INVITED
PAPER

Deep Learning With Edge
Computing: A Review

This article provides an overview of applications where deep learning is used at the
network edge. Computer vision, natural language processing, network functions, and
virtual and augmented reality are discussed as example application drivers.

By JiAs1 CHEN" AND XUKAN RAN

ABSTRACT | Deep learning is currently widely used in a vari-
ety of applications, including computer vision and natural
language processing. End devices, such as smartphones and
Internet-of-Things sensors, are generating data that need to
be analyzed in real time using deep learning or used to
train deep learning models. However, deep learning inference
and training require substantial computation resources to run
quickly. Edge computing, where a fine mesh of compute nodes
are placed close to end devices, is a viable way to meet
the high computation and low-latency requirements of deep
learning on edge devices and also provides additional bene-
fits in terms of privacy, bandwidth efficiency, and scalability.
This paper aims to provide a comprehensive review of the
current state of the art at the intersection of deep learning
and edge computing. Specifically, it will provide an overview
of applications where deep learning is used at the network
edge, discuss various approaches for quickly executing deep
learning inference across a combination of end devices, edge
servers, and the cloud, and describe the methods for training
deep learning models across multiple edge devices. It will also
discuss open challenges in terms of systems performance,
network technologies and management, benchmarks, and pri-
vacy. The reader will take away the following concepts from
this paper: understanding scenarios where deep learning at
the network edge can be useful, understanding common tech-
niques for speeding up deep learning inference and performing
distributed training on edge devices, and understanding recent
trends and opportunities.

KEYWORDS | Artificial intelligence; edge computing; machine
learning; mobile computing; neural networks.

Manuscript received February 7, 2019; revised April 30, 2019; accepted May 29,
2019. Date of publication July 15, 2019; date of current version August 5, 2019.
This work was supported in part by NSF CNS-1817216. (Corresponding author:
Jiasi Chen.)

The authors are with the Department of Computer Science and Engineering,
University of California at Riverside, Riverside, CA USA (e-mail: jiasi@cs.ucr.edu).

Digital Object Identifier 10.1109/JPROC.2019.2921977

I. INTRODUCTION

Deep learning has recently been highly successful in
machine learning across a variety of application domains,
including computer vision, natural language processing,
and big data analysis, among others. For example, deep
learning methods have consistently outperformed tradi-
tional methods for object recognition and detection in
the ISLVRC Computer Vision Competition since 2012 [1].
However, deep learning’s high accuracy comes at the
expense of high computational and memory requirements
for both the training and inference phases of deep learning.
Training a deep learning model is space and computation-
ally expensive due to millions of parameters that need to
be iteratively refined over multiple time periods. Inference
is computationally expensive due to the potentially high
dimensionality of the input data (e.g., a high-resolution
image) and millions of computations that need to be
performed on the input data. High accuracy and high
resource consumption are defining characteristics of deep
learning.

To meet the computational requirements of deep learn-
ing, a common approach is to leverage cloud computing.
To use cloud resources, data must be moved from the
data source location on the network edge [e.g., from
smartphones and Internet-of-Things (IoT) sensors] to a
centralized location in the cloud. This potential solution
of moving the data from the source to the cloud introduces
several challenges.

1) Latency: Real-time inference is critical to many
applications. For example, camera frames from an
autonomous vehicle need to be quickly processed to
detect and avoid obstacles or a voice-based-assistive
application needs to quickly parse and understand
the user’s query and return a response. However,
sending data to the cloud for inference or train-
ing may incur additional queuing and propaga-
tion delays from the network and cannot satisfy

0018-9219 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1655

https://orcid.org/0000-0001-9923-9027

Chen and Ran: Deep Learning With Edge Computing: A Review

strict end-to-end low-latency requirements needed
for real time, interactive applications; for example,
real experiments have shown that offloading a cam-
era frame to an Amazon Web Services server and
executing a computer vision task take more than
200-ms end-to-end [2].

2) Scalability: Sending data from the sources to the
cloud introduces scalability issues, as network access
to the cloud can become a bottleneck as the num-
ber of connected devices increases. Uploading all
data to the cloud is also inefficient in terms of
network resource utilization, particularly if not all
data from all sources are needed by the deep learn-
ing. Bandwidth-intensive data sources, such as video
streams, are particularly a concern.

3) Privacy: Sending data to the cloud risks privacy
concerns from the users who own the data or
whose behaviors are captured in the data. Users
may be wary of uploading their sensitive informa-
tion to the cloud (e.g., faces or speech) and of
how the cloud or application will use these data.
For example, the recent deployment of cameras
and other sensors in a smart city environment in
New York City incurred serious concerns from pri-
vacy watchdogs [3].

Edge computing is a viable solution to meet the latency,
scalability, and privacy challenges described earlier in
this section. In edge computing, a fine mesh of compute
resources provides computational abilities close to the end
devices [4]. For example, an edge compute node could
be co-located with a cellular base station and an IoT
gateway or on a campus network. Edge computing is
already being deployed by industry; for example, a major
cellular Internet service provider in the United States and
a national fast-food chain have both deployed edge com-
pute services [5], [6]. To address latency challenges, edge
computing’s proximity to data sources on the end devices
decreases end-to-end latency and thus enables real-time
services. To address scalability challenges, edge computing
enables a hierarchical architecture of end devices, edge
compute nodes, and cloud data centers that can pro-
vide computing resources and scale with the number of
clients, avoiding network bottlenecks at a central location.
To address privacy challenges, edge computing enables
data to be analyzed close to the source, perhaps by a local
trusted edge server, thus avoiding traversal of the public
Internet and reducing exposure to privacy and security
attacks.

While edge computing can provide the latency, scalabil-
ity, and privacy benefits discussed earlier in this section,
several major challenges remain to realize deep learning at
the edge. One major challenge is accommodating the high
resource requirements of deep learning on less powerful
edge compute resources. Deep learning needs to execute
on a variety of edge devices, ranging from reasonably
provisioned edge servers equipped with a GPU, to smart-
phones with mobile processors, to barebones Raspberry

1656 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Cloud data
center

il

/ Deep learning
Deep

FTTTN
=BA =@
/N /’1\

a» i U P

Deep
learning

Edge devices

End devices

Fig. 1. Deep learning can execute on edge devices (i.e., end
devices and edge servers) and on cloud data centers.

Pi devices. A second challenge is understanding how the
edge devices should coordinate with other edge devices
and with the cloud, under heterogeneous processing capa-
bilities and dynamic network conditions, to ensure a good
end-to-end application-level performance. Finally, privacy
remains a challenge, even as edge computing naturally
improves privacy by keeping data local to the network
edge, as some data often still need to be exchanged
between edge devices and possibly the cloud. Researchers
have proposed various approaches from diverse angles to
tackle these challenges, ranging from hardware design to
system architecture to theoretical modeling and analy-
sis. The purpose of this paper is to survey works at
the confluence of the two major trends of deep learning
and edge computing, in particular focusing on the soft-
ware aspects and their unique challenges therein. While
excellent surveys exist on deep learning [7] as well as
edge computing [8], [9] individually, this paper focuses on
works at their intersection.

Deep learning on edge devices has similarities to, but
also differences from, other well-studied areas in the litera-
ture. Compared to cloud computing that can help run com-
putationally expensive machine learning (e.g., machine
learning as a service), edge computing has several advan-
tages, such as lower latency and greater geospatial speci-
ficity that have been leveraged by researchers [10]. Several
works have combined edge computing with cloud com-
puting, resulting in hybrid edge-cloud architectures [11].
Compared to traditional machine learning methods (out-
side of deep learning), deep learning’s computational
demands are particularly a challenge, but deep learning’s
specific internal structure can be exploited to address
this challenge (see [12]-[14]). Compared to the growing
body of work on deep learning for resource-constrained
devices, edge computing has additional challenges relat-
ing to shared communication and computation resources
across multiple edge devices.

In the rest of this paper, we define the edge devices
that include both end devices (e.g., smartphones or IoT
sensors), as well as edge compute nodes or servers,
as shown in Fig. 1. This paper is organized as follows.

\ A ',i.* > Cat 0.97

»Dog 0.03

Input Image

Fig. 2. DNN example of image classification.

We first provide a brief background on deep learning
(see Section II). We then describe several application
domains where deep learning on the network edge can be
useful (see Section III). In Section IV, we discuss different
architectures and methods to speed up deep learning infer-
ence, focusing on device-only execution, always computing
on the edge server, and intermediate alternatives, such as
offloading, hybrid edge-cloud, and distributed computing
approaches. We then discuss training deep learning models
on edge devices, with an emphasis on distributed training
across devices and privacy (see Section V). Finally, we fin-
ish with open research challenges (see Section VI) and
conclusions (see Section VII).

II. BACKGROUND, MEASUREMENTS,
AND FRAMEWORKS

A. Background on Deep Learning

Since some of the techniques discussed in this paper
rely on the specific internals of deep learning, therefore,
we first provide a brief background on deep learning.
Further details can be found in reference texts (see [7]).

A deep learning prediction algorithm, also known as a
model, consists of a number of layers, as shown in Fig. 2.
In deep learning inference, the input data pass through
the layers in sequence, and each layer performs matrix
multiplications on the data. The output of a layer is
usually the input to the subsequent layer. After data are
processed by the final layer, the output is either a feature
or a classification output. When the model contains many
layers in sequence, the neural network is known as a
deep neural network (DNN). A special case of DNNs is
when the matrix multiplications include convolutional fil-
ter operations, which is common in DNNs that are designed
for image and video analysis. Such models are known
as convolutional neural networks (CNNs). There are also
DNNs designed especially for time series prediction; these
are called recurrent neural networks (RNNs) [7], which
have loops in their layer connections to keep state and
enable predictions on sequential inputs.

In deep learning training, the computation proceeds
in reverse order. Given the ground-truth training labels,
multiple passes are made over the layers to optimize the
parameters of each layer of matrix multiplications, starting
from the final layer and ending with the first layer. The
algorithm used is typically stochastic gradient descent.

Chen and Ran: Deep Learning With Edge Computing: A Review

Table 1 Common Performance Metrics

Performance metrics

Latency (s)

Energy (mW, J)

Concurrent requests served (#)
Network bandwidth (Mbps)
Accuracy (application-specific)

In each pass, a randomly selected “mini-batch” of samples
is selected and used to update the gradients in the direction
that minimizes the training loss (where the training loss is
defined as the difference between the predictions and the
ground truth). One pass through the entire training data
set is called a training epoch [15].

A key takeaway for the purposes of this work is that
there are a large number of parameters in the matrix
multiplications, resulting in many computations being
performed and thus the latency issues that we see on
end devices. A second takeaway is that there are many
choices (hyperparameters) on how to design the DNN
models (e.g., the number of parameters per layer, and the
number of layers), which makes the model design more of
an art than a science. Different DNN design decisions result
in tradeoffs between system metrics; for example, a DNN
with higher accuracy likely requires more memory to store
all the model parameters and will have higher latency
because of all the matrix multiplications being performed.
On the other hand, a DNN model with fewer parameters
will likely execute more quickly and use less computa-
tional resources and energy, but it may not have sufficient
accuracy to meet the application’s requirements. Several
works exploit these tradeoffs, which will be discussed in
Sections IV-B and IV-C.

B. Measurements of Deep Learning Performance

Deep learning can be used to perform both supervised
learning and unsupervised learning. The metrics of success
depend on the particular application domain where deep
learning is being applied. For example, in object detection,
the accuracy may be measured by the mean average preci-
sion (mAP) [1], which measures how well the predicted
object location overlaps with the ground-truth location,
averaged across multiple categories of objects. In machine
translation, the accuracy can be measured by the bilin-
gual evaluation understudy score metric [16], which com-
pares a candidate translation with several ground-truth
reference translations. Other general system performance
metrics not specific to the application include through-
put, latency, and energy. These metrics are summarized
in Table 1.

Designing a good DNN model or selecting the right DNN
model for a given application is challenging due to the
large number of hyperparameter decisions. A good under-
standing of the tradeoffs between the speed, accuracy,
memory, energy, and other system resources can be helpful
for the DNN model designer or the application developer.
These comparative measurements are typically presented

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1657

Chen and Ran: Deep Learning With Edge Computing: A Review

in research papers proposing new models or standalone
measurement papers [17]. An especially important consid-
eration in the context of edge computing is the testbed
that the measurements are conducted on. Machine learn-
ing research typically focuses on accuracy metrics, and
their system performance results are often reported from
powerful server testbeds equipped with GPUs. For exam-
ple, Huang et al. [17] compared the speed and accuracy
tradeoffs when running on a high-end gaming GPU (Nvidia
Titan X). The YOLO DNN model [18], which is designed
for real-time performance, provides timing measurements
on the same server GPU.

Specifically targeting mobile devices, Lu et al. [19] pro-
vided the measurements for a number of popular DNN
models on mobile CPUs and GPUs (Nvidia TK1 and TX1).
Ran et al. [20] further explored the accuracy-latency
tradeoffs on mobile devices by measuring how reducing
the dimensionality of the input size reduces the overall
accuracy and latency. DNN models designed specifically
for mobile devices, such as MobileNets [21], report system
performance in terms of a number of multiply—add opera-
tions, which could be used to estimate latency characteris-
tics and other metrics on different mobile hardware, based
on the processing capabilities of the hardware.

Once the system performance is understood, the applica-
tion developer can choose the right model. There has also
been much recent interest in automated machine learning,
which uses artificial intelligence to choose which DNN
model to run and tune the hyperparameters. For exam-
ple, Tan et al. [22] and Taylor et al. [23] proposed using
reinforcement learning and traditional machine learn-
ing, respectively, to choose the right hyperparameters for
mobile devices, which is useful in edge scenarios.

C. Frameworks Available for DNN Inference
and Training

To experiment with deep learning models, researchers
commonly turn to open-source software libraries and
hardware development kits. Several open-source software
libraries are publicly available for deep learning inference
and training on end devices and edge servers. Google’s
TensorFlow [24], released in 2015, is an interface for
expressing machine learning algorithms and an implemen-
tation for executing such algorithms on heterogeneous
distributed systems. Tensorflow’s computation workflow
is modeled as a directed graph and utilizes a placement
algorithm to distribute computation tasks based on the
estimated or measured execution time and communica-
tion time [25]. The placement algorithm uses a greedy
approach that places a computation task on the node
that is expected to complete the computation the soonest.
Tensorflow can run on edge devices, such as Raspberry Pi
and smartphones. TensorFlow Lite was proposed in the late
2017 [26], which is an optimized version of Tensorflow
for mobile and embedded devices, with mobile GPU sup-
port added in early 2019. Tensorflow Lite only provides

1658 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

on-device inference abilities, not training, and achieves
low latency by compressing a pre-trained DNN model.

Caffe [27]-[29] is another deep learning framework,
originally developed by Jia, with the current version,
Caffe2, maintained by Facebook. It seeks to provide an easy
and straightforward way for deep learning with a focus on
mobile devices, including smartphones and Raspberry Pis.
PyTorch [30] is another deep learning platform developed
by Facebook, with its main goal differing from Caffe2 in
which it focuses on the integration of research proto-
types to production development. Facebook has recently
announced that Caffe2 and PyTorch will be merging.

GPUs are an important factor in efficient DNN inference
and training. Nvidia provides GPU software libraries to
make use of Nvidia GPUs, such as CUDA [31] for general
GPU processing and cuDNN [32] which is targeted toward
deep learning. While such libraries are useful for training
DNN models on a desktop server, cuDNN and CUDA are
not widely available on current mobile devices such as
smartphones. To utilize smartphone GPUs, Android devel-
opers can currently make use of Tensorflow Lite, which
provides experimental GPU capabilities. To experiment
with edge devices other than smartphones, researchers can
turn to edge-specific development kits, such as the Nvidia
Jetson TX2 development kit for experimenting with edge
computing (e.g., as used in [33]), with Nvidia-provided
SDKs used to program the devices. The Intel Edison kit
is another popular platform for experimentation, which
is designed for IoT experiments (e.g., as used in [34]).
Additional hardware-based platforms will be discussed in
Section IV-A3.

IIl. APPLICATIONS OF DEEP LEARNING
AT THE EDGE

We now describe several example applications where deep
learning on edge devices is useful, and what “real time”
means for each of these applications. Other applications
of deep learning exist alongside the ones described in the
following; here, for brevity, we highlight several applica-
tions that are relevant in the edge computing context. The
common theme across these applications is that they are
complex machine learning tasks where deep learning has
been shown to provide good performance and they need
to run in real time and/or have privacy concerns, hence
necessitating inference and/or training on the edge.

A. Computer Vision

Since the success of deep learning in the ISLVRC
Computer Vision Competition from 2012 onward [1], deep
learning has been recognized as the state of the art for
image classification and object detection. Image classifica-
tion and object detection are fundamental computer vision
tasks that are needed in a number of specific domains,
such as video surveillance, object counting, and vehicle
detection. Such data naturally originate from cameras
located at the network edge, and there have even been

commercial cameras released with built-in deep learning
capabilities [35]. Real-time inference in computer vision
is typically measured in terms of frame rate [36], which
could be up to the frame rate of the camera, typically
30-60 frames/s. Uploading camera data to the cloud also
has privacy concerns, especially if the camera frames con-
tain sensitive information, such as people’s faces or private
documents, further motivating computation at the edge.
Scalability is a third reason why edge computing is useful
for computer vision tasks, as the uplink bandwidth to a
cloud server may become a bottleneck if there are a large
number of cameras uploading large video streams.

Vigil [37] is one example of an edge-based computer
vision system. Vigil consists of network of wireless cam-
eras that perform processing at edge compute nodes to
intelligently select frames for analysis (object detection
or counting), for example, to search for missing people
in surveillance cameras or analyze customer queues in
retail environments. The motivation for edge computing
in Vigil is twofold: to reduce the bandwidth consumption
compared to a naive approach of uploading all frames to
the cloud for analysis and for scalability as the number of
cameras increases.

VideoEdge [38] similarly motivates the edge-based
video analysis from a scalability standpoint. They use a
hierarchical architecture of edge and cloud compute nodes
to help with load balancing while maintaining high predic-
tion accuracy (further details are provided in Section IV).
Commercial devices, such as Amazon DeepLens [35], also
follow an edge-based approach, where image detection is
performed locally in order to reduce latency, and scenes
of interest are only uploaded to the cloud for remote
viewing if an interesting object is detected, in order to save
bandwidth.

B. Natural Language Processing

Deep learning has also become popular for natural
language processing tasks [39], including for speech
synthesis [40], named entity recognition [41] (under-
standing different parts of a sentence), and machine
translation [42] (translating from one language to
another). For conversational artificial intelligence, latency
on the order of hundreds of milliseconds has been achieved
in recent systems [43]. At the intersection of natural lan-
guage processing and computer vision, there are also visual
question-and-answer systems [44], where the goal is to
pose questions about an image (e.g., “how many zebras
are in this image?”) and receive natural language answers.
Latency requirements differ based on how information is
presented; for example, conversational replies are prefer-
ably returned within 10 ms, while a response to a written
Web query can tolerate around 200 ms [45].

An example of natural language processing on the edge
is voice assistants, such as Amazon Alexa or Apple Siri.
While voice assistants perform some of their processing
in the cloud, they typically use on-device processing to

Chen and Ran: Deep Learning With Edge Computing: A Review

detect wakewords (e.g., “Alexa” or “Hey Siri”). Only if
the wakeword is detected, then the voice recording is
sent to the cloud for further parsing, interpretation, and
query response. In the case of Apple Siri, the wakeword
processing uses two on-device DNNs to classify speech into
one of 20 classes (including general speech, silence, and
wakeword) [46]. The first DNN is smaller (5 layers with
32 units) and runs on a low-power always-ON processor.
If the first DNN’s output is above a threshold, it triggers a
second, more powerful DNN (5 layers with 192 units) on
the main processor.

Wakeword detection methods need to be further mod-
ified to run on even more computationally constrained
devices, such as a smartwatch or an Arduino. On the Apple
Watch, a single DNN is used, with a hybrid structure bor-
rowing from the aforementioned two-pass approach. For
speech processing on an Arduino, researchers from
Microsoft optimized an RNN-based wakeword (“Hey Cor-
tana”) detection module to fit in 1 kB of memory [47].
Overall, while edge computing is currently used for wake-
word detection on edge devices, latency remains a sig-
nificant issue for more complex natural language tasks
(e.g., a professional translator can translate 5x faster
than Google Translate with the Pixel Buds earbuds [48]),
as well as the need for constant cloud connectivity.

C. Network Functions

Using deep learning for network functions, such
as for intrusion detection [49], [50] and wireless
scheduling [51], has been proposed. Such systems,
by definition, live on the network edge and need to
operate with stringent latency requirements. For example,
an intrusion detection system that actively responds to
a detected attack by blocking malicious packets needs
to perform detection at a line rate to avoid creating a
bottleneck, e.g., 40 us [52]. If the intrusion detection
system operates in the passive mode, however, its
latency requirements are less strict. A wireless scheduler
also needs to operate at a line rate in order to make
real-time decisions on which packets should be delivered
where.

In-network caching is another example of a network
function that can use deep learning at the network edge.
In an edge computing scenario, different end devices in the
same geographical region may request the same content
many times from a remote server. Caching such contents
at an edge server can significantly reduce the perceived
response time and network traffic. There are generally two
approaches to apply deep learning in a caching system: use
deep learning for content popularity prediction or use deep
reinforcement learning to decide a caching policy [53].
Saputra et al. [54], for example, used deep learning to pre-
dict content popularity. To train the deep learning model,
the cloud collects the content popularity information from
all of the edge caches. Deep reinforcement learning for
caching, on the other hand, avoids popularity prediction

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1659

Chen and Ran: Deep Learning With Edge Computing: A Review

and is solely based on reward signals from its actions.
Chen et al. [55], for example, trained deep reinforce-
ment learning for caching using the cache hit rate as the
reward.

D. Internet of Things

Automatic understanding of IoT sensor data is desired
in several verticals, such as wearables for healthcare,
smart city, and smart grid. The type of analysis that is
performed on these data depends on the specific IoT
domain, but deep learning has been shown to be success-
ful in several of them. Examples include human activity
recognition from wearable sensors [56], pedestrian traffic
in a smart city [57], and electrical load prediction in a
smart grid [58]. One difference in the IoT context is that
there may be multiple streams of data that need to be
fused and processed together, and these data streams
typically have space and time correlation that should be
leveraged by the machine learning. DeepSense [56] is
one framework geared toward IoT data fusion leveraging
spatiotemporal relationships. It proposes a general deep
learning framework that incorporates a hierarchy of CNNs
(to capture multiple sensor modalities) and RNNs (to
capture temporal correlations) and demonstrates how this
general framework can be applied to different tasks with
multiple sensor inputs: car tracking, human activity recog-
nition, and biometric identification using inertial sensors
(gyroscope, accelerometer, and magnetometer).

Another line of work in the context of IoT deep learn-
ing focuses on compressing the deep learning models
to fit onto computationally weak end devices, such as
Arduino or Raspberry Pi, which typically have only kilo-
bytes of memory and low-power processors. Bonsai [59]
does experiments with Arduino Uno, DeepThings [60]
experiments with Raspberry Pi 3, and DeeploT [34] works
with Intel’s IoT platform, the Edison board. More details
on how they shrink the deep learning model to fit in
memory and run on these lightweight devices are dis-
cussed in Section IV. Other examples of applying deep
learning on IoT scenarios, including agriculture, industry,
and smart home, can be found in the excellent survey by
Mohammadi et al. [61].

Another motivation for edge computing with IoT devices
is that the significant privacy concerns when IoT sensors
are placed in public locations; for example, the Hudson
Yards smart city development in New York City seeks
to use air quality, noise, and temperature sensors, along
with cameras, to provide advertisers with estimates of
how many and how long people looked at advertisements,
as well as their sentiment based on facial expressions.
However, this has raised significant warnings from privacy
watchdogs [3]. Thus, while analyzing IoT sensor data in
real time is not always a requirement, and communication
bandwidth requirements from sensors are typically small
(unless cameras are involved), privacy is a major concern
that motivates IoT processing on the edge.

1660 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

E. Virtual Reality and Augmented Reality

In 360° virtual reality (VR), deep learning has been
proposed to predict the field of view of the user [62]-[64].
These predictions are used to determine which spatial
regions of the 360° video to fetch from the content
provider and must be computed in real time to minimize
stalls and maximize the quality-of-experience of the user.
In augmented reality (AR), deep learning can be used to
detect objects of interest in the user’s field of view and
apply virtual overlays on top [33], [65].

Latency in AR/VR is often measured in terms of the
“motion-to-photons” delay. This is defined as the end-
to-end delay starting from when the user moves her
headset to when the display is updated in response to
her movement. Motion-to-photons’ latency is typically
required to be on the order of tens to hundreds of
milliseconds [66]. Since deep learning is only one possible
part of the AR/VR pipeline (retrieving virtual objects from
memory and rendering them can also consume signifi-
cant latency), the motion-to-photons’ latency requirement
is an upper bound on the latency requirement of deep
learning. The motion-to-photons’ latency requirement also
depends on the specific application and the type of user
interaction in that application; Chen et al. provided the
latency requirements for different cognitive assistance AR
applications [67]. Since offloading AR computation to the
cloud can incur latencies on the order of hundreds of mil-
liseconds, edge computing is needed to provide satisfactory
performance, as it is done in Gabriel, a cognitive assistance
framework using Google Glass [68].

IV. METHODS FOR FAST INFERENCE

To enable the above-mentioned applications to meet their
latency requirements, different architectures for quickly
performing DNN inference have been proposed. In this
section, we discuss research centered around three major
architectures: 1) on-device computation, where DNNs are
executed on the end device; 2) edge server-based archi-
tectures, where data from the end devices are sent to
one or more edge servers for computation; and 3) joint
computation among end devices, edge servers, and the
cloud. We also discuss privacy-preserving techniques when
data are communicated between edge devices and with the
cloud, as in scenarios 1 and 2. Fig. 3 shows the taxonomy of
these methods, and Fig. 5 shows the examples of different
scenarios, which will be discussed in further detail in
the following. Tables 2 and 3 provide a summary of the
discussed works.

A. On-Device Computation

Many research efforts have focused on ways to reduce
the latency of deep learning when it is executed on
a resource-constrained device [see Fig. 5(a)]. Such
efforts can have benefits throughout the edge ecosystem,
by reducing the latency of the DNN while running on

{Methods for fast inference (§IV)]

N

On-device Edge server Computing
computation I computation I across edge I
(§IV-A) (§IV-B) devices (§IV-C)

- Data pre- -

——| Model design processing ——»| Offloading
Model Resource DNN partition-
compression management ing

Edge devices
plus the cloud
Distributed
computing
[Private inference (§IV-D))

Secure
computation

Fig. 3. Taxonomy of DNN inference speedup methods on the edge.

the end devices or edge servers. Here, we describe major
efforts in efficient hardware and DNN model design.

1) Model Design: When designing DNN models
for resource-constrained devices, machine learning
researchers often focus on designing models with a
reduced number of parameters in the DNN model, thus
reducing memory and execution latency, while aiming
to preserve high accuracy. There are many techniques
for doing so, and we briefly mention several popular
deep learning models for resource-constrained devices
drawn from computer vision. These models include
MobileNets [21], solid-state drive (SSD) [69], YOLO [18],
and SqueezeNet [70], with the state of the art that is
evolving rapidly. MobileNets decomposes the convolution
filters into two simpler operations, reducing the number
of computations needed. SqueezeNet downsamples the
data using special 1 x 1 convolution filters. YOLO and
SSD are both single shot detectors that jointly predict the
location and class of the object at the same time, which
is much faster than performing these steps sequentially.
Many of these models, with pre-trained weights, are
available for download on open-source machine learning
platforms such as Tensorflow [24] and Caffe [28] for
fast bootstrapping.

2) Model Compression: Compressing the DNN model
is another way to enable DNNs on edge devices. Such
methods usually seek to compress the existing DNN
models with minimal accuracy loss compared with
the original model. There are several popular model
compression methods: parameter quantization, parameter
pruning, and knowledge distillation. We briefly outline
these approaches in the following.

Chen and Ran: Deep Learning With Edge Computing: A Review

Parameter quantization takes an existing DNN and com-
presses its parameters by changing from floating-point
numbers to low-bit width numbers, thus avoiding costly
floating-point multiplications. Pruning involves removing
the least important parameters (e.g., those that are close
to 0), as shown in Fig. 4. Quantization and pruning
approaches have been considered individually as well
as jointly [71]. Specifically for edge and mobile devices,
DeeploT [34] presents a pruning method for commonly
used deep learning structures in IoT devices, and the
pruned DNN can be immediately deployed on edge devices
without modification. Lai and Suda [72] provided CMSIS-
NN, a library for ARM Cortex-M processors that maximize
DNN performance through quantization. It also optimizes
data reuse in matrix multiplication to speed up DNN execu-
tion. Han et al. [73] proposed pruning and quantization for
an RNN model, with 10x speedup resulting from pruning
and 2x from quantization. Bhattacharya and Lane [74]
compressed the neural network by sparsifying the fully
connected layers and decomposing the convolutional fil-
ters on wearable devices.

Knowledge distillation involves creating a smaller DNN
that imitates the behavior of a larger, more powerful
DNN [75]. This is done by training the smaller DNN using
the output predictions produced from the larger DNN.
Essentially, the smaller DNN approximates the function
learned by the larger DNN. Fast exiting [76] is another
technique where not all layers are computed; only the
result from computing the initial layers is used to provide
approximate classification results.

Several works have explored the combinations of these
model compression techniques. Adadeep [77] automati-
cally chooses between different compression techniques,
including pruning and the special filter structures bor-
rowed from MobileNet and SqueezeNet, to meet applica-
tion requirements and satisfy mobile resource constraints.
DeepMon [78] combines quantization with caching of
results from intermediate layers on GPUs. The caching
leverages the insight that an input video does not change
much between the subsequent frames, so some compu-
tation results from a previous frame can be reused in
the current frame, reducing redundant computations and
speeding up execution.

Pruning connections

Pruning neurons W
EE—

7

[TE

J
R

Fig. 4. Pruning a neural network.

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1661

Chen and Ran: Deep Learning With Edge Computing: A Review

Edge device
Small DNN - =
200 Protocol
(b)
(@
Edge server
Edge device
Offloading| Preprocessed
decision data
Run
locally
,&gﬁ%‘ Final result
/ N
Cat 0.9 Dog 0.1 P ~
Cat0.95 Dog 0.05
(d)

Intermediate
Result

Intermediate
result

]

Edge device

;

Final result

Edge server

Final result

(©
RS
Input
Output
Cat 0.95
Final result Dog 0.05
Phone Other loT device ﬁ

(e)

Fig. 5. Architectures for deep learning inference with edge computing. (a) On-device computation. (b) Secure two-party communication.

(c) Computing across edge devices with DNN model partitioning. (d) Offloading with model selection. (e) Distributed computing with DNN

model partitioning.

3) Hardware: To speed up inference of deep learn-
ing, hardware manufacturers are leveraging existing hard-
ware such as CPUs and GPUs, as well as producing
custom application-specific integrated circuits (ASICs) for
deep learning, such as Google’s tensor processing unit
(TPU) [79]. ShiDianNao [80] is another recently proposed
custom ASIC, which focuses on efficient memory accesses
in order to reduce latency and energy consumption. It is
part of the DianNao [81] family of DNN accelerators, but
it is geared toward embedded devices, which is useful
in the edge computing context. field-programmable gate
array (FPGA)-based DNN accelerators are another promis-
ing approach, as FPGA can provide fast computation while
maintaining re-configurability [82]. These custom ASICs
and FPGA designs are generally more energy efficient than
the traditional CPUs and GPUs, which are designed for
flexible support of various workloads at the expense of
higher energy consumption.

Vendors also provide software tools for application
developers to leverage the accelerations provided by
the hardware. Chip manufacturers have developed soft-
ware tools to optimize deep learning on the existing
chips, such as Intel’s OpenVINO Toolkit to leverage Intel
chips, including Intel’s CPUs, GPUs, FPGAs, and vision
processing unit [83], [84]. Nvidia’s EGX platform [85] is
another recent entrant into this space, with support for
Nvidia hardware ranging from lightweight Jetson Nanos
to powerful T4 servers. Qualcomm’s Neural Processing

1662 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

software development kit (SDK) is designed to utilize its
Snapdragon chips [86]. There are also general libraries
developed for mobile devices not tied to specific hard-
ware, such as RSTensorFlow [87], which uses the GPU to
speed up matrix multiplication in deep learning. Software
approaches have also been developed to efficiently utilize
hardware, e.g., Lane et al. [88] decomposed DNNs and
assigning them to heterogeneous local processors (e.g.,
CPU and GPU) to accelerate execution. More detail on
hardware-accelerated deep learning can be found in the
excellent survey by Sze et al. [89]. Since Sze’s survey
has covered hardware-based DNN accelerations in great
depth, the remainder of this paper mainly focuses on
software-based approaches.

B. Edge Server Computation

While the above-mentioned hardware speedup and com-
pression techniques can help DNNs run on end devices,
deploying large, powerful DNNs with real-time execution
requirement on edge devices is still challenging because
of resource limitations (e.g., power, computation, and
memory). Thus, it is natural to consider offloading DNN
computations from end devices to more powerful entities,
such as edge servers or the cloud. However, the cloud
is not suitable for edge applications that require short
response times [8]. Since the edge server is close to users
and can respond quickly to users’ request, it becomes the
first-choice helper.

Chen and Ran: Deep Learning With Edge Computing: A Review

Table 2 Summary of the Selected Works on Fast Deep Learning Inference With Edge Computing

Architecture Work DNN Model Application End Devices Speedup Method Key Metrics
Taylor et al. [23] MObl(llej;ts (211, image classification NVIDIA Jetson TX2 model selection latency, accuracy
LeNet5 [96],
VGGNet, text, image, speech Intel Edison computing . latency, energy,
eeploT(S] BiLSTM [97], recognition platform model pruning memory
others
Lai et al. [72] 7-layer CNN image classification Arm Cortex-M model quantization memory, m.me‘er o
operations
ESE [73] LSTM [98] speech recognition XCKU060 FPGA EGE TS, qumberoi{onerationsy
On-Device quantization memory
Computation Bhattacharya et AlexNet [99] speech, image Qualc_(n.nm Snapdragon model
(§IV-A) al. [74] VGGNet [100] recognition RCONVIdiaqlcorapi T ARRT sparsification memory

Cortex MO and M3

LeNet, AlexNet,

image, audio,

smartphones, wearable

latency, memory,

Adadeep [77] and VGGNet ac}l}/lly_ devw‘es, development_ boards, model selection T
classification smart home devices
Yolo [18], . 5 T . latency, caching hit
DeepMon [78] MatConvNet [101] object detection Samsung Galaxy S7 GPU aios
. 1, image and hand
RSIensortlow Z A7 G gestures Nexus 6 and Nexus 5X GPU latency
[87] LSTM AP
classification
. speech, image Qualcomm Snapdragon heterogeneous
DeepX' [88] aexetlohers recognition 800Nvidia Tegra K1 processors energy, memory
Precog [10] generall image image classification Nexus 7 cached specialized latency, accuracy,
classifiers models energy
q q Samsung Galaxy Nexus, preprocessing,
Glimpse [91] GoogleNet [102] feature extraction Google Giass offloading accuracy, latency
Edge Server Liu et al. [92] EEINGE T image classification Xiaomi Note preprocessing, accuracy, latency,
. more NN layer offloading energy
Computation quality of queries.
(§1V-B) VideoStorm [93] Caffe models image classification n/a (video dataset) parameter tuning Jatency ’
Chameleon [94] kasteg RENNIS0) object detection n/a (video dataset) parameter tuning accuracy, GPU
Yolo resource usage
. . . . offloading,
VideoEdge [38] AlexNet, others image classification NVIDIA Tegra K1 . accuracy, latency
parameter tuning
Mainstream [95] MobileNets, others image clas51ﬁcat}0n n/a (video dataset) transfer le;?mlng, number of concurrent
and event detection offloading apps, accuracy
. Faster RCNN, . . L. . .
Liu et al. [33] ResNet-50 [103] object detection Nvidia Jetson TX2 selective offloading accuracy, latency
offloadin accuracy, latency,
DeepDecision [20] Yolo object detection Samsung Galaxy S7 & energy, network
parameter tuning bandwidth
offloading,
MCDNN [104] AlexNet, VGGNet, | oo lassification | NVIDIA Jetson board TKI application memory, energy,
. DeepFace [105] . latency
Computing scheduling
Across Edge . . e . L number of deployed
. Li et al. [106] AlexNet image classification ToT device and gateways DNN partitioning
Devices tasks
(§IV-C) DNN partitioning,
DeepThings [60] Yolo object detection Raspberry Pi 3 distributed memory, latency
computing
DNN partitioning,
MoDNN [107] MXNet [108] image classification LG Nexus 5 distributed latency
computing
accuracy,

DDNN [109]

GoogleNet,

image classification

n/a (simulation)

DNN partitioning

communication cost,

BranchyNet [110]

number of end devices

The most straightforward method to utilize the edge
server is to offload all the computation from end devices
to the edge server. In such scenarios, the end devices will
send its data to a nearby edge server and receive the corre-
sponding results after server processing. Wang et al. [90],
for example, always offloaded DNNs to the edge server (an
IoT gateway) to analyze wireless signals.

Table 3 Summary of the Selected Works on Privacy-Preserving Inference

1) Data Preprocessing: When sending data to an
edge server, data preprocessing is useful to reduce data
redundancy and thus decrease communication time.
Glimpse [91] offloads all DNN computation to a nearby
edge server, but it uses change detection to filter which
camera frames are offloaded. If no changes are detected,
Glimpse will perform frame tracking locally on the end
device. This preprocessing improves system processing

Category Work DNN Model

Main Ideas Key Metrics

MobileNets,

fansedaiylic] GoogLeNet, others

add noise to offloaded data, train DNN on noisy data

accuracy, energy, memory

5- and 9- layer neural

CryptoNets [116] network

homomorphic encryption latency, communication size

Private Inference

(SIV-D) MiniONN [117]

CNN

secure homomorphic encryption, two-party

accuracy, latency,

computation communication size

custom DNN and CNN,

DeepSecure [118] LeNet. others

secure two-party computation latency

Chameleon [94] 5-layer CNN

homomorphic encryption, secure two-party

N ; . latency, communication size
computation with trusted third-party ¥

GAZELLE [119] custom CNN

homomorphic encryption, secure two-party

X X latency, communication size
computation, and their tradeoffs Y,

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1663

Chen and Ran: Deep Learning With Edge Computing: A Review

ability and makes real-time object recognition on mobile
devices possible. Along similar lines, Liu et al. [92]
built a food recognition system with two preprocessing
steps: first, they discard blurry images, and second, they
crop the image so that it only contains the objects of
interest. Both preprocessing steps are lightweight and
can reduce the amount of offloaded data. We note that
while feature extraction is a common preprocessing step
in computer vision, it does not apply in the context of
deep learning, because the DNNs themselves serve as the
feature extractors.

2) Edge Resource Management: When DNN computa-
tions run on edge servers, DNN tasks from multiple end
devices need to run and be efficiently managed on shared
compute resources. Several works have explored this prob-
lem space, focusing on the tradeoffs between accuracy,
latency, and other performance metrics, such as a number
of requests served. VideoStorm [93] was one of the first
works in this space, and profiles these tradeoffs to choose
the right DNN configuration for each request, to meet
the accuracy and latency goals. The configuration can
also be updated online during the streaming video input,
as done in Chameleon [94]. VideoEdge [38] additionally
considers computation that is distributed across a hierar-
chy of edge and cloud servers and how to jointly tune all
the DNN hyperparameters. Mainstream [95] considers a
similar problem setup of accuracy versus latency tradeoffs
on edge servers, but their solution uses transfer learning
to reduce the computational resources consumed by each
request. Transfer learning enables multiple applications to
share the common lower layers of the DNN model and
computes higher layers unique to the specific application,
thus reducing the overall amount of computation.

C. Computing Across Edge Devices

Although the edge server can accelerate DNN process-
ing, it is not always necessary to have the edge devices
executing DNNs on the edge servers—intelligent offload-
ing can be used instead. We next discuss four offload-
ing scenarios: 1) binary offloading of DNN computation,
where the decision is whether to offload the entire DNN or
not; 2) partial offloading of partitioned DNNs, where the
decision is what fraction of the DNN computations should
be offloaded; 3) hierarchical architectures where offload-
ing is performed across a combination of edge devices,
edge servers, and cloud; and 4) distributed computing
approaches where the DNN computation is distributed
across multiple peer devices.

1) Offloading: Recent approaches, such as
DeepDecision [20], [111] and MCDNN [104], take an
optimization-based offloading approach with constraints
such as network latency and bandwidth, device energy,
and monetary cost. These decisions are based on the
empirical measurements of the tradeoffs between these
parameters, such as energy, accuracy, latency, and input

1664 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

size for the different DNN models. The catalog of different
DNN models can be chosen from the existing popular
models (e.g., those discussed in Section IV-A2) or new
model variants can be constructed through knowledge
distillation or by “mix-and-matching” DNN layers from
multiple models [104]. An example of offloading,
combined with model selection where a powerful DNN
is available on the edge server and a weaker DNN is
available on the end device, is shown in Fig. 5(d).

We note that while offloading has long been studied
in the networking literature [112], even in the context of
edge computing [113], DNN offloading can consider the
additional degree of freedom of not only where to run, but
which DNN model or which portion of the model to run.
The decision of whether to offload or not thus depends on
the size of the data, the hardware capabilities, the DNN
model to be executed, and the network quality, among
other factors.

2) DNN Model Partitioning: A fractional offloading
approach can also be considered, which leverages the
unique structure of DNNs, specifically its layers. In such
model partitioning approaches, some layers are computed
on the device, and some layers are computed by the edge
server or the cloud, as shown in Fig. 5(c). This is known
as DNN model partitioning. These approaches can poten-
tially offer latency reductions by leveraging the compute
cycles of other edge devices; however, care must also be
taken that the latency of communicating the intermediate
results at the DNN partition point still leads to overall net
benefits. The intuition behind model partitioning is that
after the first few layers of the DNN model have been
computed, the size of the intermediate results is relatively
small, making them faster to send over the network to an
edge server than the original raw data [60]. This moti-
vates the approaches that partition after the initial layers.
Neurosurgeon [13] is one work that intelligently decides
where to partition the DNN, layer-wise, while accounting
for network conditions.

In addition to partitioning the DNN by layers, the DNN
can also be partitioned along the input dimension (e.g.,
select rows of the input image). Such input-wise parti-
tioning allows fine-grained partitioning, because the input
and output data size and the memory footprint of each
partition can be arbitrarily chosen, instead of the min-
imum partition size being defined by the discrete DNN
layer sizes. This is especially important for extremely
lightweight devices, such as IoT sensors, which may not
have the necessary memory to hold an entire DNN layer.
However, input-wise partitioning can result in increased
data dependence, as computing subsequent DNN lay-
ers requires data results from adjacent partitions. Two
examples of input-wise partitioning as MoDNN [107] and
DeepThings [60].

Overall, these partial offloading approaches through
DNN partitioning are similar in spirit to past, non-DNN
offloading approaches such as MAUI[112] and

Odessa [114], which divide an application into its
constituent subtasks, and decide which subtasks to execute
where based on energy and/or latency considerations.
However, a new decision in the deep learning scenario is
how to decide the constituent subtasks, as the DNN can be
divided layer-wise, input-wise, or possibly in other ways
yet to be explored.

3) Edge Devices Plus the Cloud: Deep learning computa-
tion can be performed not only on edge devices but also
on the cloud, as shown in Fig. 5(c). While solely offloading
to the cloud can violate the real-time requirements of the
deep learning applications under consideration, judicious
use of the powerful compute resources in the cloud can
potentially decrease the total processing time. Different
from a binary decision of whether to perform computation
on the edge server or cloud, approaches in this space often
consider DNN partitioning, where some layers can execute
in the cloud, edge server, and/or end device.

Li et al. [106] divided the DNN model into two
parts—the edge server computes the initial layers of the
DNN model, and the cloud computes the higher layers
of the DNN. The edge server receives the input data,
performs lower layer DNN processing, and then sends
the intermediate results to the cloud. The cloud, after
computing the higher layers, sends back the final results to
the end devices. Such designs utilize both the edge server
and the cloud, where the cloud can help with computation-
ally heavy requests and increase the edge server’s request
processing rate while reducing the network traffic between
the edge server and the cloud. DDNN [109] also distributes
computation across a hierarchy of cloud, edge servers,
and end devices, and additionally combines this with the
fast exiting idea (discussed in Section IV-A2), so that the
computation requests do not always reach the cloud.

A unique characteristic of edge computing is that the
edge server typically serves users within a limited geo-
graphical area, suggesting that their input data and, thus,
their DNN outputs may be similar. Precog [10] leverages
this insight in the case of image recognition and places
smaller, specialized image classification models on the end
devices, based on what has recently been observed by
other devices served by the same edge server. If on-device
classification fails, the query is sent to the edge server
that stores all the classification models. Although their
evaluation does not use DNNs, they discuss how their clas-
sification model placement decisions would apply to DNNs.
This approach has similarities to knowledge distillation for
compressed models (see Section IV-A2), in which it uses a
combination of weaker and stronger classification models,
but it provides a more careful look at what specialized
models are needed on the end devices in edge scenarios.

4) Distributed Computation: The above-mentioned
approaches mainly consider offloading computation from
end devices to other more powerful devices (e.g., edge
servers or the cloud). Another line of work considers
the problem from a distributed computing perspective,

Chen and Ran: Deep Learning With Edge Computing: A Review

where the DNN computations can be distributed across
multiple helper edge devices, as shown in Fig. 5(e). For
example, MoDNN [107] and DeepThings [60] distribute
DNN executions using fine-grained partitioning on
lightweight end devices such as Raspberry Pis and
Android smartphones. The DNN partition decision is
made based on the computation capabilities and/or
memory of the end devices. At runtime, the input data
are distributed to helpers according to the load-balancing
principles, with MoDNN using a MapReduce-like model
and DeepThings designing a load-balancing heuristic.
The assignment of data to the helper devices can be
adjusted online to account for dynamic changes in
compute resource availability or network conditions.
More formal mechanisms from distributed systems could
also be applied in these scenarios to provide provable
performance guarantees.

D. Private Inference

When data from the end devices traverse the edge net-
work (e.g., from end devices to edge servers, as discussed
in Section IV-B), it may contain sensitive information (e.g.,
GPS coordinates, camera images, and microphone audio),
leading to privacy concerns. This is especially important
in edge computing, where the data are typically sourced
from a limited set of users within a limited geograph-
ical region, making privacy breaches more concerning.
Although edge computing naturally improves privacy by
reducing data transfers through the public Internet to the
cloud, additional techniques can further enhance privacy
between end devices and edge servers and protect from
eavesdroppers. In this section, we discuss two methods of
privacy-preserving inference: adding noise to obfuscate the
data uploaded by end devices to edge servers and secure
computation using cryptographic techniques.

1) Add Noise to Data: Several works have considered
how to obfuscate, or add noise, to the inference sam-
ples uploaded by end devices to a central machine (e.g.,
an edge server) performing inference. Wang et al. [115]
deployed a smaller DNN locally on the device to extract
features, add noise to the features, and then upload the
features to the cloud for further inference processing by a
more powerful DNN. The DNN on the cloud is pre-trained
with noisy samples so that the noisy inference samples
uploaded from the end devices can still be classified with
high accuracy at test time. The formal notion of privacy
used in this paper is differential privacy which, at a high
level, guarantees that a machine learning model does not
remember details about any specific device’s input data.

2) Secure Computation: Cryptographic techniques can
be used to compute the DNN prediction. The goal of secure
computation in this setup is to ensure that the end device
receives an inference result without learning anything
about the DNN model, and the edge server processes the
data without learning anything about the device’s data.

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1665

Chen and Ran: Deep Learning With Edge Computing: A Review

In other words, an end device and an edge server want to
compute the DNN prediction f(a,b), where a is an input
sample (e.g., a camera frame) known only to the end
device and b are the DNN parameters known only to the
edge server. Secure computation enables both the device
and the server to compute f(a,b) without knowing the
other party’s data.

One method of secure computation is homomorphic
encryption, in which the communicated data are encrypted
and computation can be performed on the encrypted data,
as done in CryptoNets [116]. The idea is to approximate
common computations used in DNNs, such as weighted
sum, max pooling, mean pooling, sigmoid function,
and rectified linear unit (RELU), by low-degree poly-
nomials, which are amenable to homomorphic encryp-
tion. However, a bottleneck of homomorphic encryption
tends to be their compute times, which means that
offline preprocessing is needed. CryptoNets also requires
re-training of the DNN because of the approximations
used.

Multiparty computation is another technique for secure
computation [see Fig. 5(b)]. In secure multiparty compu-
tation, multiple machines work together and communi-
cate in multiple rounds to jointly compute a result (e.g.,
a DNN prediction in our scenario). Different from differ-
ential privacy, secure multiparty computation focuses on
the privacy of the intermediate steps in the computation,
while differential privacy focuses on the privacy guarantees
of the overall constructed model. MiniONN [117] and
DeepSecure [118] employ secure two-party computation
and homographic encryption and work with the existing
pre-trained DNN models without needing to change the
DNN training or structure. However, a bottleneck of secure
multiparty computation techniques tends to be their com-
munication complexity.

Chameleon [120] and Gazelle [119] are two works
that try to choose between the above-mentioned crypto-
graphic techniques (homomorphic encryption and secure
multiparty computation) based on their computation and
communication tradeoffs. Specifically, Gazelle studies the
tradeoffs between homomorphic encryption (high com-
putation and low communication) and two-party secure
computation (low computation and high communica-
tion) and chooses the right techniques for the scenario.
It further accelerates the training process with efficient
implementation of the cryptographic primitives. Their
evaluation compared to CryptoNets, MiniONN, DeepSe-
cure, and Chameleon using standard image classification
data sets suggests low runtime latency and communication
cost.

V. TRAINING IN PLACE ON EDGE
DEVICES

Thus far, edge computing and deep learning have mostly
been discussed for inference, with goals including low
latency, privacy, and bandwidth savings. These methods

1666 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

assume that a deep learning model has already been
trained offline on a centralized, existing data set. In this
section, we discuss the methods of training deep learning
models with edge computing, primarily with a focus on
communication efficiency and privacy.

Traditionally, training data produced by end devices
would be sent to the cloud, which would then perform
the training with its large computational resources and
finally distribute the trained model back to the edge
devices as needed. However, sending the data to the cloud
can consume large amounts of bandwidth and also has
privacy concerns. Leaving data in situ on the end devices
is useful when privacy is desired and also helps reduce
the network bandwidth requirements. For example, a deep
learning-based typing prediction model for smartphones
may benefit from training data from multiple users, but
individual users may not wish to upload their raw key-
stroke data to the cloud; similarly, in an image classifica-
tion service, uploading all camera frames from end devices
to the cloud would consume large amounts of bandwidth
and risk uploading sensitive information.

Edge-based training borrows from distributed DNN
training in data centers. In data centers, training is per-
formed across multiple workers, with each worker holding
either a partition of the data set (known as data paral-
lelism) or a partition of the model (known as model par-
allelism). While both system designs have been explored,
data parallelism is widely used in practical systems [121]
and is the focus of the remainder of this section. In data
parallelism, each worker computes the gradients of its
local partition of the data set, which are then collected by
a central parameter server, some aggregate computation
performed, and the updates sent back to the workers
[see Fig. 7(a)].

Training on edge devices borrows from the data center
setup, where the workers are end devices instead of pow-
erful servers in a data center, and the central parameter
server is an edge compute node or server. For example,
DeepCham [122] consists of a master edge server that
trains domain-aware object recognition on end devices,
leveraging the insight that users connected to the same
edge server may have similar domains (e.g., time of day
and physical environment). In an edge scenario, commu-
nication latency, network bandwidth, and the compute
capabilities of the end device are key considerations of
training performance.

Training deep learning on edge devices typically
involves distributed deep learning training techniques.
This section discusses about the techniques to perform
distributed training on edge devices from the following
perspectives: the frequency and size of training updates,
which both contributes to communication cost (see Sec-
tions V-A and V-B, respectively); decentralized information
sharing (see Section V-C); and finally, privacy-preserving
DNN training (see Section V-D). A taxonomy of these
techniques is shown in Fig. 6, and a summary of the works
discussed in the following is shown in Table 4.

Training in place on
edge devices (§V)

Decentralized

Privacy-
Training updates communication preserving I
protocols (§V-C) training (§V-D)

Ml ——[Add noise]
(§V-A) Add noise
Secure
computation

Size (§V-B)

Fig. 6. Taxonomy of DNN training in place on edge devices.

A. Frequency of Training Updates

Communication costs are a major concern for edge
devices. Reducing the frequency of communications and
the size of each communication is a key method to
reduce communication costs. In this section, we discuss
the distributed training methods that focus on communi-
cation timing and frequency, while in Section V-B, we dis-
cuss the size of the communicated data. There are two
general methods for synchronizing updates to a central
edge server: synchronous and asynchronous stochastic gra-
dient descent [123]. In synchronous stochastic gradient
descent (SGD), individual devices update their parameters
in lockstep when all the devices have finished computing
the gradients on their current batch of training data.
In asynchronous SGD, the devices update their parameters
independently to the central server. Both synchronous SGD
and asynchronous SGD have their own pros and cons.
Although synchronous SGD typically converges to better
solutions, it is often slower in practice because of the need
to wait for straggler devices in each iteration. Asynchro-
nous SGD, on the other hand, tends to converge faster
than synchronous SGD, but it may update parameters

Table 4 Summary of the Selected Works on Distributed Training

Chen and Ran: Deep Learning With Edge Computing: A Review

using stale information from devices and can suffer from
convergence to poor solutions.

Distributed training algorithms usually focus on how to
make synchronous SGD faster or how to make asynchro-
nous SGD converge to better solutions. In a distributed
setting, communication frequency and data volume are
also important. Elastic averaging [124] reduces the com-
munication costs of synchronous and asynchronous SGD
training methods, by allowing each device to perform more
local training computations and deviate/explore further
from the globally shared solution before synchronizing
its updates. This reduces the amount of communication
between the local devices and the edge server. Federated
learning [125] is similar in spirit, but it considers non-ideal
scenarios, such as non-independent and identically dis-
tributed (i.i.d) data distributions (e.g., one device has
more data samples of a given class than another device).
Computing more local gradient updates without uploading
the raw training data to the server trades off accuracy
for communication cost: doing more computation locally
lowers the prediction accuracy (due to overfitting to local
data sets), but it can also save communication cost, and
vice versa. Wang et al. [126] further explored this issue by
considering some practical concerns with implementation
on a real testbed. They proposed a control policy for
deciding how much computation should be performed
locally in between global gradient updates and performed
experiments with Raspberry Pis and laptops.

Tiered architectures and their communication costs
have also been considered. Gaia [127] studies synchro-
nous SGD in the scenario where devices are geographi-
cally distributed across a large area. In their test setup,
the clients are servers inside a data center and across
data centers. Because bandwidth constraints are tighter
across geo-distributed data centers than within a single
data center, gradient updates need to be carefully coordi-
nated between the workers. Gaia proposes a policy where
updates are synchronized across different data centers only

Category Work DNN Model Main Ideas Key Metrics
EASGD [124] 7-layer CNN allow local parameters to deviate from central parameters training loss, test loss
Fe(%eraled CNN and LSTM trade off local computation for communication rounds traning IOS.S' test LT, 7 G
Communication Lean?mg [125])) - - commm_m‘:atlo{l rounds
frequency lea [127] Caffe model hierarchical communication of geo-distributed nodes training time
(SV-A) Codistillation [128] LSTM teacher-student models accuracy

Dean et al. [121]

fully-connected DNN with
42 million parameters

partition DNN across different machines.

of training nodes, training
time

Communication size

Lin et al. [129]

AlexNet, ResNet-5, 2- or 5-
layer LSTM

send sparsified gradient

gradient size

CNN with 2 convolution

(V-B) Hardy et al. [130] layer and 2 fully connected send sparsified and non-stale gradients accuracy
layer
Blot et al. [131] 7-layer CNN gossip with random neighbors training loss
Gossip-based Jin et al. [132] ResNet scalability of synchronous and asynchronous SGD test Gl Ty
time/epochs

communication
§V-0)

INCEPTIONN [133]

ResNet-50, AlexNet,

lossy gradient compression and hierarchical gossip

gradient size, # of training
nodes, gradient exchange

Private training
(§V-D)

VGG-16 .
time
Shokri ef al. [14] CNN modify gradient updates for per-parameter privacy loss accuracy, differential privacy
Abadi ef al. [134] CNN modify gradient updates for per-model privacy loss accuracy, differential privacy

Zhang et al. [135]

34-layer residual network,
LeNet, others

add noise to training data

accuracy with privacy leaking
defense

SecureML [136]

two hidden layers with 128
neurons in each layer

secure two-party computation

accuracy with secure
computation

Mao et al. [137]

VGG-16

add noise to offloaded data, DNN partition

accuracy

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1667

Chen and Ran: Deep Learning With Edge Computing: A Review

Edge server

DNN to be|
trained

Gradient can be
compressed or sent
infrequently

i w

End device: End device

(a)

Fig. 7. Architectures for deep learning training on the edge. (a) Centralized training. (b) Decentralized training.

3,
3

Gradient update

ITN
&8
8880
i

g Gradient update

AToeXy.
SEgg
S8
N

Gradient update

o &
@ fiea
(b)

?[MD
¥ ejepdn jusipein

RXTN
S8Ry
S8
P
S8
L8887
e

when the aggregated updates are higher than a given
threshold.

Along with synchronous and asynchronous updates,
distillation is another method that has been applied to
reduce communication frequency. Distillation, as discussed
in Section IV-A in the context of inference, uses the pre-
diction outputs of one model to help train another model.
Anil et al. [128] proposed incorporating distillation into
distributed training of DNNSs. In their method, each device
trains on a subset of the data and updates its gradients
based on its computed training loss as usual, but it also
uses the prediction outputs from other devices that are
also simultaneously training to improve training efficacy.
Since they find that the training is robust to stale predic-
tion results from other devices, information needs to be
exchanged with other devices less frequently (compared
to the gradient sharing methods described earlier in this
section). In this way, frequent communication of gradients
is avoided or reduced. Furthermore, distillation can be
combined with distributed SGD and can improve training
efficacy even when distributed SGD is not possible due to
network constraints.

Finally, if some devices have poor connectivity and are
subjected to atypically long latencies, they can hold up
distributed training. Chen et al. [123] proposed improve-
ments to synchronous SGD to mitigate such straggler
effects. Their main idea is to have backup devices that
are “on call” to compute the gradient updates of any
straggling regular devices. Once the server receives the
gradient updates from a sufficient of devices, the training
process will update the global parameters and move on to
next iteration, without waiting for the straggler devices,
thereby reducing training latency.

B. Size of Training Updates

Along with the frequency of training updates, the size
of training updates also contributed to bandwidth usage.
With model sizes on the order of hundreds of megabytes,
and multiple rounds of communication needed, the band-
width demands can be considerable. Bandwidth concerns
are crucial in the edge scenario, where last-mile bandwidth

1668 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

(e.g., wireless and access networks) can be quite con-
strained. In this section, we review gradient compression
techniques, which can reduce the size of the updates
communicated to a central server.

There are two general approaches to gradient
compression: gradient quantization and gradient
sparsification [129]. Gradient quantization approximates
the floating-point gradients using low-bit width numbers.
For example, a 32-bit floating-point numbers can be
approximated by an 8-bit number, reducing the size by
a factor of 4. Note that gradient quantization is similar
to parameter quantization (see Section IV-A), with the
difference being whether the quantization is applied to
the model gradients or the model parameters. Gradient
sparsification discards unimportant gradient updates
and only communicates updates that exceed a certain
threshold. Gradient quantization and sparsification
can work together. For example, Lin et al. [129]
did gradient sparsification combined with other
training tricks such as momentum correction [138]
and warm-up training [139] techniques to speed up
training convergence. Hardy et al. [140] performed
gradient sparsification and also chose which gradients to
communicate based on their staleness.

C. Decentralized Communication Protocols

Thus far, we have considered centralized training archi-
tectures where multiple end devices communicate with an
edge server. Having a central edge compute or server node
helps ensure that all devices converge to the same model
parameters. However, communication throughput of a cen-
tralized architecture is limited by the bandwidth of the
central node. To overcome this, a gossip-type algorithm has
been proposed as a method to exchange training informa-
tion in a decentralized fashion. In gossip-type algorithms,
each device computes its own gradient updates based on its
training data and then communicates its updates to some
of the other devices [see Fig. 7(b)]. The overall goal is
to design a gossiping algorithm that allows the devices to
reach a consensus on a good DNN model. Gossiping can be
considered as a decentralized version of elastic averaging,

where clients are allowed to deviate more significantly
from each other.

Blot et al. [131] proposed an asynchronous algorithm
for gossip-based training of deep learning. Their experi-
ments show faster convergence than the elastic averag-
ing. Jin et al. [132] proposed gossiping SGD based on
their study of convergence rates for synchronous and
asynchronous SGD. Their primary concern was scalability,
i.e., which SGD methods would be appropriate for a dif-
ferent number of clients. They found that asynchronous
methods, such as gossiping and elastic averaging, con-
verged more quickly with a small number of workers
(32 workers in their simulations), whereas synchronous
SGD scaled up better and had higher accuracy when
there were more workers (100 workers in their simu-
lations). Li et al. [133] developed a distributed system
called INCEPTIONN, which combines gradient compres-
sion and gossiping. Their gossiping method involves divid-
ing devices into different groups, and within each group,
each device shares some of its gradients with the next
device. The algorithm guarantees that all parts of the
DNN across all devices will be updated after several
iterations. Within each group, the parameters can be
shared either in the traditional centralized way or through
gossiping.

D. Private Training

We now shift gears and return to the baseline SGD
algorithms (e.g., synchronous SGD) but consider the pri-
vacy implications of communicating gradient information.
Such techniques can be useful whenever the training
data collected by end devices are shared with other edge
devices. While in situ training naturally improves privacy
by eliminating direct sharing of end devices’ collected
data, gradient information communicated between the
edge devices can still indirectly leak information about
the private data [14]. Hence, further privacy-enhancing
techniques are needed. In this section, we will consider
two main classes of privacy-enhancing techniques: adding
noise to gradient or data transmissions as part of training
and secure computation for training a DNN.

1) Add Noise to Data or Training Updates: In the fol-
lowing works, the threat model consists of a passive
adversary, such as an end device, which follows the pre-
scribed training protocol and is not actively malicious,
but it may attempt to learn about the model or data
from observing others’ communicated data. Shokri and
Shmatikov [14] considered the privacy aspects of training
a DNN in such a scenario, specifically with respect to
differential privacy, and they modified the typical policy
of devices uploading all the gradients to a central server
by: 1) selecting only some gradients above a threshold
to be transmitted and 2) adding noise to each uploaded
gradient. This enables the model to be trained reasonably
accurately while reducing information leakages from the
training updates (intuitively, since fewer of the updates are

Chen and Ran: Deep Learning With Edge Computing: A Review

sent). Abadi et al. [134] studied a similar problem where
the privacy loss over the overall model was bounded,
rather than per parameter as in Shokri, and their method
involves modifying the gradient by clipping, averaging,
and adding noise before communicating it to the parame-
ter server. Mao et al. [137] combined differential privacy
with model partitioning, where the initial layers of the
DNN were computed on the device, mixed with noise,
and uploaded to the edge server, in order to obfuscate the
uploaded training data and preserve privacy.

Along with modifying the gradients, adding noise to
the training data has also been considered. Zhang [135]
considered different types of noise that can be added
to the input data before training. Rather than using for-
mal notions of differential privacy, they empirically guard
against the adversary discovering statistical properties of
individual training data samples or aggregate statistics
about groups of training samples. This is essentially a
preprocessing step for the training data, which can pro-
vide protection even if the adversary has taken over the
parameter server and has access to the model parameters
or post-processed training data.

2) Secure Computation: SecureML [136] proposes a
two-server model where end devices communicate their
data to two servers, which then train a neural network
based on the combined data from the end devices with-
out learning anything beyond the DNN parameters. Their
scheme is based on secure two-party linear and logistic
regression that are fundamental computations in DNN
training. A modified softmax function and RELU function
are also proposed in order to improve efficiency. Unlike
the multiparty computation schemes discussed earlier (see
Section IV-D), SecureML focuses on DNN training, rather
than inference.

VI. OPEN CHALLENGES

Many challenges remain in deploying deep learning
on the edge, not only on end devices but also on the
edge servers and on a combination of end devices, edge
servers, and the cloud. We next discuss some of the open
challenges.

A. Systems Challenges

1) Latency: While several works described in the ear-
lier sections have focused on reducing inference latency,
the current state of the art still results in quite high latency,
particularly when operating on high-dimensional input
data, such as images, and on mobile devices. For example,
even DNN models designed for mobile devices execute at
1-2 frames/s on modern smartphones [20], [78]. There is
still much work remaining on DNN model compression to
enable deep learning to run on edge devices, particularly
on IoT devices that tend to have the most severe resource
constraints. Furthermore, while the offloading approaches
described earlier (see Sections IV-B and IV-C) propose inno-
vative approaches to minimize latency, machine learning

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1669

Chen and Ran: Deep Learning With Edge Computing: A Review

experts are also constantly innovating, leading to new DNN
models with ever more parameters and new layer designs.
For example, the DNN partitioning approach may work
well for standard sequential DNNs, but not as well for other
deep learning methods such as RNNs, which have loops in
their layer structure. Keeping up with new deep learning
designs will continue to be a major systems’ challenge.

2) Energy: Minimizing the energy consumption of
deep learning is very important for battery-powered
edge devices, such as smartphones. While reducing the
amount of computation implicitly reduces energy con-
sumption, understanding the interactions of the deep
learning computations with other battery management
mechanisms, such as CPU throttling or sensor hardware
optimizations [141], is an important avenue for investi-
gation. Performing change detection on the input data,
either in software or hardware [142], can help reduce
the frequency of deep learning executions and the overall
energy consumption. Reducing energy consumption of the
specific hardware chips (e.g., GPUs and TPUs) is already
a key priority for hardware designers, but understanding
their interaction with the rest of the system (e.g., battery
management mechanisms and tradeoffs with edge server
compute resources) is needed to reduce overall energy
consumption.

3) Migration: Migrating edge computing applications
between different edge servers can be useful for load bal-
ancing or to accommodate user movement, with the goal
of minimizing the end-to-end latency of the user. While
edge migration has been studied in the general case, for
example, using VM migration techniques [143] or Docker
containers [144] or using multipath TCP to speed up the
migration [145], understanding how deep learning appli-
cations should be migrated is still an area of consideration.
DNN models can be fairly large; for example, a pre-trained
YOLO model [18] is approximately 200 MB, and loading a
DNN model can take several seconds, in our experience.
What parts of the DNN model should be migrated and
what parts should be included in the standalone virtual
image? Can the program state be migrated in the midst
of a DNN execution, similar to the DNN partitioning
approaches for offloading (see Section IV-C2)? Addressing
these challenges requires system measurements and exper-
iments to gain an empirical understanding of the migration
challenges.

B. Relationship to SDN and NFV Technologies

Recently, network abstractions, such as software-defined
networking (SDN), to abstract the data plane from the
control plane, and network function virtualization (NFV),
to abstract the network functions from the hardware, are
gaining importance and are being adopted by the telecom-
munications industry. If deep learning grows in popularity
and these flows containing deep learning data appear on
the edge network, this leads to questions of how SDN

1670 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

and NFV should manage these types of flows and what
types of QoS guarantees the flows require. How can deep
learning flows be identified, even under encryption? Given
a set of network functions that need to operate on deep
learning flows, how to design an SDN controller to best
manage these flows (e.g., by carving out network slices
for deep learning traffic)? How should network resources
be shared between competing deep learning flows or
with other non-deep learning traffic, such as Web or
video?

Another direction is using deep learning itself as a
network function, such as the network intrusion detection
and caching applications described in Section III. If deep
learning is adopted for various network tasks, NFV plat-
forms need to account for the resource requirements of
deep learning in order, for the network functions, to run
in real time. While fast instantiation and performance of
NFVs has been investigated [146], deep learning inference
can be greatly accelerated with GPU access on the edge
server, necessitating GPU support in NFV platforms.

C. Management and Scheduling of Edge Compute
Resources

Deep learning is often treated as a black box by
application developers and network administrators. How-
ever, deep learning models have many tradeoffs between
latency, accuracy, battery, and so on. While several works
described earlier (in Section IV-C) have discussed how to
tune such control knobs to achieve overall good system
performance [20], [93], exposing these control knobs in a
consistent and unified manner to the application developer
and/or server administrator through a standard specifica-
tion could be valuable. This would enable developers and
server administrators without in-depth machine learning
knowledge to understand the available knobs and tune
them to achieve good system performance, especially on
edge compute nodes with limited resources. Specifying the
application’s needs and the tradeoffs of the DNN model
being run can allow the edge server to effectively schedule
the end device requests. Not doing this carefully (e.g.,
incurring long latency on a video frame analysis request
from an AR headset) would negate the latency benefits of
edge computing.

A natural question is then how to schedule such
requests, given knowledge of the tradeoffs and control
knobs. The question is complicated by time dependence
between sequential inputs from an end device (e.g., multi-
ple frames from a camera), which could introduce priority
into the scheduling policy and thus influence the decisions
made by the edge server of which requests to serve when.
For example, should a new camera frame inference request
from device A receive higher priority than the hundredth
frame from device B? Incorporating freshness metrics, such
as the age of information [147], could allow for more
intelligent scheduling decisions by the edge server. While
this problem has some overlap with task scheduling in

cloud data centers, edge computing brings new challenges
in which the number and variety of requests are likely
less on an edge server serving geo-located end devices,
so statistical multiplexing cannot necessarily be relied on.
New analysis of load balancing and request scheduling
mechanisms is needed. Furthermore, the compute resource
allocations may be coupled with the traffic steering from
the end devices to the edge server. Existing work on mainly
considers proximity as the primary factor behind traffic
steering decisions [148].

D. Deep Learning Benchmarks on Edge Devices

The state of the art of deep learning is evolving rapidly.
For researchers and developers wishing to deploy deep
learning on edge devices, choosing the right DNN model
is difficult due to lack of apples-to-apples comparison on
the target hardware. Even though new machine learning
papers contain comparative evaluation with prior existing
models, the subset of models compared is chosen at the
discretion of the researchers and may not include the
desired comparisons or hardware platforms. Furthermore,
standalone measurement papers can quickly become out-
dated as new DNN models emerge. A public repository
containing apples-to-apples containing benchmark com-
parisons between the models on different hardwares could
be of great benefit to the community. This task is made
slightly easier by the existence of standard data sets in
certain application domains, such as image classification
and natural language processing, as well as standard
machine learning platforms such as TensorFlow, Caffe,
and PyTorch. Especially important to edge computing is
the comparison on a variety of edge device hardware,
including the simple devices (e.g., Raspberry Pi), smart-
phones, home gateways, and edge servers. Much of the
current work has focused on either on powerful servers
or on smartphones, but as deep learning and edge com-
puting become prevalent, a comparative understanding of
deep learning performance on heterogeneous hardware is
needed.

E. Privacy

While privacy has been studied generally in the context
of distributed deep learning, there are several implications
for edge computing, which merit further investigation. One
possible concern is membership attacks. A membership
attack seeks to determine whether a particular item was
part of the training set used to generate the deep learning
model [149]. This attack gains significance in edge com-
puting, as a successful attack on an edge server’s DNN

REFERENCES

[1] O. Russakovsky et al., “ImageNet large scale visual
recognition challenge,” Int. J. Comput. Vis.,
vol. 115, no. 3, pp. 211-252, Dec. 2015.

[2] M. Satyanarayanan, “The emergence of edge
computing,” Computer, vol. 50, no. 1, pp. 30-39,
2017.

Available:

[3] D.Jeans. (Mar. 2019). Related’s Hudson Yards:
Smart City or Surveillance City? [Online].

https://therealdeal.com/2019/03/15/hudson-
yards-smart-city-or-surveillance-city/
[4] M. Satyanarayanan, V. Bahl, R. Caceres, and

Chen and Ran: Deep Learning With Edge Computing: A Review

training process means that the data item can be more
easily pinpointed as belonging to a small subset of users
who accessed that edge server. Another concern is data
obfuscation. While data obfuscation techniques have been
studied in cases where there are a large number of users,
such as in the cloud, whether such obfuscation can still be
successful in an edge computing scenario, where more spe-
cialized deep learning models are being used [10], [122],
or smaller training sets are available due to fewer end
devices connected to each edge server is unclear. Finally,
the definition of differential privacy [150] means that as
there are fewer devices, more noise must be added. This
is exactly the scenario of edge computing, where a smaller
set of geo-located end devices communicate with an edge
server. How much noise must be added to compensate for
fewer end devices? Overall, the privacy problems described
earlier (see Sections IV-D and V-D) have been studied
mainly in the context of general distributed machine learn-
ing, but their study with regard to edge computing, which
has a smaller set of users and more specialized deep
learning models, could be valuable.

VII. CONCLUSION

This paper reviewed the current state of the art for
deep learning operating on the network edge. Computer
vision, natural language processing, network functions,
and VR and AR were discussed as example application
drivers, with the commonality being the need for real-time
processing of data produced by end devices. Methods for
accelerating deep learning inference across end devices,
edge servers, and the cloud were described, which lever-
age the unique structure of DNN models as well as the
geospatial locality of user requests in edge computing.
The tradeoffs between accuracy, latency, and other per-
formance metrics were found to be important factors in
several works discussed. Training of deep learning models,
where multiple end devices collaboratively train a DNN
model (possibly with the help of an edge server and/or the
cloud) was also discussed, including techniques for further
enhancing privacy.

Many open challenges remain, both in terms of further
performance improvements, as well as privacy, resource
management, benchmarking, and integration with other
networking technologies such as SDN and NFV. These chal-
lenges can be addressed through technological innovations
in algorithms, system design, and hardware accelerations.
As the pace of deep learning innovation remains high in
the near term, new technical challenges in edge computing
may emerge in the future, alongside the existing opportu-
nities for innovation.]

N. Davies, “The case for VM-based cloudlets in
mobile computing,” IEEE Pervasive Comput., vol. 8,
no. 4, pp. 14-23, Oct./Dec. 2009.

[5] AT&T Multi-Access Edge Computing. [Online].
Available:
https://www.business.att.com/products/multi-

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1671

Chen and Ran: Deep Learning With Edge Computing: A Review

[6

[7

[8

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

1672 PROCEEDINGS OF THE IEEE | Vol. 107, No.

access-edge-computing.html

C.-E-A. T. Blog. Edge Computing at Chick-Fil-A.
[Online]. Available:
https://medium.com/@cfatechblog/edge-
computing-at-chick-fil-a-7d67242675e2

1. Goodfellow, Y. Bengio, A. Courville, and

Y. Bengio, Deep Learning, vol. 1. Cambridge, MA,
USA: MIT Press, 2016.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge
computing: Vision and challenges,” IEEE Internet
Things J., vol. 3, no. 5, pp. 637-646, Oct. 2016.
Y. Mao, C. You, J. Zhang, K. Huang, and K. B.
Letaief, “A survey on mobile edge computing: The
communication perspective,” IEEE Commun.
Surveys Tuts., vol. 19, no. 4, pp. 2322-2358,

4th Quart., 2017.

U. Drolia, K. Guo, and P Narasimhan, “Precog:
Prefetching for image recognition applications at
the edge,” in Proc. ACM/IEEE Symp. Edge Comput.,
2017, pp. 1-17.

H. Li, K. Ota, and M. Dong, “Learning IoT in edge:
Deep learning for the Internet of Things with edge
computing,” IEEE Netw., vol. 32, no. 1,

pp- 96-101, Jan./Feb. 2018.

L. N. Huynh, Y. Lee, and R. K. Balan, “DeepMon:
Mobile GPU-based deep learning framework for
continuous vision applications,” in Proc. 15th
Annu. Int. Conf. Mobile Syst., Appl., Services, 2017,
pp. 82-95.

Y. Kang et al., “Neurosurgeon: Collaborative
intelligence between the cloud and mobile edge,”
ACM SIGPLAN Notices, vol. 52, no. 4,

pp. 615-629, 2017.

R. Shokri and V. Shmatikov, “Privacy-preserving
deep learning,” in Proc. 22nd ACM SIGSAC Conf.
Comput. Commun. Secur., 2015, pp. 1310-1321.
S. Ruder, “An overview of gradient descent
optimization algorithms,” CoRR,

vol. abs/1609.04747, pp. 1-14, Sep. 2016.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu,
“BLEU: A method for automatic evaluation of
machine translation,” in Proc. 40th Annu. Meeting
Assoc. Comput. Linguistics, 2002, pp. 311-318.

J. Huang et al., “Speed/accuracy trade-offs for
modern convolutional object detectors,” in Proc.
IEEE CVPR, vol. 4, Jul. 2017, pp. 7310-7311.

J. Redmon and A. Farhadi, “YOLO9000: Better,
faster, stronger,” in Proc. IEEE CVPR, Jul. 2017,
Dpp. 7263-7271.

Z. Lu, S. Rallapalli, K. Chan, and T. La Porta,
“Modeling the resource requirements of
convolutional neural networks on mobile devices,”
in Proc. ACM Multimedia, 2017, pp. 1663-1671.
X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen,
“DeepDecision: A mobile deep learning
framework for edge video analytics,” in Proc. IEEE
INFOCOM, Apr. 2018, pp. 1421-1429.

A. G. Howard et al., “MobileNets: Efficient
convolutional neural networks for mobile vision
applications,” 2017, arXiv:1704.04861. [Online].
Available: https://arxiv.org/abs/1704.04861

M. Tan et al., “MnasNet: Platform-aware neural
architecture search for mobile,” 2018,
arXiv:1807.11626. [Online]. Available:
https://arxiv.org/abs/1807.11626

B. Taylor, V. S. Marco, W. Wolff, Y. Elkhatib, and
Z. Wang, “Adaptive deep learning model selection
on embedded systems,” in Proc. LCTES, 2018,

pp. 31-43.

Tensorflow. [Online]. Available:
https://www.tensorflow.org/

M. Abadi et al., “TensorFlow: Large-scale machine
learning on heterogeneous distributed systems,”
CoRR, vol. abs/1603.04467, pp. 1-19, Mar. 2016.
Tensorflowlite. [Online]. Available:
https://www.tensorflow.org/lite

Y. Jia et al., “Caffe: Convolutional architecture for
fast feature embedding,” in Proc. 22nd ACM Int.
Conf. Multimedia, 2014, pp. 675-678.

Caffe2. [Online]. Available: https://caffe2.ai/
Caffe. [Online]. Available:
https://caffe.berkeleyvision.org/

Pytorch. [Online]. Available: https://pytorch.org
NVIDIA. Cuda. [Online]. Available:
https://developer.nvidia.com/cuda-zone

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

NVIDIA. Cudnn. [Online]. Available:
https://developer.nvidia.com/cudnn

L. Liu, H. Li, and M. Gruteser, “Edge assisted
real-time object detection for mobile augmented
reality,” in Proc. ACM MobiCom, 2019, pp. 1-16.
S. Liuy, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du,
“DeeploT: Compressing deep neural network
structures for sensing systems with a
compressor-critic framework,” in Proc. SenSys,
2017, pp. 1-4.

Amazon. AWS Deeplens. [Online]. Available:
https://aws.amazon.com/deeplens/

S. Ren, K. He, R. Girshick, and J. Sun, “Faster
R-Cnn: Towards real-time object detection with
region proposal networks,” in Proc. Adv. Neural
Inf. Process. Syst., 2015, pp. 91-99.

T. Zhang, A. Chowdhery, P V. Bahl, K. Jamieson,
and S. Banerjee, “The design and implementation
of a wireless video surveillance system,” in Proc.
21st Annu. Int. Conf. Mobile Comput. Netw., 2015,
pp. 426-438.

C.-C. Hung et al., “VideoEdge: Processing camera
streams using hierarchical clusters,” in Proc.
IEEE/ACM Symp. Edge Comput. (SEC), Oct. 2018,
pp. 115-131.

T. Young, D. Hazarika, S. Poria, and E. Cambria,
“Recent trends in deep learning based natural
language processing,” IEEE Comput. Intell. Mag.,
vol. 13, no. 3, pp. 55-75, Aug. 2018.

Apple. Deep Learning for Siri’s Voice: On-Device
Deep Mixture Density Networks for Hybrid Unit
Selection Synthesis. [Online]. Available: https://
machinelearning.apple.com/2017/08/06/siri-
voices.html

G. Lample, M. Ballesteros, S. Subramanian, K.
Kawakami, and C. Dyer, “Neural architectures for
named entity recognition,” 2016,
arXiv:1603.01360. [Online]. Available:
https://arxiv.org/abs/1603.01360

Y. Wu et al., “Google’s neural machine translation
system: Bridging the gap between human and
machine translation,” 2016, arXiv:1609.08144.
[Online]. Available:
https://arxiv.org/abs/1609.08144

Google Al Blog. Google Duplex: An Al System for
Accomplishing Real-World Tasks Over the Phone.
[Online]. Available:
https://ai.googleblog.com/2018/05/duplex-ai-
system-for-natural-conversation.html

S. Antol et al., “VQA: Visual question answering,”
in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015,
Pp. 2425-2433.

Pagespeed Insights: Improve Server Response Time,
Google.

Apple. (2017). Hey Siri: An On-Device
DNN-Powered Voice Trigger for Apple’s Personal
Assistant. [Online]. Available: https://
machinelearning.apple.com/2017/10/01/hey-
siri.html

A. Kusupati, M. Singh, K. Bhatia, A. Kumar, P Jain,
and M. Varma, “FastGRNN: A fast, accurate, stable
and tiny kilobyte sized gated recurrent neural
network,” in Proc. Adv. Neural Inf. Process. Syst.,
2018, pp. 9017-9028.

Raymond Wong. Google’s Pixel Buds are no Match
for Professional Interpreters. [Online]. Available:
https://mashable.com/2017/12/05/google-pixel-
buds-real-time-translations-vs-un-
interpreter/?europe=true

J. Ryan, M.-J. Lin, and R. Miikkulainen, “Intrusion
detection with neural networks,” in Proc. Adv.
Neural Inf. Process. Syst., 1998, pp. 943-949.

Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai,
“Kitsune: An ensemble of autoencoders for online
network intrusion detection,” 2018,
arXiv:1802.09089. [Online]. Available:
https://arxiv.org/abs/1802.09089

S. Chinchali et al., “Cellular network traffic
scheduling with deep reinforcement learning,” in
Proc. 32nd AAAI Conf. Artif. Intell., 2018, pp. 1-9.
N. Tsikoudis, A. Papadogiannakis, and E. P
Markatos, “LEONIDS: A low-latency and
energy-efficient network-level intrusion detection
system,” IEEE Trans. Emerg. Topics Comput., vol. 4,
no. 1, pp. 142-155, Jan. 2016.

8, August 2019

[53]

[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

H. Zhu, Y. Cao, W. Wang, T. Jiang, and S. Jin,
“Deep reinforcement learning for mobile edge
caching: Review, new features, and open issues,”
IEEE Netw., vol. 32, no. 6, pp. 50-57, Nov. 2018.
Y. M. Saputra, D. T. Hoang, D. N. Nguyen,

E. Dutkiewicz, D. Niyato, and D. I. Kim,
“Distributed deep learning at the edge: A novel
proactive and cooperative caching framework for
mobile edge networks,” CoRR,

vol. abs/1812.05374, pp. 1-4, Dec. 2018.

C. Zhong, M. C. Gursoy, and S. Velipasalar, ‘A
deep reinforcement learning-based framework for
content caching,” CoRR, vol. abs/1712.08132,

pp. 1-6, Dec. 2017.

S. Yao, S. Hu, Y. Zhao, A. Zhang, and

T. Abdelzaher, “DeepSense: A unified deep
learning framework for time-series mobile sensing
data processing,” in Proc. 26th Int. Conf. World
Wide Web, 2017, pp. 351-360.

W. Ouyang and X. Wang, ‘Joint deep learning for
pedestrian detection,” in Proc. IEEE Int. Conf.
Comput. Vis., Dec. 2013, pp. 2056-2063.

L. Li, K. Ota, and M. Dong, “When weather
matters: IoT-based electrical load forecasting for
smart grid,” IEEE Commun. Mag., vol. 55, no. 10,
pp. 46-51, Oct. 2017.

A. Kumar, S. Goyal, and M. Varma,
“Resource-efficient machine learning in 2 KB RAM
for the Internet of Things,” in Proc. 34th Int. Conf.
Mach. Learn., vol. 70, 2017, pp. 1935-1944.

Z. Zhao, K. M. Barijough, and A. Gerstlauer,
“Deepthings: Distributed adaptive deep learning
inference on resource-constrained iot edge
clusters,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 37, no. 11, pp. 2348-2359,
Nov. 2018.

M. Mohammadi, A. Al-Fuqaha, S. Sorour, and

M. Guizani, “Deep learning for IoT big data and
streaming analytics: A survey,” IEEE Commun.
Surveys Tuts., vol. 20, no. 4, pp. 2923-2960, 4th
Quart., 2018.

X. Hou, S. Dey, J. Zhang, and M. Budagavi,
“Predictive view generation to enable mobile
360-degree and VR experiences,” in Proc. Morning
Workshop Virtual Reality Augmented Reality Netw.,
2018, pp. 20-26.

Y. Xu et al., “Gaze prediction in dynamic 360
immersive videos,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 5333-5342.

S. Afzal, J. Chen, and K. K. Ramakrishnan,
“Characterization of 360-degree videos,” in Proc.
ACM SIGCOMM Workshop Virtual Reality
Augmented Reality Netw., 2017, pp. 1-6.

A. Jindal et al. (Jan. 2018). Enabling Full Body AR
With Mask R-CNN2GO. [Online]. Available:
https://research.fb.com/enabling-full-body-ar-
with-mask-r-cnn2go/

S. LaValle, Virtual Reality. Cambridge, U.K.:
Cambridge Univ. Press, 2016.

Z. Chen et al., “An empirical study of latency in an
emerging class of edge computing applications for
wearable cognitive assistance,” in Proc. 2nd
ACM/IEEE Symp. Edge Comput., Oct. 2017, p. 14.
K. Ha, Z. Chen, W. Hu, W. Richter, P, Pillai, and

M. Satyanarayanan, “Towards wearable cognitive
assistance,” in Proc. ACM MobiSys, 2014,

pp. 68-81.

W. Liu et al., “SSD: Single shot multibox detector,”
in Proc. Eur. Conf. Comput. Vis. Springer, 2016,
pp. 21-37.

E N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf,
W. J. Dally, and K. Keutzer, “SqueezeNet:
Alexnet-level accuracy with 50x fewer parameters
and <0.5 MB model size,” 2016,
arXiv:1602.07360. [Online]. Available:
https://arxiv.org/abs/1602.07360

S. Han, H. Mao, and W. J. Dally, “Deep
compression: Compressing deep neural networks
with pruning, trained quantization and Huffman
coding,” 2015, arXiv:1510.00149. [Online].
Available: https://arxiv.org/abs/1510.00149

L. Lai and N. Suda, “Enabling deep learning at the
10T edge,” in Proc. Int. Conf. Comput.-Aided Design
(ICCAD), 2018, p. 135.

S. Han et al., “ESE: Efficient speech recognition

[74]

[75]

[76]

[771

[78]

[791

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

engine with sparse LSTM on FPGA,” in Proc.
ACM/SIGDA Int. Symp. Field-Program. Gate Arrays
(FPGA), 2017, pp. 75-84.

S. Bhattacharya and N. D. Lane, “Sparsification
and separation of deep learning layers for
constrained resource inference on wearables,” in
Proc. 14th ACM Conf. Embedded Netw. Sensor Syst.
CD-ROM (SenSys), 2016, pp. 176-189.

G. Hinton, O. Vinyals, and J. Dean, “Distilling the
knowledge in a neural network,” 2015,
arXiv:1503.02531. [Online]. Available:
https://arxiv.org/abs/1503.02531

S. Teerapittayanon, B. McDanel, and H. Kung,
“BranchyNet: Fast inference via early exiting from
deep neural networks,” in Proc. Int. Conf. Pattern
Recognit., Dec. 2016, pp. 2464-2469.

S. Yao, Y. Zhao, Z. Aston, L. Su, and T. Abdelzaher,
“On-demand deep model compression for mobile
devices: A usage-driven model selection
framework,” in Proc. MobiSys, 2018, pp. 389-400.
N. Loc Huynh, Y. Lee, and R. K. Balan, “DeepMon:
Mobile GPU-based deep learning framework for
continuous vision applications,” in Proc. ACM
MobiSys, 2017, pp. 82-95.

Edge TPU. [Online]. Available:
https://cloud.google.com/edge-tpu/

Z.Du et al., “Shidiannao: Shifting vision
processing closer to the sensor,” ACM SIGARCH
Comput. Archit. News, vol. 43, no. 3, pp. 92-104,
2015.

Y. Chen, T. Chen, Z. Xu, N. Sun, and O. Temam,
“Diannao family: Energy-efficient hardware
accelerators for machine learning,” Commun.
ACM, vol. 59, no. 11, pp. 105-112, 2016.

K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers,

K. Strauss, and E. S. Chung. Accelerating Deep
Convolutional Neural Networks Using Specialized
Hardware. [Online]. Available:
https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/CNN20Whitepaper.pdf
VPU. [Online]. Available:
https://www.movidius.com/solutions/vision-
processing-unit

S. Rivas-Gomez, A. J. Pena, D. Moloney, E. Laure,
and S. Markidis, “Exploring the vision processing
unit as co-processor for inference,” in Proc. IEEE
Int. Parallel Distrib. Process. Symp. Workshops
(IPDPSW), May 2018, pp. 589-598.

Nvidia. NVIDIA EGX Edge Computing Platform.
[Online]. Available: https://www.nvidia.com/en-
us/data-center/products/egx-edge-computing/
Qualcomm. Qualcomm Neural Processing SDK for
Al [Online]. Available: https://developer.
qualcomm.com/software/qualcomm-neural-
processing-sdk

M. Alzantot, Y. Wang, Z. Ren, and M. B.
Srivastava, “RSTensorFlow: GPU enabled
tensorflow for deep learning on commodity
android devices,” in Proc. 1st Int. Workshop Deep
Learn. Mobile Syst. Appl. (EMDL), 2017, pp. 7-12.
N. D. Lane et al., “DeepX: A software accelerator
for low-power deep learning inference on mobile
devices,” in Proc. 15th ACM/IEEE Int. Conf. Inf.
Process. Sensor Netw. (IPSN), 2016, p. 23.

V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer,
“Efficient processing of deep neural networks: A
tutorial and survey,” Proc. IEEE, vol. 105, no. 12,
pp. 2295-2329, Dec. 2017.

X. Wang, X. Wang, and S. Mao, “RF sensing in the
Internet of Things: A general deep learning
framework,” IEEE Commun. Mag., vol. 56, no. 9,
pp. 62-67, Sep. 2018.

T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl,
and H. Balakrishnan, “Glimpse: Continuous,

real-time object recognition on mobile devices,” in

Proc. ACM SenSys, 2015, pp. 155-168.

C. Liu et al., “A new deep learning-based food
recognition system for dietary assessment on an
edge computing service infrastructure,” IEEE
Trans. Services Comput., vol. 11, no. 2,

pp. 249-261, Jan. 2018.

H. Zhang, G. Ananthanarayanan, P Bodik,

M. Philipose, P Bahl, and M. J. Freedman, “Live
video analytics at scale with approximation and
delay-tolerance,” in Proc. USENIX NSDI, 2017,

[94]

[95]

[96]

[971

[98]

[991

[100

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

Chen and Ran: Deep Learning With Edge Computing: A Review

pp. 377-392.

J. Jiang, G. Ananthanarayanan, P Bodik, S. Sen,
and . Stoica, “Chameleon: Scalable adaptation of
video analytics,” in Proc. Conf. ACM Special
Interest Group Data Commun., 2018, pp. 253-266.
A. H. Jiang et al., “Mainstream: Dynamic
stem-sharing for multi-tenant video processing,”
in Proc. USENIX Annu. Tech. Conf. (USENIXATC),
2018, pp. 29-42.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document
recognition,” Proc. IEEE, vol. 86, no. 11,

pp. 2278-2324, Nov. 1998.

Z. Huang, W. Xu, and K. Yu, “Bidirectional
LSTM-CRF models for sequence tagging,” CoRR,
vol. abs/1508.01991, pp. 1-10, Aug. 2015.

S. Hochreiter and J. Schmidhuber, “Long
short-term memory,” Neural Comput., vol. 9, no. 8,
pp. 1735-1780, 1997.

A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“ImageNet classification with deep convolutional
neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2012, pp. 1097-1105.

K. Simonyan and A. Zisserman, “Very deep
convolutional networks for large-scale image
recognition,” CoRR, vol. abs/1409.1556, pp. 1-14,
Sep. 2014.

A. Vedaldi and K. Lenc, “MatConvNet:
Convolutional neural networks for MATLAB,” in
Proc. 23rd ACM Int. Conf. Multimedia (MM), 2015,
pp. 689-692.

C. Szegedy et al., “Going deeper with
convolutions,” CoRR, vol. abs/1409.4842,

pp- 1-12, Sep. 2014.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep
residual learning for image recognition,” CoRR,
vol. abs/1512.03385, pp. 1-12, Dec. 2015.

S. Han, H. Shen, M. Philipose, S. Agarwal, A.
Wolman, and

A. Krishnamurthy, “MCDNN: An
approximation-based execution framework for
deep stream processing under resource
constraints,” in Proc. ACM Mobisys, 2016,

pp- 123-136.

Y. Taigman, M. Yang, M. A. Ranzato, and L. Wolf,
“DeepFace: Closing the gap to human-level
performance in face verification,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014,
pp. 1701-1708.

H. Li, K. Ota, and M. Dong, “Learning IoT in edge:
Deep learning for the Internet of Things with edge
computing,” IEEE Netw., vol. 32, no. 1,

pp. 96-101, Jan. 2018.

J. Mao, X. Chen, K. W. Nixon, C. Krieger, and

Y. Chen, “MoDNN: Local distributed mobile
computing system for deep neural network,” in
Proc. Design, Autom. Test Eur. Conf. Exhibit.
(DATE), Mar. 2017, pp. 1396-1401.

Arcore Overview. [Online]. Available:
https://mxnet.apache.org/

S. Teerapittayanon, B. McDanel, and H. Kung,
“Distributed deep neural networks over the cloud,
the edge and end devices,” in Proc. IEEE 37th Int.
Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2017,
pp. 328-339.

S. Teerapittayanon, B. McDanel, and H. T. Kung,
“BranchyNet: Fast inference via early exiting from
deep neural networks,” CoRR,

vol. abs/1709.01686, pp. 1-7, Sep. 2017.

X. Ran, H. Chen, Z. Liu, and J. Chen, “Delivering
deep learning to mobile devices via offloading,” in
Proc. ACM SIGCOMM Workshop Virtual Reality
Augmented Reality Netw., 2017, pp. 42-47.

E. Cuervo et al., “MAUI: Making smartphones last
longer with code offload,” ACM MobiSys, 2010,
pp. 49-62.

S.Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and

Q. Li, “Lavea: Latency-aware video analytics on
edge computing platform,” in Proc. ACM/IEEE
Symp. Edge Comput., 2017, p. 15.

M.-R. Ra, A. Sheth, L. Mummert, P, Pillai,

D. Wetherall, and R. Govindan, “Odessa: Enabling
interactive perception applications on mobile
devices,” ACM MobiSys, 2011, pp. 43-56.

J. Wang, J. Zhang, W. Bao, X. Zhu, B. Cao, and

[116]

[117

[118]

[119]

[120]

[121]

[122]

[123]

[124

[125]

[126]

[127

[128

[129]

[130]

[131]

[132]

[133]

[134]

P S. Yu, “Not just privacy: Improving performance
of private deep learning in mobile cloud,” in Proc.
24th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2018, pp. 2407-2416.

R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter,
M. Naehrig, and J. Wernsing, “CryptoNets:
Applying neural networks to encrypted data with
high throughput and accuracy,” in Proc. Int. Conf.
Mach. Learn., 2016, pp. 201-210.

J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious
neural network predictions via minionn
transformations,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2017, pp. 619-631.

B. D. Rouhani, M. S. Riazi, and E Koushanfar,
“DeepSecure: Scalable provably-secure deep
learning,” in Proc. 55th Annu. Design Autom. Conf.,
2018, p. 2.

C. Juvekar, V. Vaikuntanathan, and

A. Chandrakasan, “GAZELLE: A low latency
framework for secure neural network inference,”
in Proc. 27th USENIX Secur. Symp. (USENIX
Security), 2018, pp. 1651-1669.

M. S. Riazi, C. Weinert, O. Tkachenko,

E. M. Songhori, T. Schneider, and E Koushanfar,
“Chameleon: A hybrid secure computation
framework for machine learning applications,” in
Proc. Asia Conf. Comput. Commun. Secur., 2018,
pp. 707-721.

J. Dean et al., “Large scale distributed deep
networks,” in Proc. Adv. Neural Inf. Process. Syst.,
2012, pp. 1223-1231.

D. Li, T. Salonidis, N. V. Desai, and M. C. Chuah,
“DeepCham: Collaborative edge-mediated
adaptive deep learning for mobile object
recognition,” in Proc. I[EEE/ACM Symp. Edge
Comput. (SEC), 2016, pp. 64-76.

J. Chen, R. Monga, S. Bengio, and R. Jozefowicz,
“Revisiting distributed synchronous SGD,” CoRR,
vol. abs/1604.00981, pp. 1-10, Apr. 2016.

S. Zhang, A. E. Choromanska, and Y. LeCun,
“Deep learning with elastic averaging SGD,” in
Advances in Neural Information Processing Systems,
C. Cortes, N. D. Lawrence, D. D. Lee,

M. Sugiyama, and R. Garnett, Eds. Red Hook, NY,
USA: Curran Associates, 2015, pp. 685-693.

H. B. McMabhan et al., “Communication-efficient
learning of deep networks from decentralized
data,” 2016, arXiv:1602.05629. [Online].
Available: https://arxiv.org/abs/1602.05629

S. Wang et al., “When edge meets learning:
Adaptive control for resource-constrained
distributed machine learning,” CoRR,

vol. abs/1804.05271, pp. 1-20, Feb. 2018.

K. Hsieh et al., “Gaia: Geo-distributed machine
learning approaching LAN speeds,” in Proc. 14th
USENIX Symp. Netw. Syst. Design Implement.
(NSDI), 2017, pp. 629-647.

R. Anil et al., “Large scale distributed neural
network training through online distillation,”
CoRR, vol. abs/1804.03235, pp. 1-12, Apr. 2018.
Y. Lin, S. Han, H. Mao, Y. Wang, and J. William
Dally, “Deep gradient compression: Reducing the
communication bandwidth for distributed
training,” CoRR, vol. abs/1712.01887, pp. 1-13,
Feb. 2017.

C. Hardy, E. L. Merrer, and B. Sericola,
“Distributed deep learning on edge-devices:
Feasibility via adaptive compression,” CoRR,

vol. abs/1702.04683, pp. 1-8, Nov. 2017.

M. Blot, D. Picard, M. Cord, and N. Thome,
“Gossip training for deep learning,” Nov. 2016,
arXiv:1611.09726. [Online]. Available:
https://arxiv.org/abs/1611.09726

P H. Jin, Q. Yuan, E Iandola, and K. Keutzer, “How
to scale distributed deep learning?” 2016,
arXiv:1611.04581. [Online]. Available:
https://arxiv.org/abs/1611.04581

Y. Li et al., “A network-centric hardware/algorithm
co-design to accelerate distributed training of
deep neural networks,” in Proc. 51st Annu.
IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Oct. 2018, pp. 175-188.

M. Abadi et al., “Deep learning with differential
privacy,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Oct. 2016, pp. 308-318.

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1673

Chen and Ran: Deep Learning With Edge Computing: A Review

[135] T. Zhang, Z. He, and R. B. Lee, “Privacy-preserving Oct. 2017, pp. 1-8. Comput., 2017, p. 10.
machine learning through data obfuscation,” [141] R.LiKamWa, B. Priyantha, M. Philipose, L. Zhong, [146] W. Zhang, J. Hwang, S. Rajagopalan,
Jul. 2018, arXiv:1807.01860. [Online]. Available: and P Bahl, “Energy characterization and K. Ramakrishnan, and T. Wood, “Flurries:
https://arxiv.org/abs/1807.01860 optimization of image sensing toward continuous Countless fine-grained nfs for flexible per-flow
[136] P Mohassel and Y. Zhang, “SecureML: A system mobile vision,” in Proc. 11th Annu. Int. Conf. customization,” in Proc. 12th Int. Conf. Emerg.
for scalable privacy-preserving machine learning,” Mobile Syst., Appl., Services, 2013, pp. 69-82. Netw. Exp. Technol., 2016, pp. 3-17.
in Proc. IEEE Symp. Secur. Privacy (SP), May 2017, [142] S. Naderiparizi, P Zhang, M. Philipose, [147] S. Kaul, R. Yates, and M. Gruteser, “Real-time
pp. 19-38. B. Priyantha, J. Liu, and D. Ganesan, “Glimpse: A status: How often should one update?” in Proc.
[137] Y.Mao, S.Yi, Q. Li, J. Feng, E Xu, and S. Zhong, programmable early-discard camera architecture IEEE INFOCOM, Mar. 2012, pp. 2731-2735.
“Learning from differentially private neural for continuous mobile vision,” in Proc. 15th Annu. [148] J. Cho, K. Sundaresan, R. Mahindra,
activations with edge computing,” in Proc. Int. Conf. Mobile Syst., Appl., Services, 2017, J. van der Merwe, and S. Rangarajan, “ACACIA:
IEEE/ACM Symp. Edge Comput. (SEC), Oct. 2018, pp. 292-305. Context-aware edge computing for continuous
pp. 90-102. [143] K. Ha et al., “You can teach elephants to dance: interactive applications over mobile networks,” in
[138] N. Qian, “On the momentum term in gradient Agile VM handoff for edge computing,” in Proc. Proc. 12th Int. Conf. Emerg. Netw. Exp. Technol.,
descent learning algorithms,” Neural Netw., 2nd ACM/IEEE Symp. Edge Comput., 2017, p. 12. 2016, pp. 375-389.
vol. 12, no. 1, pp. 145-151, 1999. [144] L.Ma, S.Yi, and Q. Li, “Efficient service handoff [149] R. Shokri, M. Stronati, C. Song, and V. Shmatikov,
[139] P Goyal et al., “Accurate, large minibatch SGD: across edge servers via docker container “Membership inference attacks against machine
Training imagenet in 1 hour,” CoRR, migration,” in Proc. 2nd ACM/IEEE Symp. Edge learning models,” in Proc. IEEE Symp. Secur.
vol. abs/1706.02677, pp. 1-12, Jun. 2017. Comput., 2017, p. 11. Privacy (SP), May 2017, pp. 3-18.
[140] C. Hardy, E. L. Merrer, and B. Sericola, [145] L. Chaufournier, P Sharma, F. Le, E. Nahum, [150] C. Dwork, E McSherry, K. Nissim, and A. Smith,

“Distributed deep learning on edge-devices:
Feasibility via adaptive compression,” in Proc.
IEEE 16th Int. Symp. Netw. Comput. Appl. (NCA),

ABOUT THE AUTHORS

P Shenoy, and D. Towsley, “Fast transparent
virtual machine migration in distributed edge
clouds,” in Proc. 2nd ACM/IEEE Symp. Edge

“Calibrating noise to sensitivity in private data
analysis,” in Proc. Theory Cryptogr. Conf. Springer,
2006, pp. 265-284.

Jiasi Chen received the B.S. degree from
Columbia University, New York, NY, USA,
with internships at AT&T Labs Research,
Florham Park, NJ, USA, and NEC Labs Amer-
ica, Princeton, NJ, USA, and the Ph.D. degree
from Princeton University, Princeton, Nj,
USA.

She is currently an Assistant Professor with
the Department of Computer Science and .
Engineering, University of California at Riverside, Riverside, CA,
USA. Her current research interests include edge computing, wire-
less and mobile systems, and multimedia networking, with a recent
focus on machine learning at the network edge to aid augmented
reality (AR)/virtual reality (VR) applications.

Dr. Chen was a recipient of the Hellman Fellowship and the UCR
Regents Faculty Fellowship.

1674 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Xukan Ran received the B.S. degree in
network engineering from Xidian University, &%
Xi'an, China. He is currently working toward
the Ph.D. degree in computer science at the [
University of California at Riverside, River-
side, CA, USA. He also studied computer
science at Zhejiang University, Hangzhou,
China.

His current research interests include -,
edge computing, deep learning, and simultaneous localization and
mapping on mobile devices.

Mr. Ran received the Best-in-Session Presentation Award at the
IEEE INFOCOM in 2018.

