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Abstract

In many economic contexts, agents from a same population team up to bet-
ter exploit their human capital. In such contexts (often called “roommate
matching problems”), stable matchings may fail to exist even when utility
is transferable. We show that when each individual has a close substitute, a
stable matching can be implemented with minimal policy intervention. Our
results shed light on the stability of partnerships on the labor market. More-
over, they imply that the tools crafted in empirical studies of the marriage
problem can easily be adapted to many roommate problems.



1 Introduction

Among Gary Becker’s seminal contributions to labor economics, two are
of particular importance. The most obvious one is the notion of human
capital, after which this Journal is named. A second important contribution
is the development of matching models with transferable utility!. Although
the market for marriage was Becker’s favorite field of application for the
theory, many of the insights he developed are deeply relevant for the analysis
of labor issues as well. The labor market can often be fruitfully seen as
matching people to jobs—an insight that has been thoroughly exploited in
the literature, in particular in a search context?.

There is, however, a fundamental difference between matching on the
labor and the marriage market. In the latter case, bilateral matching is a
natural framework; individuals who match mostly belong to two distinct
subpopulations. Not so, however, on the labor market. Workers match not
only to jobs, but also (and often primarily) to other workers. Lawyers gather
in law firms, doctors associate in medical practices, architects congregate in
architectural firms. While such partnerships are typical of the professions,
they extend to other services firms such as consultancies. More generally, the
notion that workers, through their employment relationships, tend to match
to other workers with similar characteristics, has received a lot of attention
and clear empirical support. For instance, a recent paper by Ehrlich and Kim
(2015) shows that immigrants endowed with similar skills tend to team up
and/or to separate in the same sectors. In particular, higher levels of human
capital of specific skill groups in the destination country tend to increase the
immigration flows of corresponding groups from the source country. The
authors convincingly argue that these effects are crucial in assessing the
economic consequences of migrations.

From a theoretical perspective, these features raise specific problems. In
sharp contrast with the bipartite literature, the formal analysis of workers’
matching on human capital must acknowledge the fact that the individuals
under consideration typically belong to the same population. It has been
known for some time that this apparently minor difference in settings may
generate largely divergent properties. Take, for instance, the specific case
in which teams consist of exactly two people, both coming from the same
population: this is classically called the roommate matching problem.

The standard equilibrium concept in matching is stability; a matching

!See for instance Becker (1973) and Becker (1974).
2See in particular Mortensen and Pissarides (1994).



is stable if it is robust to unilateral and bilateral deviations. We will follow
this long tradition in this paper: when we say that “an equilibrium exists”,
for instance, we mean that “a stable matching exists”. Can we expect that
the roommate matching game always has a stable matching, so that the
theoretical analysis could, as in the bipartite framework, concentrate on the
properties and the comparative statics of this stable outcome? Or could it be
the case that a stable matching fails to exist, which might cast serious doubts
on the relevance of matching models for the analysis of these situations?

The answer to that important question has been known for a long time
in the Non Transferable Utility (NTU) context; indeed, Gale and Shapley
(1962) have shown that stable matchings may not exist. However, applying
the NTU approach to a labor market requires wages to be exogenously fixed
,rather than being endogenously determined at equilibrium. In most mar-
kets, this is not the relevant framework. Much more adequate is a Trans-
ferable Utility (TU) framework, in which any potential team generates a
surplus that is (endogenously) shared by its members.

The problem, however, is that roommates matching games under TU
tend to have different properties than their bipartite counterparts. In a
bipartite setting, a stable matching exists under mild continuity and com-
pactness conditions; it maximizes aggregate surplus, and the associated indi-
vidual surpluses solve the dual imputation problem. A first conclusion of the
present paper is that in the two-partner roommate matching problem under
TU, on the contrary, stable matching may fail to exist. This is a potentially
damaging conclusion, since it might require reconsidering the relevance of
matching models in this context.

Our second conclusion, however, tends to mitigate this negative result
by showing that its economic implications may be much less damaging than
one would expect. Specifically, we consider a model in which agents belong
to various “types”, where each type consists of individuals of indistinguish-
able characteristics and tastes. In this context, we show two main results.
First, a stable matching always exists when the number of individuals in
each type is even. Second, when the number of individuals of any given
type is large enough, there always exist “quasi-stable” matchings: even if
a stable matching does not exist, existence can be restored with minimal
policy intervention. To do this, one only needs to convince one individual
to leave the game in each type with an odd number of individuals. If this
requires a compensation to be paid, this can be done at a per capita cost
that goes to zero when the population of each type goes to infinity.

We refer the reader to our conclusion for the implications of these find-
ings in terms of the stability of partnerships. We also show there that the



empirical tools devised for the bipartite matching setting® should carry over
directly to the roommate context when the populations under considera-
tion are large. Some of the results of the present paper are applied in this
direction in Ciscato, Galichon, and Goussé (2015).

Existing literature Since Gale and Shapley (1962), a few papers have
studied the property of NTU stable roommate matchings when they do ex-
ist. Gusfield and Irving (1989) showed that the set of singles is the same in
all stable matchings; Klaus and Klijn (2010) study whether any of them can
be “fair”. Efficient algorithms have also been available since Irving (1985).
Necessary and sufficient existence conditions under strict preferences have
been found by Tan (1991) for complete stable matchings and by Sotomayor
(2005) for stable matchings. Chung (2000) shows that a condition he calls
“no odd rings” is sufficient for stable matchings to exist under weak pref-
erences. Rodrigues-Neto (2007) introduces “symmetric utilities” and Gud-
munsson (2014) uses “weak cycles.”

The TU case has been less studied in the theoretical literature, in spite
of its relevance in empirical applications. Chung (2000) shows that when
the division of surplus obeys an exogenous rule, odd rings are ruled out
and the roommate problem has a stable matching; but that is clearly not
an appealing assumption. Karlander and Eriksson (2001) provide a graph-
theoretic characterization of stable outcomes when they exist; and Klaus
and Nichifor (2010) studies their properties. Talman and Yang (2011) give
a characterization in terms of integer programming.

The results of this paper are also related to those of Azevedo, Weyl,
and White (2013), who show the existence of a Walrasian equilibrium in
an economy with indivisible goods, a continuum of agents and quasilinear
utility. Unlike their main results, ours apply in markets with finite numbers
of agents. Our methods are also original. As is well-known, in bipartite
problems all feasible matchings that maximize social surplus are stable. This
is not true in roommate problems; but we show how any roommate problem
can be “cloned” in order to construct an associated bipartite problem. We
then exploit this insight to prove existence of stable matchings in roommate
problems with even numbers of agents within each type.

To the best of our knowledge, the connection between the unipartite and
bipartite problems stressed in this paper is new.

3See Chiappori and Salanié (2016) for a recent survey.



2 A Simple Example

We start by giving the intuition of our main results on an illustrative exam-
ple.

2.1 Unstable Matchings

It has been known since Gale and Shapley that a stable matching may not
exist for the roommate problem under non-transferable utility. As it turns
out, it is almost equally easy to construct an example of non-existence of
a stable matching with transferable utility. Here a matching defines who
is matched to whom and how the corresponding surplus is divided between
the partners. Stability requires that

e no partner would be better off by leaving the partnership

e no group of individuals could break off their current match, rematch
together, and generate a higher joint surplus than the sum of their
current individual utilities.

Consider the following example, in which only two-member matches are
possible:

Example 1 The population has three individuals. Any unmatched individ-
ual has zero utility. The joint surplus created by the matching of any two of
them is given by the off-diagonal terms of the matrix

6 8
)

o= (1)

co o |

5 —
so that individuals 1 and 2 create, if they match, a surplus of 6; 1 and 3
create a surplus of 8, etc.

Assume that there exists a stable matching. A matching in which all
individuals remain single is obviously not stable; any stable matching must be
such that one person remains single and the other two are matched together.
Let (uy) be the utility that individual of type x = 1,2,3 gets out of this game;
stability imposes uy + uy > Py for all potential matches, with equality if x
and y are actually matched—and u, > 0 with equality if x is single. One can
readily check, however, that no set of numbers (uy,us,us) satisfying these
relationships for all x and y exists: whichever the married pair is, one of



the matched partners would increase her utility by matching with the single
person. Indeed, if the matched pair is {1,2}, then

U]+ ug = 6,u3 =0,ue >0

contradicts uy + uz > 8: agent 3, being single, is willing to give up any
amount smaller than 8 to be matched with 1, while the match between 1 and
2 cannot provide 1 with more than 6. Similarly, if the married pair is {2, 3},
then

us +uz =9,u; =0,us > 0,u3 >0

contradicts both uy + ug > 6 and u; + uz > 8 (so that 1 is willing to give
more than 5 and less than 6 to agent 2 to match with her, and more than 5
and less than 8 to 3.) Finally, if the married pair is {1,3}, then

up +ug =8,uz = 0,u; > 0,uz3 >0

1s incompatible with ui +ug > 11, which follows from combining ui +us > 6
and ug + ug > 5 with ug = 0 (since agent 2 is single 1 could match with her
and capture almost 6, while 3 could match with her and capture almost 5;
these outside options are more attractive than anything 1 and 8 can achieve
together.) We conclude that no stable matching exists.

Note that there is nothing pathological in Example 1. The surpluses can
easily be (locally) modified without changing the result. Also, the conclusion
does not require an odd number of agents; one can readily introduce a
fourth individual, who generates a small enough surplus with any roommate,
without changing the non-existence finding.

2.2 Cloning

However, there exists a simple modification that restores existence in Exam-
ple 1. Let us now duplicate the economy by “cloning” each agent; technically,
we now have three types x = 1,2,3 of agents, with two (identical) individ-
uals of each type. The joint surplus created by a matching between two
individuals of different types x # y is as in Example 1; but we now also
need to define the surplus generated by the matching of two clones (two
individuals of the same type.) Take it to be 2 for every type—more on this
later. We then have the matrix:

2 6 8
=6 2 5 (2)
8 5 2



Consider the following matching p*: there is one match between a type
1 and a type 2 individuals, one between type 1 and type 3, and one be-
tween type 2 and type 3. Assume individuals share the surplus so that each
individual of type 1 gets 4.5, each individual of type 2 gets 1.5, and each
individual of type 3 gets 3.5. This is clearly feasible; and it is easy to verify
that it is a stable matching.

Less obvious but still true is the fact (proved later on) that existence
would still obtain for any values chosen for the diagonal of the matrix,
although the stable matching pattern that would emerge may be different?.
In other words, our cloning operation always restores the existence of a stable
match, irrespective of the values of the joint surpluses created by matches
between clones.

2.3 Surplus Maximization

Our main result is better understood when related to another, closely linked
problem: finding a feasible matching that maximizes total surplus. Total
surplus is simply the sum of the joint surpluses of every match (keeping to
a normalized utility of zero for singles). In the standard, bipartite frame-
work, the adjective “feasible” refers to the fact that each individual can only
be matched to one partner or stay single. Roommate matching, however,
introduces an additional feasibility constraint. For any two types z # v,
denote pi,, the number of matches between an individual of type z and an
individual of type y; since a roommate matching for which p,, and p,, dif-
fer would clearly not be feasible, it must be the case that p,, = p,,. This
additional symmetry constraint is absent from the bipartite model, where
these two individuals would belong to two separate subpopulations and the
number of marriages between say, a college-educated man and a woman
who is a high-school graduate may well differ (and typically does) from the
number of marriages between a college-educated woman and a man who is
a high-school graduate.

This symmetry constraint is the source of the difficulty in finding stable
roommate matchings; and our cloning operation addresses it. To see this on
our Example 1, first go back to roommate matching with one individual of
each type = = 1,2,3, and neglect the symmetry constraint. Since there is
only one individual of each type x, she cannot match with herself: u,, = 0;

4For instance, if the diagonal elements are large enough, the stable matching matches
each individual with her clone.



and neglecting symmetry, the only other feasibility constraints are

for every z, Z Py <1
Yy#£T

and

for every y, Z’ugﬁy <1
TFY

The two matchings

—

0 01 0
pt=11 0 0] andp?= 1[0
010 1

S O =

0
1
0

are feasible in this limited sense; and they both achieve the highest possible
surplus when the symmetry conditions are disregarded. The existence of
two solutions is not surprising: given the symmetric nature of the surplus
matrix ®, if a matrix p maximizes total surplus, so does its transpose .
Unfortunately, neither is symmetric, and therefore neither makes any sense
in the roommate problem. For instance, u' has agent 1 matched both with
agent 3 (in the first row) and with agent 2 (in the first column). Also, note
that a third solution to this relaxed problem is the unweighted mean of p!
and p?,

0 1/2 1/2
P =12 0 1/2
1/2 1/2 0

However, while this matrix is indeed symmetric, its coefficients are not in-
teger and thus it is not a feasible matching either; moreover, and quite in-
terestingly, it cannot be interpreted as the outcome of randomization since
it is not a convex combination of feasible roommate matching matrices®.
Let us now reintroduce the symmetry constraint. The (now fully) fea-
sible matching that maximizes total surplus can only have one matched
pair and one single; and the pair that should be matched clearly consists of

individuals 1 and 3:

01
0 0
0 0

=I
Il
= o O

5For any stable roommate matching matrix, the sum of coefficients equals 2, reflect-
ing the fact that one agent must remain single. This property is preserved by convex
combination; however, the sum of coefficients of u™ equals 3.



Obviously, i is not a solution to the maximization problem without sym-
metry constraint; in other words, the symmetry constraint is binding in this
example. As we shall see below, this is characteristic of situations in which
the roommate matching problem with transferable utility does not have a
stable matching. Indeed, we prove in the next section that a stable matching
exists if and only if the symmetry constraint does not bind.

Now take the “cloned” version of Example 1, in which each type x has
two individuals. It is easy to see that the solution to the relaxed problem
which neglects the symmetry constraint is the p* of section 2.2, which is
symmetric; therefore the symmetry constraint does not bind, and a stable
matching exists. This is a general result: we shall see below that in any
cloned roommate matching setup, at least one solution to the relaxed prob-
lem is symmetric—which implies the existence of a stable match.

2.4 A Bipartite Interpretation

The relaxed problem, in turn, has a natural interpretation in terms of bipar-
tite matching. Start from the three-agent Example 1, and define an associ-
ated bipartite matching problem as follows: clone the population again, but
this time assign a label (such as “man” or “woman”) to each of the two sub-
populations. Then consider the bipartite matching problem between these
subpopulations of “men” and “women”, with the joint surplus matrix given
by @' in (2).

By standard results, there always exists a stable matching in this asso-
ciated bipartite matching problem; and it maximizes the associated total
surplus. In our example, ' and p? are the two stable matchings. Any con-
vex combination such as p™ can be interpreted as a randomization between
these two matchings; it is natural to focus on ™ since it is the only symmet-
ric one and feasible roommate matchings must be symmetric. As remarked
above, in the original roommate problem p™ cannot be stable, since it has
non-integer element.

Now if the roommate matching problem is cloned we can proceed as in
the above paragraph, except that with twice the number of individuals we
should work with 2u™. As an integer symmetric matrix, reinterpreted in the
cloned roommate matching setup, it defines a feasible roommate matching
which is stable—in fact it is the stable matching p* of section 2.2. This
construction is general: we shall see below that any roommate matching
problem in which the number of individuals in each type is even has a
symmetric stable match.

We now provide a formal derivation of these results.



3 The Formal Setting

We consider a population of individuals who belong to a finite set of types
X. Individuals of the same type are indistinguishable. We denote n, the
number of individuals of type z € X', and

N:an

reX

the total size of the population.
Without loss of generality, we normalize the utilities of singles to be zero
throughout.

3.1 Roommate Matching

A match consists of two partners of types x and y. An individual of any
type can be matched with any individual of the same or any other type, or
remain single. In particular, there is no restriction that matches only involve
two partners of different “genders.”

Let a match {z,y} generate a surplus ®,,. In principle the two partners
could play different roles. In sections 3 and 4 we will assume that they are
in fact symmetric within a match, so that ®,, is assumed to be a symmetric
function of (z,y):

Assumption 1 The surplus ®,, is symmetric in (z,y).

We show in section 5 that, surprising as it may seem, there is in fact
no loss of generality in making this assumption. The intuition is simple:
if ®,, fails to be symmetric in (z,y), so that the partners’ roles are not
exchangeable, then they should choose their roles so to maximize output.
This boils down to replacing ®,, with the symmetric max (®4,, ®yz). Thus
our results extend easily when we do not impose Assumption 1; but it is
easier to start from the symmetric case.

A matching can be described by a matrix of numbers (,uxy) indexed by
xz,y € X, such that

® /i, is the number of singles of type z

e when y # 0, 15, is the number of matches between types = and y.



The numbers p,,, should be integers; given Assumption 1, they should be
symmetric in (z,y); and they should satisfy the scarcity constraints. More
precisely, the number of individuals of type x must equal the number
of singles of type x, plus the number of pairs in which only one partner has
type z, plus twice the number of pairs in which the two partners are of type
r—since such a same-type pair has two individuals of type x.

Finally, the set of feasible roommate matchings is

2ppy + Zy;ﬁm Ky < ng
P (TL) =M= (/‘L:Ey) : Hagy = Hyz (3)
fizy € N

3.2 TU stability and optimality

We define an outcome (p,u) as the specification of a feasible roommate
matching ;1 and an associated vector of payoffs u, to each individual of type
x. These payoffs have to be feasible: that is, the sum of payoffs across the
population has to be equal to the total output under the matching p. Now
in a roommate matching y, the total surplus created is®

P
x T#Y

This leads to the following definition of a feasible outcome: an outcome

(u,u) is feasible if p is a feasible roommate matching and

Z Nty = Sr(w; ). (5)

zeX

We define stability as in Gale and Shapley (1962): an outcome (u,u) is
stable if it cannot be blocked by an individual or by a pair of individuals.
More precisely, an outcome (p, u) is stable if it is feasible, and if for any two
types x,y € X, (i) up > 0, and (ii) uy +uy > Pyy. By extension, a matching
 is called stable if there exists a payoff vector (u,) such that the outcome
(u,u) is stable.

In bipartite matching the problem of stability is equivalent to the prob-
lem of optimality: stable matchings maximize total surplus. Things are obvi-
ously more complicated in roommate matchings—there always exist surplus-
maximizing matchings, but they may not be stable. The maximum of the

5Note that in the second sum operator the pair {z,y} appears twice, one time as (z,y)
and another time as (y, z); but the joint surplus ®,, it creates must only be counted once,
hence the division by 2.

10



aggregate surplus over the set of feasible roommate matchings P(n) is

Wp (n,®) = maxSg(u;®) (6)
s.t. 20, + Z Py < N
yF
Mgy € N.

While no stable matching may actually achieve this value, it plays an im-
portant role in our argument.

3.3 The Associated Bipartite Matching Problem

We shall now see that to every roommate matching problem we can asso-
ciate a bipartite matching problem which generates almost the same level of
aggregate surplus. More precisely, we will prove that for every vector of pop-
ulations of types n = (n,) and every symmetric surplus function ® = (®,,),
the highest possible surplus in the roommate matching problem is “close to”
that achieved in a bipartite problem with mirror populations of men and
women and half the surplus function:

Wp(n,®) ~ Wz (n,n, ®/2).

where Wg (n,n,®/2) is defined as the maximal surplus of the bipartite
matching problem:

Wi (n,n,®/2) = yené?;; n)SB(l/;CI)) (7)

where Sp(v;®) =3, cx Vggy% and B(n,n) is the set of feasible matchings
in the bipartite problem:

Zy Vzy < ng
B(n,n)=qv=(vay): | Xy Vay <1y (8)
Vey €N

We also define stability for a feasible bipartite matching (v4,) in the
usual way: there must exist payoffs (uz,v,) such that

Sp(v;®) = Z Mgty + Z Ny Uy 9)

reX yeEX
P

up vy > ¥

Uy > 0, vy >0

11



By classical results of Shapley and Shubik (1971), there exist stable
matchings v, and they coincide with the solutions of (7). Moreover, the
associated payoffs (u,v) solve the dual program; that is, they minimize
> zex Nala + D, cx Nyvy over the feasible set of program (9). Finally, for
any stable matching, u,, > 0 implies uy + vy = Py /2, and pi,q > 0 implies
u, = 0.

Remark 3.1 The marriage problem obviously is a particular case of the
roommate problem: if in a roommate matching problem ®,, = —oo whenever
x and y have the same gender, then any optimal or stable matching will be
heterosexual.

3.3.1 Links Between Wp and Wg

It is not hard to see that Wp (n, ®) < Wi (n,n, ®/2) . In fact, we can bound
the difference between these two values:

Theorem 1 Under Assumption 1,
Wp (n,®) < Wg (n,n,8/2) < Wp (n,®) + |X[* P

where

and |X| is the cardinal of the set X, i.e. the number of types in the popula-
tion.
Proof. See appendiz. m

In some cases, Wp (n, ®) and Wp (n,n, ®/2) actually coincide. For in-
stance:

Proposition 2 If n, is even for each x € X, then under Assumption 1,
Wp (n,®) = Wg (n,n, ®/2).

Proof. See appendiz. m

12



3.3.2 Stable Roommate Matchings

The existence of stable roommate matchings is directly related to the diver-
gence of Wp (n, ®) and Wg (n,n, ®/2). Indeed, one has:

Theorem 3 Under Assumption 1,
(i) There exist stable roommate matchings if and only if

Wp (n,®) = Wi (n,n, ®/2).

(ii) Whenever they exist, stable roommate matchings achieve the mazi-
mal aggregate surplus Wp (n, ®) in (6).

(i1i) Whenever a stable roommate matching exists, individual utilities at
equilibrium (uy) solve the following, dual program:

min Z Uy Ty (10)

u,A
X
s.t. Uy > 0
Uy + Uy > Py + Agy
Apy = Ay

Proof. See appendix. m

Note that while the characterization of the existence of a stable match-
ing in terms of equality between an integer program and a linear program is
a well-known problem in the literature on matching (see Talman and Yang
(2011) for the roommate problem), the link with a bipartite matching prob-
lem is new.

Also note that in program (10), the antisymmetric matrix A has a natural
interpretation: A, is the Lagrange multiplier of the symmetry constraints
Hazy = My, in the initial program (6). Our proof shows that if p,, > 0
in a stable roommate matching, then the corresponding A,, must be non-
positive; but since 1., = i, the multiplier Ay, must also be non-positive,
so that both must be zero. The lack of existence of a stable roommate
matching is therefore intimately linked to a binding symmetry constraint.

Given Proposition 2, Theorem 3 has an immediate corollary: with an
even number of individuals per type, there must exist a stable roommate
matching. Formally:

Corollary 3.1 If n, is even for each x € X, then under Assumption 1,
there exists a stable roommate matching.

13



In particular, for any roommate matching problem, its “cloned” version,
in which each agent has been replaced with a couple of clones, has a sta-
ble matching; and this holds irrespective of the surplus generated by the
matching of two identical individuals. Of course, in general much less than
full cloning is needed to restore existence; we give this statement a precise
meaning in the next paragraph.

Our next result shows that one can restore the existence of a stable
matching by removing at most one individual of each type from the popula-
tion; if these individuals have to be compensated for leaving the game, this
can be done at limited total cost:

Theorem 4 (Approximate stability) Under Assumption 1, in a popu-
lation of N individuals, there exists a subpopulation of at least N — |X| indi-
viduals among which there exist a stable matching, where |X| is the number
of types. The total cost for the regulator to compensate the individuals left
aside is bounded above by |X| ®.

Proof. See appendix. =

4 Matching in Large Numbers

We now consider the case of a “large” game, in which there are “many” agents
of each type. Intuitively, even though an odd number of agents in any type
may result in non existence of a stable roommate matching, the resulting
game becomes “close” to one in which a stable matching exists. We now
flesh out this intuition by providing a formal analysis.

We start with a formal definition of a large game. For that purpose, we
consider a sequence of games with the same number of types and the same
surplus matrix, but with increasing populations in each type. If n¥ denotes
the population of type z in game k and N* = dow n* is the total population
of that game, then we consider situations in which, when k& — oc:

N* — o0 and n*/N* — f,

where f, are constant numbers.

As the population gets larger, aggregate surplus increases proportionally;
it is therefore natural to consider the average surplus, computed by dividing
aggregate surplus by the size of the population. We also extend the definition
of Wp in program (7) to non-integers in the obvious way so as to define the

14



limit average bipartite problem Wg (f, f, ®/2). Note that the linearity of
the program implies

Wa(en,em, ®/2) = cWg(n,m, ®/2)
for any ¢ > 0.

Proposition 5 In the large population limit, under Assumption 1, the aver-
age surplus in the roommate matching problem converges to the limit average
surplus in the related bipartite matching problem. That is,
y Wp (nk, <I>) y Wa (nk, nk, <I>/2)
im ————% = lim
k=00 Nk Nk 500 Nk

:WB(fzf’q)/2)

Proof. See appendix. =

Our approximation results crucially rely on the number of types becom-
ing small relative to the total number of individuals. By definition, two
individuals of the same type are indistinguishable in our formulation, both
in their preferences and in the way potential partners evaluate them. This
may seem rather strong; however, a closer look at the proof of Theorem 5
shows that our bound can easily be refined. In particular, we conjecture
that with a continuum of types, Theorem 5 would hold exactly.

A related effect of the number of individuals becoming much larger than
the number of types is that the costs of the policy to restore stability in
Theorem 4 become negligible:

Proposition 6 In the large population limit and under Assumption 1,

(i) one may remove a subpopulation of asymptotically negligible size in
order to restore the existence of stable matchings.

(ii) the average cost per individual of restoring the existence of stable
matchings tends to zero.

Proof. See appendix. m

In particular, in the case of a continuum of individuals (that is, when
there is a finite number of types and an infinite number of individuals of each
type), we recover the results of Azevedo, Weyl, and White (2013) (hereafter,
AWW). To make the connection with this paper, the partner types in our
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setting translates into goods in AWW’s. The social welfare in our setting
translates into the utility u of a single consumer in AWW. « is such that
u(C) =@ ({z,y}) for C = {z,y}, u({z}) = 0, and u = —oo elsewhere (or
very negative). Then it can be shown without difficulty that the existence
of a TU stable matching in our setting is equivalent to the existence of a
Walrasian equilibrium in the AWW setting. Thus existence and TU sta-
bility in the case of a continuum of individuals follows from Theorem and
Proposition in AWW.

5 The Nonexchangeable Roommate Problem’

We now investigate what happens when the surplus ®,, is not necessarily
symmetric. This will arise when the roles played by the partners are not
exchangeable. For instance, a pilot and a copilot on a commercial airplane
have dissymmetric roles, but may be both chosen from the same population.
Hence, in this section, we shall assume away Assumption 1, and we refer
to the “nonexchangeable roommate problem”; it contains the exchangeable
problem as a special case.

As it turns out, this can be very easily recast in the terms of an equivalent
symmetric roommate problem. Indeed if ®,, > ®,,, then any match of
an (ordered) 2-uple (y,z) will be dominated by a matching of a (z,y) 2-
uple, and the partners may switch the roles they play and generate more
surplus. Therefore, in any optimal (or stable) solution there cannot be such
a (y,z) 2-uple. As a consequence, the nonexchangeable roommate problem
is equivalent to an exchangeable problem where the surplus function is equal
to the maximum joint surplus z and y may generate together, that is

@;y = max (Pyy, Pyz) ;

and since this is symmetric our previous results apply almost directly. De-
noting 7., the number of (x,y) pairs (in that order), one has

Nacy = 7r:0y+77yoca €z #y
Hywe = Tgx

and obviously, 7, need not equal m,,. The population count equation is

Ng = Z(me+7ryz), Ve e X
yeX

"We are grateful to Arnaud Dupuy for correcting a mistake in a preliminary version of
the paper.
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and the social surplus from a matching = is

Z Ty Pay-

T, yeX

so that the optimal surplus in the nonexchangeable problem is

Wp (n,®) = max Z Ty Pay
r,yeX

s.t. ng = Z (Tgy + Tyz), Vo € X.
yeX

The following result extends our previous analysis to the nonexchange-
able setting:

Theorem 7 The nonexchangeable roommate matching problem is solved by
considering the surplus function

@;y = max (Pyy, Pys)

which satisfies Assumption 1. Call optimized symmetric problem the prob-
lem with surplus @;y and population count n,. Then:

(i) the optimal surplus in the nonexchangeable roommate problem co-
incides with the optimal surplus in the corresponding optimized symmetric
problem, namely

Wp (n, ®) = Wp (n, d')

(ii) the nonexchangeable roommate problem has a stable matching if and
only if the optimized symmetric problem has a stable matching.

Given Theorem 7, all results in Sections 3 and 4 hold in the general
(nonexchangeable) case. In particular:

e Theorem 1 extends to the general case: the social surplus in the room-
mate problem with asymmetric surplus ®;, is approximated by a bi-
partite problem with surplus function @), = max (®zy, ®y.) /2, or
more formally:

Wp (n, ®) < W (n,n, ®'/2) < Wp (n, ®) + |X|* P,

and as an extension of Proposition 2, equality holds in particular when
the number of individuals in each types are all even.
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e Theorem 3 extends as well: there is a stable matching in the roommate
problem with asymmetric surplus ®,, if and only if there is equality
in the first equality above, that is:

Wp (n, ®) = Wg (n,n, @' /2) .

e All the asymptotic results in Section 4 hold true: in the asymmetric
roommate problem, there is approximate stability and the optimal
matching solves a linear programming problem.

6 Conclusion

From a technical perspective, our results are open to various extensions.
First, the empirical tools developed in the bipartite setting, especially for
the analysis of the marriage markets (see Choo and Siow (2006), Chiap-
pori, Salanié, and Weiss (2017), Fox (2010), Galichon and Salanié (2016), to
cite only a few®) can be extended to other contexts where the bipartite con-
straint is relaxed. These include law firms or doctor practices, but also team
jobs such as pilot/copilot (and more generally team sports), as well as “tick-
ets” in US presidential elections, marriage markets incorporating single-sex
households, and many others.

To be more specific, assume that the joint surplus i)ij generated by a
match between two individuals i (of type x) and j (of type y) is separable
in the sense defined by Chiappori, Salanié, and Weiss (2017):

separability assumes that unobserved heterogeneity terms do not interact in
the formation of joint surplus.

If the partnership has symmetric roles, then it is easy to see that ®,,
must be symmetric in (z,y), and that 7 and € must be the same family of
random variables:

&)ij = (I)my + 6; + 620'
Apart from this specific restriction, if there is a stable matching then the
results of Chiappori, Salanié, and Weiss (2017) apply: there exist U and
V such that U,y + V;y = @4y and in equilibrium, if ¢ of type x and j of
type y match then 7 obtains surplus which stems from the maximization
of Uy, + &' with respect to z, including zero for the singlehood option in

8Graham (2011) has a good discussion of this burgeoning literature.
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the maximization. In addition, symmetry implies that U,, = V,,. This
boils down the matching equilibrium to a series of simple discrete-choice
problems. We refer the reader to Galichon and Salanié (2017) for a short
description of separable models, and to Galichon and Salanié (2016) for a
much more complete study of identification and estimation.

Secondly, while our analysis has been conducted in the discrete case,
it would be interesting to extend our results to the case where there is an
infinite number of agents with a continuum of types. We conjecture that
this could be done, at some cost in terms of the mathematics required?.
Thirdly, we conjecture that the same “cloning” technique could be applied
to matches involving more than two partners—the multipartite reference, in
that case, being the “matching for teams” context studied by Carlier and Eke-
land (2010). Moreover, it seems natural to apply this technique when utility
is not transferable. One may think of assigning arbitrarily genders to both
clones of each type, and considering a bipartite stable matching between
the two genders. Such a matching will be stable in the roommate matching
framework if the bipartite matching of the cloned populations is symmetric.
However, such a symmetric stable bipartite matching of the cloned popula-
tion may not exist. Therefore, the usefulness of cloning to restore stability
in the non-transferable utility version of the roommate problem is an open
question.

Finally, some roommate problems involve extensions to situations where
more than two partners can form a match; but the two-partner case is a good
place to start the analysis. Here, we have shown that when the population is
large enough with respect to the number of observable types, the structure of
the roommate problem is the same as the structure of the bipartite matching
problem. Most empirical applications of matching models under TU use a
framework as in this paper in order to understand, depending on the context,
how the sorting on a given matching market depends on age, education or
income, but also height, BMI, marital preferences, etc.'?. We leave all this
for future research.

On a more substantive front, our conclusions are somewhat mixed. While

9The relevant tools here come from the theory of optimal transportation, see Vil-
lani (2003) and McCann and Guillen (2013). For the precise connection between match-
ing models and optimal transportation theory, see Ekeland (2010), Gretsky, Ostroy, and
Zame (1999) and Chiappori, McCann, and Nesheim (2010). It is also worth mentioning
the recent contribution of Ghoussoub and Moameni (2013), which uses the same type of
mathematical structure for very different purposes.

198ee for instance Choo and Siow (2006), Chiappori and Oreffice (2008) Chiappori,
Oreffice, and Quintana-Domeque (2012) among many others.
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existence issues may be serious in specific contexts, large markets with a
discrete distribution of skills (or human capital) tend to be largely immune
from these problems. Specifically, and to put things a bit loosely, two factors
make partnerships between workers belonging to the same population more
likely to be stable: (i) when individuals can be clustered into a small number
of basic categories (the latter being defined by either a given level of human
capital or a specific combination of skills), and (ii) when different workers
belonging to the same category are “close substitutes” to each other—in the
sense that substituting one for the other does not change much the joint
surplus created in any partnership. For instance, we expect that medical
practices formed by a largish number of doctors with similar specialties
should be rather stable.

However, our results also imply that, in specific cases, stability may be a
serious concern. That would be the case when matching involves individuals
who do not have close substitutes, for instance because they each have a
rare and specific skill (think of a doctor who is the only expert available
on one particular disease). In professional partnerships (or in academial),
management skills may also be very unevenly distributed; and our analysis
suggests that partnerships that depend on rare leadership skills are more
susceptible to break up.!! This would also true of firms that rely on a very
charismatic individual for inspiration. The early (1969-84) trajectory of
Apple under Steve Jobs may be a case in point. Last but not least, sport
teams involving a small number of superstars should exhibit stability issues,
especially when several stars are associated within the same team. We are
not aware of any systematic, empirical analysis of these issues; however, it
is fair to say that casual empiricism seems to support these predictions.

When partnerships are least likely to be stable, firm-specific capital is
likely to stabilize a partnership. Regulation may also play a useful role.
While we do not pursue this here, one can imagine cases when non-compete
or “no poaching” clauses that make mobility more costly could actually be
welfare-improving, if the courts allow them. Becker (1991, p. 330) already
cited the ability of homosexual unions to “dissolve without judiciary pro-
ceedings, alimony, or child support payments” as one reason why they are
less stable than heterosexual unions. This is an interesting topic for further
research.

" Consultancies are an intermediate case: while junior consultants may be relatively
interchangeable, leadership matters in finding clients and conserving them.
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A Appendix: Proofs

Our proofs use an auxiliary object: the highest possible surplus for a frac-
tional roommate matching, namely

W) = e (St Yot ) )
nEF(n ity 2

where F (n) is the set of fractional (roommate) matchings, which relaxes the
integrality constraint on pu:

2/"6931‘ + Zy;ﬁm :U’:cy S Ng
]:(TL) = (Mwy) : Moy = Hyg : (12)
Hay = 0

The program (11) has no immediate economic interpretation since frac-
tional roommate matchings are infeasible in the real world; and while ob-
viously Wp (n, ®) < Wy (n, ®), the inequality in general is strict. We are
going to show, however, that the difference between the two programs van-
ishes when the population becomes large. Moreover, we will establish a link
between (11) and the surplus at the optimum of the associated bipartite
matching problem.

We start by proving:

Lemma A.1

Moreover, problem (11) has a half-integral solution.

Proof of Lemma A.1. First consider some fractional roommate matching
p € F(n), and define

Vey = Hay ifz#y
Vor = 2hgy-
As a (possibly fractional) bipartite matching, clearly v € B(n,n); and

ZIU‘CC$ I$+Z Hay 2 :% Z ny(I)my-

TH#Y z,yeX

Now the right-hand side is the aggregate surplus achieved by v in the bi-
partite matching problem with margins (n,n) and surplus function ®/2. It
follows that

Wz (n,®) < Wg(n,n,®/2). (14)
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Conversely, let (v,,) maximize aggregate surplus over B(n,n) with sur-
plus ®/2. By symmetry of ®, (v,,) also is a maximizer; and since (7) is a

linear program, ygy = w also maximizes it. Define
/ . /o
sz - Z/J:y if T 7& Yy
H, _ Vag
T 2 °
Then

1
2:U’/mm + Z :uény = Vgg+ 5 Z(ny + Vyx)
y# y#T

1
= 5(”1% -+ Zl/zy)
y#z

1
+ i(Vm + Zyyx)-
y#z

and vy, + Ey 42 Vya < ng by the scarcity constraint of “women” of type z.
It follows that u’ € F (n), and

Z:u/zzq)l‘w + Z:U’Izy% = % Z Vl’yq)xy’
T

zFy z,yeX

Now vy, + ZW&:C Vzy < ng by the scarcity constraint of “men” of type z,

Therefore the values of the two programs coincide.

Half-integrality follows from the Birkhoff-von Neumann theorem: there
always exists an integral solution v of the associated bipartite matching
problem, and the construction of 4/ makes it half-integral'?. m

Given Lemma A.1, we can now prove Theorem 1.

Proof of Theorem 1. The first inequality simply follows from the fact
that P (n) C F(n). Let us now show the second inequality. Lemma A.1
proved that Wx (n,®) = Wg(n,n,®/2). Let p achieve the maximum in
Wr (n, ®), so that

d
W (@) = 3 e Paw + 3 sy~
z TFY

12The half-integrality of the solution of problem (11) also follows from a general theorem
of Balinski (1970); but the proof presented here is self-contained.
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Let |z| denote the floor rounding of z; by definition, z < [z] + 1, so that

P P
Wf(n7(1))<ZLM$IJ©I$+ZLMCL‘}/J%+Z¢xx+z ;y'
T TH#yY z TH#Y

The right-hand side can also be rewritten as

D L1ty ] @y + 3 By
Y

z,Y

But |p] is in B(n,n), and is integer by construction; therefore

Z Luxyj (I)Iy < Wp (n7 (I)) :

z,yeX
Finally,
> B <A
T,YyeX
so that
9=
[

A.1 Proof of Proposition 2

Proof. Let nj, = %. By Lemma A.1, problem Wy (n/,®) has an half-
integral solution p'; therefore problem Wx (n,®) has an integral solution
21/, which must also solve (7). It follows that

Wp (n,®) = Wr (n, ®).

A.2 Proof of Theorem 3

Proof. By Theorem A.1l, Problem (11) coincides with a bipartite match-
ing problem between marginal (n,;) and itself. By well-known results on
bipartite matching, there exist vectors (v,) and (wy) such that

vy > 0, wy > 0
Vg + Wy > (I)ry
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and the latter inequality is an equality when p,, > 0. Setting

" — Vgp + Wy
T2
the symmetry of ® implies
u; > 0
Ug +uy = Doy

and

Z NyUy = Z Mxx(I)a:a: + Z /j’ar;y (p;y

TEX TEX Ty
so that the outcome (u,u) is stable.
Conversely, assume that p is a stable roommate matching. Then by
definition, there is a vector (u;) such that

Uy =
>

B O

Uy + Uy Ty

and

reX zeX TH#Y

Therefore (u, A =0) are Lagrange multipliers for the linear programming
problem (11), and y is an optimal solution of (11); finally, 4 is integral since
it is a feasible roommate matching. QED.
(i), (ii) and (iii) follow, as there exist integral solutions of (11) if and
only if
Wp (nv <1>) =Wr (n’ (I)) )

and Wr (n, ®) coincides with Wg (n,n, ®/2) from Lemma A.1. m

A.3 Proof of Theorem 4

Proof. For each type z, remove one individual of type z to the population
if n, is odd. The resulting subpopulation differs from the previous one by
at most |X| individuals, and there is an even number of individuals of each
type; hence by Proposition 3.1 there exists a stable matching.

Each individual so picked can be compensated with his payoff u,. Since
uy < @, the total cost of compensating at most one individual of each type
is bounded from above by |X|®. =
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A.4 Proof of Proposition 5

Proof. By Theorem 1, in the large population limit

k
lim 7WP (n ’q))

and Lemma A.1 yields the conclusion. m

A.5 Proof of Proposition 6

Proof. (i) The number of individuals to be removed is bounded from above
by |X|, hence its frequency tends to zero as |X|/N — 0. (ii) follows from

the fact that
Wr (n7 Q)) - Wp (n7 q))

0.
N —

A.6 Proof of Theorem 7

Proof. (i) Consider an optimal solution u,, to Wp (n,®’). For any pair
x # y such that ®,, > ®,,, set 7,y = Py, and myy = 0 1f Ppy < Py,
If &,y = ®,,, set myy and my, arbitrarily nonnegative integers such that
Toy + Tye = Mgy S€b oz = figg. Then 7 is feasible for the optimized
symmetric problem, and one has

(pl
Z M:E:E‘I)/J:J: + Z Mmy% = Z nyq)zy

zeX TH#Y T,yeX

so that
Wp (n, <I>') <Wp (n,®).

Conversely, consider 7, an optimal solution to Wy, (n, ®). First observe
that if ®,, < ®,, then 7, = 0; otherwise subtracting one from u,, and
adding one to m,, would lead to an improving feasible solution, contradicting
the optimality of w. Set

Mmy = 7r$y+77y36a l‘?éy
:uxz = Tz

so that

q)l
Z Macm(bgc:(: + Z Macy% = Z Wzyq):cy

TEX zHyY T,yeX
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and hence
Wp (n,®) < Wp (n, ).

(ii) Assume there is a stable matching 7, in the nonexchangeable room-
mate problem. Then if there is a matched pair (z,y) in that order, one
cannot have ®,, > ®,,; otherwise the coalition (y,2) would be blocking.
Hence one can define

Py = 7ra:y+77y:ca$7éy

Hye = Tax

and the matching p is stable in the optimized symmetric problem. Con-
versely, assume that the matching p is stable in the optimized symmetric
problem. Then it is not hard to see that, defining 7 from u as in the first
part of (i) above, the matching 7 is stable in the nonexchangeable roommate
problem. m
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