPLEC preconditioner, that
incorporate more information from off-diagonal entries [77]. It has been suggested that the SIMPLEC preconditioner
often serves as a competitive candidate for CFD simulations [11]. Yet, in this study, a straightforward application
of the SIMPLEC preconditioner for A often underperforms in comparison with the SIMPLE preconditioner, due to
the weighted sum of rank-one matrices. The preconditioner S above provides an appropriate way of incorporating
the information from the rank-one matrices. It is tempting to consider replacing the diagonal of F in (3.7)—(3.8) by
the row sum of the absolute values of entries in F, as an extension of the SIMPLEC preconditioner. Exploration of
this idea remains a topic of our future work.

Remark 9. In Algorithm 3, Ps is constructed based on S.If Eq. (3.4) is solved by applying the preconditioner once
without entering into the Krylov iteration, the Pgcr preconditioner reduces to the SIMPLE preconditioner PsivpLE-
In this regard, the Pgscr preconditioner can be viewed as a generalization of the conventional block preconditioner
in that it uses the Krylov iteration to enhance the approximation of the Schur complement. It is therefore tempting
to consider constructing Ps based on a sparse matrix that incorporates more information from S, such as S given
above or the PCD preconditioner [24]. It is also worth reconsidering using the LSC preconditioner [23] in Pscr,
in the hopes of alleviating robustness issues of the LSC in the stabilized formulation [11].
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Fig. 3. Schematic representation of the cross section of the computational domain for the idealized medical device problem.

4. Numerical results

Numerical simulations reported in this work are all performed on the Stampede2 supercomputer at Texas
Advanced Computing Center (TACC), using the Intel Xeon Platinum 8160 “Skylake” node. Each compute node
contains 48 processors, with 2.1 GHz nominal clock rate, and 192 GB RAM. They are interconnected by a 100 Gb/s
Intel Omni-Path network. More technical details about the Stampede2 supercomputer can be found in its user
guide [78].

In this work, we are primarily concerned with blood flow simulations. The fluid density is fixed to be 1.065
g/cm? and the dynamic viscosity is fixed to be 0.035 poise for all simulations. On the inlet surface I},, we always
apply a parabolic velocity profile for v, based on a prescribed flow rate Q.

4.1. FDA idealized medical device benchmark

In the first numerical example, we consider a benchmark designed by the US Food and Drug Administration
(FDA) to examine the CFD code performance and validate the code by comparing with in vitro experiments. The
geometry of the idealized medical device is illustrated in Fig. 3. We follow the practice adopted in [79], in which
the computational domain is chosen to be 32 cm long. Based on a parabolic velocity profile, we may calculate the
maximum velocity on the inlet vl as well as at the throat region v', from a given value of Q. Zero traction
boundary condition is applied on the outlet surface. The element size Ax here is defined as the circumscribing
sphere’s diameter. In this example, we choose 0., = 1.0 in the generalized-o« method to mitigate the numerical
dissipation effect, which is critical in this example. With this choice, the time-stepping method reduces to the
mid-point rule. The Courant number Cr reported in this section is calculated based on the minimum mesh size
AXpin and 0!,

4.1.1. Solver validation

Before investigating this problem, the CFD solver has been verified using the manufactured solution method, and
optimal convergence rates for the velocity and pressure have been observed. Here, we perform a suite of simulations
to further validate it. An isotropic unstructured mesh is generated by Gmsh [80] using the frontal algorithm. The
mesh consists of 28.8 million linear tetrahedral elements and 4.94 million vertices. In particular, we do not perform
local mesh refinement near the sudden expansion region to ease the reproducibility of the results and to give a fair
evaluation of the predictive capability of our CFD code. The minimum and maximum element sizes of the mesh
are Axpi, = 0.014 cm and Axp,, = 0.069 cm, respectively. In Table 2, the volumetric flow rates of the inflow,
the flow speed, the corresponding Reynolds numbers, and the time step sizes are summarized. With the varying
values of Q, the Reynolds numbers at the throat take the values of 500, 3500, and 5000. These values correspond
to the laminar, transitional, and fully turbulent regimes, thereby offering a wide range of flow characteristics for
code validation. The inflow velocity profile is perturbed by a random velocity field with zero mean and a standard
deviation 1% of the mean axial velocity [79,81]. We start the simulation with zero velocity and the inflow rate is
gradually increased to reach the target values. In Fig. 4, the instantaneous velocity magnitudes for the three cases
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Fig. 4. Instantaneous velocity magnitude in cm/s for Re' = 500 (top), Re' = 3500 (middle), and Re' = 5000 (bottom).

Table 2
The flow rates Q, maximum velocities in the inlet and the throat, the corresponding Reynolds numbers, and the time step sizes used in the
simulations. The maximum velocities are calculated based on a parabolic profile.

Q [em?/s] v [em/s] Re! Ve [em/s] Re! At [s]

5.2062 x 10° 9.21 x 109 167 8.29 x 10! 500 1.0 x 1074

3.6444 x 10! 6.45 x 10! 1167 5.80 x 10? 3500 5.0 x 1073

5.2062 x 10! 9.21 x 10! 1667 8.29 x 10% 5000 2.5 x 1073
Table 3

The time step size Az (in the unit of seconds) for different Courant number Cr and Reynolds
number Re' in the simulations of Section 4.1.2.

Cr Re' = 500 Re' = 3500 Re!' = 5000
0.5 3.69 x 10~* 5.28 x 1073 3.69 x 1073
2.0 1.48 x 1073 2.11 x 10~* 1.48 x 10~*

considered are depicted over a cut in the middle of the geometry. For the case of Re' = 500, the flow reaches a
steady state and shows an axially symmetric pattern. For the cases of Re' = 3500 and 5000, the flows are highly
unsteady, with an anticipated jet break point in the sudden expansion region. In Fig. 5, the time-averaged axial
velocities along the nozzle centerline are compared with experimental data obtained by different laboratories [82].
As can be observed from the figures, the simulation results show good agreement with the experimental data. This
validation is preliminary, and ongoing efforts are still needed to quantify the impact of inflow fluctuations and
numerical settings on the reliability of the CFD solver’s predictions.

4.1.2. Algorithm robustness

In this test, we examine the solver performance with different Reynolds numbers. The spatial mesh contains
7.82x 10° tetrahedral elements and 1.43 x 10° vertices. Correspondingly, the system of equations involves 5.71 x 10’
unknowns. The minimum and maximum element sizes of this mesh are 0.06 cm and 0.29 cm, respectively. We
choose to simulate with two different Courant numbers, Cr = 0.5 and 2.0, and the time step sizes are summarized
in Table 3. The simulations are performed on a single node with 6 CPUs assigned. We choose 8" = 107% for the
FGMRES iterations. For the nested block preconditioner, we set 8, = 85 = §) and vary their values from 1078
to 1072, For the SIMPLE preconditioner, we investigated two choices: 8 =08y = 10~% and 102, For comparison
purposes, we also applied the restricted additive Schwarz method implemented in PETSc [83] with the incomplete
LU factorization as the subdomain solver. The convergence histories of this set of simulations are depicted in Fig. 6.

There are several salient features of the solver performance that can be summarized from Fig. 6. First, the
nested block preconditioner always shows a faster rate in residual reduction. For all cases considered, the proposed



18 J. Liu, W. Yang, M. Dong et al. / Computer Methods in Applied Mechanics and Engineering 367 (2020) 113122

00— L 80— o1l ]
k| ——Re=500 |[ E E
] = Re=3500| [ = E
E ——Re=5000| [ 703 E.
500 e E s 2
k| E E [ E
] E 60 E
400 E ] -
] E 50 £
z ] E =T ]
£ 300 F 5403 E
o5 E F SO E
E F 30 3 E
200 E E E
] F 20 3
100 E E £
] £ 10 3 E
o= 7
-10 -5 o 5 10 -10 5 0 5 10

Z [cm] Z [cm]

(a) (b)

O R B R B 600 o 1w 1wy Ly

400 E ] F
350 % 3 500 3 E
300 2 3 £
E E 400 F
2503 E 3 E
= 3 E = ] r
200 E 23003 3
By E E ' ] 5
150 E E 200 E
1003 3 ] o :
E E 100 2
50 3 E ] ° E
o717+ +r7 1+ o+ 7——+—+7+—+r—F
-10 -5 0 5 10 -10 -5 0 5 10

Z [em] Z [em]

(c) (d)

Fig. 5. The axial velocity along the nozzle centerline for all three Reynolds numbers (a). Detailed views of the velocity are given for
Re' = 500 (b), 3500 (c), and 5000 (d). Solid lines are time-averaged velocities from the CFD simulations, and the symbols represent
experimental means with 95% confidence interval [82].

method requires at most 6 iterations to achieve convergence. In terms of the CPU time, we found that a looser
tolerance for the intermediate and inner solvers always gives more efficient performance. Indeed, for the nested
block preconditioner, a significant amount of computing time is spent on the matrix-free approximation of the
Schur complement. A looser tolerance can surely reduce the computational burden from that part. This suggests
that, in practice, one is advised to flexibly tune the tolerances for &', 8%, and &} to balance the solver robustness
and the cost per iteration (see, e.g., the discussion in Section 5.1.1 of [41]). Also, in our experience, AMG is not
the most cost-effective approach for solving A, especially in the inner solver. Using a ‘lightweight’ preconditioner
may further reduce the overhead.

Second, the SIMPLE preconditioner achieves convergence within ten iterations for all three cases when Cr = 0.5.
The choice of the intermediate solver accuracy does not have a significant impact on the overall convergence rate.
The SIMPLE preconditioner with the intermediate solver accuracy 1072 gives the fastest performance for all three
cases of Cr = 0.5. However, its drawback is demonstrated when the Courant number is greater than 1. When
Cr = 2.0, it only achieves convergence for the case of Re' = 500, with around 130 iterations. For larger Courant
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Table 4

The strong scaling performance for the FDA idealized medical device benchmark. In the table,
Ta and Ty, represent the timings for the matrix assembly and the linear solver, respectively; the
efficiency is computed based on the total runtime.

Proc. Ta (s) T (s) Total (s) Efficiency
2 2.24 x 103 3.33 x 103 5.64 x 10° 100%
4 1.25 x 103 1.74 x 103 3.03 x 103 93%
8 6.15 x 102 9.05 x 102 1.54 x 103 2%
16 2.91 x 102 4.78 x 102 7.80 x 102 91%
32 1.25 x 102 2.39 x 102 3.72 x 102 95%
64 6.38 x 10! 1.42 x 10? 2.11 x 10% 84%
128 3.39 x 10! 7.80 x 10! 1.17 x 102 75%
256 1.84 x 10! 5.53 x 10! 8.04 x 10! 55%

and Reynolds numbers, the matrix A is no more diagonally dominated, and thus the SIMPLE preconditioner shows
rather poor performance. As will be demonstrated in Section 4.2, it is quite sensitive to the resistance value as well.
Although the SIMPLE preconditioner gives competitive performance under certain scenarios, its poor robustness
limits the capability of the overall algorithm, considering the scheme adopted is fully implicit. The efficacy of the
inner solver can be observed from Fig. 6(b), (d), and (e). Even a loose tolerance, such as §; = 1072, significantly
improve the robustness of the overall method.

Third, the additive Schwarz domain decomposition preconditioner cannot drive the relative error to 10~ within
the prescribed number of iterations (10000 here) for any of the six cases. It is also known that this preconditioner
does not scale well. An increase in the problem size will further degrade its performance in terms of the iteration
number and CPU time cost.

4.1.3. Parallel performance

In this section, we examine the proposed preconditioning technique by investigating its performance under
the parallel setting. The stopping criterion for the FGMRES iteration is 8" = 1075, and the tolerances for the
intermediate and inner solvers are 8, = 85 = &} = 107°.

Fixed-size scalability. In this test, we investigate the fixed-size scalability of the algorithm. Rather than starting
from a zero solution, we prepared a developed flow profile at Re' = 3500. The spatial mesh contains 5.71 x 10°
tetrahedral elements and 1.00 x 10° vertices, and the overall system of equations involves 4 x 10® unknowns. Then
the same mesh is re-partitioned based on the given number of processors. The prepared flow profile is mapped to the
new partitioned mesh to serve as the initial condition. The time step size is fixed to be 5 x 1073 s and the problem is
integrated for 40 time steps. Due to the hierarchical architecture of Stampede2, the simulations are performed with
one CPU assigned in each node, which means the number of processors reported in Table 4 equals the number of
nodes. In doing so, the MPI messages are communicated purely through the Intel Omni-Path network. In Table 4,
we report the timings as well as the speed-up efficiency based on the total time as the number of CPUs increases.
It can be observed that the scaling shows nearly optimal speed-up efficiency for a wide range of processor counts
for the proposed nested block preconditioner.

Isogranular scalability. In the next test, we study the isogranular or weak scalability of the proposed preconditioning
technique. We generated three sets of isotropic unstructured meshes and partitioned the mesh with the goal of
maintaining a constant number of unknowns assigned to each CPU. The initial conditions are prepared by gradually
increasing the flow rate to reach the targeted values in one second and maintaining the targeted flow rates for another
second. Then the obtained solutions are used as the initial condition for the scaling test. For each different run, the
time step size is chosen based on the Courant number, and we select to simulate with Cr = 0.5, 1.0, and 2.0. The
statistics of the solver performance are collected for 20 time steps (Table 5). It can be observed that the averaged
number of iterations remains between 2 and 3 for different problem sizes and the Courant numbers. For a given
Courant number, the averaged CPU time grows mildly (three to four times longer with a sixty-four-fold increase
of the problem size).
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Table 5
Comparison of the averaged iteration counts 7z and the CPU time for solving the linear system 7, in seconds for the nested block
preconditioner. The values of Axpi, for the three meshes are 6.8 x 1072, 3.1 x 1072, 1.4 x 1072 cm, respectively.

Cr=0.5 Cr=1.0 Cr=2.0
Nen Meg Proc. — - -
n Ty, (s) n Ty, (s) n TL (s)
Re' = 500
420 x 10° 3.10 x 10° 6 245 1.82 241 2.12 247 4.20
3.65 x 10° 2.48 x 10° 48 2.50 2.83 2.60 3.34 2.89 9.34
2.88 x 107 1.98 x 107 384 2.90 6.97 2.95 7.78 3.02 15.05
Re' = 3500
420 x 10° 3.10 x 10° 6 238 1.99 236 2.23 2.13 423
3.65 x 10° 2.48 x 10° 48 2.62 3.20 231 3.11 2.27 6.51
2.88 x 107 1.98 x 107 384 278 6.95 2.58 6.96 245 11.58
Re' = 5000
420 x 10° 3.10 x 10° 6 2.35 1.83 222 2.12 221 4.40
3.65 x 100 2.48 x 100 48 2.76 3.24 2.52 331 2.33 6.64
2.88 x 107 1.98 x 107 384 2.83 6.96 252 7.17 241 13.41

4.2. A cylindrical model with resistance boundary condition

In this example, we investigate the preconditioner performance with a resistance boundary condition (2.12). The
geometry of this problem can be found as the first example in the simulation guide of SimVascular [33], which is a
straight cylinder with a radius 2 cm and length 30 cm. On the inlet surface, we apply a parabolic velocity profile with
a flow rate @ = 100 cm?/s. On the outlet boundary surface, we apply the resistance boundary condition (2.12) with
varying values of R." The mesh is generated using TetGen [84], and it consists of 1.74 x 10° isotropic tetrahedral
elements and 2.88 x 10° vertices. The minimum element size is Axpi, = 0.1 cm. For comparison, we also simulate
the same problem using svSolver [33]. The solution method of svSolver is based on the BIPN iterative algorithm
introduced in Section 3.3. We caution the readers that the comparisons made between the proposed method and
the svSolver are not apples-to-apples because the numerical formulation and the resulting matrix problem are
different. Comparisons are made merely to give overall evaluations of the two existing solvers under realistic settings.

In the first study, we choose Ar = 6.3 x 1073 s for the simulation so that the Courant number Cr = 1.0 based
on the maximum flow speed and Axy;,. The simulations are performed with 24 CPUs. The resistance value R
varies from 10% g/(s cm*) to 10° g/(s cm*). Again, we choose 8" = 10% as the stopping criterion. In the SIMPLE
and nested block preconditioners, we choose 8, = 8§ = 10*, and the value of 8} varies from 107* to 10~L. We
also simulated the same problem using svSolver with tolerances on the momentum and continuity equations fixed
to 107*. The convergence histories and the CPU time are depicted in Fig. 7. In all cases considered, svSolver
shows a rapid reduction of the residual in the first a few iterations and stagnates when the relative error is driven
to approximately 107*. As one proceeds in the linear iteration, the normal matrix (see Eq. (45) in [32]) in the
BIPN algorithm becomes nearly singular and causes divergence eventually. As we increase the resistance value, the
SIMPLE preconditioner is also observed to stagnate. With an inner solver invoked, the proposed algorithm robustly
drives the residual to the prescribed tolerance. For example, when R = 10°, the algorithm converges in 64 iterations
with 87 = 107", This fact again indicates that a slight improvement of the numerical representation of the Schur
complement may significantly improve the convergence rate of the overall iterative algorithm.

In the second study, we choose to compare the impact of the two solvers on the overall time-stepping algorithms
for 30 time steps. The resistance value is fixed to be 1333 g/(s cm*), leading to a pressure value of 100 mmHg at the
outlet. The time step size is chosen to be Ar = 3.15 x 1073 s. The tolerance 8" is fixed to be 1073, with 8 = 103
and 85 = &) = 10~2. We use the Jacobi preconditioner for the inner and intermediate solvers associated with A,
because this option is often more efficient than the AMG preconditioner (see also our discussion in Section 4.4). For
svSolver, we limit the maximum number of iterations to 5 to avoid the numerical instability issue; the tolerances
on momentum equations and the continuity equation are fixed to be 1073 and 1072, respectively. Notice that in

! Notice that there is only one outlet surface I, = Folm in this case, and we neglect the superscript of R! for notational simplicity.
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svSolver, only the absolute tolerance is used as the stopping criterion. Hence, we make two sets of comparisons
using toly = 1073 and 10~° without invoking the relative tolerance. In Fig. 8, the CPU time and the number of
Newton—Raphson iterations in the first 30 time steps are reported. It takes more iterations and CPU times in the
first a few time steps for both solvers. After around the fifteenth time step, both solvers behave steadily over the
remaining time steps. When tol, = 1073, both solvers take approximately the same amount of CPU time for each
time step after the twentieth time step. When toly = 107°, svSolver cannot give an accurate enough solution
for the linear problem within its maximum number of iterations (5 here). This results in a higher amount of total
computing cost because more multi-corrector steps have to be taken. The efficiency of the proposed algorithm will

be further corroborated in the following section.
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proposed algorithm and the svSolver.

4.3. Patient-specific hemodynamic simulation

In this section, we further examine the proposed method under physiologically realistic settings by considering
two patient-specific examples: a diseased aortofemoral model and a healthy pulmonary model. The models and
the clinical data are publicly available through the Cardiovascular and Pulmonary Model Repository [85]. The two
cases are selected to cover the systemic and pulmonary circulations. The meshes for both examples are generated by
Meshsim [86], with boundary layer meshes near the arterial wall. We simulate the problems using the nested block
preconditioner with §" = 1072, 8 = 1073, 8 =98] = 1072, and my = mg = n)™ = ng™ = 20. Similar to the
previous example, we use the Jacobi preconditioner for the inner and intermediate solvers associated with A. The
same problems are also simulated with svSolver. In svSolver, the parameters adopt the default values except that
the tolerances on momentum equations and the continuity equation are chosen to be 10~ and 1072, respectively.
The above parameters are chosen to achieve the fastest performances for the two solvers separately. Since the linear
systems in the two solvers are not identical, we only aim at comparing the overall algorithm efficiency, with the
same accuracy for solving the nonlinear equations.

4.3.1. Aortofemoral model

We first consider an aortofemoral model with an abdominal aortic aneurysm. The medical image and the volume
rendering of the model are illustrated in Fig. 9(a). The volumetric flow rate used for prescribing the velocity on
the inlet surface is illustrated in Fig. 9(b). The generated mesh consists of 8.80 x 10° tetrahedral elements and
1.61 x 10° vertices (Fig. 9(c)). The minimum element size is Axp, = 9.21 x 107> cm, and the time step size
is chosen as Ar = 4.16 x 10~* s. Notice that one cardiac cycle takes 0.832 s, and thence it requires 2000 time
steps for simulating one cardiac cycle. The simulations are performed with 288 CPUs and simulated for 12 cardiac
cycles. The instantaneous pressure, the velocity magnitude, the time-averaged wall shear stress, and the oscillatory
shear index at the peak systole are depicted in Fig. 10. The performances of the proposed solution method and
the svSolver are monitored for 30 time steps around peak systole and mid diastole (see Fig. 11). For one cardiac
cycle, the proposed solution method takes 14803 s and svSolver takes 28200 s.

4.3.2. Pulmonary model

The pulmonary circulation has lower pressures than the systemic circulation, but with the same amount of flow
going through an extensive and concentrated tree of branching arteries. To demonstrate the performance of the
proposed method in the pulmonary circulation, a model was built from a healthy 20-month-old male, consisting
of 772 outlets. This mesh consists of 2.61 x 107 tetrahedral elements and 4.95 x 10° vertices. Correspondingly,
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there are about 20 million unknowns in the resulting linear system of equations. The minimum element size is
AXpin = 5.16 x 1073 cm. The time step size is fixed to be At = 2.6995 x 10~* s. The medical image, volumetric
flow rate, and the detailed views of the mesh are illustrated in Fig. 12. Notice that one cardiac cycle takes 0.5399 s
and it requires 2000 steps in the time integration. The simulations are performed with 720 CPUs and simulated for
3 cardiac cycles. The instantaneous pressure, the velocity magnitude, the time-averaged wall shear stress, and the
oscillatory shear index at the peak systole are depicted in Fig. 13. Performance of the proposed solution method
and the svSolver is monitored for 30 time steps around peak systole and mid diastole (see Fig. 14). We notice that
svSolver is faster than the proposed algorithm during the diastolic phase in this example. For one full cardiac cycle,
the proposed method takes 14500 s and svSolver takes 19500 s. We also notice that the CPU time per time step is
lower during the diastolic phase in both patient-specific simulations. This can be explained by the lower Reynolds
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Fig. 12. (a) Volume rendering of the medical data. (b) Volumetric flow waveform used to prescribe the velocity on the inlet surface. The
red dot represents peak systole. The gray regions represent the periods of time where we monitor the CPU time for the two different solvers
in Fig. 14. (c) The mesh of the pulmonary model.

and Courant numbers in diastole. It is our experience that the conventional solver technique in the svSolver is
non-robust, occasionally causing divergence during the systolic phase. As is revealed in Section 4.1.2, the three-level
nested block preconditioner is less sensitive to these numbers and hence improves the overall algorithm robustness.

4.4. Additional discussion

As highlighted above, the inner solver plays a critical role in balancing the overall algorithm robustness and
efficiency. The inner solver and the two solvers for (3.3 and (3.5) at the intermediate level are all associated with
the block matrix A, and in this work, we apply the same solution strategy for these equations. It has been suggested
to use AMG in the design of block preconditioners [21,87], which gives robust and scalable performances. However,
the expensive setup and application phases of the AMG preconditioner result in a trade-off between scalability and
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oscillatory shear index (d) of the pulmonary model at peak systole.

efficiency. This can be particularly relevant when one simulates medium-sized problems when a scalable algorithm
is not necessarily the most efficient one. For the problems considered in this work, we found that the AMG
preconditioner is an expensive option for A, and the Jacobi preconditioner is often efficient, even for the pulmonary
model with around 20 million unknowns. In Fig. 15, we tested the AMG and Jacobi preconditioners for solving
A with 8, = 107® using both patient-specific models. Although the AMG preconditioner requires fewer iterations,
it costs more CPU time compared to the Jacobi preconditioner. To further validate this observation, we monitor
the solver performance using the FDA medical device model considered in Section 4.1. Three different meshes
are considered and the tolerance is again set to be 8, = 1073, The results are summarized in Table 6. The Jacobi
preconditioner is more efficient in all three meshes. Extrapolation suggests that the AMG preconditioner may be a
more efficient option for finer meshes due to its better scalability. Notice that the value of &', rarely reaches 1078
in practice. For looser tolerances, the advantage of the Jacobi preconditioner is more pronounced.

On the other hand we solve 3.4 with AMG because this step directly associates with the number of inner
solver calls. We need a fast reduction rate when solving the Schur complement. Based on our experience, AMG

max

outperforms other options in this regard. We also set mg = ng™* = 20 as a strategy to avoid spending too much

time on solving the Schur complement.
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Table 6

Comparison of the CPU time for the preconditioner setup (7s) and the total CPU time for solving A (77) in seconds using the AMG and

Jacobi preconditioners. The Courant number is fixed to be 2.0.

AMG Jacobi
Teg Proc.

Ts (s) Ty (s) Ts (s) Ty (s)
3.10 x 10° 6 8.5 x 1072 2.3 x 107! 3.8 x 1073 8.9 x 1072
2.48 x 10° 48 1.1 x 107! 43 x 107! 52 x 1073 2.7 x 107!
1.98 x 107 384 1.9 x 107! 5.3 x 107! 8.1 x 1073 4.5x 107!
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5. Conclusion

In this work, we designed and applied the three-level nested block preconditioning technique to the incom-
pressible Navier—Stokes equations with reduced models coupled on the boundaries. The proposed preconditioning
technique combines the merits of the SCR procedure and the conventional physics-based block preconditioners. In
particular, it uses an algorithm, rather than an explicit algebraic form, to approximate the behavior of the Schur
complement. In comparison with conventional block preconditioners, this approach is well-suited to problems
involving multiscale and multiphysics coupling. With a proper setting of the intermediate and inner solvers,
the proposed method is demonstrated to attain more robust and more efficient performance than the existing
technologies, especially for hemodynamic simulations. One attribute of the nested block preconditioner is the
proliferation of options for the intermediate and inner solvers. The choices of the preconditioners and stopping
criteria at the intermediate and inner levels critically determine the actual overall performance of the algorithm.
For a specific problem, it is often advisable for the practitioners to determine the sweet spot of options to balance
robustness and efficiency. In our study, we noticed that using the light-weight Jacobi preconditioner for A always
leads to highly efficient performances. This is somewhat in contrast to the common practices in the traditional block
preconditioner, where the AMG preconditioner is recommended for A. As for future work, the preconditioner for A
needs to be further explored and compared for performance optimization purposes. Although this study is based on
the variational multiscale formulation, we have applied the same preconditioning technique for the inf—sup stable
formulation, and it works well for lower-order element pairs, such as Q,/Q;. For higher-order elements, it is
tempting to apply this methodology within a Newton—Krylov framework [68—70]. There is still room to further
improve the performance of the AMG preconditioner for the Schur complement, particularly in the design of the
smoother [60,62,88]. In the last, a crucial next step is to apply the iterative solution method for FSI problems within
the unified continuum modeling framework [42,44].
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