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ABSTRACT

We develop a remote wave gauging technique to estimate wave height and period from imagery of waves in
the surf zone. In this proof-of-concept study, we apply the same framework to three datasets: the first, a set of
close-range monochrome infrared (IR) images of individual nearshore waves at Duck, NC, USA; the second, a
set of visible (i.e. RGB) band orthomosaics of a larger nearshore area near Santa Cruz, CA, USA; and the third,
a set of oblique (unrectified) images from the same site. The network is trained using coincident images and
in situ wave measurements. The optical wave gauge (OWG) consists of a deep convolutional neural network
(CNN) to extract features from imagery — called a ‘base model’, with additional layers to distill the feature
information into lower dimensional spaces, and a final layer of dense neurons to predict continuously varying
quantities. Four base models are compared. The OWG is trained for both individual wave height and period,
and statistical quantities like significant wave height and peak wave period. The best performing OWG on the
IR dataset achieved RMS errors of 0.14 m and 0.41 s for height and period, respectively, capturing up to 98%
of the variance in these quantities. The best performing OWG on the visible band rectified dataset achieved
RMS errors of 0.08 m and 0.79 s, respectively, for height and period. The same values for the oblique RGB
imagery were 0.11 m and 0.81 s for height and period, respectively. Overall, wave height and period accuracy
is sensitive to choice of base model; OWGs built upon MobilenetV2 tend to perform worst and those built on
Inception-ResnetV2 have the smallest RMS error. The presence or otherwise of residual layers in the model
makes little systematic difference to the final OWG accuracy. Smaller batch sizes used in model training tend
to result in more accurate OWGs. An out-of-calibration validation, using images associated with wave heights
or periods outside the range of values represented in the training data, showed that the ability for OWGs to
predict the bottom 5% of low wave heights and the top 5% of high wave heights was reasonably good, but the
same was not generally true of wave period. The same framework, not optimized for either dataset, predicts
both quantities with high accuracy when trained on imagery, despite the differences in electromagnetic band,
perspective, and scale. The OWG estimates wave properties from an image in less than 100 ms on a modestly
sized CPU, allowing for the possibility of continuous real-time wave estimates.

1. Introduction

currents. Estimating surf zone wave height with existing techniques is
challenging, and most in situ wave gauges are located in deep water.

Observation and measurement of wave height and period in the surf
zone are important for both monitoring and prediction of nearshore
environments. Wave height and period are primary inputs to nearshore
wave models that in turn drive circulation and sediment transport
predictions, the ultimate goal for management operations and decision
making. Routine monitoring for coastal hazards and recreation like-
wise depend mostly on wave height and period to estimate risks to
beachgoers for dangerous surf conditions, such as the prevalence of rip
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Nearshore waves are typically modeled, but less often verified, due
to difficulty of deployment and risk of loss in shallow water. Real-
time nearshore wave height and period measurements are useful for
navigational safety, assessing coastal hazard potential, advising on
presence of rip-currents for swimmer safety, surf quality, and water
quality.
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Remote sensing of nearshore processes has significant advantages
over in situ measurements that tend to be limited in spatial and tem-
poral coverage. Visible and thermal infrared (IR) imagery have proven
especially useful for capturing spatially extensive observations of hy-
drodynamics, in particular wave propagation and breaking. Applica-
tions of visible band imagery tend to occur at relatively large scales,
typically hundreds to thousands of meters in the alongshore (Holman
et al., 1993; Holland et al., 1997; Holman and Haller, 2013). When
using visible band imagery to study processes associated with individ-
ual wave breaking, both reflected light from the sun and residual foam
(the foam left behind in the wake of a breaking wave) can individually
and collectively overwhelm and obscure the signal of interest, namely
the active foam that is generated while a wave is breaking. In IR
imagery, however, active foam is differentiable from residual foam and
background water, which is one reason IR imagery has been used to
study deep-water, microscale, and surf zone wave breaking (Jessup
et al., 1997a,b; Carini et al., 2015).

It is possible to infer wave properties from time-series of visible
band or infrared imagery. Previous studies have utilized time-series of
visible band imagery to extract hydrodynamic properties of nearshore
waves and currents, swash and runup (Holman and Guza, 1984; Stock-
don et al., 2006; Baldock et al., 2017), breaking wave location and a
qualitative measure of breaking intensity (Stockdon and Holman, 2000;
Allard et al., 2008), wave period (by monitoring a single pixel in the im-
age over time; Stockdon and Holman (2000)), wave celerity (Stringari
et al., 2019), wave dissipation (Aarninkhof and Ruessink, 2004) and
attenuation (Pereira et al., 2011), and alongshore currents (Chickadel
et al., 2003; Almar et al., 2016). However, these techniques are not
always robust to noise (they can be confounded by residual foam or
the transition around wave breaking), nor do they always transfer
well between sites (due to scale and resolution dependence). Pixel
array techniques for computing wave period and celerity require time-
series of images, because they rely on tracking features or signals
between successive frames. Pixel array techniques are usually sensitive
to subjective choices about the position of pixel instruments and the
duration over which measurements are made. Further, these methods
typically require information about camera geometry to scale and
relate the observations to geographical position. No previous generally
applicable technique has been proposed and validated to estimate
wave height or multiple wave properties from a single image. Stereo
imaging (Benetazzo, 2006; De Vries et al., 2011) has the capability
of continuously measuring wave height and period using two or more
images, but requires camera geometries, significant post-processing,
and relies on feature-matching that is computationally demanding and
sensitive to image noise. Another alternative is LIDAR (LIght Detec-
tion and Ranging) (Irish et al., 2006), using which does not require
ground truth to estimate wave properties, but requires significant post-
processing. Stationary camera systems have the relative advantage of
having no moving parts and can be completely enclosed, often farther
away from the sea. It is possible any consumer grade camera with time-
lapse capability would provide useful information exploitable by the
technique described here.

Deep learning (LeCun et al., 2015; Goodfellow et al., 2016) —a
class of machine learning techniques that use large modern neural
network models to extract relevant image features automatically —has
the potential to be transformative within oceanography. To date, deep
learning has been used with remotely sensed imagery to, for example,
recognize ocean fronts (Lima et al., 2017), classify coastal environ-
ments (Buscombe and Ritchie, 2018), create super-resolution imagery
of sea surface temperature (Ducournau and Fablet, 2016), classify
plankton (Luo et al., 2018), categorize wave breaking (Buscombe and
Carini, 2019) and study internal waves (Pan et al., 2018) and typhoon-
induced sea surface temperature cooling (Jiang et al., 2018). These
studies demonstrate that deep learning can be a powerful class of tools
for analysis of images of dynamic natural features in poly- or mono-
chrome geophysical imagery. For such imagery, solving classification
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or regression tasks is based upon subtle variations of tone, contrast,
saturation, etc., that collectively indicate a different dynamic state.
Applications of deep learning in Earth sciences have been reviewed
by Reichstein et al. (2019).

Deep convolutional neural networks (CNNs, also known as DC-
NNs or Convnets) are a specific class of deep learning algorithm that
have been shown to produce state-of-the-art performance for a variety
of image recognition and classification tasks e.g.(Krizhevsky et al.,
2012; Simonyan and Zisserman, 2014; Howard et al., 2017; Gu et al.,
2017). Conventional machine learning approaches require manual or
supervised image feature selection or extraction and sometimes require
transformation of the image data so that they are more amenable to a
specific algorithm. Deep learning circumvents these practices, which
results in increased model generality or decreased overfitting. In con-
ventional machine learning, image band-selection or data dimension-
ality reduction using ordination techniques are popular (Goodfellow
et al., 2016), but for geophysical imagery, such subjectivity built into
representations of data involves significant expertise and trial-and-
error. Further, variations in lighting, pose, viewpoint, as well as the
inherent variation among the features of interest, can make manual or
formulaic feature selection and extraction difficult to optimize.

Each layer of a CNN consists of a set of convolution filters connected
to the previous and next layers, such that the output of a given filter of
a given layer is a function of the outputs of the filters of the previous
layer. Through a series of hidden layers, each portion of the image
is convolved with a filter set, with each filter designed to search for
a particular pattern or feature within the image. CNN-based analysis
of geophysical imagery is based upon this hierarchy, which facilitates
learning sets of features with different levels of abstraction (Buscombe,
2019). For example, the first few layers identify low-level features
such as edges and dark spots. The next few layers then search for
medium-level features such as corners, contours, and collections of
edges. The final set of layers identify high-level features such as objects
and textures with larger structure. This hierarchical design is extremely
skillful at recognizing objects or classes in the image, even if they have
shifted, shrunk, rotated, or otherwise deformed (He et al., 2016).

Here, the objective is to develop a neural network model framework
for generic application, that can predict wave height and period from
a given image. The model estimates wave height or period within
the image region, rather than for individual waves within the image.
Within this model framework, which we call an Optical Wave Gauge
or OWG, feature extraction is automatic, and predictions are made on
image textures that relate to wave geometry and —in the case of the IR
imagery —also small-scale spatial patterns in sea surface temperature.
We test the OWG with three image datasets: one consisting of short-
range oblique (unrectified) IR imagery of individual breaking and
unbroken waves; orthomosaics of rectified visible-band imagery of a
larger nearshore area; and finally oblique (unrectified) visible-band
images from the same area.

2. Field sites and data
2.1. Close-range infrared imagery and wave measurements

Close-range thermal IR images of breaking waves in the surf zone
(Fig. 1) were collected during a field campaign, 7-8 November 2016,
at the US Army Corps of Engineers (USACE) Field Research Facility
(FRF) in Duck, North Carolina, United States. A DRS UC640-17 long-
wavelength (8-14 pum), uncooled VOx Microbolometer IR camera was
mounted to a small tower secured to the FRF pier and viewed the sea
surface at 45° incidence angle, which resulted in a 20 m wide field
of view. The camera collected images continuously at 10 Hz. During
the 10.5 h of data collected over 48 h used for this study, individual
wave heights and periods varied significantly, from 0 to 5.94 m and
2.32 to 19.36 s, respectively. These values represent the full range of
wave heights and periods measured. There was a storm offshore on
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Fig. 1. (A) Infrared (IR) image of a large nearshore area from an IR camera mounted to a high tower. Also indicated is the field-of view of a second IR camera (B) and 1D transect
scanned by a LiDAR (B), both overlooking the surf zone from a pier. The imagery used in this study was the smaller footprint wave-scale imagery (C) from the pier-mounted IR

camera. The dataset exemplified in (A) was not used in the present study.

the 7th that never made landfall, but was responsible for the longer
period, larger wave height swell that arrived on the 8th. Wave direction
varied slowly. Significant wave heights, peak periods, direction, and
tidal elevations during the field campaign are shown in Fig. 2.

Wave heights and periods were measured with < 1 cm accuracy
by a Riegl VZ-400 LIDAR scanning continuously along a sea surface
profile intersecting the field of view of the IR camera. The data consist
of 9400 oblique images (Fig. 3) with associated wave height and
period measured by the LIDAR. The IR imagery (in 8-bit grayscale
format) were cropped from 640 x 480 to 480 x 480 then downsized to
128 x 128 pixels for more efficient model training —an image size that
can be accommodated in training and validation batches of up to 128
images, with the largest model, on a Graphics Processing Unit (GPU)
with 8 GB of memory.

2.2. Visible-band imagery and wave measurements

The data consist of 980 images of the nearshore of Sunset State
Beach, Watsonville, California (approximately 15 miles southeast of
Santa Cruz), United States, between 6 December 2017 and 30 January
2018, with associated wave height and period measured using an
instrumented tripod in 12-14 m of water depth immediately offshore
of the site. Significant wave height H, and peak wave period 7, time-
series come from a Nortek Signature 1000 acoustic Doppler current
meter. During the 2 months of data used for this study, significant wave
height and peak wave period varied from 0.39 to 2.56 m and 7 to 23 s,
respectively. Unlike for the IR dataset described above, where the field
of view is small but sample frequency is sufficiently high to image every
wave that moved through the field of view, the visible-band imagery
captures a larger area of the surfzone but at a slower sample frequency
(every 30 min). For these data, estimating the height and period of
individual waves is not the goal. Rather, waves were measured by 20-
minute ADCP bursts every hour, and so not every image corresponds
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Fig. 2. Tide and wave conditions during 7-8 November 2016, at the US Army Corps
of Engineers (USACE) Field Research Facility (FRF) in Duck, North Carolina: (A) Tidal
elevation (black line), and the 10.5 total hours of data collection used for this study
(light gray circles); (B) Significant wave height H, and peak wave period 7, and (C)
wave direction.

to a period during which an ADCP burst was collecting. The bulk wave
statistics that are the target prediction of the model were interpolated
over the timing of the imagery.

The imagery was created by a long-term 2-camera Argus (Holman
and Stanley, 2007) station (Fig. 4A) used for remotely sensing coastal
change. The two oblique camera views (Fig. 4B, C) were rectified onto
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35-42m 48-54m
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Fig. 3. Example randomly selected IR images associated with increasing individual wave height (A) and period (B). The three rows in A and the three rows in B depict three
random samples. In IR imagery, light regions are relatively warm and dark regions are relatively cool.

the horizontal plane of the tidal water level, and merged together into a
single planar view. Two datasets have been derived for training OWGs,
namely ‘orthomosaic’ (or ‘rectified’) and ‘oblique’ (or ‘unrectified”)
imagery.

The orthomosaics (Fig. 4D) have a rectified horizontal pixel foot-
print of 0.5 x 0.5 m covering a region of 1.1 x 1.1 km. The station takes
10-minutes of video at 2 frames per second every 30 min of daylight
hours, from an oblique vantage point nearly 63 m above mean sea level
atop an adjacent coastal bluff. Original images were 2201 x 1901 x 3
pixels in 8-bit RGB format, but were cropped to square, then downsized
to 128 x 128 x 1 pixels in 8-bit grayscale format for more efficient
model training on a GPU. Each pixel in the downsized imagery is
7.43 x 7.43 m. The merging of the two camera views and differences
in the camera color balance between the two cameras causes diagonal
seam lines in several of the images (Fig. 5).

The oblique imagery consists of the imagery from camera two
(Fig. 4) with the farthest field-of-view alongshore (Fig. 4C, Fig. 6).
Original images were 2448 x 2048 x 3 pixels in 8-bit RGB format, but
were cropped to square, then downsized to 128 x 128 x 1 pixels in
8-bit grayscale format. Image quality of neither dataset was considered
in the model training, therefore relatively rare images with sun glint,
dirty lenses, or rain-drops on the lens were not removed and potentially
impacted the results negatively.

3. Methods

In order to estimate wave height or period from input imagery,
we create a generic CNN architecture (Fig. 7) based on a core feature
extractor, called a base model, with (1) a batch normalization layer
before and after the base model, which applies a transformation that
maintains the mean neuron activation close to 0 and the activation
standard deviation close to 1 (Ioffe and Szegedy, 2015) and the result
of which is fed into (2) a 2D global average pooling (GAP) layer
that averages the activations across each part of the image, then (3)
a dropout layer to avoid overfitting (Srivastava et al., 2014), with a
dropout rate of 0.5, and finally (4) a dense predicting layer with no
activation. The first batch normalization is applied to the raw image,
and the second to the activation maps from the base model. GAP
layers are used to reduce the spatial dimensions of each of the three-
dimensional tensors associated with each pixel of the input image,
from hxwxd to 1 x 1xd, by averaging over h and w. This has the
effect of reducing the total number of parameters in the model, thereby
minimizing overfitting.

Four base CNN models were compared, with a range of architec-
tures and sizes (Table 1): MobilenetV1l (Howard et al., 2017), Mo-
bilenetV2 (Sandler et al., 2018), InceptionV3 (Szegedy et al., 2016),
and Inception-ResnetV2 (Szegedy et al., 2017). The major difference
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Fig. 4. (A) Two camera coastal monitoring system; (B) and (C) example snapshot images of the left and right camera; and (D) the orthomosaic of the two rectified images.

between the MobilenetV1 and MobilenetV2 models, and between the
InceptionV3 and Inception-ResnetV2 models is the presence or absence
of residual layers in the model architecture. A hidden layer in Mo-
bilenetV1 or InceptionV3 learns to calculate y = f(x) (y and x are
generic outputs and inputs), whereas a residual neural network hidden
layer in the MobilenetV2 or Inception-ResnetV2 models calculates y =
f(x) + x (He et al., 2016; Chollet, 2017). In other words, data are
allowed to flow through both non-linear activation functions (in f(x))
as well as through the network directly (+x). The motivating idea
behind this is that the next layer will learn the concepts of the previous
layer plus the input of that previous layer (the data that was used to
learn those concepts). This also allows the model to be much deeper,
but with a similar (or even smaller, as in the case of MobilenetV2)
number of model parameters.

Each OWG was retrained end-to-end, which means it was initialized
with random numbers for neuron weights and biases, then during
training the value of those parameters was optimized by minimizing
the discrepancy between known and estimated wave height or period.
Each OWG was trained with different batch sizes (16, 32, 64, and 128
randomly selected pairs of images and labels) in order to examine their
relative effects on results. Sampling used stratification, whereby it was
equally likely with the large number of trials to select imagery corre-
sponding to ten equally spaced categories of wave height or period. This
was designed to avoid introducing any bias associated with selecting

wave height/period magnitudes based on their relative proportion
within the training image set, which would tend to preferentially select
mid-sized waves over extreme values.

The ideal batch size is one that is small enough to create a regu-
larizing effect on the network, resulting in lower generalization error,
but large enough that each training epoch is subject to enough example
images to update weights and biases whose values then fluctuate less
upon successive epochs, thereby increasing model stability. One train-
ing epoch means that the learning algorithm has made one pass through
the training dataset, where examples were separated into randomly
selected batches of images. Models typically trained for between 100
and 200 epochs before the criterion was met to stop training early.
The number of training steps per epoch was computed as the number of
training images divided by the batch size. Upon each step, the gradients
of the network are updated and new weights assigned to each neuron.
Each of the resulting 96 OWGs, consisting of 32 OWGs (16 for wave
height and 16 for wave period) for each of the three datasets, were
trained for a maximum of 200 epochs. Models stopped training early
(i.e. before 200 epochs) if the validation loss failed to improve for 15
consecutive epochs.

The loss function we used during training was mean squared error
(the mean squared error of predicted wave height or period compared
to observed). Training utilized the popular Adam algorithm (Kingma
and Ba, 2014) for stochastic optimization, with parameters f;=0.9
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1.9-212m 2.34-2.56m

19.1-21.1s 21.1-23.1s

Fig. 5. Example nearshore images associated with increasing H, (A) and 7, (B). The three rows in A and the three rows in B depict three random samples. Textures associated
with larger wave heights show more energetic wave breaking, and larger shadows on the front faces of waves. Image textures associated with long period waves show more
organized and regular crests and more energetic wave breaking, and potentially wider surf zone and further offshore onset of wave breaking. The wave gauge was located at the

seaward edge of the imagery.

and $,=0.999. During training, the learning rate was automatically
reduced when the loss function stabilized, i.e. when its value stopped
decreasing. The learning rate was reduced by a factor of 0.8 after
10 epochs had elapsed with no improvement. A lower bound on the
learning rate was set at 0.0001. All OWGs were trained with image
augmentation, implemented using random: (1) shifts in either or both
image dimensions of up to 10%; (2) rotations up to +10 degrees; (3)
shear in either axis up to 5 degrees; and (4) zoom up to 20% by image
area. The general consensus among machine learning experts is that
incorporating more data will increase CNNs performance (LeCun et al.,
2015), even if the enormous amount of redundancy in the augmented
data defies the classical notion of data information content. For the

visible band datasets, augmentation resulted in 3000 training and 1000
validation images generated from the original 980. Out of the original
9400 IR images, augmentation resulted in 13,400 training and 6600
validation images.

We did not include the images associated with the top 5% and
bottom 5% of wave height or period values in model training, so
we could independently test how well the model predicts outside of
the range of values used to train it. We refer to this as the ‘out-of-
calibration’ validation. Specifying too few steps per epoch can cause
out-of-calibration errors to become large. Of the remaining 90% of
images representing 90% of measured wave heights or periods, 60%
(54% of all data) were used to train each model, and the remaining 40%
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2.12-234m

19.1-21.1s

Fig. 6. Example nearshore images associated with increasing H, (A) and 7, (B). The three rows in A and the three rows in B depict three random samples. Textures associated
with larger wave heights show a wider surf zone and further offshore onset of wave breaking. Image textures associated with different period waves show variation in number

and spacing of the breakpoint.

(36% of all data) were used to validate each model.All models were
trained using the Tensorflow backend to the keras (Chollet et al., 2015)
python module, on a 8 GB GeForce RTX 2070 with 2304 CUDA cores.
The theoretical resolving power of a network might be thought of as a
quantization problem: the resolution of the measurement is the range
of the variable in the training data divided by the number of neurons
in the final dense layer (Table 1), which in this case is 0(0.01) m and
0(0.01) s, for wave height and period respectively. Because images
are randomly selected during training, the results from the data-driven
models presented here are not affected by serial dependence (such as
how successive 20 m-footprint images could contain parts of the same
wave).

4. Results

The best performing OWG on the IR dataset achieved RMS errors
of 0.14 (0.08) m and 0.41 (1.65) s (values in parentheses are for
out-of-calibration samples), for height (Table 2) and period (Table 3)
respectively, capturing up to 98% of the variance in these quantities.

The best performing OWG on the visible band rectified dataset achieved
RMS errors of 0.08 (0.14) m and 0.79 (3.44) s for height (Table 2) and
period (Table 3), respectively. The same values for the oblique RGB
imagery were 0.11 (0.18) m and 0.81 (1.37) s for height and period,
respectively.

Overall, wave height and period accuracy is sensitive to choice of
base model. OWGs built upon MobilenetV2 tend to perform worst,
whereas OWGs built on Inception-ResnetV2 tend to have the smallest
RMS error. Using Inception-ResnetV2 as a base model, mean RMS error
for wave height were 17, 11, and 14 cm, for the oblique IR, orthomosaic
RGB, and oblique RGB datasets, respectively, compared to 60, 26, and
24 cm for OWGs based on MobilenetV2 (Table 2). For wave period,
Inception-ResnetV2-based OWGs had mean RMS errors of 0.53, 0.98,
and 1.01 s respectively for the three datasets, compared to 0.54, 3.15,
and 3.04 s for OWGs based on MobilenetV2 (Table 3).

The presence or otherwise of residual layers in the model makes
little systematic difference to the final OWG accuracy (Tables 2 and 3);
RMS errors of MobilenetV1 (without residual layers) tend to be smaller
than those of MobilenetV2 (with residual layers), and only the best
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Applies a transformation that scales the
mean image intensity as 0 and the
standard deviation as 1

Extracts image features (activation maps)
through repeated application of
convolutions and pooling

Applies a transformation that scales the last
activation map from the base model so its
mean is 0 and its standard deviation is 1

Global Average 2D Pooling

Reduces the total number of model
parameters by averaging the 3D feature

Dropout (rate 0.5)

Dense

maps resulting from the previous layer,
into a 1d vector

A layer formed from the previous layer's output
by randomly dropping half the nuerons (a dropout
rate of 0.5)

A densely connected layer that estimates the
wave height or period from the output of the previous
dropout layer

Wave height and period

Fig. 7. Schematic of the generic technique used to estimate wave properties from input imagery.

Table 1
Details of the four model architectures used, specifying the number of parameters in each model component.
Layer Model 1 Model 2 Model 3 Model 4
Batch normalization 4 4 4 4
Base model MobilenetV1 MobilenetV2 InceptionV3 Inception-ResnetV2
(3,228,288) (2,257,408) (21,802,208) (54,336,160)
Batch normalization 4096 5120 8192 6144
Global average pooling 0 0 0 0
Dropout 0 0 0 0
Dense 1025 1281 2049 1537
Total 3,233,413 2,263,813 21,812,453 54,343,845

predictions made by Inception-ResnetV2-based OWGs (with residual
layers) tend to better those made by InceptionV3-based OWGs (without
residual layers). Smaller batch sizes tend to result in more accurate
OWGs.

An out-of-calibration validation, using images associated with wave
heights or periods outside the range of values represented in the train-
ing data, showed that the ability for OWGs to predict the bottom 5% of
low wave heights and the top 5% of high wave heights was reasonably
good (Table 2). The mean across all four base models ranged between
22-29cm for the IR data, 18-30cm for the rectified RGB imagery, and
22-32cm for the oblique RGB imagery. The out-of-calibration errors
were significantly larger for wave period (Table 3). The mean across all
four base models ranged between 1.81-2.32 s for the IR data, 3.82-4.15
s for the rectified RGB imagery, and 1.98-2.07 s for the oblique RGB
imagery.

4.1. Infrared imagery

Of the 16 OWGs trained to predict wave height (Fig. 8), the best
overall performance was one based on MobileNetV1 with a batch size
of 32 (Fig. 8B), with RMS error of 14 and 9 cm for within- and out-
of-calibration-validation, respectively. Several other models based on
MobileNetV1 or Inception-ResnetV2 had similar accuracy. RMS errors
tend to increase with increasing batch size.

For wave period prediction (Fig. 9), there is less variability among
base models and batch sizes. All wave period OWGs show a greater de-
gree of scatter compared to OWGs for wave height. The best performing
OWG overall was that based on Inception-ResnetV2 with a batch size of
128 (Fig. 9P). It produced an RMS error of 0.41 s within-calibration and
1.72 s out-of-calibration. However, the smallest model with the smallest
batch size (Fig. 9A) performed almost as well within-calibration (0.43
s) and better out-of-calibration (1.65 s).
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Summary of model evaluation results for wave height. Root-mean-square error in wave height (m) for the three datasets, as a function of batch

size and base model.

Oblique IR:

16 32 64 128 Mean:
MobilenetV1 0.15 (0.09) 0.14 (0.09) 0.16 (0.12) 0.31 (0.2) 0.19 (0.13)
MobilenetV2 0.73 (0.71) 0.57 (0.57) 0.52 (0.62) 0.56 (0.68) 0.6 (0.65)
InceptionV3 0.16 (0.12) 0.15 (0.08) 0.14 (0.09) 0.20 (0.14) 0.16 (0.11)
Inception-ResnetV2 0.14 (0.12) 0.17 (0.14) 0.15 (0.09) 0.20 (0.15) 0.17 (0.13)
Mean: 0.3 (0.27) 0.26 (0.22) 0.24 (0.23) 0.32 (0.29) 0.28 (0.25)
Orthomosaic RGB:

16 32 64 128 Mean:
MobilenetV1 0.1 (0.14) 0.12 (0.22) 0.16 (0.2) 0.21 (0.31) 0.15 (0.22)
MobilenetV2 0.12 (0.17) 0.26 (0.35) 0.32 (0.35) 0.32 (0.35) 0.26 (0.31)
InceptionV3 0.1 (0.21) 0.1 (0.15) 0.17 (0.21) 0.16 (0.29) 0.13 (0.21)
Inception-ResnetV2 0.09 (0.2) 0.08 (0.16) 0.1 (0.17) 0.16 (0.26) 0.11 (0.19)
Mean: 0.1 (0.18) 0.14 (0.22) 0.19 (0.23) 0.21 (0.3) 0.16 (0.23)
Oblique RGB:

16 32 64 128 Mean:
MobilenetV1 0.11 (0.23) 0.13 (0.21) 0.17 (0.24) 0.23 (0.35) 0.16 (0.26)
MobilenetV2 0.14 (0.21) 0.25 (0.24) 0.28 (0.34) 0.3 (0.4) 0.24 (0.3)
InceptionV3 0.16 (0.31) 0.12 (0.2) 0.2 (0.38) 0.16 (0.26) 0.16 (0.29)
Inception-ResnetV2 0.11 (0.23) 0.13 (0.23) 0.13 (0.18) 0.18 (0.27) 0.14 (0.23)
Mean: 0.13 (0.22) 0.16 (0.22) 0.2 (0.29) 0.22 (0.32) 0.18 (0.26)

Table 3

Summary of model evaluation results for wave period. Root-mean-square error in wave period (s) for the three datasets, as a function of batch

size and base model.

Oblique IR:

16 32 64 128 Mean:
MobilenetV1 0.43 (1.65) 0.44 (2.13) 0.44 (1.78) 1.58 (3.52) 0.73 (2.27)
MobilenetV2 0.48 (1.9) 0.54 (2.07) 0.52 (2.33) 0.62 (1.89) 0.54 (2.05)
InceptionV3 0.47 (1.99) 0.42 (2.05) 0.42 (2.31) 0.41 (2.13) 0.43 (2.12)
Inception-ResnetV2 0.63 (1.69) 0.63 (2.1) 0.43 (2.06) 0.41 (1.72) 0.53 (1.89)
Mean: 0.5 (1.81) 0.51 (2.09) 0.45 (2.12) 0.76 (2.32) 0.56 (2.09)
Orthomosaic RGB:

16 32 64 128 Mean:
MobilenetV1 1.45 (3.91) 1.70 (3.83) 1.75 (3.94) 2.31 (4.3) 1.80 (3.99)
MobilenetV2 2.96 (4.57) 3.03 (3.92) 2.64 (4.25) 3.96 (5.0) 3.15 (4.43)
InceptionV3 1.47 (3.78) 0.84 (3.80) 1.12 (3.68) 1.25 (3.44) 1.17 (3.68)
Inception-ResnetV2 0.79 (3.91) 0.84 (3.72) 1.09 (3.79) 1.2 (3.88) 0.98 (3.83)
Mean: 1.67 (4.04) 1.6 (3.82) 1.65 (3.92) 2.18 (4.15) 1.78 (3.98)
Oblique RGB:

16 32 64 128 Mean:
MobilenetV1 1.41 (1.39) 2.17 (2.33) 2.07 (2.86) 1.99 (3.05) 1.91 (2.41)
MobilenetV2 2.67 (3.31) 2.48 (2.87) 3.65 (3.58) 3.36 (3.3) 3.04 (3.27)
InceptionV3 0.83 (1.76) 0.9 (1.71) 1.47 (2.1) 2.53 (3.36) 1.43 (2.23)
Inception-ResnetV2 0.86 (1.46) 0.81 (1.37) 1.03 (1.53) 1.34 (1.88) 1.01 (1.56)
Mean: 1.44 (1.98) 1.59 (2.07) 2.05 (2.52) 2.31 (2.9) 1.85 (2.37)

Overall, for both wave height and period, the prediction skill on
40% of the data suggests that the models do not overfit the training
data, i.e. they generalize well to unseen data. There is little to separate
the InceptionV3 and Inception-ResnetV2 base models. OWGs for wave
height (Fig. 8) tend to perform significantly better out-of-calibration
than OWGs for wave period (Fig. 9). Wave period models tend to
over-predict the extremely low wave periods and under-predict the
extremely high values. In general, there is no significant advantage in
using either larger base models or larger batch sizes.

4.2. Visible-band imagery: rectified orthomosaics

Of the 16 OWGs trained to predict wave height (Fig. 10), the best
overall performance was one based on MobileNetV1 with a batch size of
16 (Fig. 10A), with RMS error of 10 and 14 cm, respectively, for within-
and out-of-calibration-validation. Like for the IR data, several other
models (with the various batch sizes) based on Inception-ResnetV2 had
similar accuracy, and RMS errors tend to increase with increasing batch
size.

For wave period prediction (Fig. 11), there is more variability
among base models and batch sizes compared to the IR dataset. How-
ever, like for the IR data, all wave period OWGs show a greater degree
of scatter compared to OWGs for wave height. The best performing
OWG overall was that based on Inception-ResnetV2 with a batch size
of 16 (Fig. 9M), with RMS error of 0.79 s within-calibration, and 3.91
s out-of-calibration. The smallest models with the smallest batch sizes
performed significantly worse within-calibration but very similar out-
of-calibration. For this data, larger models clearly perform better for
wave period.

Overall, for both wave height and period, the prediction skill
on 40% of the data suggests that the models based on InceptionV3
and Inception-ResnetV2 base models do not overfit the training data,
i.e. they generalize well to unseen data. OWGs for wave height (Fig. 10)
tend to perform significantly better out-of-calibration than OWGs for
wave period (Fig. 11). Models tend to over-predict the extremely low
wave periods, and under-predict the extremely high values. Incep-
tionV3 and Inception-ResnetV2 based models tend to either predict
extremely high wave periods perfectly, or significantly under-predict
them, with few values in between (Fig. 11I—P).
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Fig. 8. Estimated versus observed wave height for the IR imagery test dataset. From left to right, batch size increases from 16 to 32 to 64 and finally 128. From top to bottom,
OWGs based on MobilenetV1; MobilenetV2; InceptionV3; and Inception-ResnetV2. Lines show 1:1 correspondence. RMS error refers to the within-calibration test samples (black

dots). The RMS error in parentheses refers to the out-of-calibration samples (blue crosses).

4.3. Visible-band imagery: unrectified obliques

Of the 16 OWGs trained to predict wave height (Fig. 12), the best
overall performance was achieved using MobileNetV1 with a batch
size of 16 (Fig. 12A) and Inception-ResnetV2 with a batch size of 16
(Fig. 12M), and RMS error of 10 and 14 cm for within- and out-of-
calibration-validation, respectively. Unlike for the IR and rectified RGB
dataset, many more models (with the various batch sizes) based on
InceptionV3 and Inception-ResnetV2 had similar accuracies. Like for
the other datasets, RMS errors tend to increase with increasing batch
size.

For wave period prediction from the orthomosaic RGB imagery
(Fig. 13), like with the rectified RGB data, there is more variabil-
ity among base models and batch sizes compared to the IR dataset.
However, like for all datasets considered here, all wave period OWGs
show a greater degree of scatter compared to wave height OWGs. Like
for the rectified RGB imagery, the best performing OWG overall was
that based on Inception-ResnetV2 with a batch size of 16 (Fig. 13M).
It yielded RMS errors of 0.86 s within-calibration and 1.46 s out-of-
calibration. The out-of-calibration scores in general are significantly
better for the oblique imagery (Fig. 13) compared with the rectified
imagery (Fig. 11). The smallest models with the smallest batch sizes
performed significantly worse than the larger models with larger batch
size within-calibration, but similarly out-of-calibration. For this oblique
RGB dataset, the larger models and smallest batch sizes most clearly
perform better for wave period.
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Overall, for both wave height and period, the prediction skill on
40% of the data suggests that the models based on Inception-ResnetV2
base models do not overfit the training data, i.e. they generalize well
to unseen data. Like for the other datasets, OWGs for wave height
(Fig. 12) tend to perform significantly better out-of-calibration than
OWGs for wave period (Fig. 13). However, unlike the models for
rectified imagery, models for oblique imagery do not tend to suffer from
over-predicting the extremely low wave periods and under-predicting
the extremely high values.

5. Discussion
5.1. OWG performance

Based on tests on independent data (40% of all data), all OWGs
performed reasonably well at estimating both wave period and height,
generalizing well beyond the training set (60% of all data). Within-
calibration OWG accuracies were sensitive to both the choice of model
architecture and batch size. Generally speaking, where within-
calibration errors were relatively low, so too were out-of-calibration
accuracies. The OWG technique as presented here is suitable for pre-
dicting quantities outside of the range of values represented within
the training data, however that ability was generally much better for
wave height than for wave period. In general, therefore, we recommend
that training datasets should be large enough that include example
images from extreme events, especially for extremely long or short
wave periods. For longer-term OWG deployment, larger data sets may
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Fig. 9. Estimated versus observed wave period for the IR imagery test dataset. From left to right, batch size increases from 16 to 32 to 64 and finally 128. From top to bottom,
OWGs based on MobilenetV1; MobilenetV2; InceptionV3; and Inception-ResnetV2. Lines show 1:1 correspondence. RMS error refers to the within-calibration test samples (black
dots). The RMS error in parentheses refers to the out-of-calibration samples (blue crosses).

allow for less well-balanced test/training splits, perhaps as high as
75/25% test/train split or even higher. That OWG performance does
not generally improve with batch size suggests that performance should
not scale with computer resources. Large datasets should be trained
using relatively small base models such as MobilenetV1. Limited trials
with larger input image sizes suggest that OWG performance would
increase with larger images, given sufficient GPU memory, but at the
cost of significantly longer model training times.

By comparing the outputs of optical wave gauges built around
base models MobilenetV1 and MobilenetV2, we can examine the ef-
fectiveness of residual layers in a relative small CNN model, and by
comparing gauges built around InceptionV3 and Inception-ResnetV2,
the effectiveness of residual layers in a relatively large CNN model
can be assessed. For all three sets of imagery, it can be concluded
that the presence of residual layers in a basic Mobilenet architecture
makes OWGs generally less accurate, but the opposite is true for the
basic Inception architecture. In general, based on overall estimation for
all three datasets and both variables, the models based on the small-
est and simplest model, MobilenetV1, were optimal for wave height.
Those models based on Inception-ResnetV2 were generally optimal
for wave period. This suggests that there could be an even smaller
(computationally more efficient) as-yet undiscovered optimal feature
extractor for the present task. Generally, the number of neurons in
the final dense layer of the OWG, hence the resolving power of the
network, does not seem to be an important factor; InceptionV3 has
the largest number of these neurons (Table 1) but does not tend to
result in the greatest accuracy. Overall, the optical wave gauge built
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upon the MobilenetV1l base model with 3.2M parameters, might be
a more efficient and parsimonious predictor than Inception-ResnetV2
with 54.3M parameters. MobilenetV1, as the name suggests, was de-
signed to be deployed on mobile devices; small numbers of parameters
equate to relatively small files that contain model checkpoints (a con-
sideration for mobile device applications) and more efficient use of
GPU memory, which means faster training times and larger batch sizes
to be held in (relatively expensive) GPU memory. MobilenetV1 could
therefore be a good starting point for fine-tuning architectures in order
to find the most parsimonious and/or generally applicable model base
architecture.

The OWG estimates the characteristics of the wave field integrated
throughout the image rather than individual waves within the image.
Both in infrared images of breaking waves (Fig. 3) and conventional
photographic images of entire fields of propagating and breaking waves
(Figs. 5 and 6), similar patterns repeat in different parts of an image,
so they exhibit a high degree of spatial stationarity. We suggest that
our approach worked well because CNNs capture and exploit image
stationarity (Krizhevsky et al., 2012). This means that features that are
useful in one region are also likely to be useful for other regions. In
practice, having learned relevant features over small patches sampled
randomly from the larger image, the CNN then applies this learned
small feature detector everywhere in the image. These features are
then preserved by using maxima when pooling. After filtering input
imagery using convolutions, maximum pooling of those convolved
features activates the same features even while the image undergoes
progressive downsizing.
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Fig. 10. Estimated versus observed H, for the rectified visible band nearshore imagery test dataset. From left to right, batch size increases from 16 to 32 to 64 and finally 128.
From top to bottom, OWGs based on MobilenetV1; MobilenetV2; InceptionV3; and Inception-ResnetV2. Lines show 1:1 correspondence. RMS error refers to the within-calibration
test samples (black dots). The RMS error in parentheses refers to the out-of-calibration samples (blue crosses).

By comparing errors across two oblique RGB sets of imagery with an
irregular spatial footprint, and one rectified set of images with a regular
spatial footprint, we conclude that image rectification, or otherwise
any knowledge of camera geometry, is not required for successful
application of the technique. In this respect the comparison between
the rectified and oblique RGB Argus imagery is most illuminating, since
they are trained using the same wave data. Based on summary mean
RMS errors reported in Tables 2 and 3, we conclude that there is only
a marginal advantage to rectifying imagery for the purposes of wave
height; Inception-ResnetV2 models trained with a batch size of 16 are
accurate for within-calibration data to within 9 and 11 cm for rectified
and oblique RGB imagery, respectively (Table 2). Out-of-calibration
errors are 20 and 23 cm, respectively. However, for wave period we
conclude that not rectifying imagery offers a significant advantage to
out-of-calibration wave period estimation.

5.2. Image feature extraction

It is instructive to visualize the features extracted by the network.
To do so, we display the mean output (so called ‘activation’) over the
last convolutional block in the Inception-ResnetV2 feature extractor,
using the rectified visible band imagery. Fig. 14 shows a selection of
images associated with increasing H,, randomly selected from eight
wave height bins in the record. Fig. 15 shows a selection of images
associated with eight increasing T, bins. Column A in Figs. 14 and 15
shows the grayscale image inputs; column B shows the corresponding
average feature maps extracted using weights learned using the Ima-
genet (Deng et al., 2009) dataset that is commonly used for transfer
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learning (Buscombe and Carini, 2019), and column C shows the average
feature maps extracted using weights learned on our data.

Relatively bright pixels in Figs. 14 and 15 indicate areas that
the network has decided are relatively important for estimating wave
height or period. Note that the two dimensional activations shown in
Figs. 14 and 15 are mean values over the last three-dimensional set
of activations. The lack of consistent or physically interpretable spa-
tial pattern in features extracted using models with Imagenet weights
clearly demonstrate that ‘transfer learning’, where a model trained on
one task is re-purposed on a second related task (Buscombe and Ritchie,
2018; Buscombe and Carini, 2019), would not be effective for optical
wave gauging. In other words, OWGs are only successful because they
are trained end-to-end, using a cost function to tune the weights of the
network to optimize feature extraction for a specific quantity with a
specific camera field-of-view.

Although the validation data is measured offshore (towards the
seawards extent of the image), the most diagnostic image features
for estimating H, are nearshore; the OWG optimized for wave height
clearly uses the surf (and, to a lesser extent, swash) zones (Fig. 14) to
make predictions, and that is some basic function of number, location,
alongshore extent and, perhaps most importantly, the width of bright
pixels near the shoreline (i.e. surf zone width). The width of the surf
zone as the most diagnostic feature makes physical sense for a saturated
inner surf zone on dissipative beaches, where the incident wave height
is controlled by the local water depth (Thornton and Guza, 1982).
Therefore the OWG could be sensitive to the beach’s morphodynamic
state, tide, and relative shoreline position. For an operational setting,
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Fig. 11. Estimated versus observed T, for the rectified visible band nearshore imagery test dataset. From left to right, batch size increases from 16 to 32 to 64 and finally 128.
From top to bottom, OWGs based on MobilenetV1; MobilenetV2; InceptionV3; and Inception-ResnetV2. Lines show 1:1 correspondence. RMS error refers to the within-calibration
test samples (black dots). The RMS error in parentheses refers to the out-of-calibration samples (blue crosses).

OWGs should be trained using data from multiple seasons, perhaps mul-
tiple years, otherwise there would be systematic model deviation from
measurements when the beach underwent a change in morphodynamic
state. Some bright features in offshore areas of the average feature maps
suggest that the OWG might, perhaps secondarily, be using the disparity
of shoaling wave face elevation as they are distorted onto the horizontal
rectified plane. Physically, the base model could be receptive to an
initial wave height decrease as it shoals, and its subsequent increase
shortly before breaking, but that is just speculation.

The same analysis was performed on the model optimized for wave
period (Fig. 15). In this case, many more features from the images are
preserved in offshore locations, indicating much more of the image is
important for the 7, prediction than for the H, prediction. In contrast to
the features extracted for estimating H, (Fig. 14), surfzone areas are not
important for 7, prediction. Instead, the OWG is indicating sensitivity
to areas outside of the surfzone, where unbroken waves are visible.
It is reasonable that the wave period information is derived from the
wave length observed in this region, which is a linear function of wave
period in shallow water. The model might also be extracting features in
this region associated with the wavelength decreasing up to breaking
as waves shoal (Sakai and Battjes, 1980).

5.3. Possible future directions
It is remarkable that the same framework, not optimized for any

particular dataset, can predict both wave height and period with high
accuracy, despite the differences in electromagnetic band, perspective,
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and scale. This suggests it might prove transferable between sites, scales
and camera platforms; a claim that should be investigated further. That
said, models do not predict other models training data well, which
suggests that while the model framework might be universal, it is not
picking up anything universal in the data, and the network weights for
the three sets of models are correspondingly very different. The success
of the technique is inherently tied to the invariance of the stationary
camera’s pose and viewpoint.

‘Out-of-calibration’ tests indicate that the model framework is ca-
pable of modeling the input data in a sufficiently general way to
estimate well beyond the range of values represented in the training
data. However, the performance was sensitive to base model, and
was typically worse for wave period. This may suggest that extracted
features are highly specific to narrow ranges of wave periods, or it
might be the result of a class imbalance problem —there are far fewer
examples of extremely small and extremely large wave periods than
mid-size periods. Our use of stratified random sampling to draw batches
of training and testing images from ten monotonically increasing wave
period bins, designed to avoid introducing any frequency bias asso-
ciated with selecting wave period magnitudes based on their relative
proportion within the training image set, was perhaps misguided. For
example, perhaps we should have sampled exponentially rather than
linearly increasing bins. Beyond simply acquiring more training data
to increase the likelihood of sampling extreme events, there are other
strategies that could be explored in future work, such as ways to
balance the loss function (Johnson and Khoshgoftaar, 2019) based on
the relative frequency of wave heights and/or periods. This would
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Fig. 12. Estimated versus observed H, for the oblique visible band nearshore imagery test dataset. From left to right, batch size increases from 16 to 32 to 64 and finally 128.
From top to bottom, OWGs based on MobilenetV1; MobilenetV2; InceptionV3; and Inception-ResnetV2. Lines show 1:1 correspondence. RMS error refers to the within-calibration
test samples (black dots). The RMS error in parentheses refers to the out-of-calibration samples (blue crosses).

impose an additional cost on the model for making mistakes on the
minority values during training, deliberately biasing the model to pay
more attention to the extreme values. The effects of dropout and data
augmentation (i.e. too much regularization) on the out-of-calibration
predictive skill of the models should also be explored in future work.

The inability of OWG models to predict wave periods greater than
those represented in the IR training set might be related to the physical
size of the image, which was only approx 20 x 20 m. Linear wave the-
ory would predict an approximately 50-m wavelength for a 15-second
period wave, therefore the sub-wavelength field-of-view possibly did
not see the range of image textures associated with wave geometry and
sea-surface temperature patchiness diagnostic of those larger period
waves. Future work should therefore examine scale-dependency in
OWG estimates.

There was generally a significant advantage in the use of Mo-
bileNetV1 and Inception-ResnetV2 as base models. This motivates fo-
cusing efforts on the discovery of the optimal generic image feature
extractors from those previously proposed in the literature for generic
image classification, such as VGG (Simonyan and Zisserman, 2014)
or Xception (Chollet, 2017). Alternatively, the general skill of the
smallest model, MobileNetV1, may suggest that research into smaller,
less complex feature extractors is warranted in order to discover the
smallest network that still provides reasonable wave height or period
estimates. The value of a given proposed feature extractor model should
be evaluated on its ability to predict wave statistics of magnitude larger
or smaller than those represented within the training data (out-of-
calibration validation). Further, the OWGs implemented here were not
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optimized for any dataset, and could be further optimized for individual
datasets. This optimization could involve a more exhaustive exploration
of different base models, network layers, and hyperparameters, which
should be the subject of future work.

The OWG models presented here are for site-specific monitoring;
therefore they are designed to be used to estimate wave quantities by
taking as input imagery that is the same field-of-view as the training
dataset. That implies they are tied to a particular geographic location.
Further, the OWG technique estimates a scene-averaged wave statistic,
and is therefore not intended to measure each wave within a scene, for
example to obtain cross-shore profiles of wave quantities. However, fur-
ther work may explore this possibility using a cross-shore instrumented
array to train models to estimate wave quantities in specific portions of
imagery. In this study, the stationary cameras experienced very slight
movement; with variation in the oblique field of view less than 2 pixels
for a target at 600 m distance from the camera, which translates to
less than 5 m in the along-camera axis in the rectified domain. Slight
movement such as this is barely detectable in the oblique field of view
and does not impact model results. However, if the cameras did move
significantly (enough to change the entire vantage) that would affect
model results. Therefore, the degree to which models are sensitive to
camera movement is unknown and should be studied further. Future
work should also explore alternative model architectures that extract
relevant image features from generic imagery of the surf zone. This
should possibly be tackled in stages, by first optimizing OWGs to
predict at one site reliably regardless of morphological change; then
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C) RMS (s): 2.07 (2.86), R?: 0.09

D) RMS (s): 1.99 (3.05), R: 0.11

E) RMS (s): 2.67 (3.31), R%: 0.04

MobileNetV2

H) RMS (s): 3.36 (3.30), R?: 0.05
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Fig. 13. Estimated versus observed T, for the oblique visible band nearshore imagery test dataset. From left to right, batch size increases from 16 to 32 to 64 and finally 128.
From top to bottom, OWGs based on MobilenetV1; MobilenetV2; InceptionV3; and Inception-ResnetV2. Lines show 1:1 correspondence. RMS error refers to the within-calibration
test samples (black dots). The RMS error in parentheses refers to the out-of-calibration samples (blue crosses).

overcoming any sensitivities to image scale, vantage, and perspec-
tive; and finally exploring sensitivities to greater variation in beach
morphologies, grain sizes, and surf zone characteristics.

The OWG can be trained for both individual wave height and period
(such as the IR imagery), and statistical quantities like significant wave
height and peak wave period (such as the nearshore Argus imagery).
An advantage of the OWG technique is that the image does not need
to be rectified onto a regular grid, therefore ground control points
do not need to be obtained and image geometries do not need to be
computed and applied. Another advantage is that it estimates a wave
statistic from a single image. Therefore, assuming errors are random
and can be reduced through averaging, one strategy for reducing error
of each estimate is to over-sample in space (i.e. increase the number
of cameras and models) or time (i.e. increase the sample frequency of
the camera) then average over a short series of those high-frequency
estimates for a more accurate, albeit lower-frequency, estimate. For
example, such averaging in time might better safeguard against an
OWG under-predicting wave height in apparent lulls between sets.
Infrared imaging might be useful for optical wave gauging at night. In
addition to providing a low-cost routine for monitoring waves (Fig. 16),
techniques such as this could help validate larger-scale buoy-driven
numerical wave models (O’Reilly et al., 2016; Crosby et al., 2017),
HF radar inversions (Gurgel et al., 1999), and X-band radar observa-
tions (Dankert and Rosenthal, 2004) in numerous nearshore locations.
Wave height or period estimation time is primarily a function of model
size (number of parameters), increasing from 21 ms per image using
MobilenetV1 as the base model, to 63 ms using Inception-ResnetV2, on
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a modest 2.2 GHz CPU. These sub-decisecond model execution times
suggest ‘real-time’ wave estimation would be possible.

For an operational setting, OWGs should be trained using data from
multiple seasons, perhaps multiple years, to capture a large range of
magnitudes including extreme events, and to capture covariance be-
tween wave quantities and any surf zone morphologies such as seasonal
changes in sandbar systems, 3D morphology from the presence of rip
channels, and meso- to megacuspate features. Given that the features
used to estimate wave height and period differ significantly, we suggest
that OWGs trained separately for individual quantities, such as here,
are likely to be more accurate than OWGs trained to predict multiple
quantities simultaneously using a common set of extracted features.
However, this should be further explored, by comparing against models
trained to predict multiple quantities from a single image. A better test
of the technique than that presented here would be a training period
consisting of several months to years, followed by a subsequent period
of equal or longer duration, which would test how well the model
captures variability over multiple timescales, including co-variability in
beach morphology and waves, as represented in model-extracted image
features. In future developments, serial correlation in the data itself
might also be exploited to greater effect.

Almost all applications of DCNNs for data-driven prediction to
date have been made with images obtained using incoherent natural
light or radiation. Within coastal oceanography, measurements made
with coherent images are also common, such as those obtained by
holography (Davies et al., 2015), radar (Holman and Haller, 2013),
or ultrasound (Thorne and Hurther, 2014), and based on the results
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H=2.14m H=1.9m H=1.6m H=1.45m H=1.04m H=0.69m H=0.59m

H=247m

Fig. 14. From left to right: nearshore images associated with some observed H, (A),
the average of the corresponding features extracted by the Inception-ResnetV2 weighted
using weights learned from the Imagenet dataset (B) and weighted using the weights
learned in this study (C). Relatively bright pixels indicate areas that the network has
decided is relatively important to estimate wave height.

presented here, might also be amenable to data-driven estimation of
physical quantities using deep convolutional neural networks. The gen-
erally high signal-to-noise ratios in such imagery might further suggest
the utility of such an approach.

16

Coastal Engineering 155 (2020) 103593

)

9.12s

T=

11.03 s

T=

13.03 s

T=

13.72 s

T=

16.93 s

T=

17.68 s

T=

19.61 s

T=

22.88 s

T=

Fig. 15. From left to right: nearshore images associated with some observed 7, (A),
the average of the corresponding features extracted by the Inception-ResnetV2 weighted
using weights learned from the Imagenet dataset (B) and weighted using the weights
learned in this study (C). Relatively bright pixels indicate areas that the network has
decided is relatively important to estimate wave period.

6. Conclusions

This proof-of-concept study has demonstrated that, given sufficient
images with paired wave data, it is possible to estimate wave height
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Fig. 16. Time-series of significant wave height, H; (A) and peak wave period, T, (B),
as measured using ADCP (black markers) and OWG (red markers) at Sunset State Beach.
Panels (C) and (D) shows a few days before, during, and after a moderately sized wave
event. The alternating light/dark panel shading indicates day and night.

or period from a single image of waves, using a deep neural network
model framework trained to a specific site and viewpoint/field-of-view.
The model framework, called an Optical Wave Gauge or OWG can
be trained for both individual wave height and period, and statistical
quantities like significant wave height and peak wave period. We have
demonstrated this concept using rectified and oblique RGB visible-
band imagery, and oblique infrared (IR) imagery. Therefore our results
strongly suggest that knowledge of specific camera geometries is not
required for successful application of the method.

The best performing OWG on the IR dataset achieved RMS errors
of 0.14 (0.08) m and 0.41 (1.65) s (values in parentheses are for out-
of-calibration samples), for height and period respectively, capturing
up to 98% of the variance in these quantities. The best performing
OWG on the visible band rectified dataset achieved RMS errors of 0.08
(0.14) m and 0.79 (3.44) s for height and period, respectively. The
same values for the oblique RGB imagery were 0.11 (0.18) m and 0.81
(1.37) s for height and period, respectively. The prediction skill on 40%
of the data suggests that the models do not overfit the training data,
i.e. they generalize well to unseen data. Both wave height and period
estimates are somewhat sensitive to choice of base model; OWGs based
on either MobileNetV1 or Inception-ResnetV2 tend to perform best.
Smaller batch sizes tend to result in more accurate OWGs. However,
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operational deployments of this model framework might prove that the
size and quality of available training data may be more important than
specific feature extractor model or model training hyperparameters
such as batch size.

OWGs for wave height tend to perform slightly better (both within-
and out-of-calibration) than OWGs for wave period. Generally, most
models perform reasonably well at predicting outside of the range of
values represented in the training data, especially for wave height.
However, OWGs tend to over-predict the extremely low wave periods
and under-predict extremely high periods. Application of this method
should therefore use a training dataset that captures the full variability
of desired wave parameters, or at least should not be used to predict
outside the magnitudes represented in the training data. Ways in which
model training could be modified to result in OWGs that better estimate
wave properties from images associated with extreme values outside
of the values represented in the data used to train the OWG, or
‘out-of-calibration’ estimation, were discussed.

Applications of deep learning to geophysical imagery have so far
only been made in a handful of experimental contexts. We believe
this study to be the first application of deep learning to ocean wave
characterization. It is also one of the first applications of a machine
learning algorithm that can learn useful representations of features
directly from monochrome geophysical imagery without feature extrac-
tion or selection. As such, this study opens several research avenues
for the further investigation of models based on deep learning for
the reconstruction of geophysical dynamics from remotely sensed data
acquired from ground-based instruments.

Once optimized, this technique might compliment existing remote
sensing techniques for nearshore wave monitoring. We hope and expect
that new technologies, such as presented here, will inspire the fu-
ture development of technically and operationally feasible data-driven
observations of nearshore hydrodynamics. Future work will include: es-
timating model skill for wave conditions beyond the conditions within
the training data; training and evaluating models trained over sig-
nificantly different bathymetric beach states (i.e. winter vs summer
profile, barred beaches, cusps, etc.); adaptation for reflective beaches
and for macrotidal environments; exploring the possibility of models
that can be transferred to other locations; and exploring the possibility
of real-time gauging onboard an Argus station.
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