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This article provides an overview of applications where deep learning is used at the

network edge. Computer vision, natural language processing, network functions, and

virtual and augmented reality are discussed as example application drivers.
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ABSTRACT | Deep learning is currently widely used in a vari-

ety of applications, including computer vision and natural

language processing. End devices, such as smartphones and

Internet-of-Things sensors, are generating data that need to

be analyzed in real time using deep learning or used to

train deep learning models. However, deep learning inference

and training require substantial computation resources to run

quickly. Edge computing, where a fine mesh of compute nodes

are placed close to end devices, is a viable way to meet

the high computation and low-latency requirements of deep

learning on edge devices and also provides additional bene-

fits in terms of privacy, bandwidth efficiency, and scalability.

This paper aims to provide a comprehensive review of the

current state of the art at the intersection of deep learning

and edge computing. Specifically, it will provide an overview

of applications where deep learning is used at the network

edge, discuss various approaches for quickly executing deep

learning inference across a combination of end devices, edge

servers, and the cloud, and describe the methods for training

deep learning models across multiple edge devices. It will also

discuss open challenges in terms of systems performance,

network technologies and management, benchmarks, and pri-

vacy. The reader will take away the following concepts from

this paper: understanding scenarios where deep learning at

the network edge can be useful, understanding common tech-

niques for speeding up deep learning inference and performing

distributed training on edge devices, and understanding recent

trends and opportunities.
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I. I N T R O D U C T I O N

Deep learning has recently been highly successful in

machine learning across a variety of application domains,

including computer vision, natural language processing,

and big data analysis, among others. For example, deep

learning methods have consistently outperformed tradi-

tional methods for object recognition and detection in

the ISLVRC Computer Vision Competition since 2012 [1].

However, deep learning’s high accuracy comes at the

expense of high computational and memory requirements

for both the training and inference phases of deep learning.

Training a deep learning model is space and computation-

ally expensive due to millions of parameters that need to

be iteratively refined over multiple time periods. Inference

is computationally expensive due to the potentially high

dimensionality of the input data (e.g., a high-resolution

image) and millions of computations that need to be

performed on the input data. High accuracy and high

resource consumption are defining characteristics of deep

learning.

To meet the computational requirements of deep learn-

ing, a common approach is to leverage cloud computing.

To use cloud resources, data must be moved from the

data source location on the network edge [e.g., from

smartphones and Internet-of-Things (IoT) sensors] to a

centralized location in the cloud. This potential solution

of moving the data from the source to the cloud introduces

several challenges.

1) Latency: Real-time inference is critical to many

applications. For example, camera frames from an

autonomous vehicle need to be quickly processed to

detect and avoid obstacles or a voice-based-assistive

application needs to quickly parse and understand

the user’s query and return a response. However,

sending data to the cloud for inference or train-

ing may incur additional queuing and propaga-

tion delays from the network and cannot satisfy
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strict end-to-end low-latency requirements needed

for real time, interactive applications; for example,

real experiments have shown that offloading a cam-

era frame to an Amazon Web Services server and

executing a computer vision task take more than

200-ms end-to-end [2].

2) Scalability: Sending data from the sources to the

cloud introduces scalability issues, as network access

to the cloud can become a bottleneck as the num-

ber of connected devices increases. Uploading all

data to the cloud is also inefficient in terms of

network resource utilization, particularly if not all

data from all sources are needed by the deep learn-

ing. Bandwidth-intensive data sources, such as video

streams, are particularly a concern.

3) Privacy: Sending data to the cloud risks privacy

concerns from the users who own the data or

whose behaviors are captured in the data. Users

may be wary of uploading their sensitive informa-

tion to the cloud (e.g., faces or speech) and of

how the cloud or application will use these data.

For example, the recent deployment of cameras

and other sensors in a smart city environment in

New York City incurred serious concerns from pri-

vacy watchdogs [3].

Edge computing is a viable solution to meet the latency,

scalability, and privacy challenges described earlier in

this section. In edge computing, a fine mesh of compute

resources provides computational abilities close to the end

devices [4]. For example, an edge compute node could

be co-located with a cellular base station and an IoT

gateway or on a campus network. Edge computing is

already being deployed by industry; for example, a major

cellular Internet service provider in the United States and

a national fast-food chain have both deployed edge com-

pute services [5], [6]. To address latency challenges, edge

computing’s proximity to data sources on the end devices

decreases end-to-end latency and thus enables real-time

services. To address scalability challenges, edge computing

enables a hierarchical architecture of end devices, edge

compute nodes, and cloud data centers that can pro-

vide computing resources and scale with the number of

clients, avoiding network bottlenecks at a central location.

To address privacy challenges, edge computing enables

data to be analyzed close to the source, perhaps by a local

trusted edge server, thus avoiding traversal of the public

Internet and reducing exposure to privacy and security

attacks.

While edge computing can provide the latency, scalabil-

ity, and privacy benefits discussed earlier in this section,

several major challenges remain to realize deep learning at

the edge. One major challenge is accommodating the high

resource requirements of deep learning on less powerful

edge compute resources. Deep learning needs to execute

on a variety of edge devices, ranging from reasonably

provisioned edge servers equipped with a GPU, to smart-

phones with mobile processors, to barebones Raspberry

Fig. 1. Deep learning can execute on edge devices (i.e., end

devices and edge servers) and on cloud data centers.

Pi devices. A second challenge is understanding how the

edge devices should coordinate with other edge devices

and with the cloud, under heterogeneous processing capa-

bilities and dynamic network conditions, to ensure a good

end-to-end application-level performance. Finally, privacy

remains a challenge, even as edge computing naturally

improves privacy by keeping data local to the network

edge, as some data often still need to be exchanged

between edge devices and possibly the cloud. Researchers

have proposed various approaches from diverse angles to

tackle these challenges, ranging from hardware design to

system architecture to theoretical modeling and analy-

sis. The purpose of this paper is to survey works at

the confluence of the two major trends of deep learning

and edge computing, in particular focusing on the soft-

ware aspects and their unique challenges therein. While

excellent surveys exist on deep learning [7] as well as

edge computing [8], [9] individually, this paper focuses on

works at their intersection.

Deep learning on edge devices has similarities to, but

also differences from, other well-studied areas in the litera-

ture. Compared to cloud computing that can help run com-

putationally expensive machine learning (e.g., machine

learning as a service), edge computing has several advan-

tages, such as lower latency and greater geospatial speci-

ficity that have been leveraged by researchers [10]. Several

works have combined edge computing with cloud com-

puting, resulting in hybrid edge-cloud architectures [11].

Compared to traditional machine learning methods (out-

side of deep learning), deep learning’s computational

demands are particularly a challenge, but deep learning’s

specific internal structure can be exploited to address

this challenge (see [12]–[14]). Compared to the growing

body of work on deep learning for resource-constrained

devices, edge computing has additional challenges relat-

ing to shared communication and computation resources

across multiple edge devices.

In the rest of this paper, we define the edge devices

that include both end devices (e.g., smartphones or IoT

sensors), as well as edge compute nodes or servers,

as shown in Fig. 1. This paper is organized as follows.
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Fig. 2. DNN example of image classification.

We first provide a brief background on deep learning

(see Section II). We then describe several application

domains where deep learning on the network edge can be

useful (see Section III). In Section IV, we discuss different

architectures and methods to speed up deep learning infer-

ence, focusing on device-only execution, always computing

on the edge server, and intermediate alternatives, such as

offloading, hybrid edge-cloud, and distributed computing

approaches. We then discuss training deep learning models

on edge devices, with an emphasis on distributed training

across devices and privacy (see Section V). Finally, we fin-

ish with open research challenges (see Section VI) and

conclusions (see Section VII).

II. B A C K G R O U N D , M E A S U R E M E N T S ,

A N D F R A M E W O R K S

A. Background on Deep Learning

Since some of the techniques discussed in this paper

rely on the specific internals of deep learning, therefore,

we first provide a brief background on deep learning.

Further details can be found in reference texts (see [7]).

A deep learning prediction algorithm, also known as a

model, consists of a number of layers, as shown in Fig. 2.

In deep learning inference, the input data pass through

the layers in sequence, and each layer performs matrix

multiplications on the data. The output of a layer is

usually the input to the subsequent layer. After data are

processed by the final layer, the output is either a feature

or a classification output. When the model contains many

layers in sequence, the neural network is known as a

deep neural network (DNN). A special case of DNNs is

when the matrix multiplications include convolutional fil-

ter operations, which is common in DNNs that are designed

for image and video analysis. Such models are known

as convolutional neural networks (CNNs). There are also

DNNs designed especially for time series prediction; these

are called recurrent neural networks (RNNs) [7], which

have loops in their layer connections to keep state and

enable predictions on sequential inputs.

In deep learning training, the computation proceeds

in reverse order. Given the ground-truth training labels,

multiple passes are made over the layers to optimize the

parameters of each layer of matrix multiplications, starting

from the final layer and ending with the first layer. The

algorithm used is typically stochastic gradient descent.

Table 1 Common Performance Metrics

In each pass, a randomly selected “mini-batch” of samples

is selected and used to update the gradients in the direction

that minimizes the training loss (where the training loss is

defined as the difference between the predictions and the

ground truth). One pass through the entire training data

set is called a training epoch [15].

A key takeaway for the purposes of this work is that

there are a large number of parameters in the matrix

multiplications, resulting in many computations being

performed and thus the latency issues that we see on

end devices. A second takeaway is that there are many

choices (hyperparameters) on how to design the DNN

models (e.g., the number of parameters per layer, and the

number of layers), which makes the model design more of

an art than a science. Different DNN design decisions result

in tradeoffs between system metrics; for example, a DNN

with higher accuracy likely requires more memory to store

all the model parameters and will have higher latency

because of all the matrix multiplications being performed.

On the other hand, a DNN model with fewer parameters

will likely execute more quickly and use less computa-

tional resources and energy, but it may not have sufficient

accuracy to meet the application’s requirements. Several

works exploit these tradeoffs, which will be discussed in

Sections IV-B and IV-C.

B. Measurements of Deep Learning Performance

Deep learning can be used to perform both supervised

learning and unsupervised learning. The metrics of success

depend on the particular application domain where deep

learning is being applied. For example, in object detection,

the accuracy may be measured by the mean average preci-

sion (mAP) [1], which measures how well the predicted

object location overlaps with the ground-truth location,

averaged across multiple categories of objects. In machine

translation, the accuracy can be measured by the bilin-

gual evaluation understudy score metric [16], which com-

pares a candidate translation with several ground-truth

reference translations. Other general system performance

metrics not specific to the application include through-

put, latency, and energy. These metrics are summarized

in Table 1.

Designing a good DNN model or selecting the right DNN

model for a given application is challenging due to the

large number of hyperparameter decisions. A good under-

standing of the tradeoffs between the speed, accuracy,

memory, energy, and other system resources can be helpful

for the DNN model designer or the application developer.

These comparative measurements are typically presented
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in research papers proposing new models or standalone

measurement papers [17]. An especially important consid-

eration in the context of edge computing is the testbed

that the measurements are conducted on. Machine learn-

ing research typically focuses on accuracy metrics, and

their system performance results are often reported from

powerful server testbeds equipped with GPUs. For exam-

ple, Huang et al. [17] compared the speed and accuracy

tradeoffs when running on a high-end gaming GPU (Nvidia

Titan X). The YOLO DNN model [18], which is designed

for real-time performance, provides timing measurements

on the same server GPU.

Specifically targeting mobile devices, Lu et al. [19] pro-

vided the measurements for a number of popular DNN

models on mobile CPUs and GPUs (Nvidia TK1 and TX1).

Ran et al. [20] further explored the accuracy–latency

tradeoffs on mobile devices by measuring how reducing

the dimensionality of the input size reduces the overall

accuracy and latency. DNN models designed specifically

for mobile devices, such as MobileNets [21], report system

performance in terms of a number of multiply–add opera-

tions, which could be used to estimate latency characteris-

tics and other metrics on different mobile hardware, based

on the processing capabilities of the hardware.

Once the system performance is understood, the applica-

tion developer can choose the right model. There has also

been much recent interest in automated machine learning,

which uses artificial intelligence to choose which DNN

model to run and tune the hyperparameters. For exam-

ple, Tan et al. [22] and Taylor et al. [23] proposed using

reinforcement learning and traditional machine learn-

ing, respectively, to choose the right hyperparameters for

mobile devices, which is useful in edge scenarios.

C. Frameworks Available for DNN Inference

and Training

To experiment with deep learning models, researchers

commonly turn to open-source software libraries and

hardware development kits. Several open-source software

libraries are publicly available for deep learning inference

and training on end devices and edge servers. Google’s

TensorFlow [24], released in 2015, is an interface for

expressing machine learning algorithms and an implemen-

tation for executing such algorithms on heterogeneous

distributed systems. Tensorflow’s computation workflow

is modeled as a directed graph and utilizes a placement

algorithm to distribute computation tasks based on the

estimated or measured execution time and communica-

tion time [25]. The placement algorithm uses a greedy

approach that places a computation task on the node

that is expected to complete the computation the soonest.

Tensorflow can run on edge devices, such as Raspberry Pi

and smartphones. TensorFlow Lite was proposed in the late

2017 [26], which is an optimized version of Tensorflow

for mobile and embedded devices, with mobile GPU sup-

port added in early 2019. Tensorflow Lite only provides

on-device inference abilities, not training, and achieves

low latency by compressing a pre-trained DNN model.

Caffe [27]–[29] is another deep learning framework,

originally developed by Jia, with the current version,

Caffe2, maintained by Facebook. It seeks to provide an easy

and straightforward way for deep learning with a focus on

mobile devices, including smartphones and Raspberry Pis.

PyTorch [30] is another deep learning platform developed

by Facebook, with its main goal differing from Caffe2 in

which it focuses on the integration of research proto-

types to production development. Facebook has recently

announced that Caffe2 and PyTorch will be merging.

GPUs are an important factor in efficient DNN inference

and training. Nvidia provides GPU software libraries to

make use of Nvidia GPUs, such as CUDA [31] for general

GPU processing and cuDNN [32] which is targeted toward

deep learning. While such libraries are useful for training

DNN models on a desktop server, cuDNN and CUDA are

not widely available on current mobile devices such as

smartphones. To utilize smartphone GPUs, Android devel-

opers can currently make use of Tensorflow Lite, which

provides experimental GPU capabilities. To experiment

with edge devices other than smartphones, researchers can

turn to edge-specific development kits, such as the Nvidia

Jetson TX2 development kit for experimenting with edge

computing (e.g., as used in [33]), with Nvidia-provided

SDKs used to program the devices. The Intel Edison kit

is another popular platform for experimentation, which

is designed for IoT experiments (e.g., as used in [34]).

Additional hardware-based platforms will be discussed in

Section IV-A3.

III. A P P L I C AT I O N S O F D E E P L E A R N I N G

AT T H E E D G E

We now describe several example applications where deep

learning on edge devices is useful, and what “real time”

means for each of these applications. Other applications

of deep learning exist alongside the ones described in the

following; here, for brevity, we highlight several applica-

tions that are relevant in the edge computing context. The

common theme across these applications is that they are

complex machine learning tasks where deep learning has

been shown to provide good performance and they need

to run in real time and/or have privacy concerns, hence

necessitating inference and/or training on the edge.

A. Computer Vision

Since the success of deep learning in the ISLVRC

Computer Vision Competition from 2012 onward [1], deep

learning has been recognized as the state of the art for

image classification and object detection. Image classifica-

tion and object detection are fundamental computer vision

tasks that are needed in a number of specific domains,

such as video surveillance, object counting, and vehicle

detection. Such data naturally originate from cameras

located at the network edge, and there have even been
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commercial cameras released with built-in deep learning

capabilities [35]. Real-time inference in computer vision

is typically measured in terms of frame rate [36], which

could be up to the frame rate of the camera, typically

30–60 frames/s. Uploading camera data to the cloud also

has privacy concerns, especially if the camera frames con-

tain sensitive information, such as people’s faces or private

documents, further motivating computation at the edge.

Scalability is a third reason why edge computing is useful

for computer vision tasks, as the uplink bandwidth to a

cloud server may become a bottleneck if there are a large

number of cameras uploading large video streams.

Vigil [37] is one example of an edge-based computer

vision system. Vigil consists of network of wireless cam-

eras that perform processing at edge compute nodes to

intelligently select frames for analysis (object detection

or counting), for example, to search for missing people

in surveillance cameras or analyze customer queues in

retail environments. The motivation for edge computing

in Vigil is twofold: to reduce the bandwidth consumption

compared to a naive approach of uploading all frames to

the cloud for analysis and for scalability as the number of

cameras increases.

VideoEdge [38] similarly motivates the edge-based

video analysis from a scalability standpoint. They use a

hierarchical architecture of edge and cloud compute nodes

to help with load balancing while maintaining high predic-

tion accuracy (further details are provided in Section IV).

Commercial devices, such as Amazon DeepLens [35], also

follow an edge-based approach, where image detection is

performed locally in order to reduce latency, and scenes

of interest are only uploaded to the cloud for remote

viewing if an interesting object is detected, in order to save

bandwidth.

B. Natural Language Processing

Deep learning has also become popular for natural

language processing tasks [39], including for speech

synthesis [40], named entity recognition [41] (under-

standing different parts of a sentence), and machine

translation [42] (translating from one language to

another). For conversational artificial intelligence, latency

on the order of hundreds of milliseconds has been achieved

in recent systems [43]. At the intersection of natural lan-

guage processing and computer vision, there are also visual

question-and-answer systems [44], where the goal is to

pose questions about an image (e.g., “how many zebras

are in this image?”) and receive natural language answers.

Latency requirements differ based on how information is

presented; for example, conversational replies are prefer-

ably returned within 10 ms, while a response to a written

Web query can tolerate around 200 ms [45].

An example of natural language processing on the edge

is voice assistants, such as Amazon Alexa or Apple Siri.

While voice assistants perform some of their processing

in the cloud, they typically use on-device processing to

detect wakewords (e.g., “Alexa” or “Hey Siri”). Only if

the wakeword is detected, then the voice recording is

sent to the cloud for further parsing, interpretation, and

query response. In the case of Apple Siri, the wakeword

processing uses two on-device DNNs to classify speech into

one of 20 classes (including general speech, silence, and

wakeword) [46]. The first DNN is smaller (5 layers with

32 units) and runs on a low-power always-ON processor.

If the first DNN’s output is above a threshold, it triggers a

second, more powerful DNN (5 layers with 192 units) on

the main processor.

Wakeword detection methods need to be further mod-

ified to run on even more computationally constrained

devices, such as a smartwatch or an Arduino. On the Apple

Watch, a single DNN is used, with a hybrid structure bor-

rowing from the aforementioned two-pass approach. For

speech processing on an Arduino, researchers from

Microsoft optimized an RNN-based wakeword (“Hey Cor-

tana”) detection module to fit in 1 kB of memory [47].

Overall, while edge computing is currently used for wake-

word detection on edge devices, latency remains a sig-

nificant issue for more complex natural language tasks

(e.g., a professional translator can translate 5× faster

than Google Translate with the Pixel Buds earbuds [48]),

as well as the need for constant cloud connectivity.

C. Network Functions

Using deep learning for network functions, such

as for intrusion detection [49], [50] and wireless

scheduling [51], has been proposed. Such systems,

by definition, live on the network edge and need to

operate with stringent latency requirements. For example,

an intrusion detection system that actively responds to

a detected attack by blocking malicious packets needs

to perform detection at a line rate to avoid creating a

bottleneck, e.g., 40 µs [52]. If the intrusion detection

system operates in the passive mode, however, its

latency requirements are less strict. A wireless scheduler

also needs to operate at a line rate in order to make

real-time decisions on which packets should be delivered

where.

In-network caching is another example of a network

function that can use deep learning at the network edge.

In an edge computing scenario, different end devices in the

same geographical region may request the same content

many times from a remote server. Caching such contents

at an edge server can significantly reduce the perceived

response time and network traffic. There are generally two

approaches to apply deep learning in a caching system: use

deep learning for content popularity prediction or use deep

reinforcement learning to decide a caching policy [53].

Saputra et al. [54], for example, used deep learning to pre-

dict content popularity. To train the deep learning model,

the cloud collects the content popularity information from

all of the edge caches. Deep reinforcement learning for

caching, on the other hand, avoids popularity prediction

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1659



Chen and Ran: Deep Learning With Edge Computing: A Review

and is solely based on reward signals from its actions.

Chen et al. [55], for example, trained deep reinforce-

ment learning for caching using the cache hit rate as the

reward.

D. Internet of Things

Automatic understanding of IoT sensor data is desired

in several verticals, such as wearables for healthcare,

smart city, and smart grid. The type of analysis that is

performed on these data depends on the specific IoT

domain, but deep learning has been shown to be success-

ful in several of them. Examples include human activity

recognition from wearable sensors [56], pedestrian traffic

in a smart city [57], and electrical load prediction in a

smart grid [58]. One difference in the IoT context is that

there may be multiple streams of data that need to be

fused and processed together, and these data streams

typically have space and time correlation that should be

leveraged by the machine learning. DeepSense [56] is

one framework geared toward IoT data fusion leveraging

spatiotemporal relationships. It proposes a general deep

learning framework that incorporates a hierarchy of CNNs

(to capture multiple sensor modalities) and RNNs (to

capture temporal correlations) and demonstrates how this

general framework can be applied to different tasks with

multiple sensor inputs: car tracking, human activity recog-

nition, and biometric identification using inertial sensors

(gyroscope, accelerometer, and magnetometer).

Another line of work in the context of IoT deep learn-

ing focuses on compressing the deep learning models

to fit onto computationally weak end devices, such as

Arduino or Raspberry Pi, which typically have only kilo-

bytes of memory and low-power processors. Bonsai [59]

does experiments with Arduino Uno, DeepThings [60]

experiments with Raspberry Pi 3, and DeepIoT [34] works

with Intel’s IoT platform, the Edison board. More details

on how they shrink the deep learning model to fit in

memory and run on these lightweight devices are dis-

cussed in Section IV. Other examples of applying deep

learning on IoT scenarios, including agriculture, industry,

and smart home, can be found in the excellent survey by

Mohammadi et al. [61].

Another motivation for edge computing with IoT devices

is that the significant privacy concerns when IoT sensors

are placed in public locations; for example, the Hudson

Yards smart city development in New York City seeks

to use air quality, noise, and temperature sensors, along

with cameras, to provide advertisers with estimates of

how many and how long people looked at advertisements,

as well as their sentiment based on facial expressions.

However, this has raised significant warnings from privacy

watchdogs [3]. Thus, while analyzing IoT sensor data in

real time is not always a requirement, and communication

bandwidth requirements from sensors are typically small

(unless cameras are involved), privacy is a major concern

that motivates IoT processing on the edge.

E. Virtual Reality and Augmented Reality

In 360◦ virtual reality (VR), deep learning has been

proposed to predict the field of view of the user [62]–[64].

These predictions are used to determine which spatial

regions of the 360◦ video to fetch from the content

provider and must be computed in real time to minimize

stalls and maximize the quality-of-experience of the user.

In augmented reality (AR), deep learning can be used to

detect objects of interest in the user’s field of view and

apply virtual overlays on top [33], [65].

Latency in AR/VR is often measured in terms of the

“motion-to-photons” delay. This is defined as the end-

to-end delay starting from when the user moves her

headset to when the display is updated in response to

her movement. Motion-to-photons’ latency is typically

required to be on the order of tens to hundreds of

milliseconds [66]. Since deep learning is only one possible

part of the AR/VR pipeline (retrieving virtual objects from

memory and rendering them can also consume signifi-

cant latency), the motion-to-photons’ latency requirement

is an upper bound on the latency requirement of deep

learning. The motion-to-photons’ latency requirement also

depends on the specific application and the type of user

interaction in that application; Chen et al. provided the

latency requirements for different cognitive assistance AR

applications [67]. Since offloading AR computation to the

cloud can incur latencies on the order of hundreds of mil-

liseconds, edge computing is needed to provide satisfactory

performance, as it is done in Gabriel, a cognitive assistance

framework using Google Glass [68].

IV. M E T H O D S F O R FA S T I N F E R E N C E

To enable the above-mentioned applications to meet their

latency requirements, different architectures for quickly

performing DNN inference have been proposed. In this

section, we discuss research centered around three major

architectures: 1) on-device computation, where DNNs are

executed on the end device; 2) edge server-based archi-

tectures, where data from the end devices are sent to

one or more edge servers for computation; and 3) joint

computation among end devices, edge servers, and the

cloud. We also discuss privacy-preserving techniques when

data are communicated between edge devices and with the

cloud, as in scenarios 1 and 2. Fig. 3 shows the taxonomy of

these methods, and Fig. 5 shows the examples of different

scenarios, which will be discussed in further detail in

the following. Tables 2 and 3 provide a summary of the

discussed works.

A. On-Device Computation

Many research efforts have focused on ways to reduce

the latency of deep learning when it is executed on

a resource-constrained device [see Fig. 5(a)]. Such

efforts can have benefits throughout the edge ecosystem,

by reducing the latency of the DNN while running on
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Fig. 3. Taxonomy of DNN inference speedup methods on the edge.

the end devices or edge servers. Here, we describe major

efforts in efficient hardware and DNN model design.

1) Model Design: When designing DNN models

for resource-constrained devices, machine learning

researchers often focus on designing models with a

reduced number of parameters in the DNN model, thus

reducing memory and execution latency, while aiming

to preserve high accuracy. There are many techniques

for doing so, and we briefly mention several popular

deep learning models for resource-constrained devices

drawn from computer vision. These models include

MobileNets [21], solid-state drive (SSD) [69], YOLO [18],

and SqueezeNet [70], with the state of the art that is

evolving rapidly. MobileNets decomposes the convolution

filters into two simpler operations, reducing the number

of computations needed. SqueezeNet downsamples the

data using special 1 × 1 convolution filters. YOLO and

SSD are both single shot detectors that jointly predict the

location and class of the object at the same time, which

is much faster than performing these steps sequentially.

Many of these models, with pre-trained weights, are

available for download on open-source machine learning

platforms such as Tensorflow [24] and Caffe [28] for

fast bootstrapping.

2) Model Compression: Compressing the DNN model

is another way to enable DNNs on edge devices. Such

methods usually seek to compress the existing DNN

models with minimal accuracy loss compared with

the original model. There are several popular model

compression methods: parameter quantization, parameter

pruning, and knowledge distillation. We briefly outline

these approaches in the following.

Parameter quantization takes an existing DNN and com-

presses its parameters by changing from floating-point

numbers to low-bit width numbers, thus avoiding costly

floating-point multiplications. Pruning involves removing

the least important parameters (e.g., those that are close

to 0), as shown in Fig. 4. Quantization and pruning

approaches have been considered individually as well

as jointly [71]. Specifically for edge and mobile devices,

DeepIoT [34] presents a pruning method for commonly

used deep learning structures in IoT devices, and the

pruned DNN can be immediately deployed on edge devices

without modification. Lai and Suda [72] provided CMSIS-

NN, a library for ARM Cortex-M processors that maximize

DNN performance through quantization. It also optimizes

data reuse in matrix multiplication to speed up DNN execu-

tion. Han et al. [73] proposed pruning and quantization for

an RNN model, with 10× speedup resulting from pruning

and 2× from quantization. Bhattacharya and Lane [74]

compressed the neural network by sparsifying the fully

connected layers and decomposing the convolutional fil-

ters on wearable devices.

Knowledge distillation involves creating a smaller DNN

that imitates the behavior of a larger, more powerful

DNN [75]. This is done by training the smaller DNN using

the output predictions produced from the larger DNN.

Essentially, the smaller DNN approximates the function

learned by the larger DNN. Fast exiting [76] is another

technique where not all layers are computed; only the

result from computing the initial layers is used to provide

approximate classification results.

Several works have explored the combinations of these

model compression techniques. Adadeep [77] automati-

cally chooses between different compression techniques,

including pruning and the special filter structures bor-

rowed from MobileNet and SqueezeNet, to meet applica-

tion requirements and satisfy mobile resource constraints.

DeepMon [78] combines quantization with caching of

results from intermediate layers on GPUs. The caching

leverages the insight that an input video does not change

much between the subsequent frames, so some compu-

tation results from a previous frame can be reused in

the current frame, reducing redundant computations and

speeding up execution.

Fig. 4. Pruning a neural network.
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Fig. 5. Architectures for deep learning inference with edge computing. (a) On-device computation. (b) Secure two-party communication.

(c) Computing across edge devices with DNN model partitioning. (d) Offloading with model selection. (e) Distributed computing with DNN

model partitioning.

3) Hardware: To speed up inference of deep learn-

ing, hardware manufacturers are leveraging existing hard-

ware such as CPUs and GPUs, as well as producing

custom application-specific integrated circuits (ASICs) for

deep learning, such as Google’s tensor processing unit

(TPU) [79]. ShiDianNao [80] is another recently proposed

custom ASIC, which focuses on efficient memory accesses

in order to reduce latency and energy consumption. It is

part of the DianNao [81] family of DNN accelerators, but

it is geared toward embedded devices, which is useful

in the edge computing context. field-programmable gate

array (FPGA)-based DNN accelerators are another promis-

ing approach, as FPGA can provide fast computation while

maintaining re-configurability [82]. These custom ASICs

and FPGA designs are generally more energy efficient than

the traditional CPUs and GPUs, which are designed for

flexible support of various workloads at the expense of

higher energy consumption.

Vendors also provide software tools for application

developers to leverage the accelerations provided by

the hardware. Chip manufacturers have developed soft-

ware tools to optimize deep learning on the existing

chips, such as Intel’s OpenVINO Toolkit to leverage Intel

chips, including Intel’s CPUs, GPUs, FPGAs, and vision

processing unit [83], [84]. Nvidia’s EGX platform [85] is

another recent entrant into this space, with support for

Nvidia hardware ranging from lightweight Jetson Nanos

to powerful T4 servers. Qualcomm’s Neural Processing

software development kit (SDK) is designed to utilize its

Snapdragon chips [86]. There are also general libraries

developed for mobile devices not tied to specific hard-

ware, such as RSTensorFlow [87], which uses the GPU to

speed up matrix multiplication in deep learning. Software

approaches have also been developed to efficiently utilize

hardware, e.g., Lane et al. [88] decomposed DNNs and

assigning them to heterogeneous local processors (e.g.,

CPU and GPU) to accelerate execution. More detail on

hardware-accelerated deep learning can be found in the

excellent survey by Sze et al. [89]. Since Sze’s survey

has covered hardware-based DNN accelerations in great

depth, the remainder of this paper mainly focuses on

software-based approaches.

B. Edge Server Computation

While the above-mentioned hardware speedup and com-

pression techniques can help DNNs run on end devices,

deploying large, powerful DNNs with real-time execution

requirement on edge devices is still challenging because

of resource limitations (e.g., power, computation, and

memory). Thus, it is natural to consider offloading DNN

computations from end devices to more powerful entities,

such as edge servers or the cloud. However, the cloud

is not suitable for edge applications that require short

response times [8]. Since the edge server is close to users

and can respond quickly to users’ request, it becomes the

first-choice helper.
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Table 2 Summary of the Selected Works on Fast Deep Learning Inference With Edge Computing

The most straightforward method to utilize the edge

server is to offload all the computation from end devices

to the edge server. In such scenarios, the end devices will

send its data to a nearby edge server and receive the corre-

sponding results after server processing. Wang et al. [90],

for example, always offloaded DNNs to the edge server (an

IoT gateway) to analyze wireless signals.

1) Data Preprocessing: When sending data to an

edge server, data preprocessing is useful to reduce data

redundancy and thus decrease communication time.

Glimpse [91] offloads all DNN computation to a nearby

edge server, but it uses change detection to filter which

camera frames are offloaded. If no changes are detected,

Glimpse will perform frame tracking locally on the end

device. This preprocessing improves system processing

Table 3 Summary of the Selected Works on Privacy-Preserving Inference
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ability and makes real-time object recognition on mobile

devices possible. Along similar lines, Liu et al. [92]

built a food recognition system with two preprocessing

steps: first, they discard blurry images, and second, they

crop the image so that it only contains the objects of

interest. Both preprocessing steps are lightweight and

can reduce the amount of offloaded data. We note that

while feature extraction is a common preprocessing step

in computer vision, it does not apply in the context of

deep learning, because the DNNs themselves serve as the

feature extractors.

2) Edge Resource Management: When DNN computa-

tions run on edge servers, DNN tasks from multiple end

devices need to run and be efficiently managed on shared

compute resources. Several works have explored this prob-

lem space, focusing on the tradeoffs between accuracy,

latency, and other performance metrics, such as a number

of requests served. VideoStorm [93] was one of the first

works in this space, and profiles these tradeoffs to choose

the right DNN configuration for each request, to meet

the accuracy and latency goals. The configuration can

also be updated online during the streaming video input,

as done in Chameleon [94]. VideoEdge [38] additionally

considers computation that is distributed across a hierar-

chy of edge and cloud servers and how to jointly tune all

the DNN hyperparameters. Mainstream [95] considers a

similar problem setup of accuracy versus latency tradeoffs

on edge servers, but their solution uses transfer learning

to reduce the computational resources consumed by each

request. Transfer learning enables multiple applications to

share the common lower layers of the DNN model and

computes higher layers unique to the specific application,

thus reducing the overall amount of computation.

C. Computing Across Edge Devices

Although the edge server can accelerate DNN process-

ing, it is not always necessary to have the edge devices

executing DNNs on the edge servers—intelligent offload-

ing can be used instead. We next discuss four offload-

ing scenarios: 1) binary offloading of DNN computation,

where the decision is whether to offload the entire DNN or

not; 2) partial offloading of partitioned DNNs, where the

decision is what fraction of the DNN computations should

be offloaded; 3) hierarchical architectures where offload-

ing is performed across a combination of edge devices,

edge servers, and cloud; and 4) distributed computing

approaches where the DNN computation is distributed

across multiple peer devices.

1) Offloading: Recent approaches, such as

DeepDecision [20], [111] and MCDNN [104], take an

optimization-based offloading approach with constraints

such as network latency and bandwidth, device energy,

and monetary cost. These decisions are based on the

empirical measurements of the tradeoffs between these

parameters, such as energy, accuracy, latency, and input

size for the different DNN models. The catalog of different

DNN models can be chosen from the existing popular

models (e.g., those discussed in Section IV-A2) or new

model variants can be constructed through knowledge

distillation or by “mix-and-matching” DNN layers from

multiple models [104]. An example of offloading,

combined with model selection where a powerful DNN

is available on the edge server and a weaker DNN is

available on the end device, is shown in Fig. 5(d).

We note that while offloading has long been studied

in the networking literature [112], even in the context of

edge computing [113], DNN offloading can consider the

additional degree of freedom of not only where to run, but

which DNN model or which portion of the model to run.

The decision of whether to offload or not thus depends on

the size of the data, the hardware capabilities, the DNN

model to be executed, and the network quality, among

other factors.

2) DNN Model Partitioning: A fractional offloading

approach can also be considered, which leverages the

unique structure of DNNs, specifically its layers. In such

model partitioning approaches, some layers are computed

on the device, and some layers are computed by the edge

server or the cloud, as shown in Fig. 5(c). This is known

as DNN model partitioning. These approaches can poten-

tially offer latency reductions by leveraging the compute

cycles of other edge devices; however, care must also be

taken that the latency of communicating the intermediate

results at the DNN partition point still leads to overall net

benefits. The intuition behind model partitioning is that

after the first few layers of the DNN model have been

computed, the size of the intermediate results is relatively

small, making them faster to send over the network to an

edge server than the original raw data [60]. This moti-

vates the approaches that partition after the initial layers.

Neurosurgeon [13] is one work that intelligently decides

where to partition the DNN, layer-wise, while accounting

for network conditions.

In addition to partitioning the DNN by layers, the DNN

can also be partitioned along the input dimension (e.g.,

select rows of the input image). Such input-wise parti-

tioning allows fine-grained partitioning, because the input

and output data size and the memory footprint of each

partition can be arbitrarily chosen, instead of the min-

imum partition size being defined by the discrete DNN

layer sizes. This is especially important for extremely

lightweight devices, such as IoT sensors, which may not

have the necessary memory to hold an entire DNN layer.

However, input-wise partitioning can result in increased

data dependence, as computing subsequent DNN lay-

ers requires data results from adjacent partitions. Two

examples of input-wise partitioning as MoDNN [107] and

DeepThings [60].

Overall, these partial offloading approaches through

DNN partitioning are similar in spirit to past, non-DNN

offloading approaches such as MAUI [112] and
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Odessa [114], which divide an application into its

constituent subtasks, and decide which subtasks to execute

where based on energy and/or latency considerations.

However, a new decision in the deep learning scenario is

how to decide the constituent subtasks, as the DNN can be

divided layer-wise, input-wise, or possibly in other ways

yet to be explored.

3) Edge Devices Plus the Cloud: Deep learning computa-

tion can be performed not only on edge devices but also

on the cloud, as shown in Fig. 5(c). While solely offloading

to the cloud can violate the real-time requirements of the

deep learning applications under consideration, judicious

use of the powerful compute resources in the cloud can

potentially decrease the total processing time. Different

from a binary decision of whether to perform computation

on the edge server or cloud, approaches in this space often

consider DNN partitioning, where some layers can execute

in the cloud, edge server, and/or end device.

Li et al. [106] divided the DNN model into two

parts—the edge server computes the initial layers of the

DNN model, and the cloud computes the higher layers

of the DNN. The edge server receives the input data,

performs lower layer DNN processing, and then sends

the intermediate results to the cloud. The cloud, after

computing the higher layers, sends back the final results to

the end devices. Such designs utilize both the edge server

and the cloud, where the cloud can help with computation-

ally heavy requests and increase the edge server’s request

processing rate while reducing the network traffic between

the edge server and the cloud. DDNN [109] also distributes

computation across a hierarchy of cloud, edge servers,

and end devices, and additionally combines this with the

fast exiting idea (discussed in Section IV-A2), so that the

computation requests do not always reach the cloud.

A unique characteristic of edge computing is that the

edge server typically serves users within a limited geo-

graphical area, suggesting that their input data and, thus,

their DNN outputs may be similar. Precog [10] leverages

this insight in the case of image recognition and places

smaller, specialized image classification models on the end

devices, based on what has recently been observed by

other devices served by the same edge server. If on-device

classification fails, the query is sent to the edge server

that stores all the classification models. Although their

evaluation does not use DNNs, they discuss how their clas-

sification model placement decisions would apply to DNNs.

This approach has similarities to knowledge distillation for

compressed models (see Section IV-A2), in which it uses a

combination of weaker and stronger classification models,

but it provides a more careful look at what specialized

models are needed on the end devices in edge scenarios.

4) Distributed Computation: The above-mentioned

approaches mainly consider offloading computation from

end devices to other more powerful devices (e.g., edge

servers or the cloud). Another line of work considers

the problem from a distributed computing perspective,

where the DNN computations can be distributed across

multiple helper edge devices, as shown in Fig. 5(e). For

example, MoDNN [107] and DeepThings [60] distribute

DNN executions using fine-grained partitioning on

lightweight end devices such as Raspberry Pis and

Android smartphones. The DNN partition decision is

made based on the computation capabilities and/or

memory of the end devices. At runtime, the input data

are distributed to helpers according to the load-balancing

principles, with MoDNN using a MapReduce-like model

and DeepThings designing a load-balancing heuristic.

The assignment of data to the helper devices can be

adjusted online to account for dynamic changes in

compute resource availability or network conditions.

More formal mechanisms from distributed systems could

also be applied in these scenarios to provide provable

performance guarantees.

D. Private Inference

When data from the end devices traverse the edge net-

work (e.g., from end devices to edge servers, as discussed

in Section IV-B), it may contain sensitive information (e.g.,

GPS coordinates, camera images, and microphone audio),

leading to privacy concerns. This is especially important

in edge computing, where the data are typically sourced

from a limited set of users within a limited geograph-

ical region, making privacy breaches more concerning.

Although edge computing naturally improves privacy by

reducing data transfers through the public Internet to the

cloud, additional techniques can further enhance privacy

between end devices and edge servers and protect from

eavesdroppers. In this section, we discuss two methods of

privacy-preserving inference: adding noise to obfuscate the

data uploaded by end devices to edge servers and secure

computation using cryptographic techniques.

1) Add Noise to Data: Several works have considered

how to obfuscate, or add noise, to the inference sam-

ples uploaded by end devices to a central machine (e.g.,

an edge server) performing inference. Wang et al. [115]

deployed a smaller DNN locally on the device to extract

features, add noise to the features, and then upload the

features to the cloud for further inference processing by a

more powerful DNN. The DNN on the cloud is pre-trained

with noisy samples so that the noisy inference samples

uploaded from the end devices can still be classified with

high accuracy at test time. The formal notion of privacy

used in this paper is differential privacy which, at a high

level, guarantees that a machine learning model does not

remember details about any specific device’s input data.

2) Secure Computation: Cryptographic techniques can

be used to compute the DNN prediction. The goal of secure

computation in this setup is to ensure that the end device

receives an inference result without learning anything

about the DNN model, and the edge server processes the

data without learning anything about the device’s data.
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In other words, an end device and an edge server want to

compute the DNN prediction f(a, b), where a is an input

sample (e.g., a camera frame) known only to the end

device and b are the DNN parameters known only to the

edge server. Secure computation enables both the device

and the server to compute f(a, b) without knowing the

other party’s data.

One method of secure computation is homomorphic

encryption, in which the communicated data are encrypted

and computation can be performed on the encrypted data,

as done in CryptoNets [116]. The idea is to approximate

common computations used in DNNs, such as weighted

sum, max pooling, mean pooling, sigmoid function,

and rectified linear unit (RELU), by low-degree poly-

nomials, which are amenable to homomorphic encryp-

tion. However, a bottleneck of homomorphic encryption

tends to be their compute times, which means that

offline preprocessing is needed. CryptoNets also requires

re-training of the DNN because of the approximations

used.

Multiparty computation is another technique for secure

computation [see Fig. 5(b)]. In secure multiparty compu-

tation, multiple machines work together and communi-

cate in multiple rounds to jointly compute a result (e.g.,

a DNN prediction in our scenario). Different from differ-

ential privacy, secure multiparty computation focuses on

the privacy of the intermediate steps in the computation,

while differential privacy focuses on the privacy guarantees

of the overall constructed model. MiniONN [117] and

DeepSecure [118] employ secure two-party computation

and homographic encryption and work with the existing

pre-trained DNN models without needing to change the

DNN training or structure. However, a bottleneck of secure

multiparty computation techniques tends to be their com-

munication complexity.

Chameleon [120] and Gazelle [119] are two works

that try to choose between the above-mentioned crypto-

graphic techniques (homomorphic encryption and secure

multiparty computation) based on their computation and

communication tradeoffs. Specifically, Gazelle studies the

tradeoffs between homomorphic encryption (high com-

putation and low communication) and two-party secure

computation (low computation and high communica-

tion) and chooses the right techniques for the scenario.

It further accelerates the training process with efficient

implementation of the cryptographic primitives. Their

evaluation compared to CryptoNets, MiniONN, DeepSe-

cure, and Chameleon using standard image classification

data sets suggests low runtime latency and communication

cost.

V. T R A I N I N G I N P L A C E O N E D G E

D E V I C E S

Thus far, edge computing and deep learning have mostly

been discussed for inference, with goals including low

latency, privacy, and bandwidth savings. These methods

assume that a deep learning model has already been

trained offline on a centralized, existing data set. In this

section, we discuss the methods of training deep learning

models with edge computing, primarily with a focus on

communication efficiency and privacy.

Traditionally, training data produced by end devices

would be sent to the cloud, which would then perform

the training with its large computational resources and

finally distribute the trained model back to the edge

devices as needed. However, sending the data to the cloud

can consume large amounts of bandwidth and also has

privacy concerns. Leaving data in situ on the end devices

is useful when privacy is desired and also helps reduce

the network bandwidth requirements. For example, a deep

learning-based typing prediction model for smartphones

may benefit from training data from multiple users, but

individual users may not wish to upload their raw key-

stroke data to the cloud; similarly, in an image classifica-

tion service, uploading all camera frames from end devices

to the cloud would consume large amounts of bandwidth

and risk uploading sensitive information.

Edge-based training borrows from distributed DNN

training in data centers. In data centers, training is per-

formed across multiple workers, with each worker holding

either a partition of the data set (known as data paral-

lelism) or a partition of the model (known as model par-

allelism). While both system designs have been explored,

data parallelism is widely used in practical systems [121]

and is the focus of the remainder of this section. In data

parallelism, each worker computes the gradients of its

local partition of the data set, which are then collected by

a central parameter server, some aggregate computation

performed, and the updates sent back to the workers

[see Fig. 7(a)].

Training on edge devices borrows from the data center

setup, where the workers are end devices instead of pow-

erful servers in a data center, and the central parameter

server is an edge compute node or server. For example,

DeepCham [122] consists of a master edge server that

trains domain-aware object recognition on end devices,

leveraging the insight that users connected to the same

edge server may have similar domains (e.g., time of day

and physical environment). In an edge scenario, commu-

nication latency, network bandwidth, and the compute

capabilities of the end device are key considerations of

training performance.

Training deep learning on edge devices typically

involves distributed deep learning training techniques.

This section discusses about the techniques to perform

distributed training on edge devices from the following

perspectives: the frequency and size of training updates,

which both contributes to communication cost (see Sec-

tions V-A and V-B, respectively); decentralized information

sharing (see Section V-C); and finally, privacy-preserving

DNN training (see Section V-D). A taxonomy of these

techniques is shown in Fig. 6, and a summary of the works

discussed in the following is shown in Table 4.
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Fig. 6. Taxonomy of DNN training in place on edge devices.

A. Frequency of Training Updates

Communication costs are a major concern for edge

devices. Reducing the frequency of communications and

the size of each communication is a key method to

reduce communication costs. In this section, we discuss

the distributed training methods that focus on communi-

cation timing and frequency, while in Section V-B, we dis-

cuss the size of the communicated data. There are two

general methods for synchronizing updates to a central

edge server: synchronous and asynchronous stochastic gra-

dient descent [123]. In synchronous stochastic gradient

descent (SGD), individual devices update their parameters

in lockstep when all the devices have finished computing

the gradients on their current batch of training data.

In asynchronous SGD, the devices update their parameters

independently to the central server. Both synchronous SGD

and asynchronous SGD have their own pros and cons.

Although synchronous SGD typically converges to better

solutions, it is often slower in practice because of the need

to wait for straggler devices in each iteration. Asynchro-

nous SGD, on the other hand, tends to converge faster

than synchronous SGD, but it may update parameters

using stale information from devices and can suffer from

convergence to poor solutions.

Distributed training algorithms usually focus on how to

make synchronous SGD faster or how to make asynchro-

nous SGD converge to better solutions. In a distributed

setting, communication frequency and data volume are

also important. Elastic averaging [124] reduces the com-

munication costs of synchronous and asynchronous SGD

training methods, by allowing each device to perform more

local training computations and deviate/explore further

from the globally shared solution before synchronizing

its updates. This reduces the amount of communication

between the local devices and the edge server. Federated

learning [125] is similar in spirit, but it considers non-ideal

scenarios, such as non-independent and identically dis-

tributed (i.i.d) data distributions (e.g., one device has

more data samples of a given class than another device).

Computing more local gradient updates without uploading

the raw training data to the server trades off accuracy

for communication cost: doing more computation locally

lowers the prediction accuracy (due to overfitting to local

data sets), but it can also save communication cost, and

vice versa. Wang et al. [126] further explored this issue by

considering some practical concerns with implementation

on a real testbed. They proposed a control policy for

deciding how much computation should be performed

locally in between global gradient updates and performed

experiments with Raspberry Pis and laptops.

Tiered architectures and their communication costs

have also been considered. Gaia [127] studies synchro-

nous SGD in the scenario where devices are geographi-

cally distributed across a large area. In their test setup,

the clients are servers inside a data center and across

data centers. Because bandwidth constraints are tighter

across geo-distributed data centers than within a single

data center, gradient updates need to be carefully coordi-

nated between the workers. Gaia proposes a policy where

updates are synchronized across different data centers only

Table 4 Summary of the Selected Works on Distributed Training
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Fig. 7. Architectures for deep learning training on the edge. (a) Centralized training. (b) Decentralized training.

when the aggregated updates are higher than a given

threshold.

Along with synchronous and asynchronous updates,

distillation is another method that has been applied to

reduce communication frequency. Distillation, as discussed

in Section IV-A in the context of inference, uses the pre-

diction outputs of one model to help train another model.

Anil et al. [128] proposed incorporating distillation into

distributed training of DNNs. In their method, each device

trains on a subset of the data and updates its gradients

based on its computed training loss as usual, but it also

uses the prediction outputs from other devices that are

also simultaneously training to improve training efficacy.

Since they find that the training is robust to stale predic-

tion results from other devices, information needs to be

exchanged with other devices less frequently (compared

to the gradient sharing methods described earlier in this

section). In this way, frequent communication of gradients

is avoided or reduced. Furthermore, distillation can be

combined with distributed SGD and can improve training

efficacy even when distributed SGD is not possible due to

network constraints.

Finally, if some devices have poor connectivity and are

subjected to atypically long latencies, they can hold up

distributed training. Chen et al. [123] proposed improve-

ments to synchronous SGD to mitigate such straggler

effects. Their main idea is to have backup devices that

are “on call” to compute the gradient updates of any

straggling regular devices. Once the server receives the

gradient updates from a sufficient of devices, the training

process will update the global parameters and move on to

next iteration, without waiting for the straggler devices,

thereby reducing training latency.

B. Size of Training Updates

Along with the frequency of training updates, the size

of training updates also contributed to bandwidth usage.

With model sizes on the order of hundreds of megabytes,

and multiple rounds of communication needed, the band-

width demands can be considerable. Bandwidth concerns

are crucial in the edge scenario, where last-mile bandwidth

(e.g., wireless and access networks) can be quite con-

strained. In this section, we review gradient compression

techniques, which can reduce the size of the updates

communicated to a central server.

There are two general approaches to gradient

compression: gradient quantization and gradient

sparsification [129]. Gradient quantization approximates

the floating-point gradients using low-bit width numbers.

For example, a 32-bit floating-point numbers can be

approximated by an 8-bit number, reducing the size by

a factor of 4. Note that gradient quantization is similar

to parameter quantization (see Section IV-A), with the

difference being whether the quantization is applied to

the model gradients or the model parameters. Gradient

sparsification discards unimportant gradient updates

and only communicates updates that exceed a certain

threshold. Gradient quantization and sparsification

can work together. For example, Lin et al. [129]

did gradient sparsification combined with other

training tricks such as momentum correction [138]

and warm-up training [139] techniques to speed up

training convergence. Hardy et al. [140] performed

gradient sparsification and also chose which gradients to

communicate based on their staleness.

C. Decentralized Communication Protocols

Thus far, we have considered centralized training archi-

tectures where multiple end devices communicate with an

edge server. Having a central edge compute or server node

helps ensure that all devices converge to the same model

parameters. However, communication throughput of a cen-

tralized architecture is limited by the bandwidth of the

central node. To overcome this, a gossip-type algorithm has

been proposed as a method to exchange training informa-

tion in a decentralized fashion. In gossip-type algorithms,

each device computes its own gradient updates based on its

training data and then communicates its updates to some

of the other devices [see Fig. 7(b)]. The overall goal is

to design a gossiping algorithm that allows the devices to

reach a consensus on a good DNN model. Gossiping can be

considered as a decentralized version of elastic averaging,
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where clients are allowed to deviate more significantly

from each other.

Blot et al. [131] proposed an asynchronous algorithm

for gossip-based training of deep learning. Their experi-

ments show faster convergence than the elastic averag-

ing. Jin et al. [132] proposed gossiping SGD based on

their study of convergence rates for synchronous and

asynchronous SGD. Their primary concern was scalability,

i.e., which SGD methods would be appropriate for a dif-

ferent number of clients. They found that asynchronous

methods, such as gossiping and elastic averaging, con-

verged more quickly with a small number of workers

(32 workers in their simulations), whereas synchronous

SGD scaled up better and had higher accuracy when

there were more workers (100 workers in their simu-

lations). Li et al. [133] developed a distributed system

called INCEPTIONN, which combines gradient compres-

sion and gossiping. Their gossiping method involves divid-

ing devices into different groups, and within each group,

each device shares some of its gradients with the next

device. The algorithm guarantees that all parts of the

DNN across all devices will be updated after several

iterations. Within each group, the parameters can be

shared either in the traditional centralized way or through

gossiping.

D. Private Training

We now shift gears and return to the baseline SGD

algorithms (e.g., synchronous SGD) but consider the pri-

vacy implications of communicating gradient information.

Such techniques can be useful whenever the training

data collected by end devices are shared with other edge

devices. While in situ training naturally improves privacy

by eliminating direct sharing of end devices’ collected

data, gradient information communicated between the

edge devices can still indirectly leak information about

the private data [14]. Hence, further privacy-enhancing

techniques are needed. In this section, we will consider

two main classes of privacy-enhancing techniques: adding

noise to gradient or data transmissions as part of training

and secure computation for training a DNN.

1) Add Noise to Data or Training Updates: In the fol-

lowing works, the threat model consists of a passive

adversary, such as an end device, which follows the pre-

scribed training protocol and is not actively malicious,

but it may attempt to learn about the model or data

from observing others’ communicated data. Shokri and

Shmatikov [14] considered the privacy aspects of training

a DNN in such a scenario, specifically with respect to

differential privacy, and they modified the typical policy

of devices uploading all the gradients to a central server

by: 1) selecting only some gradients above a threshold

to be transmitted and 2) adding noise to each uploaded

gradient. This enables the model to be trained reasonably

accurately while reducing information leakages from the

training updates (intuitively, since fewer of the updates are

sent). Abadi et al. [134] studied a similar problem where

the privacy loss over the overall model was bounded,

rather than per parameter as in Shokri, and their method

involves modifying the gradient by clipping, averaging,

and adding noise before communicating it to the parame-

ter server. Mao et al. [137] combined differential privacy

with model partitioning, where the initial layers of the

DNN were computed on the device, mixed with noise,

and uploaded to the edge server, in order to obfuscate the

uploaded training data and preserve privacy.

Along with modifying the gradients, adding noise to

the training data has also been considered. Zhang [135]

considered different types of noise that can be added

to the input data before training. Rather than using for-

mal notions of differential privacy, they empirically guard

against the adversary discovering statistical properties of

individual training data samples or aggregate statistics

about groups of training samples. This is essentially a

preprocessing step for the training data, which can pro-

vide protection even if the adversary has taken over the

parameter server and has access to the model parameters

or post-processed training data.

2) Secure Computation: SecureML [136] proposes a

two-server model where end devices communicate their

data to two servers, which then train a neural network

based on the combined data from the end devices with-

out learning anything beyond the DNN parameters. Their

scheme is based on secure two-party linear and logistic

regression that are fundamental computations in DNN

training. A modified softmax function and RELU function

are also proposed in order to improve efficiency. Unlike

the multiparty computation schemes discussed earlier (see

Section IV-D), SecureML focuses on DNN training, rather

than inference.

VI. O P E N C H A L L E N G E S

Many challenges remain in deploying deep learning

on the edge, not only on end devices but also on the

edge servers and on a combination of end devices, edge

servers, and the cloud. We next discuss some of the open

challenges.

A. Systems Challenges

1) Latency: While several works described in the ear-

lier sections have focused on reducing inference latency,

the current state of the art still results in quite high latency,

particularly when operating on high-dimensional input

data, such as images, and on mobile devices. For example,

even DNN models designed for mobile devices execute at

1–2 frames/s on modern smartphones [20], [78]. There is

still much work remaining on DNN model compression to

enable deep learning to run on edge devices, particularly

on IoT devices that tend to have the most severe resource

constraints. Furthermore, while the offloading approaches

described earlier (see Sections IV-B and IV-C) propose inno-

vative approaches to minimize latency, machine learning
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experts are also constantly innovating, leading to new DNN

models with ever more parameters and new layer designs.

For example, the DNN partitioning approach may work

well for standard sequential DNNs, but not as well for other

deep learning methods such as RNNs, which have loops in

their layer structure. Keeping up with new deep learning

designs will continue to be a major systems’ challenge.

2) Energy: Minimizing the energy consumption of

deep learning is very important for battery-powered

edge devices, such as smartphones. While reducing the

amount of computation implicitly reduces energy con-

sumption, understanding the interactions of the deep

learning computations with other battery management

mechanisms, such as CPU throttling or sensor hardware

optimizations [141], is an important avenue for investi-

gation. Performing change detection on the input data,

either in software or hardware [142], can help reduce

the frequency of deep learning executions and the overall

energy consumption. Reducing energy consumption of the

specific hardware chips (e.g., GPUs and TPUs) is already

a key priority for hardware designers, but understanding

their interaction with the rest of the system (e.g., battery

management mechanisms and tradeoffs with edge server

compute resources) is needed to reduce overall energy

consumption.

3) Migration: Migrating edge computing applications

between different edge servers can be useful for load bal-

ancing or to accommodate user movement, with the goal

of minimizing the end-to-end latency of the user. While

edge migration has been studied in the general case, for

example, using VM migration techniques [143] or Docker

containers [144] or using multipath TCP to speed up the

migration [145], understanding how deep learning appli-

cations should be migrated is still an area of consideration.

DNN models can be fairly large; for example, a pre-trained

YOLO model [18] is approximately 200 MB, and loading a

DNN model can take several seconds, in our experience.

What parts of the DNN model should be migrated and

what parts should be included in the standalone virtual

image? Can the program state be migrated in the midst

of a DNN execution, similar to the DNN partitioning

approaches for offloading (see Section IV-C2)? Addressing

these challenges requires system measurements and exper-

iments to gain an empirical understanding of the migration

challenges.

B. Relationship to SDN and NFV Technologies

Recently, network abstractions, such as software-defined

networking (SDN), to abstract the data plane from the

control plane, and network function virtualization (NFV),

to abstract the network functions from the hardware, are

gaining importance and are being adopted by the telecom-

munications industry. If deep learning grows in popularity

and these flows containing deep learning data appear on

the edge network, this leads to questions of how SDN

and NFV should manage these types of flows and what

types of QoS guarantees the flows require. How can deep

learning flows be identified, even under encryption? Given

a set of network functions that need to operate on deep

learning flows, how to design an SDN controller to best

manage these flows (e.g., by carving out network slices

for deep learning traffic)? How should network resources

be shared between competing deep learning flows or

with other non-deep learning traffic, such as Web or

video?

Another direction is using deep learning itself as a

network function, such as the network intrusion detection

and caching applications described in Section III. If deep

learning is adopted for various network tasks, NFV plat-

forms need to account for the resource requirements of

deep learning in order, for the network functions, to run

in real time. While fast instantiation and performance of

NFVs has been investigated [146], deep learning inference

can be greatly accelerated with GPU access on the edge

server, necessitating GPU support in NFV platforms.

C. Management and Scheduling of Edge Compute
Resources

Deep learning is often treated as a black box by

application developers and network administrators. How-

ever, deep learning models have many tradeoffs between

latency, accuracy, battery, and so on. While several works

described earlier (in Section IV-C) have discussed how to

tune such control knobs to achieve overall good system

performance [20], [93], exposing these control knobs in a

consistent and unified manner to the application developer

and/or server administrator through a standard specifica-

tion could be valuable. This would enable developers and

server administrators without in-depth machine learning

knowledge to understand the available knobs and tune

them to achieve good system performance, especially on

edge compute nodes with limited resources. Specifying the

application’s needs and the tradeoffs of the DNN model

being run can allow the edge server to effectively schedule

the end device requests. Not doing this carefully (e.g.,

incurring long latency on a video frame analysis request

from an AR headset) would negate the latency benefits of

edge computing.

A natural question is then how to schedule such

requests, given knowledge of the tradeoffs and control

knobs. The question is complicated by time dependence

between sequential inputs from an end device (e.g., multi-

ple frames from a camera), which could introduce priority

into the scheduling policy and thus influence the decisions

made by the edge server of which requests to serve when.

For example, should a new camera frame inference request

from device A receive higher priority than the hundredth

frame from device B? Incorporating freshness metrics, such

as the age of information [147], could allow for more

intelligent scheduling decisions by the edge server. While

this problem has some overlap with task scheduling in
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cloud data centers, edge computing brings new challenges

in which the number and variety of requests are likely

less on an edge server serving geo-located end devices,

so statistical multiplexing cannot necessarily be relied on.

New analysis of load balancing and request scheduling

mechanisms is needed. Furthermore, the compute resource

allocations may be coupled with the traffic steering from

the end devices to the edge server. Existing work on mainly

considers proximity as the primary factor behind traffic

steering decisions [148].

D. Deep Learning Benchmarks on Edge Devices

The state of the art of deep learning is evolving rapidly.

For researchers and developers wishing to deploy deep

learning on edge devices, choosing the right DNN model

is difficult due to lack of apples-to-apples comparison on

the target hardware. Even though new machine learning

papers contain comparative evaluation with prior existing

models, the subset of models compared is chosen at the

discretion of the researchers and may not include the

desired comparisons or hardware platforms. Furthermore,

standalone measurement papers can quickly become out-

dated as new DNN models emerge. A public repository

containing apples-to-apples containing benchmark com-

parisons between the models on different hardwares could

be of great benefit to the community. This task is made

slightly easier by the existence of standard data sets in

certain application domains, such as image classification

and natural language processing, as well as standard

machine learning platforms such as TensorFlow, Caffe,

and PyTorch. Especially important to edge computing is

the comparison on a variety of edge device hardware,

including the simple devices (e.g., Raspberry Pi), smart-

phones, home gateways, and edge servers. Much of the

current work has focused on either on powerful servers

or on smartphones, but as deep learning and edge com-

puting become prevalent, a comparative understanding of

deep learning performance on heterogeneous hardware is

needed.

E. Privacy

While privacy has been studied generally in the context

of distributed deep learning, there are several implications

for edge computing, which merit further investigation. One

possible concern is membership attacks. A membership

attack seeks to determine whether a particular item was

part of the training set used to generate the deep learning

model [149]. This attack gains significance in edge com-

puting, as a successful attack on an edge server’s DNN

training process means that the data item can be more

easily pinpointed as belonging to a small subset of users

who accessed that edge server. Another concern is data

obfuscation. While data obfuscation techniques have been

studied in cases where there are a large number of users,

such as in the cloud, whether such obfuscation can still be

successful in an edge computing scenario, where more spe-

cialized deep learning models are being used [10], [122],

or smaller training sets are available due to fewer end

devices connected to each edge server is unclear. Finally,

the definition of differential privacy [150] means that as

there are fewer devices, more noise must be added. This

is exactly the scenario of edge computing, where a smaller

set of geo-located end devices communicate with an edge

server. How much noise must be added to compensate for

fewer end devices? Overall, the privacy problems described

earlier (see Sections IV-D and V-D) have been studied

mainly in the context of general distributed machine learn-

ing, but their study with regard to edge computing, which

has a smaller set of users and more specialized deep

learning models, could be valuable.

VII. C O N C L U S I O N

This paper reviewed the current state of the art for

deep learning operating on the network edge. Computer

vision, natural language processing, network functions,

and VR and AR were discussed as example application

drivers, with the commonality being the need for real-time

processing of data produced by end devices. Methods for

accelerating deep learning inference across end devices,

edge servers, and the cloud were described, which lever-

age the unique structure of DNN models as well as the

geospatial locality of user requests in edge computing.

The tradeoffs between accuracy, latency, and other per-

formance metrics were found to be important factors in

several works discussed. Training of deep learning models,

where multiple end devices collaboratively train a DNN

model (possibly with the help of an edge server and/or the

cloud) was also discussed, including techniques for further

enhancing privacy.

Many open challenges remain, both in terms of further

performance improvements, as well as privacy, resource

management, benchmarking, and integration with other

networking technologies such as SDN and NFV. These chal-

lenges can be addressed through technological innovations

in algorithms, system design, and hardware accelerations.

As the pace of deep learning innovation remains high in

the near term, new technical challenges in edge computing

may emerge in the future, alongside the existing opportu-

nities for innovation.
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