
Journal of Computational Physics 383 (2019) 72–93
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A robust and efficient iterative method for

hyper-elastodynamics with nested block preconditioning

Ju Liu ∗, Alison L. Marsden

Department of Pediatrics (Cardiology), Bioengineering, and Institute for Computational and Mathematical Engineering, Stanford University,
Clark Center E1.3 318 Campus Drive, Stanford, CA 94305, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 June 2018
Received in revised form 14 January 2019
Accepted 18 January 2019
Available online 1 February 2019

Keywords:
Variational multiscale method
Saddle-point problem
Nested iterative method
Block preconditioner
Anisotropic incompressible hyperelasticity
Arterial wall model

We develop a robust and efficient iterative method for hyper-elastodynamics based
on a novel continuum formulation recently developed in [1]. The numerical scheme
is constructed based on the variational multiscale formulation and the generalized-α
method. Within the nonlinear solution procedure, a block factorization is performed for
the consistent tangent matrix to decouple the kinematics from the balance laws. Within
the linear solution procedure, another block factorization is performed to decouple the
mass balance equation from the linear momentum balance equations. A nested block
preconditioning technique is proposed to combine the Schur complement reduction
approach with the fully coupled approach. This preconditioning technique, together with
the Krylov subspace method, constitutes a novel iterative method for solving hyper-
elastodynamics. We demonstrate the efficacy of the proposed preconditioning technique
by comparing with the SIMPLE preconditioner and the one-level domain decomposition
preconditioner. Two representative examples are studied: the compression of an isotropic
hyperelastic cube and the tensile test of a fully-incompressible anisotropic hyperelastic
arterial wall model. The robustness with respect to material properties and the parallel
performance of the preconditioner are examined.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In our recent work [1], a unified continuum modeling framework was developed. In this framework, hyperelastic solids
and viscous fluids are distinguished only through the deviatoric part of the Cauchy stress, in contrast to prior modeling
approaches. In our derivation, the Gibbs free energy, rather than the Helmholtz free energy, is chosen as the thermodynamic
potential, resulting in a unified model for compressible and incompressible materials. A beneficial outcome of the modeling
framework is that it naturally allows one to apply a computational fluid dynamics (CFD) algorithm to solid dynamics, or
vice versa. In our work [1], the variational multiscale (VMS) analysis, a mature numerical modeling approach in CFD [2],
is taken to design the spatial discretization for solid dynamics. This numerical model provides a stabilization mechanism
that circumvents the Ladyzhenskaya–Babuška–Brezzi (LBB) condition for equal-order interpolations. In particular, it allows
one to use low-order tetrahedral elements, even for fully incompressible materials. This gives us the maximum flexibility in
geometrical modeling and mesh generation.

* Corresponding author.
E-mail addresses: liuju@stanford.edu, liujuy@gmail.com (J. Liu), amarsden@stanford.edu (A.L. Marsden).
https://doi.org/10.1016/j.jcp.2019.01.019
0021-9991/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2019.01.019
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:liuju@stanford.edu
mailto:liujuy@gmail.com
mailto:amarsden@stanford.edu
https://doi.org/10.1016/j.jcp.2019.01.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2019.01.019&domain=pdf

J. Liu, A.L. Marsden / Journal of Computational Physics 383 (2019) 72–93 73
In this work, we build upon the proposed unified formulation to develop a robust and efficient iterative method. Tra-
ditional black-box preconditioners are non-robust, and the convergence rate of the linear solver drops significantly under
certain conditions. The lack of robustness may be attributed to the saddle-point nature of the problem. Algebraic precon-
ditioners built based on incomplete factorizations are prone to fail due to zero-pivoting; one-level domain decomposition
preconditioners do not perform well due to its locality. In this work, we design a preconditioning technique tailored for the
VMS formulation for hyper-elastodynamics [1]. The design of the preconditioner is based on a nested block factorization of
the consistent tangent matrix in the Newton–Raphson iteration. A block factorization is performed in the nonlinear solution
procedure to decouple the kinematics from the balance laws [3]. The resulting 2 × 2 block matrix is further factorized in
the linear solution procedure. This strategy is, in part, related to the classical projection method [4,5] and the block precon-
ditioning technique [6–8] that have been widely used in the CFD community. We examine the solver performance for both
isotropic and anisotropic hyperelastic models. The significance of this work is that it paves the way towards robust, efficient,
and scalable implicit solver technology for biomechanics and monolithic fluid–solid interaction (FSI) simulations [1]. In the
rest part of this section, we give an overview of the background and an outline of the work.

1.1. Projection method and block preconditioners

The development of efficient solver techniques for multiphysics problems has been an active area of research in recent
years [9]. One simple but important prototype multiphysics problem is the Stokes or the Navier–Stokes equations, represent-
ing the coupling between the mass conservation and the balance of the linear momentum for incompressible flows. In the
late 1960s, the Chorin–Teman projection method [4,5] was proposed to solve for the pressure and the velocity separately
based on the Helmholtz decomposition. Since then, the projection method and its variants have attracted concentrated re-
search and lead to a voluminous literature [10–13]. The projection method is attractive because the nonlinear system of
equations is decomposed into a series of linear elliptic equations. Although this method has attracted significant attention,
it still poses several major challenges. One critical issue is that the physics-based splitting necessitates the introduction of
an artificial boundary condition for the pressure. There is no general theory to guide the choice of the artificial boundary
conditions, and most likely this artificial boundary condition limits the solution accuracy. For an overview of the projection
method, the readers are referred to the review article [14].

In recent years, it has been realized that one can invoke an arbitrary time stepping scheme (e.g. fully implicit) and
achieve the decoupling of physics within the linear solver. Indeed, in each iteration of the Krylov subspace method, one
only needs to solve with a preconditioner and perform a matrix–vector multiplication to construct the new search direction.
Therefore, if the preconditioner is endowed with a block structure, one may sequentially solve each block matrix with less
cost. It has been pointed out that the Chorin–Teman projection method is closely related to a block preconditioner [15].
Consider a matrix problem with a 2 × 2 block structure,

A :=
[
A B
C D

]
.

This matrix can be factored into lower triangular, diagonal, and upper triangular matrices as follows,

A = LDU =
[

I O

CA−1 I

][
A O

O S

][
I A−1B

O I

]
,

wherein I is the identity matrix, and O is the zero matrix. The diagonal block matrix D contains a Schur complement
S := D − CA−1B, which acts as an algebraic analogue of the Laplacian operator for the pressure field [16]. To construct a
preconditioner for A, one needs to provide approximations for A and S that can be conveniently solved with. The new
formulation for hyper-elastodynamics we consider here is similar to the generalized Stokes equations, in which the operator
A arises from the discretization of a combination of zeroth order and second order differential operators. Thus, A is amenable
for approximation by a standard preconditioning technique. Due to the presence of A−1, S is a dense matrix. When the
matrix A represents a discretization of a zeroth-order differential operator, an effective choice is to replace S by Ŝ :=
D − C (diag (A))−1 B to construct the preconditioner for A. This choice is closely related to the SIMPLE scheme commonly
used in CFD [17,18]. When the matrix A represents a discretization of a second-order differential operator, a scaled mass
matrix is often effective [19]. For more complicated problems, designing a spectrally equivalent preconditioner for the Schur
complement is challenging and, in a broad sense, remains an open question. In recent years, progress has been made for
problems where A is dominated by a discrete convection operator. Notable examples include the BFBT preconditioner [20],
the pressure convection diffusion preconditioner [21], and the least squares commutator (LSC) preconditioner [22]. Based
on the Sherman–Morrison formula, a different preconditioner for the Schur complement can be designed for problems with
significant contributions from the boundary conditions [23]. In all, the block preconditioner, as an algebraic interpretation of
the projection method, has become increasingly popular, since it does not necessitate ad hoc pressure boundary conditions
and allows fully implicit time stepping schemes.

If one can solve the sub-matrices A and S to a prescribed tolerance, the matrix A is solved in one pass without generating
a Krylov subspace. This is commonly known as the Schur complement reduction (SCR) or segregated approach [6,24–26]. In

74 J. Liu, A.L. Marsden / Journal of Computational Physics 383 (2019) 72–93
contrast, the aforementioned strategy, where A is solved by a preconditioned iterative method, is referred to as the coupled
approach [6]. For many problems, it is impractical to explicitly construct the Schur complement. Still, the action of the
Schur complement on a vector can be obtained in a “matrix-free” manner (see Algorithm 2 in Section 4.2). Thus, one can
still solve with the Schur complement by iterative methods. To achieve high accuracy, a sufficient number of bases of the
Krylov subspace for S need to be generated, and this procedure can be prohibitively expensive.

1.2. Nested preconditioning technique

The difference between the coupled approach and the segregated approach can be viewed as follows. In the coupled
approach, S is replaced by a sparse approximation to generate a preconditioner for A. In the segregated approach or SCR,
one strives to solve directly with S. The distinction between the two approaches is blurred by using the SCR procedure as a
preconditioner. In doing so, one does not need to solve with S to a high precision, thus alleviating the computational burden.
In comparison with the coupled approach, the information of the Schur complement is maintained in the preconditioner
(up to the tolerances of SCR), and this will improve the robustness. Therefore, in solving with A, there are three nested
levels. In the outer level, a Krylov subspace method is applied for A with a block preconditioner. In the intermediate level,
the block preconditioner is applied by solving with the matrices A and S. In the inner level, a solver of A is invoked to
approximate the action of S on a vector. Two mechanisms guarantee and accelerate the convergence. In the outer level, the
Krylov subspace method for A minimizes the residual of the coupled problem. In the intermediate and inner levels, the SCR
procedure is utilized as the preconditioner, which itself can be viewed as an inaccurate solver for A.

Using SCR as a preconditioner was first proposed within a Richardson iteration scheme [27]. Due to the symmetry
property of that problem, a conjugate gradient method is applied to solve the Schur complement equation. Later, the nested
iterative scheme was investigated for CFD problems [28,29], and the reported results indicate that using the SCR procedure
as a preconditioner in a Richardson iteration outperforms the coupled approach with a Krylov subspace method. The nested
algorithm was then further investigated using the biconjugate gradient stabilized method (BiCGStab) as the outer solver
[30]. The nested iterative scheme in [30] uses rather crude stopping criteria for the intermediate and inner solvers. Still, its
performance is superior to that of BiCGStab preconditioned by a BFBT preconditioner.

Our investigation of the VMS formulation for hyper-elastodynamics starts with a SIMPLE-type block preconditioner using
our in-house code [31]. As will be shown in Section 5, the Krylov subspace method with a block preconditioner like SIMPLE
is not always robust. This can be attributed to the ignorance of the off-diagonal entries in A. Because of that, it is appealing
to consider preconditioners like LSC, since the off-diagonal information of A is maintained. However, non-convergence has
been reported for LSC when solving the Navier-Stokes equations with stabilized finite element schemes [32]. We then ruled
out this option since our VMS formulation involves a similar pressure stabilization term. Consequently, we consider using
SCR with relaxed tolerances as a preconditioner. In doing so, the Schur complement is approximated through using an inner
solver. In contrast to the nested iterative approaches introduced above, we adopt the following techniques in our study:
(1) we use GMRES [33] and its variant [34] as the Krylov subspace method in all three levels to leverage their robustness
in handling non-symmetric matrix problems; (2) we apply the algebraic multigrid (AMG) preconditioner [35] for problems
at the intermediate level to enhance the robustness of the overall algorithm; (3) we use the sparse approximation Ŝ as
a preconditioner when solving with S. We demonstrate application of this method to hyper-elastodynamics, however we
anticipate its general use in CFD and FSI problems in future work.

1.3. Structure and content of the paper

The remainder of the study is organized as follows. In Section 2, we state the governing equations of hyper-
elastodynamics [1]. In Section 3, the numerical scheme is presented. A block factorization for the consistent tangent matrix
is performed to reduce the size of the linear algebra problem. In Section 4, the nested block preconditioning technique is
discussed in detail. In Section 5, we present two representative examples to demonstrate the efficacy of the proposed solver
technology. The first example is the compression of an isotropic elastic cube [36], and the second is the tensile test of a
fully incompressible anisotropic hyperelastic arterial wall model [37]. Comparisons with other preconditioners are made. We
draw conclusions in Section 6.

2. Hyper-elastodynamics

In this section, we state the initial–boundary value problem for hyper-elastodynamics, following the derivation in [1]. Let
�X and �x be bounded open sets in Rnsd with Lipschitz boundaries, where nsd represents the number of space dimensions.
They represent the initial and the current configurations of the body, respectively. The motion of the body is described by a
family of diffeomorphisms, parametrized by the time coordinate t ,

ϕt(·) = ϕ(·, t) : �X → �x = ϕ(�X , t) = ϕt(�X), ∀t ≥ 0,

X �→ x = ϕ(X, t) = ϕt(X), ∀X ∈ �X .

J. Liu, A.L. Marsden / Journal of Computational Physics 383 (2019) 72–93 75
In the above, x is the current position of a material particle originally located at X . This requires that ϕ(X, 0) = X . The
displacement and velocity of the material particle are defined as

U := ϕ(X, t) − ϕ(X,0) = ϕ(X, t) − X, V := ∂ϕ

∂t

∣∣∣∣
X

= ∂U

∂t

∣∣∣∣
X

= dU

dt
.

In the definition of V and in what follows, d (·) /dt designates a total time derivative. The spatial velocity is defined as
v := V ◦ ϕ−1

t . Analogously, we define u := U ◦ ϕ−1
t . The deformation gradient, the Jacobian determinant, and the right

Cauchy–Green tensor are defined as

F := ∂ϕ

∂X
, J := det (F) , C := F T F .

We define F̃ and C̃ as

F̃ := J−
1
3 F , C̃ := J−

2
3 C ,

which represent the distortional parts of F and C , respectively. We denote the thermodynamic pressure of the continuum
body as p. The mechanical behavior of an elastic material can be described by a Gibbs free energy G(C̃ , p). In [1], it is
shown that the Gibbs free energy enjoys a decoupled structure,

G(C̃ , p) = Gich(C̃) + Gvol(p),

where Gich and Gvol represent the isochoric and volumetric elastic responses. Under the isothermal condition, the energy
equation is decoupled from the system, and it suffices to consider the following equations for the motion of the continuum
body,

0 = du

dt
− v, in �x, (2.1)

0 = ρ(p)
dv

dt
− ∇x · σ dev + ∇xp − ρ(p)b, in �x, (2.2)

0 = β(p)
dp

dt
+ ∇x · v in �x. (2.3)

In the above, β(p) is the isothermal compressibility coefficient, ρ(p) denotes the density in the current configuration,
and σ dev represents the deviatoric part of the Cauchy stress. Equations (2.1) describe the kinematic relation between the
displacement and the velocity, and equations (2.2) and (2.3) describe the balance of linear momentum and mass. The
constitutive relations of the elastic material are represented in terms of the Gibbs free energy as follows,

ρ(p) :=
(
dGvol

dp

)−1

, βθ (p) := 1

ρ

dρ

dp
= −∂2Gvol

∂p2
/
∂Gvol

∂p
, σ dev := J−1 F̃

(
P : S̃

)
F̃
T
, (2.4)

wherein the projector P and the fictitious second Piola–Kirchhoff stress S̃ are defined as

P := I− 1

3
C−1 ⊗ C , S̃ := 2

∂ (ρ0G)

∂ C̃
= 2

∂ (ρ0Gich)

∂ C̃
,

I is the fourth-order identity tensor, and ρ0 is the density in the referential configuration. Interested readers are referred
to [1] for a detailed derivation of the governing equations and the constitutive relations. The boundary 	x = ∂�x can be
partitioned into two non-overlapping subdivisions: 	x = 	

g
x ∪ 	h

x , wherein 	g
x is the Dirichlet part of the boundary, and 	h

x
is the Neumann part of the boundary. Boundary conditions can be stated as

u = g on 	
g
x , v = dg

dt
on 	

g
x , (σ dev − p I)n = h on 	h

x. (2.5)

Given the initial data u0, v0, and p0, the initial conditions can be stated as

u(x,0) = u0(x), v(x,0) = v0(x), p(x,0) = p0(x). (2.6)

The equations (2.1)–(2.6) constitute an initial–boundary value problem for hyper-elastodynamics.

3. Numerical formulation

In this section, we present the numerical formulation for the strong-form problem. The spatial discretization is based on
a VMS formulation [1,2], and the temporal scheme is based on the generalized-α scheme [1,38]. A block factorization, orig-
inally introduced in [3], is performed to consistently reduce the size of the linear algebra problem in the Newton–Raphson
iterative algorithm.

76 J. Liu, A.L. Marsden / Journal of Computational Physics 383 (2019) 72–93
3.1. Variational multiscale formulation

We consider a partition of �̄x by nel non-overlapping, shape-regular elements �e
x . The diameter of an element �e

x is
denoted by he , and the maximum diameter of the elements is denoted as h. Let Pk

(
�e

x

)
denote the space of complete

polynomials of order k on �̄e
x . The finite element trial solution spaces for the displacement, velocity, and pressure are

defined as

Suh =
{
uh | uh(·, t) ∈

(
C0(�x)

)nsd
, t ∈ [0, T], uh|�e

x
∈ (

Pk
(
�e

x

))nsd ,uh(·, t) = g on 	
g
x

}
,

Svh =
{
vh | vh(·, t) ∈

(
C0(�x)

)nsd
, t ∈ [0, T], vh|�e

x
∈ (

Pk
(
�e

x

))nsd , vh(·, t) = dg

dt
on 	

g
x

}
,

Sph =
{
ph | ph(·, t) ∈ C0(�x), t ∈ [0, T], ph|�e

x
∈ Pk

(
�e

x

)}
,

and the corresponding test function spaces are defined as

Vuh =
{
wuh | wuh ∈

(
C0(�x)

)nsd
, wuh

∣∣
�e

x
∈ (

Pk
(
�e

x

))nsd , wuh = 0 on 	
g
x

}
,

Vvh =
{
wvh | wvh ∈

(
C0(�x)

)nsd
, wvh

∣∣
�e

x
∈ (

Pk
(
�e

x

))nsd , wvh = 0 on 	
g
x

}
,

Vph =
{
wph | wph ∈ C0(�x), wph

∣∣
�e

x
∈ Pk

(
�e

x

)}
.

The semi-discrete formulation can be stated as follows. Find yh(t) := {uh(t), vh(t), ph(t)}T ∈ Suh × Svh × Sph such that for
t ∈ [0, T],

0 = Bk
(
wuh ; ẏh, yh

) :=
∫
�x

wuh ·
(
duh

dt
− vh

)
d�x, (3.1)

0 = Bm
(
wvh ; ẏh, yh

) :=
∫
�x

wvh · ρ(ph)
dvh

dt
+ ∇xwvh : σ dev − ∇x · wvh ph − wvh · ρ(ph)bd�x −

∫
	h
x

wvh · hd	x,

(3.2)

0 = Bp
(
wph ; ẏh, yh

) :=
∫
�x

wph

(
β(ph)

dph
dt

+ ∇x · vh

)
d�x

+
∑
e

∫
�e

x

τ e
M∇xwph ·

(
ρ(ph)

dvh

dt
− ∇x · σ dev + ∇xph − ρ(ph)b

)
d�x, (3.3)

for ∀
{
wuh , wvh , wph

} ∈ Vuh × Vvh × Vph , with ẏh(t) := {duh/dt,dvh/dt,dph/dt}T and yh(0) := {uh0, vh0, ph0}T . Here uh0,
vh0, and ph0 are the L2 projections of the initial data onto the finite dimensional trial solution spaces. In the above
and henceforth, the formulations for the kinematic equations, the linear momentum equations, and the mass equation are
indicated by the subscripts k, m, and p respectively.

The terms involving τ e
M in (3.3) arise from the subgrid-scale modeling [1]. These terms improve the stability of the

Galerkin formulation without sacrificing the consistency. The design of the stabilization parameter τ e
M is the crux of the

design of the VMS formulation. In this work, the following choices are made,

τ e
M = τ e

M Insd , τ e
M = cm

he

cρ
.

In the above, Insd is the second-order identity tensor; cm is a dimensionless parameter; c is the maximum wave speed
in the solid body. For compressible materials, c is given by the bulk wave speed. Under the isotropic small-strain linear
elastic assumption, c = √

(λ + 2μ)/ρ0, where λ and μ are the Lamé parameters. For incompressible materials, c = √
μ/ρ0

is the shear wave speed. We point out that, although the choices made above are based on a simplified material model, the
stabilization terms still provide an effective pressure stabilization mechanism for a range of elastic and inelastic problems
[1,3,39–41]. In this work, we fix cm to be 10−3 and restrict our discussion to the low-order finite element method (i.e.
k = 1).

J. Liu, A.L. Marsden / Journal of Computational Physics 383 (2019) 72–93 77
3.2. Temporal discretization

Based on the semi-discrete formulation (3.1)–(3.3), we invoke the generalized-α method [38] for time integration. The
time interval [0, T] is divided into a set of nts subintervals of size �tn := tn+1 − tn delimited by a discrete time vector
{tn}ntsn=0. The solution vector and its first-order time derivative evaluated at the time step tn are denoted as yn and ẏn;
the basis function for the discrete function spaces is denoted as NA . With these notations, the residual vectors can be
represented as

Rk
(
ẏn, yn

) := {
Bk

(
NAei; ẏn, yn

)}
,

Rm
(
ẏn, yn

) : = {
Bm

(
NAei; ẏn, yn

)}
,

Rp
(
ẏn, yn

) : = {
Bp

(
NA; ẏn, yn

)}
.

The fully discrete scheme can be stated as follows. At time step tn , given ẏn , yn , the time step size �tn , and the parameters
αm , α f , and γ , find ẏn+1 and yn+1 such that

Rk(ẏn+αm
, yn+α f

) = 0, (3.4)

Rm(ẏn+αm
, yn+α f

) = 0, (3.5)

Rp(ẏn+αm
, yn+α f

) = 0, (3.6)

yn+1 = yn + �tn ẏn,+γ �tn
(
ẏn+1 − ẏn

)
, (3.7)

ẏn+αm
= ẏn + αm

(
ẏn+1 − ẏn

)
, (3.8)

yn+α f
= yn + α f

(
yn+1 − yn

)
. (3.9)

The choice of the parameters αm , α f and γ determines the accuracy and stability of the temporal scheme. Importantly,
the high-frequency dissipation can be controlled via a proper parametrization of these parameters, while maintaining
second-order accuracy and unconditional stability (for linear problems). For first-order dynamic problems, the parameters
are chosen as

αm = 1

2

(
3− �∞
1+ �∞

)
, α f = 1

1+ �∞
, γ = 1

1+ �∞
,

wherein �∞ ∈ [0, 1] denotes the spectral radius of the amplification matrix at the highest mode [38]. We adopt �∞ = 0.5
for all computations presented in this work.

Remark 1. Interested readers are referred to [42] for the parametrization of the parameters for second-order structural dy-
namics. A recent study shows that using the generalized-α method for the first-order structural dynamics enjoys improved
dissipation and dispersion properties and does not suffer from overshoot [43]. Moreover, using a first-order structural dy-
namic model is quite propitious for the design of a FSI scheme [1].

3.3. A segregated predictor multi-corrector algorithm

One may apply an inverse of the mass matrix at both sides of the equations (3.4) and obtain the following simplified
kinematic equations,

Rk(ẏn+αm
, yn+α f

) := u̇n+αm − vn+α f = 0. (3.10)

This procedure can be regarded as the application of a left preconditioner on the nonlinear algebraic equations. The new
equations (3.10), together with (3.6) and (3.5), constitute the system of nonlinear algebraic equations to be solved in each
time step. The Newton–Raphson method with consistent linearization is invoked to solve the nonlinear system of equa-
tions. At the time step tn+1, the solution vector yn+1 is solved by means of a predictor multi-corrector algorithm. We
denote yn+1,(l) := {

un+1,(l), vn+1,(l), pn+1,(l)
}T

as the solution vector at the Newton–Raphson iteration step l = 0, · · · , lmax .
The residual vectors evaluated at the iteration stage l are denoted as

R(l) := {
Rk,(l),Rp,(l),Rm,(l)

}T
,

Rk,(l) := Rk

(
ẏn+αm,(l), yn+α f ,(l)

)
,

Rm,(l) : = Rm

(
ẏn+αm,(l), yn+α f ,(l)

)
,

Rp,(l) : = Rp

(
ẏn+αm,(l), yn+α f ,(l)

)
.

78 J. Liu, A.L. Marsden / Journal of Computational Physics 383 (2019) 72–93
The consistent tangent matrix associated with the above residual vectors is

K(l) =
⎡
⎣ Kk,(l),u̇ Kk,(l),v̇ Kk,(l),ṗ

Km,(l),u̇ Km,(l),v̇ Km,(l),ṗ

Kp,(l),u̇ Kp,(l),v̇ Kp,(l),ṗ

⎤
⎦,

wherein

Kk,(l),u̇ := αm

∂Rk,(l)

(
ẏn+αm,(l), yn+α f ,(l)

)
∂ u̇n+αm

= αmI,

Kk,(l),v̇ := α f γ �tn
∂Rk,(l)

(
ẏn+αm,(l), yn+α f ,(l)

)
∂vn+α f

= −α f γ �tnI,

Kk,(l),ṗ := O.

As was realized in [3], this special block structure in the first row of K(l) can be utilized for a block factorization,

K(l) =
⎡
⎣ Kk,(l),u̇ Kk,(l),v̇ Kk,(l),ṗ

Km,(l),u̇ Km,(l),v̇ Km,(l),ṗ

Kp,(l),u̇ Kp,(l),v̇ Kp,(l),ṗ

⎤
⎦ =

⎡
⎣ αmI −α f γ �tnI O
Km,(l),u̇ Km,(l),v̇ Km,(l),ṗ

Kp,(l),u̇ Kp,(l),v̇ Kp,(l),ṗ

⎤
⎦

=

⎡
⎢⎢⎣

I O O
1

αm
Km,(l),u̇ Km,(l),v̇ + α f γ �tn

αm
Km,(l),u̇ Km,(l),ṗ

1
αm

Kp,(l),u̇ Kp,(l),v̇ + α f γ �tn
αm

Kp,(l),u̇ Kp,(l),ṗ

⎤
⎥⎥⎦
⎡
⎣αmI −α f γ �tnI O

O I O
O O I

⎤
⎦ . (3.11)

With (3.11), the solution procedure of the linear system of equations in the Newton–Raphson method can be consistently
reduced to a two-stage algorithm [1,3,44]. In the first stage, one obtains the increments of the pressure and velocity at the
iteration step l by solving the following linear system,⎡

⎣Km,(l),v̇ + α f γ �tn
αm

Km,(l),u̇ Km,(l),ṗ

Kp,(l),v̇ + α f γ �tn
αm

Kp,(l),u̇ Kp,(l),ṗ

⎤
⎦[

�v̇n+1,(l)

�ṗn+1,(l)

]
= −

[
Rm,(l) − 1

αm
Km,(l),u̇Rk,(l)

Rp,(l) − 1
αm

Kp,(l),u̇Rk,(l)

]
. (3.12)

In the second stage, one obtains the increments for the displacement by

�u̇n+1,(l) = α f γ �tn
αm

�v̇n+1,(l) − 1

αm
R
k
(l). (3.13)

To simplify notations in the following discussion, we denote

A(l) :=Km,(l),v̇ + α f γ �tn
αm

Km,(l),u̇, B(l) := Km,(l),ṗ, (3.14)

C(l) :=Kp,(l),v̇ + α f γ �tn
αm

Kp,(l),u̇, D(l) := Kp,(l),ṗ. (3.15)

Remark 2. In [1], it was shown that Rk
(l) = 0 for l ≥ 2 for general predictor multi-corrector algorithms; in [44], a special

predictor is chosen so that Rk
(l) = 0 for l ≥ 1.

Remark 3. In Appendix A, the detailed formula for the block matrices are given, and it can be observed that A(l) consists
primarily of a mass matrix and a stiffness matrix; B(l) is a discrete gradient operator; C(l) is dominated by a discrete
divergence operator; D(l) contains a mass matrix scaled with β and contributions from the stabilization terms.

Based on the above discussion, a predictor multi-corrector algorithm for solving the nonlinear algebraic equations in
each time step can be summarized as follows.
Predictor stage: Set:

yn+1,(0) = yn, ẏn+1,(0) = γ − 1

γ
ẏn.

Multi-corrector stage: Repeat the following steps for l = 1, . . . , lmax:

J. Liu, A.L. Marsden / Journal of Computational Physics 383 (2019) 72–93 79
1. Evaluate the solution vectors at the intermediate stages:

yn+α f ,(l) = yn + α f
(
yn+1,(l−1) − yn

)
, ẏn+αm,(l) = ẏn + αm

(
ẏn+1,(l−1) − ẏn

)
.

2. Assemble the residual vectors Rm,(l) and Rp,(l) using the solution evaluated at the intermediate stages.
3. Let ‖R(l)‖l2 denote the l2-norm of the residual vector. If either one of the following stopping criteria

‖R(l)‖l2
‖R(0)‖l2

≤ tolR, ‖R(l)‖l2 ≤ tolA,

is satisfied for two prescribed tolerances tolR, tolA, set the solution vector at time step tn+1 as ẏn+1 = ẏn+1,(l−1) and
yn+1 = yn+1,(l−1) , and exit the multi-corrector stage; otherwise, continue to step 4.

4. Assemble the tangent matrices (3.14)–(3.15).
5. Solve the following linear system of equations for �ṗn+1,(l) and �v̇n+1,(l) ,[

A(l) B(l)

C(l) D(l)

][
�v̇n+1,(l)

�ṗn+1,(l)

]
= −

[
Rm,(l)

Rp,(l)

]
. (3.16)

6. Obtain �u̇n+1,(l) from the relation (3.13).
7. Update the solution vector as

yn+1,(l) = yn+1,(l) + γ �tn� ẏn+1,(l), ẏn+1,(l) = ẏn+1,(l) + � ẏn+1,(l),

and return to step 1.

For all the numerical simulations presented in this work, we adopt the tolerances for the nonlinear iteration as tolR = tolA =
10−6 and the maximum number of iterations as lmax = 20.

4. Iterative linear solver

In the predictor multi-corrector algorithm presented above, the linear system of equations (3.16) is solved repeatedly,
and this step constitutes the major cost for implicit dynamic calculations. In this section, we design an iterative solution
procedure for the linear problem Ax = r, in which the matrix and vectors adopt the following block structure,

A :=
[
A B
C D

]
, x :=

[
xv
xp

]
, r :=

[
rv
rp

]
.

Since its inception, GMRES is among the most popular iterative methods for solving sparse nonsymmetric matrix prob-
lems. With a proper preconditioner P , the convergence rate of iterative methods like GMRES can be significantly expedited.
Roughly speaking, in the GMRES iteration, one constructs the Krylov subspace and search for the solution that minimize the
residual in this Krylov subspace by the Arnoldi algorithm [33,34]. To construct the Krylov subspace, one applies AP−1 to
the residual vector in order to enlarge the Krylov subspace. This procedure corresponds to first solving a linear system of
equations associated with P and then performing a matrix–vector multiplication associated with A. Often times, to reduce
the computational burden, the GMRES algorithm is restarted every m steps. Within this work, this algorithm is denoted as
GMRES(m).

In Section 4.1, we perform a diagonal scaling for A with the purpose of improving the condition number [24,31,45]. In
Section 4.2, we introduce the block factorization of A and present the SCR algorithm. In Section 4.3, we present the coupled
approach with a particular focus on the SIMPLE preconditioner. In Section 4.4, the nested block preconditioning technique
is introduced as a combination of the SCR approach and the coupled approach.

4.1. Symmetrically diagonal scaling

Before constructing an iterative method, we first apply a symmetrically diagonal scaling to the matrix A. This approach
is adopted to improve the condition number of the matrix problem and is sometimes referred to as a “pre-preconditioning”
technique [45]. We introduce W as a diagonal matrix defined as follows,

Wii :=
{

(|Aii|)− 1
2 , if |Aii| ≥ εdiag

1.0, if |Aii| < εdiag
.

In the above definition, εdiag is a user-specified tolerance to avoid undefined or unstable numerical operations. In this work,
we set εdiag = 1.0 × 10−15. Applying W as a left and right preconditioner simultaneously, we obtain an altered system as

A∗x∗ = r∗, (4.1)

80 J. Liu, A.L. Marsden / Journal of Computational Physics 383 (2019) 72–93
wherein A∗ := WAW , x∗ := W−1x, and r∗ = Wr. The iterative methods discussed in the subsequent sections are applied
to the above system. Once x∗ is obtained from (4.1), one has to perform x = Wx∗ to recover the true solution. In the
remainder of Section 4, we focus on solving (4.1), and for notational simplicity, the superscript ∗ is neglected.

4.2. Schur complement reduction

Recall that A adopts the block factorization

A = LDU =
[

I O

CA−1 I

][
A O

O S

][
I A−1B

O I

]
, (4.2)

wherein S := D− CA−1B is the Schur complement of A. Applying L−1 on both sides of the equation Ax = r, one obtains

[
A B

O S

][
xv
xp

]
=

[
I O

CA−1 I

]−1 [
rv
rp

]
=

[
I O

−CA−1 I

][
rv
rp

]
=

[
rv

rp − CA−1rv

]
.

The upper triangular block matrix problem can be solved by a back substitution. Consequently, the solution procedure for
Ax = r can be summarized as the following segregated algorithm [24–26].

Algorithm 1 Solution procedure for Ax = r based on SCR.
1: Solve for an intermediate velocity x̂v from the equation

Ax̂v = rv . (4.3)

2: Update the continuity residual by rp ← rp − Cx̂v .
3: Solve for xp from the equation

Sxp = rp . (4.4)

4: Update the momentum residual by rv ← rv − Bxp .
5: Solve for xv from the equation

Axv = rv . (4.5)

For hyper-elastodynamics problems, it is reasonable to apply GMRES preconditioned by AMG for (4.3) and (4.5). The
stopping condition for solving with A includes the tolerance for the relative error δrA , the tolerance for the absolute error δ

a
A ,

and the maximum number of iterations nmax
A . In (4.4), the Schur complement is a dense matrix due to the presence of A−1

in its definition. It is expensive and often impossible to directly compute with S. Recall that in a Krylov subspace method,
the search space is iteratively expanded by performing matrix–vector multiplications. Although the algebraic form of S is
impractical to obtain, its action on a vector is readily available through the following “matrix-free” algorithm [24,26].

Algorithm 2 The multiplication of S with a vector xp .
1: Compute the matrix–vector multiplication x̂p ← Dxp .
2: Compute the matrix–vector multiplication x̄p ← Bxp .
3: Solve for x̃p from the linear system

Ax̃p = x̄p . (4.6)

4: Compute the matrix–vector multiplication x̄p ← Cx̃p .
5: return x̂p − x̄p .

In Algorithm 2, the action of S on a vector is realized through a series of matrix–vector multiplications, and the action of
A−1 on a vector is achieved by solving the linear system (4.6). This solver is located inside the solution procedure of (4.4),
and we call it the inner solver. The stopping condition of the inner solver includes the tolerance for the relative error δrI , the
tolerance for the absolute error δaI , and the maximum number of iterations nmax

I .
With Algorithm 2, one can construct a Krylov subspace for S and solve the equation (4.4). However, without precondi-

tioning, GMRES may stagnate or even break down. More importantly, each matrix–vector multiplication given in Algorithm 2
involves solving a linear system (4.6), and this inevitably makes the matrix–vector multiplication quite expensive. To mit-
igate the number of this expensive matrix–vector multiplications, we solve (4.4) with Ŝ := D − C (diag (A))−1 B as a right
preconditioner [46]. If the time step size is small, A is dominated by the mass matrix, and Ŝ acts as an effective precondi-
tioner for solving (4.4). On the other side, if the time step size is large, A is dominated by the stiffness matrix. The situation

J. Liu, A.L. Marsden / Journal of Computational Physics 383 (2019) 72–93 81
then is analogous to the Stokes problem, where the Schur complement is spectrally equivalent to an identity matrix. We
may reasonably expect that an unpreconditioned GMRES using Algorithm 2 is sufficient for solving (4.4). Still, using Ŝ may
accelerate the convergence rate. Therefore, we solve (4.4) by GMRES, where the stopping criteria include the tolerance for
the relative error δrS , the tolerance for the absolute error δ

a
S , and the maximum number of iterations nmax

S .

4.3. Coupled approach with block preconditioners

The block factorization (4.2) also inspires the design of a preconditioner for A. Following the nomenclature used in [16],
we use H1 and H2 to denote the approximations of A−1 in the Schur complement and the upper triangular matrix U ,
respectively. This results in a block preconditioner expressed as

P̂ =
[

I O

CA−1 I

][
A O

O D− CH1B

][
I H2B

O I

]
=

[
A AH2B

C D− C (H1 −H2)B

]
. (4.7)

The two approximated sparse matrices are introduced so that the spectrum of AP̂−1 has a clustering around {1}. With
the block preconditioner, one can apply the Krylov subspace method directly to solve Ax = r, and the bases of the Krylov
subspace are constructed by applying AP̂−1 on a vector. The action of P̂−1 is achieved through a procedure similar to
the Algorithm 1. The differences are that the inner solver is not needed and one does not need to solve the equations
associated with the sub-matrices to a high precision. The Krylov subspace method is typically used with a multigrid [17,32]
or a domain decomposition [47] preconditioner to solve with the sub-matrices. Consequently, the algebraic definition of
P̂ varies over iterations, and one has to apply a flexible method, like the Flexible GMRES (FGMRES) [34], as the iterative
method for A. Choosing H1 = H2 = diag (A)−1 leads to the SIMPLE preconditioner P̂SIMPLE [17,16],

P̂SIMPLE :=
[

I O

CA−1 I

][
A O

O Ŝ

][
I (diag (A))−1 B

O I

]
=

[
A Adiag (A)−1 B

C D

]
.

The SIMPLE preconditioner is an algebraic analogue of the Semi-Implicit Method for Pressure Linked Equations (SIMPLE)
[18]. It introduces a perturbation to the pressure operator in the linear momentum equation. This preconditioner and its
variants are among the most popular choices for problems in CFD [32,48], FSI [47], and multiphysics problems [49,50].

Remark 4. There are cases when the symmetry of A is broken, and using the SIMPLE-type preconditioner leads to poor
performance. It is the case in CFD with large Reynolds numbers. To take into account of the off-diagonal entries of A, so-
phisticated preconditioners, like the LSC preconditioner [22], have been developed. Those preconditioners have been shown
to be robust with respect to the Reynolds number using inf-sup stable discretizations of the CFD problem (i.e., D = O). Note
that, for the stabilized methods, the LSC preconditioner may not converge [32].

4.4. Flexible GMRES algorithm with a nested block preconditioner

The SIMPLE preconditioner can be viewed as the SCR approach built based on an inexact block factorization. Its main
advantage is that the application of this preconditioner is inexpensive. However, for certain problems, this inexact factor-
ization misses some key information of the original matrix, and stagnation of the solver is observed. We want to leverage
the robustness of the SCR approach built from the exact block factorization by using it as a right preconditioner, denoted as
P̂SC R . The action of P̂−1

SC R on a vector is given by Algorithm 1, in which the equations (4.3)–(4.5) are solved with prescribed
tolerances. The algebraic form of P̂SC R is defined implicitly through the solvers in Algorithm 1 and varies over iterations.
Assuming that the three equations (4.3)–(4.5) are solved exactly, the spectrum of AP̂−1

SC R will be {1}, and the solver will
converge in one iteration. Because the preconditioner varies over iterations, we invoke FGMRES as the iterative method for
Ax = r. The stopping condition of the FGMRES algorithm includes the tolerance for the absolute error δa , the tolerance for
the relative error δr , and the maximum number of iterations nmax .

The FGMRES iteration for A serves as the outer solver which tries to minimize the residual of Ax = r. Inside this FGMRES
iteration, the application of P̂SC R is achieved through Algorithm 1, and one needs to solve with the block matrices A and S
at this stage. We call it the intermediate solver. When solving with the Schur complement, its action on a vector is defined
by Algorithm 2, which necessitates using the inner solver to solve with A. The three levels of solvers are illustrated in Fig. 1
with different colors.

Remark 5. In the construction of the proposed block preconditioners, the full LDU factorization of A is utilized. One can
surely use only part of the factorization to devise different preconditioners. For example, the diagonal part D is an efficient
candidate for the Stokes equations [19,51]. Assuming exact arithmetic, it gives convergence within 4 iterations. Using the
upper triangular part DU often gives a good balance between the convergence rate and the computational cost [52], as it
leads to convergence within 2 iterations [53,54], assuming exact arithmetic. In our case, the full LDU block factorization
gives the fastest convergence rate. We prefer this because the solution of the Schur complement equation is often the most

82 J. Liu, A.L. Marsden / Journal of Computational Physics 383 (2019) 72–93
Fig. 1. Implementation of the FGMRES with the nested block preconditioner. The green color represents the outer solver; the blue color represents the
intermediate solver; the grey color represents the inner solver. (For interpretation of the colors in the figure(s), the reader is referred to the web version of
this article.)

expensive part of the overall algorithm. Therefore, in comparison with an upper triangular block preconditioner, we pay the
price of solving the matrix problem A twice with the purpose of mitigating the number of the solution procedure for the
Schur complement.

Remark 6. In the above algorithm, the nested block preconditioner P̂SC R can be regarded as a result of an inexact factor-
ization of A. The inexactness is due to the approximation made by the solvers in the intermediate and inner levels. The
preconditioner is thus defined by the tolerances of these solvers. Using strict tolerances apparently makes P̂SC R closer to
A. However, this is impractical since this makes the algorithm as expensive as the SCR approach. On the other extreme,
one may solve (4.4) by applying the preconditioner Ŝ once without invoking the inner solver. This makes the algorithm as
simple as the coupled approach with the SIMPLE preconditioner and potentially endangers the robustness. We adjust the
tolerances to tune the preconditioner, noting there is a lot of leeway in the choice of the tolerance value ranging from strict
to loose. The effect of the tolerances of the intermediate and inner solvers will be studied in Section 5.

Remark 7. Choosing a good preconditioner for the Schur complement is critical for the performance of the proposed nested
block preconditioner. In our experience, using a scaled pressure mass matrix gives satisfactory results as well [55]. For
compressible materials, this preconditioner does not need to be explicitly assembled, and one can use D directly (See
Appendix A). In this work, we focus on D − C (diag (A))−1 B, since this choice apparently is a better approximation of S. In
[56], a sparse approximate inverse is utilized to construct the preconditioner for the Schur complement, which is worth of
future study.

5. Numerical results

In our work, the outer solver is FGMRES(200) with nmax = 200 and δa = 10−50. In the intermediate level, (4.3) and
(4.5) are solved by GMRES(500) preconditioned by AMG with nmax

A = 500 and δaA = 10−50. The equation (4.4) is solved by
GMRES(200), with nmax

S = 200 and δaS = 10−50. We use the AMG preconditioner constructed from Ŝ. In the inner level, the
linear system is solved via GMRES(500) preconditioned by AMG with nmax

I = 500 and δaI = 10−50. We use the BoomerAMG
[57] from the Hypre package [58] as the parallel AMG implementation. The settings of the BoomerAMG are summarized in
Table 1. With the above settings, the accuracy of the solution is dictated by δr , and the convergence rate is controlled by
the tolerances δrA , δ

r
S , and δrI .

To provide baseline examples, we solve the system of equations (4.1) by two different preconditioners. As the first exam-
ple, we solve the system of equations by FGMRES(200) using P̂SIMPLE with nmax = 200 and δa = 10−50. In this preconditioner,
the settings of the linear solver (including the Krylov subspace method, the preconditioners, and the stopping criteria) asso-
ciated with A and Ŝ are exactly the same as the ones used in the nested block preconditioner. The accuracy of the solver is
determined by δr , and the performance of the preconditioner is controlled by δrA and δrS . Notice that, in this preconditioner,
δrS is the tolerance for solving with the matrix Ŝ.

As another baseline example, we choose to solve the linear system by GMRES(200) preconditioned by a one-level ad-
ditive Schwarz domain decomposition preconditioner [59]. The maximum number of iterations is fixed at 10000, and the
tolerance for the absolute error is fixed at 10−50. In this preconditioner, each processor is assigned with a single subdomain,

J. Liu, A.L. Marsden / Journal of Computational Physics 383 (2019) 72–93 83
Fig. 2. Three-dimensional compression of a block: (left) geometry of the referential configuration and the boundary conditions; (right) pressure profile in
the current configuration with �x = 1/3840.

Table 1
Settings of the BoomerAMG preconditioner [58].
Cycle type V-cycle
Coarsening method HMIS
Interpolation method Extended method (ext+i)
Truncation factor for the interpolation 0.3
Threshold for being strongly connected 0.5
Maximum number of elements per row for interp. 5
The number of levels for aggressive coarsening 2

and an incomplete LU factorization (ILU) with a fill-in ratio 1.0 is invoked to solve the problem on the subdomains. This
preconditioner is purely algebraic and is usually very competitive for medium-size parallel simulations. However, as will
be shown in the numerical examples, the one-level domain decomposition preconditioner is not a robust option. Also, as
the problem size and the number of subdomains grows, more iterations are needed to propagate information across the
whole domain. In our implementation, the restricted additive Schwarz method from PETSc [60] is utilized as the domain
decomposition preconditioner; the PILUT routine from Hypre [58] is used as the solver for the subdomain algebraic problem.

All numerical simulations are performed on the Stampede2 supercomputer at Texas Advanced Computing Center (TACC),
using the Intel Xeon Platinum 8160 node. Each node contains 48 cores, with 2.1 GHz nominal clock rate and 192 GB RAM
per node (4 GB RAM per core).

5.1. Compression of a block

The compression of a unit block was proposed as a benchmark problem for nearly incompressible solids [36]. The geo-
metrical configuration and the boundary conditions are illustrated in Fig. 2. The problem is discretized in space by a uniform
structured tetrahedral mesh generated by Gmsh [61], and we use �x to denote the edge length of the mesh. The original
benchmark problem was proposed in the quasi-static setting, and a ‘dead’ surface load H is applied on a quarter portion
of the top surface, pointing in the negative z-direction with magnitude |H | = 320 MPa. In this work, the problem is inves-
tigated in the dynamic setting by gradually increasing the load force as a linear function of time. The material is described
by a Neo-Hookean model, whose Gibbs free energy function takes the form

G
(
C̃ , p

)
= μ

2ρ0

(
trC̃ − 3

)
+ p

√
p2 + κ2 − p2

2κρ0
− κ

2ρ0
ln

(√
p2 + κ2 − p

κ

)
.

Following [36], the material parameters are chosen as μ = 80.194 MPa, κ = 400889.806 MPa, and ρ0 = 1.0 × 103 kg/m3.
The corresponding Poisson’s ratio ν is 0.4999. In Section 5.1.3, we examine the robustness of the preconditioner with regard
to varying material moduli. In the following discussion, the governing equations have been non-dimensionalized by the
centimetre-gram-second units. Note that the edge length of the cube is 1 mm = 0.1 cm. Then the number of elements in
each direction of the cube is given by 1/(10�x).

84 J. Liu, A.L. Marsden / Journal of Computational Physics 383 (2019) 72–93
Table 2
The impact of the accuracy of the inner solver on the performance of the linear solver. The CPU time is
collected for the linear solver only; l̂ represents the total number of nonlinear iterations; n represents
the total number of FGMRES iterations; n̄A represents the averaged number of iterations for solving with
A in (4.3) and (4.5); n̄S represents the averaged number of iterations for solving (4.4); n̄I represents the
averaged number of iterations for solving (4.6).

δrI CPU time (sec.) l̂ n n̄A n̄S n̄I

δrA = δrS = 10−10 100 4.86× 103 4 477 74.52 33.89 –
10−2 9.02× 102 4 17 75.62 22.29 29.31
10−4 8.08× 102 4 11 75.30 22.27 45.00
10−6 6.97× 102 4 8 75.19 23.13 55.82
10−8 8.11× 102 4 8 75.19 22.13 65.15
10−10 8.47× 102 4 7 74.86 23.29 74.62

δrA = δrS = 10−6 100 4.87× 103 4 664 55.60 21.29 –
10−2 6.30× 102 4 18 56.68 13.74 30.35
10−4 5.10× 102 4 11 56.30 13.73 46.14
10−6 5.12× 102 4 9 56.06 14.11 56.91
10−8 6.01× 102 4 9 56.17 14.44 65.62
10−10 6.82× 102 4 9 56.17 14.56 74.87

5.1.1. Performance with varying inner solver accuracy
In this test, we investigate the impact of the accuracy of the inner solver on the overall iterative method. We fix the

mesh size to be �x = 1/640 and the time step size to be �t = 10−1. The simulation is performed with 8 CPUs, with
approximately 131072 equations assigned to each CPU. In this study, we choose δr = 10−8, and we consider two settings
for the intermediate solver: δrA = δrS = 10−10 and δrA = δrS = 10−6. We collect the statistics of the solver in the first time
step with varying values of δrI (Table 2). The results associated with δrI = 100 are obtained by solving Ŝxp = r̂p in step 3
of Algorithm 1. This choice corresponds to choosing H1 = diag (A)−1 and H2 = A−1 in (4.7) for P̂ , making it similar to the
SIMPLE preconditioner.

In our numerical experiments, we observe that with the choice of δrA = δrS = δrI = 10−10, the outer solver converges in
less than two iterations on average. In fact, we also experimented with stricter tolerances and observed convergence of the
outer solver in one iteration. (We do not report this because this stricter choice requires larger size of the Krylov subspace
which is incompatible with our current settings.) This result corroborates the fact that the full LDU block preconditioner
gives convergence in one iteration with exact arithmetic.

In the literature, the choice for the inner solver accuracy is under debate. In [24], it is suggested that the inner solver
should be more accurate than its upper-level counterpart (i.e., δrI ≤ δrS in our case) to guarantee accurate representation of
the Schur complement. Meanwhile, it is shown in [62] that the Krylov methods are in fact very robust under the presence
of inexact matrix–vector multiplications. In our test, as we gradually release the tolerance δrI , it is observed that the inner
solver converges with fewer iterations while the outer solver requires more iterations to reach convergence to compensate
for the inaccurate evaluations of the Schur complement. As δrI gets larger than δrS , initially the overhead is low. As the
tolerance further increases, the outer solver requires more iterations and the overall cost of the solver grows correspondingly.
For the two cases, the break-even points are achieved with δrI = 10−6 and 10−4, respectively. Examining the number of
iterations for the outer solver, we observe a steady growth of n once δrI grows larger than δrS . Though it is hard to predict
the optimal choice of δrI for general cases, we observe that a choice of δrI = δrS is safe for robust performances; a slightly
relaxed tolerance for the inner solver (e.g. δrI = 102δrS) is beneficial for efficiency. We also note that n̄S is insensitive to the
inner solver accuracy as long as δrI < 100.

For comparison, we also examined the solver performance without the inner solver. We solve with Ŝ instead of S in (4.4)
directly. This corresponds to a highly inaccurate evaluation of the Schur complement. We see that the iteration number n,
the averaged iteration number for the intermediate solver n̄S , and the CPU time of the outer solver increase significantly.
The severe degradation of solver performance signifies the importance of an accurate evaluation of the Schur complement.

5.1.2. Performance with varying intermediate solver accuracy
In this example, we examine the effect of varying intermediate solver tolerances on the solver performance. We consider

a uniform mesh with �x = 1/640, with two time step sizes: �t = 10−1 and 10−5. We choose δr = 10−8 for the outer solver.
We set δrA = δrS = δrI and vary their values from 10−8 to 10−2. To make comparisons, the same problem is simulated with
the SIMPLE preconditioner and the additive Schwarz preconditioner. In the SIMPLE preconditioner, we solve the equations
associated with A and Ŝ with δrA = δrS = 10−8. The convergence is monitored for the first time step, which is usually the
most challenging part of dynamic calculations. The convergence history of the linear solver in the first nonlinear iteration
is plotted in Fig. 3. It can be seen that the accuracy of the intermediate solvers affects the convergence rate of the linear
solver. When the equations in the intermediate level are solved to a high precision, the convergence rate of the outer solver
is steep. As one looses the tolerances for the intermediate solvers, the proposed algorithm requires more iterations for
convergence. Yet, even for the tolerance as loose as 10−2, the convergence rate is still much steeper than that of the SIMPLE

J. Liu, A.L. Marsden / Journal of Computational Physics 383 (2019) 72–93 85
Fig. 3. Convergence history for �t = 10−1 (left) and 10−5 (right). The horizontal dashed black line indicates the prescribed stopping criterion for the relative
error, which is 10−8 here. In the case of �t = 10−1, the SIMPLE method converges in 21 iterations, and the additive Schwarz method converges in 2644
iterations. In the case of �t = 10−5, the SIMPLE method converges in 71 iterations, and the additive Schwarz method converges in 2030 iterations. The
numbers indicate the averaged time per nonlinear iteration in seconds.

Table 3
The performance of the linear solver with varying material properties. n̄ represents the averaged number
of FGMRES iterations; n̄A represents the averaged number of iterations for solving with A in (4.3) and
(4.5); n̄S represents the averaged number of iterations for solving (4.4); T̄ L represents the averaged CPU
time for one nonlinear iteration in seconds; ν represents the Poisson’s ratio; η is a non-dimensional
scaling factor for the shear modulus.

n̄ [n̄A , n̄S] (T̄ L) η = 10−2 η = 100 η = 102

ν = 0.0 2.0 [46.9, 15.9] (46.6) 2.0 [48.1, 16.0] (48.3) 2.0 [47.9, 15.3] (46.2)
ν = 0.1 2.0 [48.5, 19.0] (49.2) 2.0 [48.4, 17.9] (50.3) 2.0 [48.1, 15.5] (46.5)
ν = 0.2 2.0 [48.3, 20.2] (52.8) 2.0 [48.0, 19.9] (52.9) 2.0 [48.3, 16.8] (47.0)
ν = 0.3 2.0 [47.9, 23.1] (56.4) 2.0 [41.1, 21.5] (57.9) 2.0 [48.5, 17.7] (48.6)
ν = 0.4 2.0 [47.4, 28.5] (66.4) 2.0 [48.2, 25.8] (65.5) 2.0 [48.6, 19.2] (50.6)
ν = 0.5 2.2 [47.1, 36.3] (101.2) 2.0 [47.4, 24.6] (66.3) 2.0 [46.5, 20.3] (48.6)

preconditioner. The average time for solving the matrix problem per nonlinear iteration is reported in the figures as well.
We observe that when choosing a strict tolerance for the intermediate and inner solvers, although convergence is achieved
with fewer iterations, the cost per iteration is high and the overall time to solution is correspondingly high. A looser
tolerance renders the application of the nested block preconditioner more cost-effective, and the overall algorithm is faster.
In comparison with the SIMPLE and additive Schwarz methods, the proposed nested block preconditioning technique is
fairly competitive.

5.1.3. Performance with varying material properties
In this example, we vary the material properties and study the robustness of the proposed preconditioner. The Poisson’s

ratio ν varies from 0.0 to 0.5, spanning the range relevant to most engineering and biological materials. The shear modulus
μ is taken as 80.194 × η MPa, wherein η is a non-dimensional number. Correspondingly, the compression force is adjusted
by multiplying with the scaling factor η for values of 10−2, 100, and 102. The stopping condition for the linear solver is
δr = 10−8, and we choose δrA = δrS = δrI = 10−6. The mesh size is fixed to be �x = 1/480, and the problem is simulated with
8 CPUs. The time step size is �t = 10−1 and we integrate the problem up to T = 1.0. We use a relatively large time step
size here to make the matrix A dominated by the stiffness matrix. The statistics of the solver performance are collected
over ten time steps (Table 3).

For all cases, the number of iterations for the outer solver maintains around two. In fact, it is only for the case of
ν = 0.5 and η = 10−2 that the outer solver needs slightly more than two iterations. The number of iterations for solving
with A in (4.3) and (4.5) is maintained around 47, and hence can be regarded as independent with respect to the material
property. The number of iterations for solving (4.4) increases with increasing the Poisson’s ratio. This can be explained by
looking at S = D − CA−1B. The matrix D is dominated by the mass matrix scaled with a factor of β . As ν approaches 0.5,
the isothermal compressibility coefficient β goes to zero. Consequently, the well-conditioned matrix D diminishes, and the
condition number of the Schur complement gets larger. This is reflected in the increase of n̄S as ν goes from 0.0 to 0.5
for all three shear moduli. On the other hand, n̄S increases as the material gets softer, and this trend is pronounced as

86 J. Liu, A.L. Marsden / Journal of Computational Physics 383 (2019) 72–93
Table 4
The strong scaling performance. n̄ represents the averaged number of FGMRES iter-
ations for solving (3.16). T A and TL represent the timings for matrix assembly and
linear solver, respectively. The efficiency is computed based on the total time.

Proc. n̄ T A (sec.) TL (sec.) Total (sec.) Efficiency

2 2.0 3.13× 103 2.16× 104 2.49 × 104 100%
4 2.0 1.57× 103 1.09× 104 1.26 × 104 99%
8 2.0 8.49× 102 5.58× 103 6.48 × 103 96%
16 2.0 4.38× 102 2.96× 103 3.43 × 103 91%
32 2.0 2.33× 102 1.62× 103 1.87 × 103 83%
64 2.0 1.10× 102 8.37× 102 9.56 × 102 81%
128 2.0 5.65× 101 3.84× 102 4.49 × 102 87%

Table 5
Comparison of the averaged iteration counts and CPU time in seconds for the nested block preconditioner
P̂SC R , the SIMPLE preconditioner, and the additive Schwarz preconditioner. NC stands for no convergence.
For the �x = 1/3840 case, the additive Schwarz preconditioner failed to converge in 10000 iterations.

1
�x Proc.

P̂SC R SIMPLE Additive Schwarz

n̄ n̄A n̄S T̄ L n̄ T̄ L n̄ T̄ L

�t = 10−1

480 8 2.3 31.7 6.7 19.7 13.3 21.6 1114.4 20.4
960 64 2.5 43.1 7.4 50.2 17.9 63.6 3368.9 106.8
1920 512 2.7 55.4 9.1 108.0 25.0 153.6 8642.4 305.4
3840 4096 2.9 68.8 9.6 220.8 47.6 504.2 NC NC

�t = 10−5

480 8 2.3 4.6 16.1 5.3 22.7 6.3 916.0 17.0
960 64 2.0 6.9 26.4 18.5 38.6 31.6 2133.9 67.4
1920 512 2.0 9.1 34.3 52.8 65.7 71.0 9669.1 315.0
3840 4096 2.2 11.3 42.0 139.0 101.2 221.4 NC NC

the Poisson’s ratio gets larger. This can be explained by looking at A−1 in the Schur complement. For large time steps,
A contains a significant contribution from the stiffness matrix, and the inverse of the stiffness matrix is proportional to
1/μ. It is known that diag (A) is not a good candidate for approximating the stiffness matrix, and this is magnified for
softer materials due to the factor 1/μ.

5.1.4. Parallel performance
We investigate the efficiency of the method by evaluating the fixed-size scalability performance. The spatial mesh size is

�x = 1/1280, with about 8.39 × 106 degrees of freedom. The time step size is fixed at 10−5, and we integrate the problem
in time up to T = 10−4. The stopping criterion for the FGMRES iteration is δr = 10−3; the tolerances for the intermediate
and inner solvers are δrA = δrS = δrI = 10−3. The communication speed of MPI messages between nodes is typically slower
than that within a single node. To rule out the discrepancy of the communication speed, we run this test by assigning only
one CPU per node. This means that the MPI messages are communicated purely by the cluster network. We observe that
the efficiency of the numerical simulation is maintained at a high level (around 90%), and the average number of FGMRES
iterations maintains at 2.0 for a wide range of processor counts (Table 4).

To compare the performance of different preconditioners, we also perform a weak scaling test of the solver, with
δr = 10−3. Tolerances are set to δrA = δrS = δrI = 10−3 for the nested block preconditioner and to δrA = δrS = 10−3 for the
SIMPLE preconditioner. The computational mesh is progressively refined and each CPU is assigned approximately 5.53 × 104

equations. We simulate the problem with two different time step sizes: �t = 10−1 and 10−5. The statistics of the solver
performance are collected for ten time steps (Table 5). We observe that the iteration counts for the outer solver using the
nested block preconditioner are independent of mesh refinement. At large time steps, A is dominated by the stiffness matrix
and its solution procedure requires more iterations. In the meantime, the Schur complement has a better condition number
and converges with fewer iterations. At small time steps, the situation is opposite. The matrix A is dominated by the mass
matrix, and it can be solved with fewer iterations. The mesh refinement has an impact on the intermediate solvers, and we
observe an increase of the number of iterations in n̄A and n̄S . For the outer solver, n̄ is maintained around a constant value,
suggesting the outer solver is insensitive to the mesh refinement. The averaged CPU time T̄ L for the linear solver grows with
mesh refinement, which is primarily attributed to the AMG preconditioner adopted. Indeed, there are known bottlenecks
of the parallel AMG preconditioner [35,63], which prohibits ideal weak scalability of T̄ L . For the SIMPLE preconditioner, the
iteration counts and the CPU time grow faster than those of the nested block preconditioner. The additive Schwarz method
converges faster per iteration. However, the number of iterations for convergence is much higher. For the finest mesh, the
additive Schwarz method fails to converge in 10000 iterations. The proposed nested block preconditioner gives the most
robust and efficient performance.

J. Liu, A.L. Marsden / Journal of Computational Physics 383 (2019) 72–93 87
Fig. 4. Three-dimensional tensile test of an iliac adventitial strip: (a) geometry of the referential configuration; (b) computed load-displacement curves of
the circumferential (blue) and axial specimens (red) with (κ = 0.226, solid curves) and without (κ = 0.0, dashed curves) dispersion of the collagen fibres.

5.2. Tensile test of an anisotropic fibre-reinforced hyperelastic soft tissue model

In this example, we apply the proposed preconditioning technique to an anisotropic hyperelastic material model, which
has been used to describe arterial tissue layers with distributed collagen fibres. The isochoric and volumetric parts of the
free energy are

Gich(C̃) = Gg
ich(C̃) +

∑
i=1,2

G fi
ich(C̃), Gvol(p) = p

ρ0
,

Gg
ich(C̃) = μ

2ρ0

(
trC̃ − 3

)
, G fi

ich(C̃) = k1
2k2ρ0

(
ek2 Ē

2
i − 1

)
,

Ē i := H i : C̃ − 1, H i := kd I + (1− 3kd)(ai ⊗ ai).

In the above, Gg
ich models the groundmatrix via an isotropic Neo-Hookean material, with μ being the shear modulus; G fi

ich

models the ith family of collagen fibres by an exponential function. In G fi
ich , ai is a unit vector that describes the mean

orientation of the ith family of fibres in the reference configuration. The parameter kd ∈ [0, 1/3] is a structural parameter
that characterizes the dispersion of the collagen fibres. For ideally aligned fibres, the dispersion parameter kd is 0, while
for isotropically distributed fibres, it takes the value 1/3. The parameter k1 is a material parameter that describes the
stiffness of the fibre, and k2 is a non-dimensional parameter. The volumetric energy Gvol indicates that the model is fully
incompressible. Interested readers are referred to [37] for detailed discussions of the histology and constitutive modeling
of the arterial layers. In the numerical study, we perform a tensile test for the tissue model. Following [37], the geometry
of the specimen has length 10.0 mm, width 3.0 mm, and thickness 0.5 mm. The material parameters are μ = 7.64 kPa,
k1 = 996.6 kPa, k2 = 524.6. Assuming that the fibre orientation has no radial component, the unit vector is characterized
completely by ϕ , the angle between the circumferential direction and the mean fibre orientation direction (see Fig. 4 (a)).
For the circumferential specimen, ϕ = 49.98◦; for the axial specimen, ϕ = 40.02◦ . On the loading surface, traction force
is applied and the face is constrained to move only in the loading direction. Symmetry boundary conditions are properly
applied, and we only consider one-eighth of the specimen in the simulations.

Before studying the solver performance, we perform a simulation with 3.5 million unstructured linear tetrahedral ele-
ments to examine the VMS formulation for this material model. In this study, the tensile test is performed in a dynamic
approach. The loading force is applied as a linear function of time and reaches 2 N in 100 seconds. We set the density
of the tissue as 1.0 g/cm3. The tensile load-displacement curves for the circumferential and axial specimens with kd = 0.0
and 0.226 are plotted in Fig. 4 (b). We observe that before the fibres align along the loading direction, the groundmatrix

88 J. Liu, A.L. Marsden / Journal of Computational Physics 383 (2019) 72–93
Fig. 5. Three-dimensional tensile test: Cauchy stress in the loading direction are plotted for the circumferential (a) and axial (b) specimens. The mean
orientation of the collagen fibres in the current configuration are plotted for the circumferential (c) and axial (d) specimens.

provides the load carry capacity and the material response is very soft. When the fibres rotate to align with the load-
ing direction, they take over the load burden, the material becomes stiffer, and the stiffness grows exponentially. For the
axial specimen, the mean orientation of the fibres are closer to the loading direction, and hence it stiffens earlier than
the circumferential specimen. Compared with the dispersed case, the specimen with perfectly aligned fibres (i.e., kd = 0.0)
needs a significant amount of rotation before they can carry load. In Fig. 5 (a) and (b), the Cauchy stresses in the tensile
direction for the circumferential and axial specimens with kd = 0.226 at the tensile load 1.0 N are illustrated. The value of
a1 · Ca2/‖Fa1‖‖Fa2‖ characterizes the current fibre alignment, and it is illustrated in Fig. 5 (c) and (d) for the circumferen-
tial and axial specimens. The maximum values in these specimens are 0.347 and 0.459, respectively. Correspondingly, the
angles between the current mean fibre direction and the circumferential direction are 34.85◦ and 31.34◦ , respectively. In
the following discussion, the problem has been non-dimensionalized by the centimetre-gram-second units. Except the study
performed in Section 5.2.3, we adopt the axial specimen with the dispersion parameter kd = 0.226 as the model problem
for the study of the solver performance.

5.2.1. Performance with varying inner solver accuracy
In this test, we study the impact of the inner solver accuracy on the iterative solution algorithm. We fix the mesh size

to be 1/400 and the time step size to be 10−5. The simulation is performed with 8 CPUs. In this test, the settings of the
linear solver are identical to the study performed in Section 5.1.2. The statistics of the solver are collected for the first time
step of the simulation with varying values of δrI (Table 6). The impact of the inner solver accuracy is similar to what was
observed in Section 5.1.1. It is confirmed that using the inner solver may significantly improve the convergence rate of the
linear solver. In both cases, the optimal performance in terms of time to solution is achieved by setting δrI = 102δrS .

5.2.2. Performance with varying intermediate solver accuracy
We examine the solver performance for anisotropic hyperelastic materials with varying tolerances for the intermediate

solvers. The mesh size is fixed to be �x = 1/400, and the time step sizes are fixed to be �t = 10−1 and 10−5. The simula-
tions are performed with 8 CPUs. We choose δr = 10−8 and vary the values of δrA = δrS = δrI from 10−8 to 10−2. The SIMPLE
preconditioner and the additive Schwarz preconditioner are also simulated for comparison. In the SIMPLE preconditioner,
the block matrices A and Ŝ are solved with δrA = δrS = 10−8. The convergence history of the linear solver in the first nonlin-
ear iteration is plotted in Fig. 6. We observe that the nested block preconditioner performs robustly with a strict choice of
the intermediate and inner solver tolerances. When the tolerances for the intermediate and inner solvers are loose (10−2)
and the time step is large (�t = 10−1), the convergence rate of the nested block preconditioner slows dramatically and is
slower than the SIMPLE preconditioner. It should be emphasized that the SIMPLE preconditioner uses a very strict tolerance
(δrA = δrS = 10−8) here. We also note that the additive Schwarz preconditioner fails to converge to the prescribed tolerance
in 10000 iterations when �t = 10−1.

J. Liu, A.L. Marsden / Journal of Computational Physics 383 (2019) 72–93 89
Table 6
The impact of the accuracy of the inner solver on the performance of the linear solver. The CPU time is collected for
the linear solver only; ̂l represents the total number of nonlinear iterations; n represents the total number of FGMRES
iterations; n̄A represents the averaged number of iterations for solving with A in (4.3) and (4.5); n̄S represents the
averaged number of iterations for solving (4.4); n̄I represents the averaged number of iterations for solving (4.6).

δrI CPU time (sec.) l̂ n n̄A n̄S n̄I

δrA = δrS = 10−10 100 7.56× 101 1 47 16.81 19.81 –
10−2 7.19× 101 1 9 15.78 58.56 1.95
10−4 6.52× 101 1 5 15.30 58.80 3.75
10−6 6.20 × 101 1 3 14.33 58.33 7.81
10−8 5.83× 101 1 2 13.75 59.50 11.85
10−10 7.55× 101 1 2 13.75 60.00 15.19

δrA = δrS = 10−6 100 4.38× 101 1 47 7.83 12.02 –
10−2 4.20 × 101 1 9 8.17 34.22 1.97
10−4 3.67× 101 1 5 7.90 34.40 3.40
10−6 4.73× 101 1 4 7.50 35.75 7.37
10−8 6.87× 101 1 4 7.00 35.75 11.50
10−10 8.23× 101 1 4 7.00 35.75 15.47

Fig. 6. Convergence history for �t = 10−1 (left) and 10−5 (right). The horizontal dashed black line indicates the prescribed stopping criterion for the relative
error, which is 10−8 here. In the case of �t = 10−1, the block preconditioner with tolerance 10−2 converge in 90 iterations, the SIMPLE method converges
in 45 steps, and the additive Schwarz method failed to converge. In the case of �t = 10−5, the SIMPLE method converges in 46 iterations, and the additive
Schwarz method converges in 1070 iterations. The numbers indicate the averaged time per nonlinear iteration in seconds.

Table 7
The performance of the nested block preconditioner with varying fibre orientations and dispersions. n̄ represents the
averaged number of FGMRES iterations; n̄A represents the averaged number of iterations for solving with A in (4.3)
and (4.5); n̄S represents the averaged number of iterations for solving (4.4); T̄ L represents the averaged CPU time for
one nonlinear iteration in seconds; ϕ is the collagen fibre mean orientation; kd is the dispersion parameter.

n̄ [n̄A , n̄S] (T̄ L) kd = 0.1 kd = 0.2 kd = 0.3

ϕ = 20◦ 3.0 [214.1, 17.6] (4.8× 101) 3.0 [161.2, 18.0] (3.4× 101) 3.0 [103.4, 19.7] (2.1× 101)
ϕ = 40◦ 3.0 [241.3, 17.7] (5.8× 101) 3.0 [176.8, 18.4] (4.1× 101) 2.9 [105.7, 20.5] (2.1× 101)
ϕ = 60◦ 2.8 [221.4, 17.8] (4.6× 101) 2.9 [169.1, 19.2] (3.7× 101) 2.9 [104.5, 20.9] (2.1× 101)
ϕ = 80◦ 2.9 [220.8, 18.1] (5.3× 101) 3.0 [168.2, 19.8] (4.1× 101) 3.0 [103.0, 20.9] (2.2× 101)

5.2.3. Performance with varying fibre orientations and dispersions
In this test, we examine the robustness of the solver with different collagen fibre orientations and dispersions. The

structure of the arterial wall is described by the collagen fibre mean orientation ϕ and the dispersion parameter kd . We
vary the value of ϕ from 20◦ to 80◦ , and the value of kd from 0.1 to 0.3. The rest material properties are kept the same
as the ones used in the previous studies. The simulations are performed with �x = 1/100 on 8 CPUs. The time step size
is �t = 10−1, and we simulate the problem up to T = 1.0 to collect statistics of the solver performance. The stopping
condition for the FGMRES iteration is δr = 10−8, and we choose δrA = δrS = δrI = 10−6. The averaged number of iterations and
the averaged CPU time for one nonlinear iteration is reported in Table 7.

90 J. Liu, A.L. Marsden / Journal of Computational Physics 383 (2019) 72–93
Table 8
Comparison of the averaged iteration counts and CPU time in seconds for the nested block preconditioner P̂SCR , the
SIMPLE preconditioner, and the additive Schwarz preconditioner. NC stands for no convergence. For the �t = 10−1

case, the additive Schwarz preconditioner failed to achieve convergence in 10000 iterations.

1
�x Proc.

P̂SC R SIMPLE Additive Schwarz

n̄ n̄A n̄S T̄ L n̄ T̄ L n̄ T̄ L

�t = 10−1

200 8 6.2 207.1 10.3 579.3 54.1 888.5 NC NC
400 64 7.8 331.3 10.5 2062.7 102.5 6262.8 NC NC
600 216 10.3 389.4 11.1 3204.1 140.5 8051.3 NC NC

�t = 10−5

200 8 4.0 2.3 15.5 9.7 22.6 9.4 485.6 10.8
400 64 4.1 3.1 18.6 29.2 45.3 53.3 986.3 47.76
600 216 5.9 3.9 20.3 119.8 71.3 202.5 1453.0 431.6

We observe that the outer solver converges in around three iterations regardless of the structural properties. In the
intermediate level, the linear solver for S is not sensitive to the two structural parameters; the linear solver for A is affected
by both parameters. The dispersion parameter kd has a significant impact on the performance of the solver associated with
A. For the case of kd = 0.1, the solver for A requires slightly more than 200 iterations for convergence; for the case of
kd = 0.3, the number of iterations drops to around 100. As the dispersion parameter grows, there are more fibres providing
stiffness. Thus, the trend of n̄A is in agreement with the observations made in Section 5.1.3.

5.2.4. Parallel performance
We compare the performance of different preconditioners by performing a weak scaling test. The tolerance for the linear

solver is set to be δr = 10−3. In the nested block preconditioner, we set δrA = δrS = δrI = 10−3, and we use δrA = δrS = 10−3 for
the SIMPLE preconditioner. The computational mesh is progressively refined and each CPU is assigned with approximately
6.0 × 104 equations. We simulate the problem with two different time step sizes: �t = 10−1 and 10−5. The statistics of
the solver performance are collected for five time steps, and the results are reported in Table 8. The number of iterations
at the intermediate level shows a similar trend to the isotropic case studied in Section 5.1.4. The difference is that, for the
anisotropic material, the solver for A requires more iterations to converge when the time step size is large. The degradation
of the AMG preconditioner for anisotropic problems is known, and using a higher complexity coarsening, like the Falgout
method, will improve the performance [57]. Notably, for large time steps, the additive Schwarz preconditioner just cannot
deliver converged solutions within 10000 iterations, regardless of the spatial mesh size. Examining the results, the proposed
nested block preconditioner gives the most robust and efficient performance for most of the cases considered.

6. Conclusions

In this work, we designed a preconditioning technique based the novel hyper-elastodynamics formulation [1]. This pre-
conditioning technique is based on a series of block factorizations in the Newton–Raphson solution procedure [1,3,44] and
is inspired from the preconditioning techniques developed in the CFD community [27–30]. It uses the Schur complement
reduction with relaxed tolerances as the preconditioner inside a Krylov subspace method. This strategy enjoys the merits of
both the SCR approach and the fully coupled approaches. It shows better robustness and efficiency in comparison with the
SIMPLE and the additive Schwarz preconditioners. Tuning the intermediate and the inner solvers allows the user to adjust
the nested algorithm for specific problems to attain a balance between robustness and efficiency. In this work, to make the
presentation coherent, we adopted the same solver at the intermediate and the inner levels. In practice, one is advised to
flexibly apply the most efficient solver at the inner level. For example, one may symmetrize the matrix in (4.6) [30] and use
the conjugate gradient method as the inner solver. In our experience, this will further reduce the computational cost. In all,
the methodology developed in this work provides a sound basis for the design of effective preconditioning techniques for
hyper-elastodynamics.

There are several promising directions for future work. (1) Improvements will be made to design a better preconditioner
for the Schur complement. It is tempting to consider using the sparse approximate inverse method to construct this precon-
ditioner [64]. (2) Geometric multigrid preconditioners will be developed to replace the AMG preconditioner. This is expected
to further improve the scalability of the proposed solution method. (3) This preconditioning technique will be extended to
inelastic calculations [39,40] as well as FSI problems [1].

Acknowledgements

This work is supported by the National Institutes of Health under the award numbers 1R01HL121754 and 1R01HL123689,
the National Science Foundation (NSF) CAREER award OCI-1150184, and computational resources from the Extreme Science
and Engineering Discovery Environment (XSEDE) supported by the NSF grant ACI-1053575. The authors acknowledge TACC

J. Liu, A.L. Marsden / Journal of Computational Physics 383 (2019) 72–93 91
at the University of Texas at Austin for providing computing resources that have contributed to the research results reported
within this paper.

Appendix A. Consistent linearization

We report the explicit formulas of the residual vectors and tangent matrices used in the Newton–Raphson solution
procedure at the iteration step l. For notational simplicity, the subscript (l) is neglected in the following discussion.

Rm =
[
Ri
m,A

]
, (A.1)

Ri
m,A =

∫
�X

NA Jρ v̇ i + NA,I P̃ i I − NA,i Jp − NA Jρbid�X −
∫
	H
X

NAHid	X , (A.2)

Rp = [
Rp,A

]
, (A.3)

Rp,A =
∫

�X

J NA
(
β ṗ + vi,i

)
d�X +

∑
e

∫
�e

X

τ e
MNA,i

(
ρ J v̇ i − P̃ i J , J + Jp,i − ρ Jbi

)
d�X . (A.4)

In the above, we used the following notation conventions,

NA,I := ∂NA

∂ XI
, NA,i := ∂NA

∂xi
= ∂NA

∂ XI

∂ XI

∂xi
= ∂NA

∂ XI
F−1
I i , p,i = p,I F

−1
I i , P̃ i I := Jσ dev

i j F−1
I j .

Note that ρ = ρ(p) and β = β(p) are given by the constitutive relations, and Hi := hi ◦ ϕt .

A =
[
Ai j
AB

]
, (A.5)

Ai j
AB =αm

∫
�X

JρNANBd�Xδi j +
(
α f γ �tn

)2
αm

∫
�X

NA,I

(
S̃ I J δi j +A

ich
i I j J

)
NB, J d�X

+
(
α f γ �tn

)2
αm

∫
�X

JpNA,I

(
F−1
I j F−1

J i − F−1
I i F−1

J j

)
NB, J d�X

+
(
α f γ �tn

)2
αm

∫
�X

NAρ J (v̇ i − bi)NB, jd�X ,

B =
[
Bi
AB

]
, (A.6)

Bi
AB =α f γ �t

∫
�X

ρ,p J (v̇ i − bi)NANB − J NA,i NBd�X ,

C =
[
C j
AB

]
, (A.7)

C j
AB =αm

∑
e

∫
�e

X

τ e
Mρ J NA, j NBd�X + α f γ �t

∫
�X

J NANB, jd�X

+
(
α f γ �tn

)2
αm

∫
�X

Jβ ṗNANB, j + J NA
(
vi,i NB, j − vi, j NB,i

)
d�X

−
(
α f γ �tn

)2
αm

∑
e

∫
�e

X

τ e
MNA, jNB,i

(
ρ J v̇ i − P̃ i I,I + Jp,i − ρ Jbi

)
d�X

+
(
α f γ �tn

)2
αm

∑
e

∫
�e

X

τ e
M J NA,i

(
p,i NB, j − p, jNB,i

)
d�X

+
(
α f γ �tn

)2
αm

∑
e

∫
�e

τ e
MNA,i NB, jρ J (v̇ i − bi)d�X
X

92 J. Liu, A.L. Marsden / Journal of Computational Physics 383 (2019) 72–93
−
(
α f γ �tn

)2
αm

∑
e

∫
�e

X

τ e
MNA,i

(
S̃MNδi j +A

ich
iMjN

)
NB,MNd�X , (A.8)

D = [DAB] , (A.9)

DAB =αm

∫
�X

JβNANBd�X + α f γ �t

∫
�X

Jβ,p ṗNANBd�X

+ α f γ �t
∑
e

∫
�e

X

Jτ e
M

(
NA,i NB,i + ρ,p (v̇ i − bi)NA,i NB

)
d�X . (A.10)

In Ai j
AB and C j

AB , we used the following notation,

A
ich
i I j J := ∂Gich

∂ FiI∂ F j J
.

References

[1] J. Liu, A. Marsden, A unified continuum and variational multiscale formulation for fluids, solids, and fluid-structure interaction, Comput. Methods Appl.
Mech. Eng. 337 (2018) 549–597.

[2] T. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized
methods, Comput. Methods Appl. Mech. Eng. 127 (1995) 387–401.

[3] G. Scovazzi, B. Carnes, X. Zeng, S. Rossi, A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible
solid dynamics: a dynamic variational multiscale approach, Int. J. Numer. Methods Eng. 106 (2016) 799–839.

[4] A. Chorin, Numerical solution of the Navier–Stokes equations, Math. Comput. 22 (1968) 745–762.
[5] R. Teman, Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires (II), Arch. Ration. Mech. Anal. 33

(1969) 377–385.
[6] M. Benzi, G. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer. 14 (2005) 1–137.
[7] H. Elman, D. Silvester, A. Wathen, Finite Elements and Fast Iterative Solvers, 2nd edition, Oxford University Press, 2014.
[8] S. Turek, Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach, Springer Science & Business Media, 1999.
[9] D. Keyes, et al., Multiphysics simulations: challenges and opportunities, Int. J. High Perform. Comput. Appl. 27 (2013) 4–83.

[10] J. Kim, P. Moin, Application of a fractional-step method to incompressible Navier–Stokes equations, J. Comput. Phys. 59 (1985) 308–323.
[11] J. van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. Sci. Stat. Comput. 7 (1986) 870–891.
[12] G. Karniadakis, M. Israeli, S. Orszag, High-order splitting methods for the incompressible Navier–Stokes equations, J. Comput. Phys. 97 (1991) 414–443.
[13] J. Guermond, J. Shen, Velocity-correction projection methods for incompressible flows, SIAM J. Numer. Anal. 41 (2003) 112–134.
[14] J. Guermond, P. Minev, J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng. 195 (2006) 6011–6045.
[15] J. Perot, An analysis of the fractional step method, J. Comput. Phys. 108 (1993) 51–58.
[16] A. Quarteroni, F. Saleri, A. Veneziani, Factorization methods for the numerical approximation of Navier–Stokes equations, Comput. Methods Appl. Mech.

Eng. 188.
[17] H. Elman, V. Howle, J. Shadid, R. Shuttleworth, R. Tuminaro, A taxonomy and comparison of parallel block multi-level preconditioners for the incom-

pressible Navier–Stokes equations, J. Comput. Phys. 227 (2008) 1790–1808.
[18] S. Patankar, D. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, in: Numerical Prediction

of Flow, Heat Transfer, Turbulence and Combustion, Elsevier, 1983, pp. 54–73.
[19] D. Silvester, A. Wathen, Fast iterative solution of stabilised Stokes systems Part II: using general block preconditioners, SIAM J. Numer. Anal. 31 (1994)

1352–1367.
[20] H. Elman, Preconditioning for the steady-state Navier–Stokes equations with low viscosity, SIAM J. Sci. Comput. 20 (1999) 1299–1316.
[21] D. Kay, D. Loghin, A. Wathen, A preconditioner for the steady-state Navier–Stokes equations, SIAM J. Sci. Comput. 24 (2002) 237–256.
[22] H. Elman, V. Howle, J. Shadid, R. Shuttleworth, R. Tuminaro, Block preconditioners based on approximate commutators, SIAM J. Sci. Comput. 27 (2006)

1651–1668.
[23] M. Moghadam, Y. Bazilevs, A. Marsden, A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemo-

dynamics, Comput. Mech. 52 (2013) 1141–1152.
[24] D. May, L. Moresi, Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics, Phys. Earth Planet. Inter. 171

(2008) 33–47.
[25] L. Lun, A. Yeckel, J. Derby, A Schur complement formulation for solving free-boundary, Stefan problems of phase change, J. Comput. Phys. 229 (2010)

7942–7955.
[26] M. Furuichi, D. May, P. Tackley, Development of a Stokes flow solver robust to large viscosity jumps using a Schur complement approach with mixed

precision arithmetic, J. Comput. Phys. 230 (2011) 8835–8851.
[27] R. Bank, B. Welfert, H. Yserentant, A class of iterative methods for solving saddle point problems, Numer. Math. 56 (1990) 645–666.
[28] A. Baggag, A. Sameh, A nested iterative scheme for indefinite linear systems in particulate flows, Comput. Methods Appl. Mech. Eng. 193 (2004)

1923–1957.
[29] M. Manguoglu, A. Sameh, T. Tezduyar, S. Sathe, A nested iterative scheme for computation of incompressible flows in long domains, Comput. Mech. 43

(2008) 73–80.
[30] M. Manguoglu, A. Sameh, F. Saied, T. Tezduyar, S. Sathe, Preconditioning techniques for nonsymmetric linear systems in the computation of incom-

pressible flows, J. Appl. Mech. 76 (2009) 021204.
[31] M. Moghadam, Y. Bazilevs, A. Marsden, A bi-partitioned iterative algorithm for solving linear systems obtained from incompressible flow problems,

Comput. Methods Appl. Mech. Eng. 286 (2015) 40–62.
[32] E. Cyr, J. Shadid, R. Tuminaro, Stabilization and scalable block preconditioning for the Navier–Stokes equations, J. Comput. Phys. 231 (2012) 345–363.
[33] Y. Saad, M. Schultz GMRES, A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986)

856–869.

http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4C697532303138s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4C697532303138s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib48756768657331393935s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib48756768657331393935s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib53636F76617A7A6932303136s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib53636F76617A7A6932303136s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib43686F72696E31393638s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib54656D31393639s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib54656D31393639s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib42656E7A6932303035s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib456C6D616E32303134s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib547572656B31393939s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib442E452E4B6579657332303133s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4B696D31393835s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4B616E31393836s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4B61726E696164616B697331393931s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib477565726D6F6E6432303033s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib477565726D6F6E6432303036s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib5065726F7431393933s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib456C6D616E32303038s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib456C6D616E32303038s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib506174616E6B617231393833s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib506174616E6B617231393833s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib53696C76657374657231393934s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib53696C76657374657231393934s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib456C6D31393939s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4B617932303032s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib456C6D616E32303036s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib456C6D616E32303036s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4D6F67686164616D3230313361s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4D6F67686164616D3230313361s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4D617932303038s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4D617932303038s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4C756E32303130s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4C756E32303130s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib467572756963686932303131s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib467572756963686932303131s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib42616E6B31393930s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib42616767616732303034s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib42616767616732303034s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4D616E67756F676C7532303038s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4D616E67756F676C7532303038s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4D616E67756F676C7532303039s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4D616E67756F676C7532303039s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4D6F67686164616D32303135s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4D6F67686164616D32303135s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib43797232303132s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib5361616431393836s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib5361616431393836s1

J. Liu, A.L. Marsden / Journal of Computational Physics 383 (2019) 72–93 93
[34] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput. 14 (1993) 461–469.
[35] U. Yang, BoomerAMG: a parallel algebraic multigrid solver and preconditioner, Appl. Numer. Math. 41 (2002) 155–177.
[36] S. Reese, P. Wriggers, B. Reddy, A new locking-free brick element technique for large deformation problems in elasticity, Comput. Struct. 75 (2000)

291–304.
[37] T. Gasser, R. Ogden, G. Holzapfel, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc. Interface 3 (2006)

15–35.
[38] K. Jansen, C. Whiting, G. Hulbert, A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method,

Comput. Methods Appl. Mech. Eng. 190 (2000) 305–319.
[39] X. Zeng, G. Scovazzi, N. Abboud, O. Colomés Gene, S. Rossi, A dynamic variational multiscale method for viscoelasticity using linear tetrahedral ele-

ments, Int. J. Numer. Methods Eng. 112 (2017) 1951–2003.
[40] N. Abboud, G. Scovazzi, Elastoplasticity with linear tetrahedral elements: a variational multiscale method, Int. J. Numer. Methods Eng. 115 (2018)

913–955.
[41] T. Hughes, G. Hulbert, Space-time finite element methods for elastodynamics: formulation and error estimates, Comput. Methods Appl. Mech. Eng. 66

(1988) 339–363.
[42] J. Chung, G. Hulbert, A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method, J. Appl.

Mech. 60 (1993) 371–375.
[43] C. Kadapa, W. Dettmer, D. Perić, On the advantages of using the first-order generalised-alpha scheme for structural dynamic problems, Comput. Struct.

193 (2017) 226–238.
[44] S. Rossi, N. Abboud, G. Scovazzi, Implicit finite incompressible elastodynamics with linear finite elements: a stabilized method in rate form, Comput.

Methods Appl. Mech. Eng. 311 (2016) 208–249.
[45] F. Shakib, T. Hughes, Z. Johan, A multi-element group preconditioned GMRES algorithm for nonsymmetric systems arising in finite element analysis,

Comput. Methods Appl. Mech. Eng. 75 (1989) 415–456.
[46] L. Berger-Vergiat, C. McAuliffe, H. Waisman, Parallel preconditioners for monolithic solution of shear bands, J. Comput. Phys. 304 (2016) 359–379.
[47] S. Deparis, D. Forti, G. Grandperrin, A. Quarteroni, FaSCI: a block parallel preconditioner for fluid–structure interaction in hemodynamics, J. Comput.

Phys. 327 (2016) 700–718.
[48] S. Deparis, G. Grandperrin, A. Quarteroni, Parallel preconditioners for the unsteady Navier–Stokes equations and applications to hemodynamics simu-

lations, Comput. Fluids 92 (2014) 253–273.
[49] F. Verdugo, W. Wall, Unified computational framework for the efficient solution of n-field coupled problems with monolithic schemes, Comput. Meth-

ods Appl. Mech. Eng. 310 (2016) 335–366.
[50] J. White, R. Borja, Block-preconditioned Newton-Krylov solvers for fully coupled flow and geomechanics, Comput. Geosci. 15 (2011) 647.
[51] A. Wathen, D. Silvester, Fast iterative solution of stabilised Stokes systems. Part I: Using simple diagonal preconditioners, SIAM J. Numer. Anal. 30

(1993) 630–649.
[52] H. Elman, D. Silvester, A. Wathen, Block preconditioners for the discrete incompressible Navier–Stokes equations, Int. J. Numer. Methods Fluids 40

(2002) 333–344.
[53] I. Ipsen, A note on preconditioning nonsymmetric matrices, SIAM J. Sci. Comput. 23 (2001) 1050–1051.
[54] M. Murphy, G. Golub, A. Wathen, A note on preconditioning for indefinite linear systems, SIAM J. Sci. Comput. 21 (2000) 1969–1972.
[55] A.E. Maliki, M. Fortin, N. Tardieu, A. Fortin, Iterative solvers for 3D linear and nonlinear elasticity problems: displacement and mixed formulations, Int.

J. Numer. Methods Eng. 83 (2010) 1780–1802.
[56] V. Gurev, P. Pathmanathan, J. Fattebert, H. Wen, J. Magerlein, R. Gray, D. Richards, J. Rice, A high-resolution computational model of the deforming

human heart, Biomech. Model. Mechanobiol. 14 (2015) 829–849.
[57] V. Henson, U. Yang, BoomerAMG: a parallel algebraic multigrid solver and preconditioner, Appl. Numer. Math. 41 (2002) 155–177.
[58] R. Falgout, U. Yang, hypre: a library of high performance preconditioners, in: International Conference on Computational Science, Springer, 2002,

pp. 632–641.
[59] B. Smith, P. Bjorstad, W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University

Press, 2004.
[60] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, D. May, L. McInnes, K.

Rupp, P. Sanan, B. Smith, S. Zampini, H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 – Revision 3.8, Argonne National Laboratory, 2017.
[61] C. Geuzaine, J. Remacle, Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Biomed.

Eng. 79 (2009) 1309–1331.
[62] A. Bouras, V. Frayssé, Inexact matrix–vector products in Krylov methods for solving linear systems: a relaxation strategy, SIAM J. Matrix Anal. Appl. 26

(2005) 660–678.
[63] H.D. Sterck, U. Yang, J. Heys, Reducing complexity in parallel algebraic multigrid preconditioners, SIAM J. Matrix Anal. Appl. 27 (2006) 1019–1039.
[64] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners, SIAM J. Sci. Comput. 21 (2000) 1804–1822.

http://refhub.elsevier.com/S0021-9991(19)30044-0/bib5361616431393933s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib59616E6732303032s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib526565736532303030s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib526565736532303030s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib47617373657232303036s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib47617373657232303036s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4A616E73656E32303030s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4A616E73656E32303030s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib5A656E6732303137s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib5A656E6732303137s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4162626F756432303138s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4162626F756432303138s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib48756768657331393838s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib48756768657331393838s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4368756E6731393933s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4368756E6731393933s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4B616461706132303137s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4B616461706132303137s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib526F73736932303136s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib526F73736932303136s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib5368616B696231393839s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib5368616B696231393839s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4265726765722D5665726769617432303136s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4465706172697332303136s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4465706172697332303136s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4465706172697332303134s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4465706172697332303134s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib5665726475676F32303136s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib5665726475676F32303136s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib576869746532303131s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib57617468656E31393933s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib57617468656E31393933s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib456C6D616E32303032s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib456C6D616E32303032s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib497073656E32303031s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4D757270687932303030s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4D616C696B6932303130s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4D616C696B6932303130s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib477572657632303135s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib477572657632303135s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib48656E736F6E32303032s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib46616C676F757432303032s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib46616C676F757432303032s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib536D69746832303034s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib536D69746832303034s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib70657473632D757365722D726566s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib70657473632D757365722D726566s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4765757A61696E6532303039s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib4765757A61696E6532303039s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib426F7572617332303035s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib426F7572617332303035s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib53746572636B32303036s1
http://refhub.elsevier.com/S0021-9991(19)30044-0/bib43686F7732303030s1

	A robust and efﬁcient iterative method for hyper-elastodynamics with nested block preconditioning
	1 Introduction
	1.1 Projection method and block preconditioners
	1.2 Nested preconditioning technique
	1.3 Structure and content of the paper

	2 Hyper-elastodynamics
	3 Numerical formulation
	3.1 Variational multiscale formulation
	3.2 Temporal discretization
	3.3 A segregated predictor multi-corrector algorithm

	4 Iterative linear solver
	4.1 Symmetrically diagonal scaling
	4.2 Schur complement reduction
	4.3 Coupled approach with block preconditioners
	4.4 Flexible GMRES algorithm with a nested block preconditioner

	5 Numerical results
	5.1 Compression of a block
	5.1.1 Performance with varying inner solver accuracy
	5.1.2 Performance with varying intermediate solver accuracy
	5.1.3 Performance with varying material properties
	5.1.4 Parallel performance

	5.2 Tensile test of an anisotropic ﬁbre-reinforced hyperelastic soft tissue model
	5.2.1 Performance with varying inner solver accuracy
	5.2.2 Performance with varying intermediate solver accuracy
	5.2.3 Performance with varying ﬁbre orientations and dispersions
	5.2.4 Parallel performance

	6 Conclusions
	Acknowledgements
	Appendix A Consistent linearization
	References

