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ABSTRACT: Lead-halide perovskites have emerged as a promising class of semiconductors;
however they suffer from issues related to lead-toxicity and instability. We report results of a first-
principles-based design of heavy-metal-based oxynitrides as alternatives to lead-halide
perovskites. We have used density-functional-theory calculations to search a vast composition
space of ABO,N and ABON, compounds, where B is a p-block cation, and 4 is an alkaline, alkali-
earth, rare-earth or transition metal cation, and identify 10 new 4BO,N oxynitride semiconductors
that we expect to be formable. Specifically, we discover a new family of ferroelectric
semiconductors with 43*SnO,N stoichiometry (4 = Y, Eu, La, In, and Sc) in the LuMnOjs-type
structure, which combine the strong bonding of metal oxides with the low carrier effective mass
and small, tunable band gaps of the lead-halide perovskites. These tin oxynitrides have predicted
direct band gaps ranging from 1.6 — 3.3 eV, and a sizeable electric polarization up to 17 pC/cm?,
which is predicted to be switchable by an external electric field through a non-polar phase. With
their unique combination of polarization, low carrier effective mass and band gaps spanning the
entire visible spectrum, we expect 4SnO,N ferroelectric semiconductors will find useful

applications as photovoltaics, photocatalysts, and for optoelectronics.
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Lead-halide perovskites, such as methylammonium lead triiodide (CH3;NH;Pbls), have emerged
as promising, high-performance semiconductors for optoelectronics and photovoltaics
applications. Solar cells with lead-halide perovskite absorbers have surpassed power conversion
efficiency of 25%.! These perovskites have tunable band gaps and high optical absorbance to
efficiently utilize the incoming solar radiation.> They possess long charge carrier lifetimes and
large carrier diffusion lengths that enables effective separation of the photogenerated electrons and
holes in solar cells.3-> They exhibit high defect tolerance,’® wherein these semiconductors are able
to retain the electronic properties of their pristine form even in the presence of common defects.®
10 There are also reports on the presence of ferroelectric order in some lead-halide perovskites.!!-
14 In addition to the low effective mass of charge carriers in these perovskites,'> and their large
dielectric constant,!¢ another factor that can enhance carrier separation is the presence of
ferroelectric domains wherein the in-built electric field can facilitate transport of the electrons and
holes to opposite domain boundaries.!” Ordered domain structures can further provide pathways
for efficient carrier extraction at the surface of the absorber layer.!® However, the extent to which
ferroelectricity enhances charge separation in CH;NH3Pbl; is under significant debate as there are
conflicting reports with some suggesting CH;NH;3Pbl; to be ferroelectric!!-'4 while others implying
it to be non-ferroelectric,!*-2! or even antiferroelectric.?? Polar ordering in CH3;NH;Pbl; is, at best,
weak as it originates from the orientation of the rotating and vibrating polar organic cations
(CH3NH;3") and their weak interaction with the neighboring halide ions through hydrogen bonds.!®:
20,23

Despite their superior performance, CH;NH;Pbl; and other organic lead-halide perovskites are
plagued with environmental and thermodynamic instability,?*?> which combined with the highly

toxic nature of lead, makes them less prospective for widespread commercialization.?2” Hence,
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there is ongoing search for stable, lead-free perovskites that can emulate the performance of lead-
halide perovskite-based semiconductors.? 2333 Such searches, for the most part, have been
restricted to perovskite halides of heavier p-block cations such as Ge, Sn, and Bi. The band edges
of such compounds are made up of spatially delocalized s or p states which combine with the three-
dimensional corner connectivity of the perovskite framework to create dispersive bands with low
carrier effective masses.” 1>-3* However, these lead-free halides also suffer from long-term stability
issues on exposure to ambient air, temperature and light.>? Their low stability can be attributed to
the strength of the metal-halide bond, which is weaker than metal-oxide or -nitride bonds.?3 In the
context of stability, Bi-based oxide double perovskites,3¢ such as KBaTeBiOg,>* have been recently
shown as a promising composition space to search for lead-free replacements. However, none of
the proposed alternatives have been able to replicate the increase in efficiency that lead-halide
perovskite-based solar cells have undergone. The ideal replacement should display similar direct
band gap, carrier effective masses, and absorbance as CH3;NH;Pbl; with added stability. The
performance of such semiconductors could be further enhanced if they display robust polarization.

In this work, we have used a first-principles computational approach to discover a new family
of stable, Sn-based oxynitride ferroelectric semiconductors as potential replacements for lead-
halide perovskites. Using density-functional-theory (DFT) calculations, we search a vast
composition space of ABO,N and 4BON, stoichiometries, where B is a p-block cation, and 4 is an
alkaline, alkali-earth, rare-earth or transition metal cation, and identify 10 new ABO,N oxynitride
compositions that we expect to be formable. Of these, the ASnO,N family of five members (4 =
Y, Eu, La, In, and Sc) stands out for its promising electronic properties. We find YSnO,N and
EuSnO;N to be thermodynamically stable being on the convex hull of competing phases, and three

others ASnO,N (4 = La, In, Sc) have a formation enthalpy <94 meV/atom from the hull, within
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the typical range of formability for oxides and nitrides.>’” These Sn-oxynitrides adopt the LuMnOs
structure,3® in which a concerted motion of the 4-site cations couples with polyhedral tilting® to
create a sizeable spontaneous polarization between 7 — 17 pC/cm?. We predict that these ASnO,N
materials to have band gaps ranging from 1.6 to 3.3 eV, with a dispersive conduction band leading
to low electron effective masses of (0.1 — 0.3)m, (where m, is the mass of a free electron), values
comparable to CH3;NH;Pbl;.!> Specifically, we predict InSnO,N — that has a direct band gap of
1.6 eV, a spontaneous polarization of 9.9 uC/cm? and good formability (50 meV/atom above the
convex hull) — to be a promising candidate for solar cell absorbers. With their unique combination
of properties and band gaps spanning the entire visible spectrum, we expect ASnO,N ferroelectric
semiconductors will find useful applications as photovoltaics, photocatalysts, and for
optoelectronics.

Our interest in oxynitrides stems from their potential to combine many of the favorable aspects
of both halides and oxides. The poor stability of the heavy-metal halide perovskites could be
overcome by replacing the halogen with oxygen or nitrogen, since metal oxides and nitrides are
much more strongly bonded. However, the large electronegativity of oxygen results in a low
valence band maximum (VBM),* and the resulting materials have large band gaps, making them
sub-optimal for solar energy harvesting. It has been shown that the band gap of oxide ceramics
can be reduced by alloying with chalcogens or nitrogen.*'-43 Nitrogen is a good choice for this role
as it forms strong bonds with the cations and is known to raise the VBM.*+% For instance, while
the oxide perovskite CaNbO; shows a large band gap of 4.03 eV,% its isostructural oxynitride
counterpart, CaNbO,N, shows a band gap of 2.1 eV.* Introducing a second anion does require us
to account for the effects of anion ordering, since this can influence both the energetic stability and

the band gap of oxynitrides.4’*® Perovskites nearly always prefer cis-type anion ordering around

ACS Paragon Plus Environment 5



oNOYTULT D WN =

Chemistry of Materials

the octahedral cation,* but the equivalent design rules for other structural polymorphs remain
largely unknown.

The selection of the B-site cation also requires careful consideration. Previous works on ABO,N
oxynitrides have mainly focused on transition-metal cations at the B-site, especially those that
prefer oxidation states of +4 and higher such as Ta>", Nb°*, and Hf*".3-3! These transition metal
oxynitrides have proven useful for photocatalysis, but their localized d-states at the band edge
reduce their electron and hole mobility. Because we want to find good semiconducting materials
with dispersive bands and band gap in the visible region, we move beyond the known oxynitrides

to focus on p-block cations at the B-site.
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Figure 1. A schematic of the search strategy employed in this work to discover oxynitride
semiconductors. a. We substituted common oxide and oxynitride structural prototypes with the
A- and B-site cations shown on the Periodic Table in b. ¢. All new materials were checked for
thermodynamic stability or metastability versus known phases in the same composition space.
d. We used mode analysis and phonon calculations to demonstrate the potential ferroelectricity
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of the stable ASnO,N family of compounds. Finally, we calculated their e. electronic properties
and f. spontaneous polarization.

Our search strategy for finding heavy-metal oxynitrides is illustrated in Figure 1 (see methods
section and Supporting Information S1 for additional details). We choose A-site cations from the
left side of the Periodic Table, while B is a p-block cation, and we require that each composition
be charge-balanced in common oxidation states of the cations. The charge-balance requirement
restricts the number of ABO,N and ABON, compositions to 130 and 76, respectively. We then
construct each composition in different structural prototypes observed in 4BO; oxides, including
the perovskite-, LiNbO;-, FeTiO;-, BaSiOs3-, CdSiOs-, AISbOs-, GePbOs-, BaGeOs-, and
YSiO,N-structure types, as shown in Figure la. Then we calculate the new oxynitride’s
thermodynamic stability after structural relaxation. We do this by calculating the formation
enthalpy of the most stable 4BO,N structure with respect to the convex hull of most stable
reactants, which can be either elements or compounds, as found in the Materials Project database.>?
For example, the most favorable decomposition reaction for InSnO;N is

3nSnO,N - InN+3 SnO+In,0,+N, (1)

which releases 50 meV per atom of InSnO;,N, so InSnO,N is 50 meV/atom above the
convex hull. The Materials Project entry for N, accounts for its entropy in the gas phase, but the
entropies of the solid phases are small enough to neglect here. If the decomposition were
endothermic, the material would be on the convex hull of the phase diagram.
This first step reveals that all the calculated ABON, materials are >140 meV/atom above the
convex hull. While, they are within the formability limits of 90% of known binary nitrides (195
meV/atom), they are above that of known binary oxides (94 meV/atom),3” so they are not

considered further. We find that ABO,N compounds, with B chosen from the p-block elements, do
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not typically adopt the common perovskite structure as their ground state. We tested many
oxynitride perovskites having different octahedral tilt patterns and found them all to be >100
meV/atom above the convex hull (See Section S2 in Supporting Information). A prior analysis of
Goldschmidt’s tolerance factor and other empirical design rules had suggested that YSnO,N and
LaSnO,N were formable in the perovskite structure,>although first-principles calculations
indicated that LaSnO,N was 155 meV/atom above the convex hull.’*5> We find that the smaller
B-site cations, such as Si** (Shannon radii’® of 0.4 A VI-coordinate), As3"(0.46 A), or Ge** (0.53
A), favor tetrahedral coordination such as in YSiO,N, while the larger Sn** cation (0.69 A) is more
stable in a 5-coordinate trigonal bipyramid coordination. We find that four- and five-coordinate
polyhedra are stabilized in these oxynitrides by anion ordering due to the higher site potential of
the equatorial site, which we discuss further in Supporting Information Section S4.37-¢0  This
property of the covalent p-block oxynitrides contrasts with the more ionic octahedrally coordinated
perovskites, which have similar coordination environments for all of their anions, limiting the
stabilization which can be obtained through anion ordering. We propose that future searches for
quaternary covalent oxynitrides should focus on structural polymorphs with cations in tetrahedral
coordination, and two or more drastically different anion environments to maintain anion ordering.
Examples of such structures include inverse spinel and various types of silicate structures; in fact,

several anion-ordered quaternary oxynitride silicates are already known in addition to YSiO,N.6!-

62
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Figure 2. Structure, stability and polarization of ABO,N. a. The centrosymmetric P63/mmc
structure of ABO,N, with no polyhedral tilting. b. The polar and insulating Cmcm structure
adopted by YSiO,N,® and other 4BO,N with small B cations. The arrows illustrate the creation
of isolated rings as the B-site coordination contracts. ¢. The polar P6;cm structure, which is the
ground state of ASnO,N (4=Sc, In, Eu, Y, La). The arrows illustrate the polyhedral tilting mode
that creates a polarization along the c-axis. d. Convex-hull energies of 4SnO,N with 4 = Sc, In,
Eu, Y, and La plotted in order of increasing Shannon ionic radius. e. The ferroelectric double-
well potential for ASnO,N as they are switched through the centrosymmetric P63/mmc phase. f.
The calculated phonon spectrum for YSnO,N, in the unstable centrosymmetric P63;/mmc phase
(left) with negative phonon frequencies, and the stable polar P6;cm phase (right) with strictly
positive phonon frequencies. g. The calculated spontaneous polarization of ASnO,N along the
c-axis.
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While there are many possible structures with 4- or 5-coordination of the cations, the existence
of anion-ordered YSiO,N makes a group of three related structure types especially likely to be
stable for ABO,N compounds investigated here.®® These structures, and their symmetry relations,
are illustrated in Figure 2. The high-symmetry 5-coordinate P6s/mmc structure in Figure 2a has
a two-dimensional network of corner-sharing trigonal bipyramids, and is known in a few materials
such as high-pressure InGaO3.9 None of the ABO,N compositions we have tested have a P6;/mmc
ground state, however. We find that reducing the size of the B-site cation contracts the coordination
environment to tetrahedral, breaking the bonding network into the isolated rings as shown in Figure
2b, and observed in YSiO,N.%° The YSiO,N-type structure has been represented with the 30-atom
centrosymmetric Cmcm unit cell in Figure 2a. While stacking patterns along the c-axis can reduce
symmetry to polar P6,22,% both the ring structures have wide band gaps and flat bands, which is
a consequence of the breaking in polyhedral connectivity.!>>%> We find that all ABO,N compounds
with B = Si, Ge, and As adopt this structure type, with YSiO,N, EuGeO,N, LaGeO;N, BaAsO;N,
CaAsO;N, and SrAsO;N having a formation enthalpy within (0 — 94) meV/atom above the convex
hull, and are expected to be formable according to the metastability criterion defined above. As
these YS10,N-type materials are found to be wide-band-gap insulators with PBE band gaps > 2.5
eV and have flat bands (see Supporting Information S5 for the example band structure of
YGeO,N), we do not investigate them further.

Keeping the B-site fixed to Sn*", but reducing the A4-site radius, introduces polyhedral tilting to
reduce the coordination number of 4 from 8 to 7, as observed in hexagonal manganite
multiferroics.?® The tilting of the trigonal bipyramids, as shown in Figure 2¢, removes the center

of inversion symmetry located at the A-site, lowering the symmetry to polar P6;cm,*® and the A4-
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site cations displace along the c-axis. The unit cell triples to include six A4 cations, of which four
displace along one direction, and two along the opposite direction, creating a sizeable polarization
of ~10 uC/cm?. This transition, which is driven by the size mismatch of the two cations, is known
as a geometric ferroelectric transition, in contrast to ferroelectrics driven by lone-pair
stereochemistry, such as BiFeOs;, or by second-order Jahn-Teller distortions observed in
compounds with d° cations, such as BaTiO3.-%% We find two compounds with the P6;mc
structure, EuSnO,N and YSnO;N, are on the convex hull and are expected to be stable against
decomposition. We also find InSnO,N, LaSnO,N, and ScSnO;N are within 94 meV/atom of the
hull, as shown in Figure 2d. While the formability of these three oxynitrides is not guaranteed,
they are close enough to the convex hull for non-equilibrium synthesis techniques to have a good
chance of success.®>70 Therefore, we calculate their properties along with those of the two
oxynitrides which are on the convex hull. Creation of a single O*/N?3- antisite pair in InSnO,N
costs 1.14 eV, indicating a strict anion ordering, which contrasts with the partial order of the
octahedral perovskite oxynitrides.”! Due to their stability, polarization, and beneficial electronic
properties, these compounds are the most promising result of our search, and we focus on them
for the remainder of this article.

Having identified a set of stable and polar tin oxynitrides, we now look at the ferroelectric
transition in more detail. We plot the energy difference between the non-polar P6;/mmc and polar
P6;mc structures in Figure 2e, because this value can be used to approximate the maximum size
of the energy barrier for ferroelectric switching. For comparison, isostructural YMnO; has a
calculated barrier of 21 meV/atom,>? and an experimental ferroelectric transition temperature T
=914 K.”> The comparable barrier size of 15-30 meV/atom for A=In, Y, Eu, La leads us to predict

the polarization of these ASnO,N to be robust and yet switchable. ScSnO;N, at 57 meV/atom, may

ACS Paragon Plus Environment 11



oNOYTULT D WN =

Chemistry of Materials

also be switchable, if the dielectric breakdown field is large. As an additional check, we have
calculated the phonon modes of the P6y/mmc and P6;mc structures of YSnO;N; the negative
frequencies of P6y/mmc in Figure 2f indicate that the ferroelectric mode is soft, while the polar
P6;mc has no soft modes and is dynamically stable. Finally, we have calculated the polarization
of the five stable or metastable tin oxynitrides, which ranges from 7.1 to 16.8 pC/cm?, and we
show the results in Figure 2g. As polar materials, the ASnO,N family also have relatively large

static dielectric constants € = 17, which is beneficial for screening charged defects.?
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Figure 3. Electronic properties of ASnO,N compounds. a. Top: HSE06 band gap values for
ASnO,N (blue) compounds with 4 = Sc, In, Eu, Y, and La, compared to literature values 33 7373
for several other n-type semiconductors (green) and perovskites (red). Middle: The effective
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electron masses for the same materials, calculated with the PBE functional.’> Bottom: the
effective hole masses. Polar materials are marked with an asterisk *. b. The electronic band
structure of InSnO,N, calculated using the HSE06 functional. The red and blue colors show the
relative contributions of In s-states and Sn s-states, respectively. ¢. The HSE06 density of
electronic states for InSnO,N (left) and YSnO,N (right), projected onto the orbitals of individual
atoms. The VBM nitrogen states and CBM In/Y states are shaded.

Since the ASnO,N compounds are stable and polar, we calculate their band gaps with the more
accurate HSE06 functional,’ to investigate their promise for solar energy harvesting applications.
We find that changing the A-site also allows the band gap to be tuned from 1.6 to 3.3 eV, spanning
the entire visible spectrum and approaching the gap of CH;NH;Pbl;, which has a band gap of 1.55
eV,”” close to the ideal for photovoltaic absorbers. We show the calculated HSE06 band gaps of
ASnO,N in Figure 3a, compared with several other known perovskite photovoltaic absorbers and
n-type semiconductors, which serve as benchmarks. Their band gaps also compare favorably for
solar energy harvesting to Sn-based perovskites: BaSnO; and SrSnO;, which have indirect
theoretical (HSE06) band gaps of 2.43 eV and 3.50 eV,”® respectively, and experimentally
observed gaps >3 eV.”?

We also calculate the full electronic band structures, using the PBE functional due to
computational constraints. Projecting the electronic bands onto atomic orbitals reveals that the
VBM of ABO,N is composed of both O and N states, as expected. The CBM, meanwhile, is highly
dispersive with contributions from the s-orbitals of all four atoms, indicating that the bonding is
covalent, with electrons partially transferred from cation to anion.

InSnO;N has a small band gap of 1.6 eV, compared to the 2.7 eV gap of YSnO;N, and the effect
cannot be attributed to polyhedral tilting reducing the degree of covalent orbital overlap. Y3* cation
is only 0.10 A larger than In3*, which leads to smaller tilting of the Sn-based octahedra in YSnO,N
compared to InSnO,N, and so by this metric alone InSnO,N ought to have a larger gap. The small

gap of InSnO;N is instead caused by the high electronegativity of In (1.78) compared with Y
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(1.22),80 which increases the strength of the covalent In-O and In-N interactions. Specifically, the
In s-orbitals lie only 2.15 eV above those of Sn, compared to 5.93 eV for Y,?! indicating that the
conduction band will have a substantial In s character as well as Sn s. Examination of the atom-
projected density of states obtained with the HSE06 functional, as shown in Figure 3c, shows a
large contribution of In s-states to the conduction band edge. We further examine the atomic
contribution to the CBM in YSnO,N and InSnO,N. Indium and tin atoms contribute 30% and 24%,
respectively, to the CBM (at I'-point) in InSnO,N, whereas Y and Sn contribute 8% and 32%,
respectively, to the CBM in YSnO,N. So, we conclude that the contribution from the low-lying In
states significantly lowers the CBM of InSnO,N. InSnO;N also has a direct band gap, compared
to the indirect gaps of the other four tin oxynitrides, which are <0.2 eV smaller than their direct
gaps. We have confirmed the direct nature of the band gap by re-calculating InSnO,N’s band
structure using HSE06, which we show in Figure 3b.

Photovoltaic applications require good charge carrier mobility to reduce non-radiative
recombination losses and efficiently transport the photo-generated carriers to the electrodes. To
estimate the carrier mobility, we have calculated the effective mass of electrons and holes in
ASnO,N oxynitrides from their band structure obtained using PBE. The effective mass of their
carriers are shown in Figure 3a along with that of other promising semiconductors, such as
CH3NH;Pbl;, lead-free double perovskites Cs,AgBiOg and KBaTeBiOg,?? GaAs, In,0;, and Sn-
based semiconductors BaSnO; and ZnSnQ3.5% 82 All five oxynitrides have very light electrons,
with InSnO,N having m, = 0.11m,. This compares favorably to the calculated m. of CH;NH;Pbl;
(0.14my), Cs,AgBiOg (0.37my), and KBaTeBiOg (0.28m). The holes are heavier as is typical for
most metal oxides, with InSnO,N having holes with an effective mass of 1.58 m,. Oxide and nitride

semiconductors are inherently n-type doped due to native anion vacancies. Therefore, the
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extremely low effective mass of the electrons in ASnO,N oxynitrides is expected to make them
promising semiconductors.

We have also investigated the formation of polarons in InSnO,N, both for electrons and holes,
as described in the Computational Methods section. We do not find a stable electron polaron, but
we do observe a hole polaron localized on O with a binding energy of 100 meV. This value is
small compared to Ga,03 (~1 €V),?? an emerging semiconductor for example, most likely due to
the moderate values of hole-effective mass, 1.4 m,, and ionic component of dielectric screening,
gion = 9.48.3%4 However, like most oxides and nitrides, we expect InSnO,N to be an n-type
semiconductor, with holes — that can be trapped as polarons — being the minority carriers.
Furthermore, the presence of built-in electric field due to the ferroelectric nature of InSnO,N is
expected to extenuate the need for p-n junctions to separate carriers.

Furthermore, for solar cell applications, a smaller excitonic binding energy is desirable, such
that the photogenerated electron-hole pairs can be separated without recombination. The light
electrons and high dielectric constant suggest that excitons can be separated easily if InSnO,N is
used as a light absorber. We calculate the exciton binding energy (Eying) using the Wannier-Mott

model®>:

my my

Ebind - (me* +mﬁ)m0€§tat H ’ (2)

where m,"” and m;" are the electron and hole effective masses, respectively, Ry is the Rydberg
constant (13.6 eV), my is the free electron mass, and &g, is the static dielectric constant calculated
to be 18 using PBE for InSnO,N. We obtain Eyi,qg = 5.1 meV from the out-of-plane effective masses
and dielectric constant for InSnO,N (using in-plane values changes Ey;ng to 7.1 meV). This value
is much less than the thermal energy ~27 meV at room temperature, so we predict that excitons

will separate easily, which is another similarity between InSnO,N and MAPbI;. While the
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calculated and measured values of Ey;,g for MAPbI; span two orders of magnitude depending on
the methods used, most of the reported values cluster in the region from 10 to 50 meV.8¢

In addition to the fast exciton separation, we expect the photovoltaic performance of InSnO,N-
based solar cells to be further enhanced by the bulk photovoltaic effect (BPVE),?” wherein its lack
of inversion symmetry and sizeable spontaneous polarization can generate a large photovoltage.
BPVE is dominated by the shift current mechanism, in which the asymmetric potential in polar
materials leads to continuous excitation of electrons and holes under illumination to quasiparticle
coherent states having intrinsic momenta, that in turn result in a large photocurrent.®¥-3° The shift
current can be further enhanced by controlling the geometry of domains and domain walls in
ferroelectrics.”%! The formation of Schottky barriers at the ferroelectric absorber/electrode
interfaces,”? can also improve the photovoltaic efficiency. However, existing ferroelectric
materials based on transition metal compounds, such as PbTiO; and BiFeO; have wide band gaps,
and cannot efficiently utilize the solar spectrum. To increase the absorbance and enhance BPVE
of ferroelectrics, numerous attempts have been made to reduce their band gap. Alloying different
transition metals and controlling their topological order, such as in BiFe;_,Co0,0¢, [KNbO;];_,
[BaNijsNb;s05], and BiFeCrOg is a popular method, and can lead to ferroelectric oxides with
band gap as small as 1.4 eV;?3-% however, these strategies have led to only small improvements in
photoconversion efficiency. First-principles and model calculations of the shift current have
attributed this modest improvements of BPVE in transition-metal-based ferroelectrics to the
localized nature of their band edges that are comprised of d-states.®® It has been predicted that
BPVE can be significantly improved by using ferroelectric materials having delocalized s or p

states at the band edges and an optimal band gap ~1.6 eV to maximize the absorption of the solar
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spectrum.®® Based on these, we predict the new tin oxynitrides reported here could be well-suited
to harness BPVE and lead to high photoconversion efficiencies.

In summary, our first-principles search has revealed the stability of a family of ASnO,N
compounds which adopt the polar LuMnO; structure. By incorporating the p-block element Sn
into a quaternary oxynitride, we obtain good electronic properties with a highly dispersive
conduction band and mobile conduction electrons, without sacrificing stability. We further predict
that the band gap in these new tin oxynitrides can be tuned across the entire visible spectrum by
varying the A-site cation. The combination of delocalized s-states at the conduction band edge,
polar symmetry and band gap tunability, makes them attractive platforms to harness BPVE and
make high-efficiency solar cells with photovoltages beyond the band gap. Our initial results of
antisite disorder between In and Sn in InSnO,N shows that while these defect pairs can form easily
— having a formation energy of 0.20 eV— they don’t result in any mid-gap states that can act as
non-radiative recombination centers. Detailed calculation of the formation energy of charged
defects will be necessary to gain a more complete understanding of the ASnO,N family, as well as
experimental study. It is undesirable to have defects with charge transition levels located deep in
the band gap, as these can act as traps to promote non-radiative recombination. Prior studies have
shown that defect tolerance is enhanced in materials having delocalized states at the band edges
and high dielectric constants, although they are not sufficient descriptors.”®7 While the p-states
from O and N forming the VBM are localized, the s-states from In and Sn at the CBM are
dispersive. InSnO;,N is also predicted to have a moderately high dielectric constant ¢ = 18.
However, detailed calculations of the formation energy of various point defects combined with
experimental studies into their defect tolerance will be necessary to gain a more complete

understanding of the ASnO,N family of ferroelectric semiconductors. The ability to substitute
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cations at the 4-site and control the stoichiometry of the O/N anions could also enable doping for
various applications. Overall, we expect these ASnO,N oxynitrides will enable several promising
applications in solar energy harvesting through efficient solar cells and photocatalysts, and for

visible-light optoelectronics.

COMPUTATIONAL METHODS

Materials screening: We have calculated the energy and electronic ground state of 206 ABO;_ N,
compositions in approximately 1,500 total relaxed structures, using DFT calculations as
implemented in the Vienna Ab initio Simulation Package (VASP)?-? according to the parameters
of the Materials Project.’> This involves the use of the PBE functional!?° with a plane-wave cutoff
of' 520 eV and a k-point density of 1000 per reciprocal atom. Most calculations used the tetrahedron
method of Brillouin zone integration,'°! but a few could not be converged this way and were re-
calculated with a Gaussian smearing of < 0.1 eV. All of these calculations were set up in an initial
ferromagnetic configuration, but the magnetic moments were free to relax. Calculations were set
up and run using the Pymatgen and Atomate libraries,'%?-193 and the convex hull energies were
calculated relative to the other phases in the Materials Project database. We provide in Supporting
Information S1 a detailed discussion of which cation compositions and structural polymorphs we
searched in this study.

Dielectric and piezoelectric properties: We calculated the dielectric and piezoelectric tensors,
including both electronic and ionic contributions, using density functional perturbation theory!%4
(LEPSILON = .-TRUE., LPEAD = TRUE.) and a k-points grid of 9x5x5 points. To increase
accuracy, we turned off real-space evaluation of projection operators (LREAL = FALSE.) and

increased the plane-wave energy cutoff to 600 eV. Spontaneous polarization was calculated
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according to the Berry phase method,!% with the polarization branch between P63;/mmc and P63;cm
fit using three intermediate images interpolated with ISODISTORT.!% Phonon spectra were
calculated using the Pymatgen interface to the Phonopy software, and we used a 2x2x1 supercell
with 120 atoms.!%7

Electronic and optical properties: We tested the effect of spin-orbit coupling for heavy elements
such as La and Sn, but found that it was not required for an accurate band structure (see Supporting
Information S6). We calculated the HSE06 band gaps using a plane wave cutoff of 500 eV and a
4x4x2 I'-centered k-points grid, down-sampled by a factor of two for the exact exchange potential
(NKRED = 2). We calculated the charge carrier effective masses using points along the band path
that were separated by 0.005 A~!, starting at the high-symmetry point which constitutes CBM or
VBM (except for ScSnO,N, where the VBM occurs between two high-symmetry points). We fit a
parabolic dispersion relation by minimizing the sum of the errors between the parabola and the
actual eigenvalue at each point.

We tested for tendency for polaron formation by using a 130-atom supercell of InSnO,N. For
references, we calculated the energy of a relaxed supercell with the symmetry of bulk InSnO,N
imposed, but one electron added or removed. Then we broke the symmetry around a single atom
by displacing its neighbors, and relaxed the cell again. We repeated this process with a separate
supercell calculation for each type of atom in the structure, that is, eight calculations, four atom
types in two different charge states. The stability of a polaron is shown if the symmetry-broken

supercell relaxes to a lower energy than the high-symmetry reference.
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