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ABSTRACT

Accurate tracking of objects in the real world is highly desirable in
Augmented Reality (AR) to aid proper placement of virtual objects
in a user’s view. Deep neural networks (DNNs) yield high precision
in detecting and tracking objects, but they are energy-heavy and
can thus be prohibitive for deployment on mobile devices. Towards
reducing energy drain while maintaining good object tracking pre-
cision, we develop a novel software framework called MARLIN. MAR-
LIN only uses a DNN as needed, to detect new objects or recapture
objects that significantly change in appearance. It employs light-
weight methods in between DNN executions to track the detected
objects with high fidelity. We experiment with several baseline DNN
models optimized for mobile devices, and via both offline and live
object tracking experiments on two different Android phones (one
utilizing a mobile GPU), we show that MARLIN compares favorably
in terms of accuracy while saving energy significantly. Specifically,
we show that MARLIN reduces the energy consumption by up to
73.3% (compared to an approach that executes the best baseline
DNN continuously), and improves accuracy by up to 19x (compared
to an approach that infrequently executes the same best baseline
DNN). Moreover, while in 75% or more cases, MARLIN incurs at
most a 7.36% reduction in location accuracy (using the common
10U metric), in more than 46% of the cases, MARLIN even improves
the IOU compared to the continuous, best DNN approach.
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1 INTRODUCTION

AR is popular in the market today [44] with potential applications
in many fields including training, education, tourism, navigation,
and entertainment, among others [12]. In AR, the user’s perception
of the world is “augmented” by overlaying virtual objects onto a
real-world view. These virtual objects provide relevant information
to the user and remain fixed with respect to the real world, creating
the illusion of seamless integration. Examples of AR apps used
today include Pokemon Go, Google Translate, and Snapchat filters.

An important task in the AR processing pipeline is the detection
and tracking of the positions of real objects so that virtual annota-
tions can be overlaid accurately on top [14, 35, 42]. For example, in
order to guide a firefighter wearing an AR headset, the AR device
needs to analyze the camera frame, detect regions of interest in
the scene (e.g., victims to be rescued), and place overlays at the
right locations on the user display [46]. Commercial AR platforms
such as ARCore and ARKit can understand the 3D geometry of the
scene and detect surfaces or specific instances of objects (e.g., a
specific person), but lack the ability to detect and track complex,
non-stationary objects [23, 42].

To track real objects, AR apps can use tracking by detection
techniques [57], wherein each camera frame is examined anew to
detect and recognize objects of interest; both object locations (e.g.,
bounding boxes) and class labels are output. Tracking by detection
is used, for example, by the open-source ARToolKit [1] to track
fiducial markers in the scene. To go beyond this to detect non-
fiducial objects in the scene being viewed, one can employ state-
of-the-art DNN-based object detectors which yield high object
recognition and detection precision (with regards to objects in
general). However, a naive plug and play of DNN-based object
detection and recognition into a tracking by detection framework
will exacerbate the already high battery drain of mobile devices,
which is of great concern to mobile users [27]. While the screen,
camera, and OS do consume a large portion of the user’s battery (3-4
W in our measurements), continuous repeated executions of DNNs
(even those models optimized for mobile devices, e.g., [28, 52]) will
also consume a major portion (1.7-3 W) of the battery.



SenSys ’19, November 10-13, 2019, New York, NY, USA

Recent works have targeted improving the energy efficiency of
DNN:ss (e.g., by using specialized hardware [29] or via model com-
pression [25]); however, they focus on individual DNN executions
on individual input images [30], rather than understanding energy
consumption across time, as is needed in AR or other continuous
tracking applications. Invoking DNN executions on every captured
frame in an AR application will cause high energy expenditure even
with such mobile-optimized methods.

In this paper, we ask the question: How can AR apps achieve
good object detection and tracking performance and yet consume
low energy? To answer this, we make the key observation that while
using a DNN is important for detecting new objects, or when sig-
nificant changes to a scene occur, lightweight incremental tracking
can be used to track objects otherwise, in between DNN execu-
tions. This saves precious computation and energy resources, but
requires initial knowledge of the object to be tracked (which must
be supplied by the DNN). To realize such an approach, however, a
key question that needs to be answered is “when should DNNs be
invoked and when is incremental tracking sufficient to maintain
similar accuracies as the DNN?” Although tracking by detection
and incremental tracking have been studied together to a limited
extent [36, 72], these prior approaches either trigger the DNN at a
very high frequency (e.g., every 10 frames), use heavyweight object
trackers, and/or assume complete offline knowledge of the video.
These limitations make such methods inappropriate for real-time
AR applications and/or mobile platforms with battery limitations.

As our main contribution, we design and implement MARLIN (Mo-
bile Augmented Reality using LIghtweight Neural network execu-
tions), a framework that addresses the critical problem of limiting
energy consumption due to object tracking for AR, while preserv-
ing high tracking accuracy. Specifically, MARLIN chooses between
DNN-based tracking by detection and incremental tracking tech-
niques to meet three goals: (a) good tracking performance, (b) very
low energy drain, and (c) real-time operations. Briefly, MARLIN first
performs DNN-based tracking by detection on an initial incom-
ing frame to determine the object locations. Once such objects are
detected, MARLIN performs incremental tracking on them to contin-
uously update the locations of the relevant AR overlays; the tracker
also checks every frame for significant changes to the object (e.g., a
car door opening) to determine if tracking by detection needs to be
re-applied. In addition, MARLIN employs a novel change detector
that looks for changes to the background (e.g., appearance of new
objects) that are likely in the AR scenarios of interest.

MARLIN addresses several challenges in the domain of energy-
efficient AR: (1) It provides highly accurate object classification
and dynamically tracks the changing locations of multiple different
objects in the scene, in order to place the virtual overlays correctly.
(2) It reduces CPU throttling in cases where object detection com-
putation demands exceed the compute capability, since built-in
CPU throttling can significantly worsen tracking performance; (3)
It preserves accuracy while reducing energy in challenging en-
vironments such as occlusions and/or zooming which are likely
when the AR camera is worn/held by a mobile user; specifically,
it does not over-trigger DNNs in response to camera motion; and
(4) MARLIN is software-based and does not need specialized hard-
ware. Thus, it is compatible with most modern mobile platforms.
MARLIN’s software (executables) can be downloaded via the project
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website [4]. To the best of our knowledge, this is the first detailed
design, implementation and evaluation of an energy-thrifty object
detection and tracking software framework for mobile AR. Overall,
our contributions are as follows:

o We develop a framework, MARLIN, to manage the energy us-
age of AR, by mediating between two different object tracking
approaches: tracking by detection using DNNs and incremen-
tal tracking via lightweight methods. MARLIN balances between
achieving good tracking accuracy and energy efficiency by trig-
gering DNNs only when needed. The decreased computation
demands of MARLIN also reduce instances of automatic CPU
throttling and its negative consequences on system performance.

e Within MARLIN, we design a novel lightweight change detector
to determine when to trigger DNN detection, with very low false
positive rates (crucial for reducing energy usage). Our key idea
is to only examine portions of the frame outside of currently
tracked objects to determine if new objects are present, while
also ignoring effects from camera motion and occlusions.

e We implement and evaluate MARLIN on Android smartphones,
using both standard video datasets [37] and through live experi-
ments. Our results show that MARLIN can save energy by up to
73.3%, while losing at most 7.36% accuracy for 75% of the cases as
compared to Tiny YOLO, the best baseline periodic DNN-based
tracking by detection method we found in our experiments. Sur-
prisingly, we find that in 46.3% of the cases, MARLIN both saves
energy and improves accuracy, a win-win situation, compared to
this best baseline. This is because MARLIN uses temporal informa-
tion to avoid triggering tracking by detection, when the scene is
noisy and thus detection would likely yield wrong conclusions.

e MARLIN is designed as a general framework that can work with
a developer’s chosen DNN, with or without a mobile GPU, and
still save energy. To illustrate this, we incorporate multiple differ-
ent DNN models (Tiny YOLO [52], MobileNets [56], MobileNets
using mobile GPU [61], and quantized MobileNets [32]) into
MARLIN’s framework, and show that across these models, MAR-
LIN can save energy by 45.1% while losing 8.3% accuracy, on
average (compared to baselines of continuous DNN executions).

2 MOTIVATION

The need for DNNs in emerging AR applications: AR systems
are capable of understanding the 3D geometry of the scene (e.g.,
using simultaneous localization and mapping), but object detection
isneeded in AR to determine the locations of the virtual annotations
in the first place [14, 35, 42]. Current AR systems used in practice are
only capable of identifying surfaces or detecting specific instances
of objects. For example, the open-source ARToolKit library [1] is
designed to track specific fiducial markers placed in the scene (e.g., a
QR code), while Google ARCore and Apple ARKit [5, 20] can detect
flat surfaces or specific instances of flat objects (e.g., a specific
magazine cover, but not the general class of magazines). These
object detection capabilities are insufficient for AR applications
such as public safety, where general classes of potentially moving,
non-flat objects must be detected and recognized with high accuracy
(e.g., moving victims needing rescue).

To demonstrate this, we experimented with a demo ARCore
app [21] to detect objects of interest (Fig. 1a). We supplied ARCore
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Figure 1: Detection with ARCore; Energy drain with DNNs.

with an image of a magazine for its internal training. At test time,
ARCore was only able to detect the magazine under certain con-
ditions: if the magazine was flat and non-moving. Based on our
understanding of the code (full details are unknown because the
code is closed source), we hypothesize that this is because ARCore
only searches the camera frame for affine transformations training
set items (i.e., translation, scaling, shearing, or rotations), and only
when the scene is static - a bent object represents a non-affine
transformation from a training image, and thus, detection fails.

Such poor or inaccurate detection/classification could result in
missing or misplaced virtual overlays, potentially obscuring key
portions of the scene and/or confusing the user. Therefore, we argue
that the use of state-of-the-art DNNs, which consistently win the
ImageNet object detection competition [55], is apt in order to cor-
rectly locate and classify the objects in the scene. DNNs are capable
of detecting general categories of objects (e.g., human, animal, ve-
hicles) under a variety of conditions, even if that specific object has
never been seen before in the training set. For example, later in §5.3,
we show that our DNN-based prototype can successfully detect peo-
ple with high precision, even though we never used their specific
images to train the DNN. Compared to classical SIFT features and
other machine learning methods from the AR literature [33, 63, 69],
DNNs5s provide more than 2X accuracy improvements [71].

Unfortunately, a naive approach of plugging in DNN object detec-
tors into current AR systems is likely to lead to poor performance
due to the uninformed patterns of DNN executions. For example,
ARToolKit runs object detection as often as possible (i.e., tracking by
detection). Modifying its object detector to call a DNN would result
in high energy expenditure due to almost continuous executions.
This is true even when using relatively lightweight, compressed
DNNss (e.g., Tiny YOLO [52]) optimized for mobile devices (more
details later). On the other hand, ARCore and ARK:it, to the best of
our understanding (the details are closed-source), only record the
initial pinned location of an object from when it is first detected,
and cannot incrementally track objects while they are moving [21].
Modifying ARCore/ARKit to call a DNN (which may not even be
possible due to their closed-source nature) may improve the initial
placement of the virtual overlay, but the overlay may not be able
to follow moving objects. In our evaluation (specifically Fig. 6 in
§ 5.2), we show that executing an object detector only once at the
beginning of tracking leads to low accuracy.

Energy costs due to frequent DNN executions: To ensure
high object detection and tracking accuracy, a naive method is
to execute DNNs as often as possible, as is done in several prior
works [29, 51, 52]. To showcase the energy drain of such an ap-
proach, we tested state-of-the-art object detection and tracking
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Figure 2: Overview of MARLIN’s architecture

on Google TensorFlow, one of the most popular machine learning
platforms. We use a popular object detector for mobile devices, Tiny
YOLO [52], which applies DNNs as often as possible to maximize
the tracking accuracy. This can be expected to result in a rapid deple-
tion of the smartphone battery. To showcase this effect, we perform
experiments on a Google Pixel 2, the results of which are shown in
Fig. 1b. The rapid energy drain is due to the nature of DNNs, which
can contain tens to hundreds of computationally-intensive layers.
Furthermore, executing the same model on another recent phone
(LG G6) caused the CPU to throttle its duty cycle after the first few
minutes of a video, resulting in a significant drop in tracking accu-
racy (details in §5). We also tested MobileNets on Tensorflow Lite,
MobileNets with mobile GPU and quantized MobileNets, and found
that this quick battery depletion due to frequent DNN invocations
holds true regardless of models or GPU offloading (discussed in §5).

Given the above discussion, we argue that a key gap in realizing
object detection and tracking on mobile devices is the lack of a
powerful, adaptive, and intelligent framework, designed with the
resource limitations on the phone (battery, CPU) in mind. Such a
framework should try to achieve a good trade-off between tracking
accuracy and energy efficiency. We design and implement such a
framework, MARLIN, which is described in the following section.
In Table 1, we compare the characteristics of MARLIN with that of
other recent AR systems (details in §7).

3 THE MARLIN FRAMEWORK
MARLIN’s design is predicated upon the following goals:

e Low energy: First, targeted for battery-constrained mobile de-
vices, MARLIN must achieve object tracking with low energy. This
not only prolongs battery life, but also saves energy for other
AR functions not addressed here (e.g., localization [57]).

e Real-time performance: Second, to enable very good AR ex-
perience, the detection and tracking of objects of interest must
be done in near-real time, i.e., the location of each object must
be updated frame to frame (within 33 ms for a 30 FPS camera).

e Multiple accurate annotations: Third, since we seek to over-
lay virtual objects atop the real world, the categories of (multiple)
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real world objects must be classified and their locations must be
determined with high precision.

3.1 System Overview

Fig. 2 provides an overview of MARLIN’s architecture, composed of
pipelined operations from a camera (left) to a display (right). The
input to this pipeline is a frame from the camera and the output
is a view with overlaid augmented objects (specifically, overlaid
bounding boxes in this work) on top of the physical objects (e.g., a
person). Each input frame from the camera is buffered before being
fetched by the “MARLIN Manager” module. From this point, we
abbreviate MARLIN Manager as MM. MM is a real-time scheduler
that assigns each incoming frame to one or more of MARLIN’s three
modules viz., the object tracker, the change detector, and the DNN
object detector. These modules act as workers for MM, i.e., each
module only processes frames that are assigned to it by MM.

By default, MM assigns a new frame to the object tracker, which
updates the locations of the objects from one frame to the next. It
returns a “track status” which indicates the fidelity of tracking and
alerts MM of any changes to the current set of tracked objects, and
triggers a new DNN execution if needed.

In addition, to check for new objects in a scene (that require
tracking), MM assigns an input frame to the change detector mod-
ule. While many change detection methods exist in the literature
(e.g., [3, 73, 74]), we found experimentally that these approaches
are unsuitable because they detect changes on both existing and
new objects in the scene, resulting in high false positive rates and
many unnecessary DNN executions (the main causes being changes
due to camera movement or minor changes to the objects being
tracked). To tackle this, we designed a new change detector that
ignores objects that are already tracked with high accuracy by the
object tracker, and only analyzes the portions of the frame that are
“external” to the current set of tracked objects. The change detector
issues an alert to MM if there are significant changes in these parts.

MM only sends a frame to the DNN object detector if it needs
to detect/classify new objects in that frame, or when features of
the currently tracked objects change significantly and need to be
detected anew. This is because the DNN is MARLIN’s most energy-
draining module and should only be invoked on a need-to basis.
MM uses tracking information and the change detection in a prin-
cipled way to decide if the frame should be assigned to the DNN.

Finally, the object tracker conveys the object locations and the
class labels to the overlay drawer. The latter draws virtual overlays
(bounding boxes) on top of the actual objects in the frame and
forwards the augmented frame to the display.

K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishnamurthy, A. K. Roy-Chowdhury

3.2 MARLIN Manager (MM)

In this subsection, we describe MARLIN Manager or MM in greater
detail. At a high level, the logic embedded in MM employs the
lightweight change detector and object tracker modules as often as
possible, and triggers the DNN only if either of these modules indi-
cates that a significant change has occurred in a frame (compared
to a prior frame). It uses a “short-circuit OR” decision flow that
only runs the change detector if the object tracker did not trigger a
DNN, thus avoiding wasted computation/energy.

Functional description: Fig. 3 depicts the decision flow exe-
cuted by MM . MM obtains input frames from the camera in the
form of a byte array with dimensions specified by the three color
channels (red, green, blue), and 640x480 pixels (down-sampled
from the original resolution, and configurable by the user). Each
such frame is assigned to the object tracker. MM waits until the
object tracker updates the locations of the objects of interest and
returns the correlation between the tracked objects in the current
frame and in a previous frame (the returned correlation value is
referred to as track_status). This correlation captures the fidelity
of the tracking across frames (details in §3.3). If track_status is
less than a threshold (CORR_THRES), MM attempts to trigger the
DNN. Note here that CORR_THRES depends on the desired fidelity
of tracking. If higher fidelity tracking is needed, smaller changes
(a lower threshold) will need to trigger the DNN (causing these to
be more frequent at the cost of higher energy); a lower acceptable
fidelity translates to a higher threshold.

If the track_status is higher than CORR_THRES (meaning that
there were no significant changes in tracked objects), then the
second operand in the short-circuit OR needs to be evaluated, and
so MM starts a change detector thread. This checks if there are
changes in the background that could also require the invocation
of a DNN. Upon completion, the change detector returns a value
(called change_status) that indicates whether a significant change
in the current frame relative to the immediately preceding frame
was detected (details in §3.4). If a significant change is indicated,
MM initiates an invocation of the DNN.

In order to prevent repeated DNN invocations due to dynamic
changes (e.g., the correlation could be lower for several successive
frames), MM checks if or not a DNN invocation has already been
made in the immediate past by checking a flag variable, DR (for DNN
is Ready). If a DNN thread is already being executed, the flag DR will
be false and MM will simply abort the DNN execution attempt.
Whenever a DNN is invoked, MM marks the flag DR as false in
order to block other frame assignments to the DNN. Essentially, the
DR flag ensures that there is only one running DNN thread at any
given time, in order to prevent repetitive invocations and thereby
ensure that the CPU does not get overloaded or throttled.

Exceptions: If MM cannot finish all the above operations before
a new frame arrives, a frame in the buffer is overwritten by a new
one. If the change detector thread takes more than one frame to
finish (and thus does not return a value within a frame), MM will
trigger the DNN at that later time. These exceptions are very rarely
observed in our experiments, and even when observed, the delay
(2-3 frames) does not affect user experience (not noticeable). If
there are no objects being tracked by the object tracker, the tracker
returns a zero correlation value, causing a DNN invocation.
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3.3 Real-time object tracker
MARLIN needs to continuously track objects of interest (detected by

the DNN module) across successive frames, as the object moves/morphs

in the scene. To conserve energy, MARLIN’s object tracker needs to
use (a) very lightweight feature extractors and (b) very lightweight
object tracking algorithms. To assess the tracker’s performance
as it runs, we need some metric that can be computed online; the
metric should be able to readily provide a means of determining
when the tracking quality has degraded and a new DNN execution
is needed (to fully refresh the object locations). We discuss these
design considerations and how they influence object tracker design.

Feature extraction: We examined popular feature extractors
in the literature. While SIFT features have been used in previous
AR systems [33, 34, 69], we chose to use ORB (Oriented FAST and
Rotated BRIEF) features in the tracker because they can be extracted
in near real-time even on smartphones. ORB has been shown to
be 14X and 341X faster than SURF and SIFT respectively with very
good tracking precision [54, 67], and we have experimentally veri-
fied that extracting SURF/SIFT features for even a single object in
a frame takes hundreds of milliseconds, while our object tracker,
including ORB feature extraction, takes less than 10 ms (see §5.2).

Object tracking: While heavyweight DNN-based object track-
ers can provide good tracking accuracy (e.g., [31]), these are un-
suitable for mobile devices due to their expensive computation of
multiple DNN layers. Our goal here is to estimate the optical flow
of features, which captures the pattern of motion of objects be-
tween successive frames. Instead of trying to design a method from
scratch, we use the well-known Lucas-Kanade method [6]. This
method estimates the local image flow (velocity) vector (Vy, V)
using keypoints (features) in the window (in this case the object
position box to be tracked) and assumes that these keypoints should
move together with this velocity. It has m equations (m keypoints)
to solve for two unknowns Vy and Vy, using a least-squares approx-
imation [43]. It makes three assumptions viz., brightness constancy
(the same keypoint appearing in both images should look similar),
limited motion (keypoints do move very far), and spatial coherence
(keypoints move within a small neighborhood) [43]. This method
has been shown to be well suited for object tracking [15], and our
experiments show that it is also energy-efficient (see Fig. 6 of §5.2).

One important parameter is the neighborhood size that the Lucas-
Kanade method searches to find matching features. If the neighbor-
hood size is too small, the object tracker cannot track fast-moving
objects accurately. If this neighborhood size is too large, the track-
ing latency becomes too large because of the larger sample space
that needs to be examined for feature matching. We empirically
tested this parameter on different videos, measuring the latency and
CPU resources utilized for tracking, and found a size of 7 to yield
both good accuracy and acceptable latency. A neighborhood size
of 7 means that for each feature, the Lucas-Kanade method scans
all the features in a 15 X 15 pixel area to find a matched feature (a
center pixel plus 7 pixels above, below, left, and right).

Metric for tracking accuracy: Unfortunately, tracking is not
always accurate with respect to changes in object locations. To have
a perfect metric to quantify accuracy, we would require the ground
truth information about object locations, but this is impossible to
have in a real-time, online system. Therefore, in MARLIN, we choose
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(a) Frame 1 (b) Frame 2 (c) Frame 3
Figure 4: Cross-correlation decreases from 0.92 (frame 1—2)
to 0.69 (frame 2—3) due to occlusion.

to measure the accuracy of the tracker using the normalized cross-
correlation (NCC), which is a well-known technique for template
matching [68]. NCC provides a measure of the similarity between
two images and is given by: NCC(f, g) = ﬁ i jer f(.7) - 90, j)
where, f and g are the two images, R is their (bounding box) area,
and i, j are the pixel locations within the images.

Example: Fig. 4 depicts the car in frame 1 to be traced to find
its new location in frame 2. The object tracker calculates the NCC
between the two boxes by using the above equation, and finds
the correlation value is 0.92. Next, the car is tracked from frame
2 to frame 3; the correlation is 0.69 (frame 3 has occluding trees),
because of a moderate accuracy drop (i.e., the tracked object is 69%
similar to that in the previous frame).

We use a default correlation threshold of 0.3 to trigger the DNN;
we consider that if the similarity is less than 30%, the object must be
lost (the DNN helps detect objects and recovers accurate locations
again). Note that for AR, we need a reasonable level of correlation
with respect to the location of a classified object, and “perfect”
correlation is not needed. A more stringent threshold (e.g., 0.5) will
cause more frequent DNN invocations and thus higher energy. As
shown in §5, our default threshold yields good accuracy.

Runtime execution: Putting all of these components together,
the object tracker functions as follows. The input to the object
tracker is the current frame, and a list of tuples (objectID, class
Label, objectLocation, detectionConfidence) containing in-
formation about the detected objects. objectID is a unique number
associated with each detected object, classLabel is the class to
which the DNN attributes the object (e.g., tiger), objectLocation
is a 4-tuple vector (left, top, width, height) representing the location
of a detected object, and the confidence of the DNN in making the
classification decision is given by detectionConfidencee {0,1}.

For each detected object, the object tracker executes the follow-
ing steps: (i) For the detected object location in frame j (where j
is the most recent frame number seen by object tracker or DNN
execution), extract the ORB features F; (keypoints); (ii) For the
current frame j + i (i is the number of frames since the last DNN
or object tracker execution), extract the ORB features Fj,; in the
neighborhood of the detected object location from the previous
step. (iii) Use the Lucas-Kanade method to estimate the optical flow
from F; to Fj4+; and estimate a new rectangular box that covers
the matching features. This new box is the updated location of
the object. (iv) Compute the minimum NCC (across all objects)
between the updated and previous locations (track_status) and
pass this to MM, which triggers a DNN execution if this NCC is
below a threshold.

3.4 Lightweight Change Detector

While the object tracker tracks stable objects and triggers a DNN
only when significant changes occur relating to these (i.e., a per-
son’s posture changes by quite a bit), MARLIN must also be able to
handle new objects that appear in the scene (e.g., a person appears).
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To this end, we design a change detector which detects changes
not pertaining to the objects already being tracked (i.e., new ob-
jects coming into view); such changes would also trigger the DNN.
The key challenge in designing such a change detector is avoiding
high false positives with respect to previously tracked objects (caus-
ing extraneous DNN executions). However, our experiments with
existing approaches [3, 73, 74] show high false positive rates of
approximately 20-100%, resulting in numerous unnecessary DNN
executions consuming high energy, even on a simple video with
one slowly moving object and a moving camera (detailed results
omitted due to space). Towards preventing such false positives, our
key idea is to “hide” existing objects from the change detector by
changing the corresponding pixels to a common value, whose value
does not change across frames.

Functional description: When the change detector receives a
frame (and the locations of currently tracked objects) from MM,
it converts the frame into a feature vector via the following steps:
(i) It first colors all rectangular boxes corresponding to the loca-
tions of the currently tracked objects white (maximum pixel in-
tensities for red, green and blue channels) to generate what is
called a COLORED_IMAGE (example in Fig. 11); (ii) It resizes this to
128 x 128 pixels to form a new image (RESIZED_COLORED_IMAGE),
and also calculates the histograms of the red, green, and blue
channels of RESIZED_COLORED_IMAGE; (iii) Finally, it recasts RE-
SIZED_COLORED_IMAGE, which is a 2D array of pixels, into a single
row vector, and appends the three histograms to the end of the
row (resulting in another row vector). Thus, it converts an input
image of size 640x480x3 (width, height, channels) into a feature
vector of size 1x49920 of floating point numbers. This means that
we compress it by a factor of 18 (from 921,600 to 49,920 numbers)
because we want to quickly perform change detection and do not
need all information contained in the frame. Specifically, we fo-
cus on the color features and do not use other features such as
keypoints, which we experimentally found to be computationally
expensive (also shown in [16]).

We reiterate that any changes to tracked objects (now “whited
out” in step (i) above) are handled by the object tracker. To detect
changes external to these objects, MARLIN uses a random forest
classifier with the color features as the input vector. The forest con-
sists of 50 decision trees (total 55,796 nodes). Each (binary) tree has
a maximum depth of 20 and each node in the tree is a logical split
that takes a variable (an element in the feature vector) and checks
its value against a threshold that was learned during model training
(details in §5.1). These thresholds represent natural colors of back-
grounds (e.g., sky or grass or whited-out pixel) and foregrounds
(e.g., tiger or elephant) in order for each node to decide whether
or not this frame contains a significant change. The output of each
tree is obtained by reaching a leaf node (after moving through splits
down the tree) and the final detection result is by a majority vote
across all the trees. We also tried other lightweight classifiers such
as Support Vector Machines, but found experimentally that random
forest had the highest change detection accuracy.

Runtime execution: MM invokes the change detector after the
object tracker, which provides the updated objects’ locations in
the current frame. The change detector then uses the supervised
classifier to detect changes to the input feature vector. It inputs
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Layer | Filter | Size | Stride | # Params || Layer | Filter | Size | Stride | # Params
c1 16 3X3 1 448 Cs 256 | 3X3 1 295,168
my 2%X2 2 ms 2%x2 2
¢ 32 [3x3| 1 1,640 6 512 |3x3| 1 | 1,180,160
my 2X2 2 mg 2%X2 2
o3 64 |3x3| 1 18,496 c; | 1024 [3x3| 1 |4719616
ms 2x2| 2 cg | 1024 [3x3| 1 |9438208
c4 128 [3x3| 1 73,856 cy 175 | 1x1 1 179,375
my 2X2 2 r

Table 2: MARLIN’s DNN architecture (based on [52]).

the above feature vector to the classifier and outputs 1 (change
detected) or 0 (no change detected).

Exceptions: In most cases, the change detector reports a change
prior to the handling of the subsequent frame. If in the rare case,
the change detector finishes its checks after a subsequent frame
arrives, the change detection result will be used by MM to trigger
the DNN (if needed) as soon as the result is received.

3.5 DNN based Object Detector

Next, we briefly describe the DNN module within MARLIN.
Functional description: The input frame received by the DNN
module from MM is passed through 16 layers (using the recognize
Image () method of Tensorflow) sequentially as shown in Table 2,
where ¢;, i € {1,9} represents a convolutional layer, my, k € {1, 6}
is a maxpooling layer, and r is a region layer which outputs the
final prediction results containing object locations, class labels, and
confidence values. The output of c9 has a dimension of gridwWidth
X gridHeight X boxes X (classes + 5), where gridWidth and
gridHeight are grid dimensions corresponding to the input frame,
boxes is the number of prediction candidate boxes for each grid cell
and classes is a list of class probabilities (a value for each class)
with respect to object classification. The additional 5 dimensions
represent the “objectness” of the predicted box (i.e., the probability
that the box contains an object) and the box location (x,y,w,h).
At layer r, a softmax function [7] outputs the confidence that an
object belongs to a class. The confidence is computed as confidence
= objectness X class_prob, where class_prob is the maximum
value from the list of probabilities of belonging to the various classes.
If for a given prediction candidate box, confidence is less than a
threshold, that prediction box is ignored. In our evaluations, we set
this threshold as 0.25 because this means that a box will be accepted
if objectness and class_prob are both greater than 0.5. We have
empirically found that this threshold yields a reasonable balance
between object plausibility and the number of objects detected.
In summary, for each prediction box, the DNN predicts a center
point, width, and height of an object, and how likely it is that the
box contains an object (objectness). It finally outputs the class to
which the object in the box most likely belongs (class_prob). Tiny
YOLO computes these via a single pass through the network (from
the image to the prediction), making it one of fastest DNNs for
object detection on mobile platforms (latencies of state-of-the-art
DNNs are compared in [53]). We also evaluate other possible DNN
model choices in §5.2.1. Note that MARLIN executes pre-trained
DNN:ss for real-time inference, with training being performed offline
without power constraints (training details provided in §5.1).
Exceptions: If the DNN takes too long to complete, the object
tracker has to track incrementally. It is possible that between the
time that the DNN receives an input frame i and returns a result in
frame i + j, there is a significant temporal distance, resulting in the
object tracker failing to find the objects in frame i+ j detected by the
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DNN in frame i. If this happens, MM will invoke the DNN module
again until tracking by detection succeeds in finding objects.

4 IMPLEMENTATION

We next briefly describe MARLIN’s implementation, which realizes
seamless interactions between multiple Android classes/threads.
Platform: We implement MARLIN on Android phones (LG G6
and Google Pixel 2 running Android 7.0 and 8.0, respectively). We
use the TensorFlow [58] and OpenCV libraries [8] to implement
the DNN and image manipulation functionalities, respectively.
Module implementation: MM runs within a CAMERAACTIVITY
class that extends AcTiviTy, the main UI class in Android. It starts
when the MARLIN app is invoked by the user. A new frame is
buffered in a byte-array in shared memory and MM fetches it once
the memory has been written (subsequently the frame is dispensed
to the other modules). Object Tracker is an instance of the class
MuLTIBoxTRACKER, and provides methods for other components
that want to exchange shared information. It runs in the main thread
because it is fast (6-10 ms per frame with multiple objects) and does
not block the UL. Change Detector is a background thread that
copies a new frame from MM and calls getTrackedBoxes() of the
object tracker to get the set of currently tracked objects; it also runs
the algorithm in §3.4 to detect changes. DNN is also implemented
as a background thread. A DNN thread can be interrupted and can
save its intermediate results for further processing when it resumes.
This allows the main UI thread to have access to the CPU even
when a DNN thread is being run (so that the app is responsive to
the user at all times). Overlay Drawer is a callback thread of the
OvVERLAYVIEW Android class and fetches a list of tracked objects
from the object tracker and draws them on the frame.
Information sharing: We use methods to pass parameters
to/from the object tracker and use shared memory to communicate
for real time operations. MM copies a frame to the working threads
(change detector or DNN) only if it decides to call one of them.
Frame Synchronization: We use frame sequence numbers to
ensure that the different components are synchronized with respect
to frames. MM increases the frame sequence number by 1 for each
new frame and is the only entity that can update this number.
Logging: MARLIN is instrumented to log CPU frequency, CPU
temperature, locations of tracked objects in the scene, and the la-
tency of each component of MARLIN. Object location: In the object
tracker code, we log frame identifiers, object locations, and class la-
bels into storage, and use these logs to compute the accuracy offline.
Energy: Since the phones do not provide direct physical access to
the battery, we use software tools to measure energy consumption.
On the LG G6, we use Qualcomm’s Trepn Power Profiler app [49],
and on the Google Pixel 2, we use Android system logs (due to
Trepn’s lack of support for the Google Pixel 2). Specifically, we
read the Android virtual files current_now and voltage_now from
the /sys/class/power_supply/battery/ directory to obtain cur-
rent and voltage (used to compute power). The battery level values
are read from the ACTION_BATTERY_CHANGED Android system vari-
able. CPU: We read the CPU frequency and temperature from the
virtual files scaling_cur_freq and thermal_zone10/temp every

200 ms. The CPU load is then estimated as __cpufreq X 100.

maximum_freq
We estimate these metrics because recent Android versions since
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Marshmallow adjust CPU frequencies in response to load (here
mainly DNN executions) in real-time [19].

5 EVALUATIONS

In this section, we describe the experimental evaluations of MARLIN.
We first provide brief discussions on details such as our training
and test sets and the metrics for evaluations.

5.1 Prerequisites and Metrics

Baselines, Model Training and Inference: We first describe the
baselines used for comparisons and the training and test datasets
that we use.

Baselines: We consider five different DNN models and perform
continuous invocations of these as our baseline cases; we also con-
sider a subset of these models as appropriate as the DNN object
detector in MARLIN. The five models are abbreviated as follows: (a)
YOLO [52], which is a 30-layer DNN detector that provides high
accuracy on servers but is typically not used in mobile systems
because of its high power consumption and latency; we consider it
for completeness but do not use it as an object detector in MARLIN.
(b) Tiny YOLO or TYL, which is a compressed 16-layer version
of YOLO. (c) MobileNets [56] or MNet, which is trained and run
on the Tensorflow Lite [60] framework. Tensorflow Lite is Tensor-
Flow’s lightweight platform for mobile and embedded devices; this
provides us with insights with regards to MARLIN’s energy sav-
ings capabilities on an already optimized mobile software platform.
(d) MobileNets using mobile GPU or MNet-GPU, which offloads
expensive computations to a GPU for low power [30, 39]. (e) Mo-
bileNets quantized model or MNet-Q, which quantizes the DNN
weights in order to reduce execution latencies, and possibly also
the DNN execution energy [25, 32].

In terms of notation, when we consider the continuous invoca-
tions of one of these DNN models, we include the prefix “Baseline”
(e.g. Baseline-TYL). When we use a DNN model as the object de-
tector in MARLIN, we apply the prefix “MARLIN" (e.g. MARLIN-TYL).
Because we experimentally find that Tiny YOLO has the best accu-
racy compared to the other models, we later consider it both as the
baseline and as the object detector in MARLIN; thus, we subsequently
refer to “Baseline-TYL” as “Default-DNN” and to “MARLIN-TYL” as
“MARLIN”. Further details are provided in §5.2.

We also compare MARLIN with handcrafted approaches that in-
voke the Tiny YOLO DNN after skipping a fixed (K) number of
frames; the extreme case is when K = o0; i.e.,, when incremental
tracking is used continuously after the initial detection, which we
call Inc. Track. Our baselines are inspired by similar approaches
from the literature (e.g., continuous DNN invocations [30, 51], in-
cremental tracking [57], periodic DNN executions [72]).

Model Training and Inference: In this section, we describe our
machine learning model training and testing methodologies.

DNN model training: We train these models with the ImageNet
video dataset [55], consisting of 3,862 video clips (1.1 million frames)
containing 30 categories of objects, with ground truth labels pro-
vided. We split the dataset and use 95% for training and 5% for
validation. We calculate model accuracy on the validation set every
ten training epochs to check if the model was overfit (accuracy
starts to fall). For YOLO models, we adjust learning rates relative
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to training epochs as specified in [52], and for MobileNets models
we use learning rates specified in the default training scripts [59].

Change detector model training: The change detector is imple-
mented as a random forest classifier trained with 100,000 video
frames from the ImageNet dataset. Because the video clips were
of different lengths, to avoid biasing the change detector towards
longer videos, we randomly chose 30 frames from each video for
training. The training set is divided into four subsets: (1) unmodi-
fied frames with at least one new object (change_status is true);
(2) frames with existing tracked objects colored white but with at
least one new object in the background (change_status is true);
(3) frames where all objects in the scene were already tracked and
colored white (change_status is false); (4) unmodified background
frames with nothing else (change_status is false). This labeling re-
sulted in 50% of the training set being labelled with change_status
is true and the other 50% labeled as change_status is false.

We experimented with various classifiers (random forest, sup-
port vector machines, shallow neural network), and with other
input features (e.g. edges, colors, histogram of gradients). On the
10,000-frame validation set, the random forest classifier using color
histogram and pixel input features (details in §3.4) achieved the
best performance across all tested models, with 88.0% precision and
81.7% recall on the binary classification task. In comparison, e.g.,
SVM using HOG features has 64.9% precision and 61.4% recall.

Model inference: After training the models offline on a server, we
load them on Android phones with the appropriate TensorFlow and
OpenCV libraries. While we evaluate the system performance using
accuracy and energy metrics (details upcoming), DNN inferences
are called by MM. Note that neither the DNN models nor change
detector models see the test videos during training time.

Metrics: We evaluate MARLIN ’s accuracy in classification and
tracking and its energy consumption.

Accuracy metrics: To quantify the accuracy of classification
and tracking we use the following metrics [11, 66]:

o Average Classification Precision (ACP): Given frame i, we compare
the predicted class labels with ground truth labels and count all
the matches as true positives (TP). We count unmatched labels as
false positives (FP). Then, the ACP of frame i is ACP; = %
The ACP of a video is computed as the average ACP of its frames.

o Average Intersection Over Union (IOU): If the predicted class label
of an object matches a ground truth label, we calculate the IOU as
the overlap between the predicted and ground truth regions. We
perform dataset experiments where we use the provided ground
truth data; we also do live experiments where we use a powerful

object detection method, viz., YOLO (details in §5.3) as the ground
P

. RONR!
truth. The IOU of object j in frame i is IOUj‘ = W, where
Y

RJG is the ground truth region of object j, and R}J is the predicted
region of object j. We average the IOU for all the predictions per
frame, and finally average the IOU across all frames in the video.

We point out that even the state-of-the-art object trackers achieve
at best a 65% location accuracy [11] using the IOU metric (for
example, a 65% IOU corresponds to 79% of the predicted region
overlapping with the ground truth region, if both regions have the
same area, using the equation above). These accuracies suffice for
the applications we have in mind; the relatively low accuracy only
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Figure 5: With four different DNN models, MARLIN saves
45.1% power while losing 8.3% IOU, on average.

causes small displacements of the real-world objects, and thus does
not majorly affect the placement of augmented objects.

Energy metrics: We use power and battery life to evaluate the
energy consumption of MARLIN. We log energy samples every 200
ms (as detailed in §4) and compute the average over the period of an
experiment to compute power. To measure the energy of MARLIN’s
individual components, we successively enable each component and
estimate the additional energy consumption as that component’s
power. For example, if we measure the OS plus screen as consuming
1000 mW, and then enable the camera and measure a total power of
2800 mW, we esimate the camera’s power as 1800 mW. To compute
battery life, we record the starting battery level (bs) and the final
battery level (by) in each experiment (according to §4). We then

perform linear regression to estimate the total battery life as BL =
PpX100
By —bs)x60°

5.2 Offline Dataset Experiments

where p is the duration (minutes) of each experiment.

First, we evaluate MARLIN’s performance offline on a standard
video dataset with known ground truth, across a diverse set of
environments. Our complete dataset includes 80 test videos [37]
with a variety of objects (e.g., trains, animals, cars), single and multi-
object scenes, and fast and slow-moving scenes, meant to emulate
a variety of settings under which AR could be used. In each video,
the number of objects varies between 1 and 15, and the average
object motion between consecutive frames (the Euclidean distance
between an object’s center in frames i and i + 1) ranges from 0.5
to 10.7 pixels. Since the videos are relatively short (hundreds of
frames), and we want to capture the effect of a longer AR experience
within the same environment, we loop the videos to have a total
duration of 10,000 frames per video. We allow a 5-minute cooldown
period between each video to reset the phone’s state.

To begin with, to keep the time duration of experiments within
reason (given the limited number of phones at our disposal), we
consider 15 videos and compare the performance of MARLIN with all
the baselines and DNN models described earlier, as well as several
handcrafted frame skip approaches. Each set of experiments with
a given DNN takes three hours (running 15 videos, cool down,
phone recharging). These experiments represent different types of
object classes and various levels of motion. From § 5.2.3 we present
experimental results with the entire set of 80 videos and compare
the performance of MARLIN with the best found DNN (Tiny YOLO).

5.2.1 Comparison with the baseline approaches. Compared to
continuous executions of compressed DNNs that are opti-
mized for mobile devices, MARLIN reduces power by 45.1%
while losing 8.3% IOU, on average. We plot the average power
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Figure 6: Compared to only tracking or periodic DNN execu-
tions, MARLIN has higher accuracy and/or lower energy.

and accuracy of the various approaches considered in terms of IOU
in Fig. 5. First, we note that uncompressed YOLO consumes the most
power due to its model complexity, but its average IOU over time
is lower than Tiny YOLO (its compressed counterpart) due to its
high detection latency (4500 ms vs. 1200 ms). This is because when
detection latency is high, YOLO fails to detect fast-moving objects
(e.g., alanding airplane) in time. Therefore, we focus on compressed
and optimized models such as Tiny YOLO and MobileNets.
Second, we note that continuous execution of MobileNets (Baseline-

MNet) achieves lower IOU and consumes similar energy to continu-
ous execution of Tiny YOLO (Baseline-TYL) !. Third, MARLIN with
MobileNets (MARLIN-MNet) saves 42.8% power consumption with
a 10.6% reduction in IOU, compared to a continuous execution of
MobileNets (Baseline-MNet-GPU). Similar energy savings hold for
MARLIN with Tiny YOLO (MARLIN-TYL vs. Baseline-TYL), and for
MARLIN with quantized MobileNets (MARLIN-MNet-Q vs. Baseline-
MNet-Q). Fourth, with regards to the MobileNets variants, (regu-
lar) MobileNets, quantized MobileNets, and MobileNets with GPU
achieve similar accuracy; in terms of power, mobile GPU and model
quantization save 29.3% and 21.3%, respectively (Baseline-MNet-
GPU, Baseline-MNet-Q vs. Baseline-MNet). The key observation is
that even though the use of the mobile GPU already saves 29.3%
of power, MARLIN can further save an additional 37.1% (on top),
with a hit of just 9.9% in terms of IOU (MARLIN-MNet-GPU vs.
Baseline-MNet-GPU). Overall, these results suggest that MARLIN is
a general framework that is useful across a variety of compressed
DNN models, even with a mobile GPU. Because it exhibits the
highest accuracy (and similar power consumption to other DNN
models), we use Tiny YOLO as the default baseline (default-DNN)
and as MARLIN’s object detector in all subsequent experiments.

5.2.2  Comparison with other hand-crafted approaches. MARLIN
achieves 19x higher accuracy than the incremental track-
ing approach, and lower energy for the same accuracy com-
pared to the best constant skip approach. We compare MAR-
LIN against a constant skip approach (with different skip periodicity
K = 40, 80, 160) and an incremental tracker baseline (“Inc. Track”)
in Fig. 6 for 15 different videos, where the average number of frames
between DNN invocations by MARLIN ranged from 38 to 833. First,
we see that “Inc. Track” suffers from very low accuracy compared
to all other approaches (19x lower than MARLIN); this is because
when the tracker loses track of objects, there is no recovery from ob-
ject (re)detection available; thus, we do not consider this approach
further. MARLIN achieves comparable IOU with the best constant

!The standard deviation of the IOU for MobileNets tends to be higher than that of
Tiny YOLO because MobileNets sometimes misclassifies objects when they are small
or blend in with the background, leading to low IOU. See §6 for further discussion.
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OS + Screen | Camera | Object Tracker | Change Detector DNN
l Power 0.9-1.1 19-2 0.2-0.3 <0.1 1.7-19
| Latency - 8+2 4+1 1100 + 100

Table 3: Power (W) and latency (ms) of MARLIN’s components.

skip approach (K = 40) but consumes 26% less power because it
intelligently chooses to trigger fewer DNNs. Moreover, even if we
“cheat” by hard-coding the value of K to the average value as chosen
by MARLIN for each video (K = Varied), the accuracy of MARLIN is
still higher on average because MARLIN chooses when to invoke
the DNN, as opposed to fixed periodic executions that ignore the
scene content. Finally, default-DNN has the same high accuracy as
MARLIN but consumes significantly more energy because it invokes
additional unnecessary DNNS.

5.2.3 A closer look at energy and accuracy. MARLIN extends the
battery life by 1.85x on average with a small accuracy loss. To
see whether MARLIN can achieve good performance across a range
of videos, we next evaluate the energy savings with MARLIN across a
larger test set of 80 videos, and also examine the associated accuracy
penalty compared to the default approach, which runs Tiny YOLO
as often as possible. In Fig. 7a, we plot the mean and standard
deviation of the ACP and IOU across all frames of all videos. For
the same experimental runs, we plot the power and battery life in
Fig. 7b. These results show that MARLIN reduces power by up to
73.3% (34.5% on average), and extends battery life by 1.85%, with
a small loss in accuracy (< 10%). This is because MARLIN triggers
tracking by detection significantly less often.

Beyond averages, we also compute the relative power per video
as pd—;pp, where py is default-DNN’s power consumption and py, is
MARLIN’s power consumption. Fig. 8 shows the CDF across videos,
and we see that for 75% of the videos, MARLIN reduces power by at
least 19% and extends battery life by at least 13%. Also, in 25% of the
cases, MARLIN extends the battery life or reduces power by at least
50%. There are only 10% of cases wherein we do not see energy
savings; a closer look reveals that these videos have very complex,
high motion scenes; thus, DNN-based detection is necessary almost
continuously, and MARLIN behaves similarly to default-DNN.

Finally, Table 3 shows a zoomed out view of the power and
latency of each component of MARLIN. The results confirm that
MARLIN’s non-DNN components are lightweight, and focusing on
the DNN executions which comprise a large portion of the total
energy is key to reducing the overall power consumption.

For 75% of the videos, MARLIN results in at most a 7.3% hit
in ACP and a 18% hit in IOU. To understand the performance of
MARLIN further, we calculate the relative accuracy of object detec-
tion and tracking across videos when using MARLIN and default-
DNN (calculation similar to relative energy). The CDFs of relative
accuracy in terms of ACP and IOU, across the videos in the test set,
are shown in Fig. 7c and 7d. For 75% of the videos, MARLIN results
in a hit of < 7.3% (ACP) and < 18.0% (IOU). These modest drops
show that MARLIN performs well while ensuring low power in
tracking object locations and labels between frames. We note that
approximately half of the tested videos are challenging due to fast
motion or multiple objects, thus making this result very promising.

Surprisingly, for 46.3% of the videos, MARLIN both achieves
better ACP and consumes less energy. We see from Fig. 7c and
7d that for a significant fraction of the test videos, MARLIN improves
accuracy compared to default-DNN. A closer look indicates that
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Figure 7: MARLIN saves energy with mimimal ac-
curacy degradation.

for 46.3% of the videos, MARLIN both reduced energy and resulted
in higher ACP compared to default-DNN. We find that these cases
typically related to videos with a zooming or shaky camera. We
will further discuss these special cases next in §5.2.4.

5.24 Sample Case Studies. We next present two sample case stud-
ies to provide an understanding of why MARLIN sometimes im-
proves accuracy in addition to saving energy; other such cases
typically relate to zoomed in frames, occlusions, or cluttered scenes
where by using tracking or change detector features, MARLIN re-
duces DNN invocations that cause false positives/wrong detection.

In the case study of a zoomed-in video, MARLIN has a 55%
gain in ACP and saves 2,500 mW in power. In this video, the
camera is zoomed in on a hamster. In the top two rows in Fig. 10, we
plot the IOU over time for default-DNN and MARLIN. We see that
default-DNN maintains a reasonable IOU by executing tracking
by detection frequently (the dense vertical purple lines), while
MARLIN actually improves IOU over time. This is because MARLIN ’s
incremental tracking and change detection use the manually-chosen
ORB and color features that are stable over time. Thus, DNNs are
hardly invoked. The stability of these features is seen in the bottom
two plots in Fig. 10; we show the Euclidean distances between color
feature vectors across frames (used by the change detector) and
the Hamming distances between ORB feature descriptors between
consecutive frames (used by the object tracker).

In contrast, default-DNN chooses features automatically and
frequently (with hidden convolutional layers), ignoring temporal
correlation and causing the IOU to suffer?. More importantly, it
yields false positives with respect to detected objects on many
invocations. To illustrate this, consider Fig. 11. At frame 1253, both
default-DNN and MARLIN detect the hamster correctly in the middle
of the frame. The former then triggers the DNN again, which returns
two objects in frame 1272: a hamster (true positive) and a dog (false
positive) at the right bottom corner. MARLIN, however, continues
to track the hamster found in frame 1253 and does not cause an
erroneous DNN result in frame 1272. In frame 1272, MARLIN’s
precision is 100% while default-DNN’s precision drops to 50%. We

2DNNis that use temporal structure of videos have only been recently studied, e.g., for
activity recognition [10] or object tracking [31], and are more complex/high energy [9].

Figure 9: MARLIN reduces CPU load and temperature (left), rel-
ative to the “default-DNN” (center, right).

find that this effect repeats for this video and thus, while default-
DNN only achieves an overall average ACP of 57% and an IOU of
54% with 400 DNN executions, MARLIN achieves an overall ACP of
87% and IOU of 69%, with only 12 DNN executions. This saves 2500
mW of power and extends the battery life by 3.5 hours.

In the case of a shaky video, MARLIN improves the IOU by
52%. An elephant is the focal point of this video, but it is sometimes
occluded and suffers from the shaky motion of the camera. We find
that only about half of the frames serve as good inputs to the DNN
module. Both default-DNN and MARLIN have lower IOUs due to the
challenging scene, but MARLIN achieves a 35% IOU while default-
DNN only achieves 23%. This is because MARLIN’s incremental
tracking ignores moderate noises in the scene (e.g., blurry/partially
occluded frames), while default-DNN often performs DNN-based
detection on such frames and captures poor object features for
tracking. For example in Fig. 11, at frame 1729 with both methods,
the DNN detects the elephant and outputs a box centered on the
elephant and covering most of the body. However, at frame 1748,
default-DNN triggers the DNN again but now the center of the
elephant is falsely identified to be near the tail. This causes the
prediction box to shrink, and the IOU is thus only 40%. MARLIN,
on the other hand, does not trigger the DNN since its incremental
tracking outputs a more accurate box with an 83% IOU, and the
whiting out of the elephant also does not trigger the change detector.

5.2.5 Impacts on Mobile CPU. For 60% of the videos, MARLIN re-
duces the load and temperature by 10% and 26% or more, re-
spectively. We measure the CPU load and temperature with MAR-
LIN and compare these to those with default-DNN. Lower CPU
load leaves more computational resources for other AR tasks (e.g.,
pose estimation, lighting estimation), and a lower CPU temperature
means a more comfortable user experience when holding/wearing
the AR device. Fig. 9 (center and right) shows that in 60% of the
cases, the CPU load and temperature are reduced by at least 10% and
26%, respectively (averaged across all 8 cores of the Google Pixel
2 phone). Despite the CPU’s cooling technology and operation
in a temperature-controlled 20°C room, MARLIN reduces the CPU
temperature by 4.88° on average (Fig. 9 left).

MARLIN significantly helps in coping with CPU frequency
throttling. Automatic CPU throttling lowers the CPU frequency
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Figure 10: Case study. MARLIN achieves higher IOU
using incremental tracking, rarely invoking DNN's
due to the color/ORB features’ stability.

based on the load to help conserve energy and reduce the tempera-
ture of the chip, and is enabled by default on recent smartphones.
While we did not observe CPU throttling on the Google Pixel 2
phone (due to several optimizations [2, 38]), we investigate how
MARLIN performs when compared with default-DNN on older pro-
cessors. Our goal is not to reduce throttling on mobile devices in
general, for which methods exist (e.g., [47]), but rather to reduce
throttling in the context of object detection and tracking, especially
on less powerful mobile devices. Towards this, we next perform
experiments on the LG G6, which has a slightly older processor
(Qualcomm Snapdragon 821). On this phone, we see that all 4 CPUs
work at full speed when executing the DNN, and are automatically
throttled after a few minutes of execution. The CPU frequency
drops from 1.6 to 1.06 GHz on the two little cores and from 2.35
to 1.06 GHz on the two big cores [41]. Because of this, the power
consumption is reduced for default-DNN as shown in Fig. 12b, but
MARLIN further improves energy efficiency on the CPU-throttled
phone (more power reduction).

Interestingly, we find that CPU throttling causes a 2X increase
in the DNN execution latency (taking 1221-2553 ms to execute)
and a 80% increase in the object tracker’s execution latency (taking
24 ms-43 ms). Thus, DNN-based detection fails more frequently
because the scene has already changed by the time the result is
returned, especially in moderate to fast motion videos. Figs. 12a
and 12b depict the significant decrease in accuracies as compared to
a non-CPU-throttled phone; specifically, default-DNN takes a hit of
49.2% in ACP and 54.0% in IOU when throttled. MARLIN triggers the
DNN less often, reducing the frequency of CPU throttling, and this
improves the accuracies on average. We see this when we compare
the relative accuracies of default-DNN and MARLIN on the CPU-
throttled phone: for 80% of the videos, MARLIN has a higher ACP
and IOU, by an average of 44.0% and 38.7%, respectively (Fig. 12c).

5.3 Live Experiments

To showcase MARLIN’s proof-of-concept prototype and evaluate its
real-time performance, we perform live experiments in our lab. We
train the object detector to detect and overlay virtual objects on peo-
ple, using VOC2007, VOC2012 [17], and Penn-Fudan Pedestrian [64]
datasets for training. We load the trained DNN onto two identical
phones (Google Pixel 2), configuring one to run default-DNN and
the other, MARLIN. One person holds the two cameras side-by-side,

Frame 1272 .

Frame 1272

Frame 1748

Figure 11: Sample frames of 2 case studies. MARLIN (solid green) is ro-
bust to small variations of currently tracked objects, while default-
DNN (dashed yellow) re-triggers the DNN resulting in poor detection.

and we request a few student volunteers (2-3) to appear in front of
the cameras and act as specified in the scripts shown in Table 5 and
a screenshot is shown in Fig. 13. Each trial lasts 30 minutes and the
process was approved by our institution’s IRB.

Since we do not have ground truth for these live experiments, we
use a more powerful DNN-based tracking by detection algorithm
(YOLO [52]) to analyze the video offline on a 12-core Intel Xeon
server with 32 GB of memory, and generate annotations considered
as ground truth. We also visually inspect a subset of the results to
confirm that this is in fact the ground truth.

In live experiments, MARLIN uses only 18% of power con-
sumed by default-DNN with negligible loss in accuracy, run-
ning at 29-30 frames per second. 30 frames per second is consid-
ered good real-time performance for object tracking [14]. Table 4
compares MARLIN’s performance with that of default-DNN. In both
trials, MARLIN achieves comparable accuracy to that of default-DNN
while significantly saving energy. Note here that when measuring
the energy, we are careful to remove the consumption caused by
auxiliary factors (e.g., the screen and the camera), which are com-
mon to both default-DNN and MARLIN. In the first trial, MARLIN uses
only 18% of the power compared to default-DNN, and in the second
trial, MARLIN uses 51% of the power. The second trial consumes
more energy because the human subjects in that trial were slightly
more active (more motion). Both MARLIN and default-DNN achieve
comparable accuracy in terms of ACP and IOU.

Downloadable software: Our software is downloadable from
the project website [4] and tested on smartphones. Both MARLIN and
default-DNN methods are provided to enable a relative comparison
between the two approaches. Note that when testing with much
older phones, they may heat up and cause CPU throttling, impacting
both schemes.

6 DISCUSSIONS

Classification accuracy: If the DNN is not trained sufficiently
and does not achieve high classification accuracy, this may result
in mis-labeling of objects in the scene, and cause the object tracker
to either (a) track the wrong objects, or (b) track the right objects
but with the wrong label (e.g., track a sheep which is mis-labeled
as a horse). Quantitatively, this will manifest itself as low average
10U, since having the correct object label is necessary for a non-
zero IOU (see the IOU definition in §5.1). We have observed such
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| Minute

Live 1

| Live 2 |

0-5

P1 stands with minor
movements

P1sits and P2 stands

5-10

P2 enters and stands
casually

P3 enters and walks in
random directions

10-15

P1 and P2 walk criss-

cross

P1,P2,P3 walk in and
out of the camera’s
field of view

15-20

P1 leaves; P2 walks in
random directions

Camera moves to-
wards and away from

P1,P2,P3

20-25

person.0.90

a

P2 returns; P1,P2 walk
in random directions

P1,P2,P3 walk in ran-
dom directions within
the camera’s field of
view

25-30

P2 leaves; P1 walks in
random directions

P1 leaves; P2,P3 walk
in random directions

as the camera moves

Table 5: Live experiment action

Figure 13: Screenshot ~ "
scripts. P1, P2, P3 are volunteers.

scenarios in initial experiments (later corrected) when Tiny YOLO
was not trained for a sufficient number of epochs, resulting in
low classification accuracy, and causing MARLIN’s object tracker
to track the wrong objects. In future work, we plan to further
investigate the relationship between classification accuracy and
MARLIN’s performance, and distinguish between cases where IOU
is low due to poor classification or object localization.

Latency of detecting new objects in the scene: When new
objects enter the scene (e.g., a person enters the room), MARLIN’s
change detector (Sec. 3.4) is responsible for detecting that change
and triggering a new DNN execution. Since MARLIN uses Tiny
YOLO (or other compressed DNNs) as a key component of the sys-
tem, its performance cannot exceed that of the compressed DNNs
in use today; in other words, it cannot detect objects that its con-
stituent DNN’s cannot, or even for detected objects, the detection
latency cannot be less than that of Tiny YOLO. Qualitatively in
our live experiments, we have observed this limitation with both
MARLIN and with the baseline Tiny YOLO with continuous exe-
cution. However, as researchers develop new DNN models with
reduced latencies, MARLIN will automatically be able to leverage
these advances by swapping in new, improved DNN models into
MARLIN’s framework.

7 RELATED WORK

Mobile deep learning: MCDNN [26] chooses which DNN to run
given accuracy, latency, and energy requirements of the mobile
application. Other efforts speed up DNN inference (e.g., quantized
models [25], IDK cascades [65], DeepMon [30]), but only focus on
detection and not the use of tracking to reduce DNN invocations.
Recent works in computer vision [36, 72] combine detection and
tracking, but use expensive DNN-based tracking, frequent fixed
interval DNN executions, or offline knowledge of entire video clips.
In contrast, MARLIN runs in real-time and adapts DNN executions
based on the scene content.

K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishnamurthy, A. K. Roy-Chowdhury

Method Accuracy Energy Consumption
ACP (%) | I0U (%) | Battery drop (%) | Power (mW)
: Default-DNN 90 61 11 1724.55
Z [ MARLIN 92 61 3 319.54
2 Default-DNN 80 56 11 1710.49
2 [ MaRLIN 87 51 5 880.65

Table 4: In live experiments, MARLIN saves significant en-
ergy with similar accuracy to default-DNN.

Mobile AR: Liu et al. [42], Gabriel [24], and Glimpse [14] have
proposed cloud/edge-based AR, among others [24, 34, 51, 69, 70].
In contrast, MARLIN focuses on energy efficiency when AR process-
ing is run locally on the device without offloading. Further, Liu et
al. [42] focus on partitioned DNN executions on an edge server, by
modifying the video encoding parameters, whereas MARLIN consid-
ers local execution without video encoding. MARVEL [13] studies
energy-efficient AR, assuming the location of the objects in the
environment are pre-annotated, while MARLIN studies how to de-
tect and track these objects in the first place. ARCore, ARKit, and
ARToolKit [1, 5, 20] provide less sophisticated object detection for
planar, non-moving objects, while Vuforia [62] can detect and track
up to 20 specific instances of 3D objects. Wagner et al. [63] combine
object detection and incremental tracking, but can only detect a
single object in the frame.

Change detection: Using the sum of absolute differences is a
naive method of change detection, and is susceptible to noise from il-
lumination or background changes [3, 50]. Background/foreground
subtraction methods using GMM [73] and KNN [74] are more ro-
bust, but assume static cameras, which is not true for AR. Alterna-
tively one could use object detection to check if there are changes
over time (e.g. [18]); however, the feature extraction step of such
methods are heavy-weight and unsuitable for mobile devices.

Hardware acceleration: There are methods that use special-
ized hardware sensors to either perform change detection [45] or to
tune the energy usage [40]. Qualcomm and Google are developing
proprietary chips for computer vision [22, 48]. Such advances are
complementary to MARLIN.

8 CONCLUSIONS

Energy consumption is a major concern for AR. We design MARLIN,
a framework to reduce the energy consumption of object detection
and tracking, which are important in the AR computational pipeline.
MARLIN intelligently alternates between DNN object detection and
lightweight incremental tracking to achieve high accuracy while
saving energy. Our Android prototype shows that MARLIN drasti-
cally reduces energy consumption (up to 73% savings) with a minor
accuracy penalty (at most 7% for 75% of the test videos), and sur-
prisingly, in 46.3% of the cases, improves both accuracy and energy
compared to a default system using DNNs continuously. Future
work includes incorporating inertial odometry to further reduce
energy consumption.
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