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Understanding GANs in the LQG Setting:
Formulation, Generalization and Stability

Soheil Feizi , Farzan Farnia, Tony Ginart, and David Tse

Abstract—Generative Adversarial Networks (GANs) have
become a popular method to learn a probability model from
data. In this paper, we provide an understanding of basic issues
surrounding GANs including their formulation, generalization
and stability on a simple LQG benchmark where the genera-
tor is Linear, the discriminator is Quadratic and the data has
a high-dimensional Gaussian distribution. Even in this simple
benchmark, the GAN problem has not been well-understood as
we observe that existing state-of-the-art GAN architectures may
fail to learn a proper generative distribution owing to (1) stability
issues (i.e., convergence to bad local solutions or not converging at
all), (2) approximation issues (i.e., having improper global GAN
optimizers caused by inappropriate GAN’s loss functions), and
(3) generalizability issues (i.e., requiring large number of samples
for training). In this setup, we propose a GAN architecture which
recovers the maximum-likelihood solution and demonstrates fast
generalization. Moreover, we analyze global stability of different
computational approaches for the proposed GAN and highlight
their pros and cons. Finally, through experiments on MNIST
and CIFAR-10 datasets, we outline extensions of our model-
based approach to design GANs in more complex setups than
the considered Gaussian benchmark.

Index Terms—Generative models, Wasserstein distance, PCA,
stability, Lyapunov functions.

I. INTRODUCTION

LEARNING a probability model from data is a fundamen-
tal problem in statistics and machine learning. Building

off the success of deep learning, Generative Adversarial
Networks (GANs) [1] have given this age-old problem a
face-lift. In contrast to traditional methods of parameter fit-
ting like maximum likelihood estimation, the GAN approach
views the problem as a game between a generator whose
goal is to generate fake samples that are close to the real
data training samples and a discriminator whose goal is to
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distinguish between the real and fake samples. The generator
and the discriminator are typically implemented by deep neu-
ral networks. GANs have achieved impressive performance in
several domains (e.g., [2], [3]). However, training good GANs
is still challenging and it is an active area to design GANs
with better and more stable performance (e.g., [4], [5], [6]
and Section I-A).

The game theoretic formulation in GANs can be viewed as
the dual of an optimization that minimizes a distance mea-
sure between the empirical distributions of the fake and real
(observed) samples. This optimization minimizes the distance
between the generated distribution and the true distribution
from which the data is drawn. In the original GAN frame-
work [1] , this distance measure is the Jenson Shannon
divergence. However, Arjovsky et al. [4] noted that this dis-
tance does not depend on the generated distribution whenever
its dimension is smaller than that of the true distribution. To
resolve this issue, [4] proposed the Wasserstein GAN (WGAN)
which uses the (first-order) Wasserstein distance instead of
Jensen-Shannon divergence. There are many other distance
measures that satisfy this criterion leading to different GAN
architectures. We review some of these GANs in Section I-A.

GANs’ evaluations are primarily done on real data, typically
images. Although clearly valuable, such evaluations are often
subjective owing to not having clear baselines to compare
against. To better understand GANs, we first report experi-
ments of some state-of-the-art GANs on synthetic data where
clear baselines are known. We chose one of the simplest high-
dimensional distributions: the Gaussian distribution. Even in
this simple benchmark, we observe that existing state-of-the-
art GAN architectures may fail to learn a proper generative
distribution owing to (1) stability issues (i.e., convergence to
bad local solutions or not converging at all), (2) approximation
issues (i.e., having improper global GAN optimizers caused by
inappropriate GAN’s loss functions), and (3) generalizability
issues (i.e., requiring large number of samples for training)
(see Section II for more details).

These empirical results motivate us to study intertwined
aspects of GANs jointly including their formulations, gen-
eralization and stability. Our key intuition is that to have a
good performance, it is critical to take into account all of the
aforementioned aspects in designing GANs. We summarize
our results below.

• GAN’s formulation: In Section III, we study GAN’s for-
mulation and provide a principled approach to choose
proper loss functions in GANs by establishing a con-
nection between supervised and unsupervised learning.
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Leveraging this result, we design a GAN architecture
for the Gaussian benchmark which provably recovers the
maximum likelihood solution (Theorem 1 for the pop-
ulation case, and Theorem 3 for the empirical case.)
We discuss extensions of these results to more complex
distributions in Appendix Sections XI and XII.

• GAN’s generalization: In Section IV, we study GAN’s
generalization and prove that GANs with uncon-
strained discriminators can have poor generalizations
(Theorem 2). However, in Section V and for the Gaussian
setup, we show that the poor generalization issue of
GANs can be resolved by properly constraining the
discriminator class to convex quadratic functions.

• GAN’s global stability: A central computational ques-
tion on GANs is to understand the global (or at least,
local) stability of alternating gradient descent. Although
there has been some recent efforts to understand local
stability of GANs, understanding GAN’s global stability
seems to be a very challenging problem. In Section VI,
we analyze the global stability of different computational
approaches for a family of GANs and highlight their
pros and cons. To the best of our knowledge, we provide
the first study of global convergence of a GAN architec-
ture using the Von Neumann divergence as a Lyapunov
function (Theorem 5).

We believe these results make progress on our understand-
ing of different intertwined aspects of GANs.

The paper is organized as follows: In Section II, we show
that some modern GANs fail to learn a high dimensional
Gaussian distribution. To study this problem, we designed the
Quadratic GAN in three steps: in Section III, we formulated
GAN’s objective by specifying the appropriate loss to naturally
match the Gaussian model for the data. This allows us to show
that the global population solution of the minmax problem
is the r-PCA of the (true) covariance matrix of the Gaussian
model (Theorem 1). However, this initial architecture can have
poor generalization performance (Section IV). Next, we further
constrained the discriminator to keep the good optimal solu-
tion of the population-optimal architecture while enabling fast
generalization (Section V). We refer to this architecture as the
quadratic GAN (Figure 3). We show that the global optimizer
of quadratic GAN applied on the empirical distribution is the
empirical r-PCA (Theorem 3). Finally, we study the global
stability of different computational approaches for solving the
proposed GAN architecture. In particular, we prove that in the
full-rank case alternating gradient descent converges globally
to the minmax solution, under some conditions (Section VI).
In what follows, we provide more details about these results.
All proofs are presented in the Appendix.

A. Prior Work

Broadly speaking, previous work in GANs study three
main properties: (1) Stability where the focus is on the
convergence of the commonly used alternating gradient
descent approach to global/local optimizers (equilibriums)
for GAN’s optimization (e.g., [6], [7], [8], [9], [10], etc.),
(2) Formulation where the focus is on designing proper

loss functions for GAN’s optimization (e.g., WGAN+Weight
Clipping [4], WGAN+Gradient Penalty [5], GAN+Spectral
Normalization [11], WGAN+Truncated Gradient Penalty [12],
relaxed WGAN [13], f -GAN [14], MMD-GAN [15], [16],
Least-Squares GAN [17], Boundary equilibrium GAN [18],
etc.), and (3) Generalization where the focus is on under-
standing the required number of samples to learn a probability
model using GANs (e.g., [19]). We address all three issues in
the design of the Quadratic GAN introduced in Section V.

Some references have also proposed model-based GANs
for the Gaussian benchmark [7], [10]. For example, [10]
uses a quadratic function as the discriminator in the WGAN
optimization. This design, however, does not recover the max-
imum likelihood/PCA solutions in the Gaussian benchmark,
unlike the Quadratic GAN. Moreover, no global stability
results were proven.

II. EVALUATING GANS ON GAUSSIAN BENCHMARKS

To better understand different aspects of GANs, first we
evaluate the performance of some of the state-of-the-art GAN
architectures on a high dimensional Gaussian benchmark. We
choose this benchmark since optimal baselines are known in
this case.

In our first set of experiments, we generate n = 100, 000
samples from a d = 32 dimensional Gaussian distribution
N (0,K) when K is the normalized identity matrix; K =
I/

√
d. We train two state-of-the-art GAN architectures in our

experiments; WGAN+Weight Clipping (WGAN+WC) [4]
and WGAN+Gradient Penalty (WGAN+GP) [5]. We use the
neural net generator and discriminator with hyper-parameter
settings as recommended in [5]. Each of the neural networks
has three hidden layers, each with 64 neurons and ReLU acti-
vation functions. To evaluate GAN’s performance, we compute
the Frobenius norm between covariance matrices of observed
and generative distributions.

Figure 1 shows the performance of GANs for various values
of r, the dimension of the randomness (i.e., input to the gen-
erator, for which we use the standard Gaussian randomness)
and for two random initializations for ReLU layers using the
standard He et al. [20] and Glorot and Bengio [21] procedures.
In these experiments, we observe two types of instability in
GAN’s performance; oscillating behaviour (e.g., WGAN-GP,
r = 4, 8) and convergence to different and bad local solutions.
Even after 20, 000 training epochs, the error does not approach
zero in most cases. We observe similar trends when we use a
random covariance instead of the normalized identity matrix
(SM Figure 4).

In our next set of experiments, we attempt to improve
performance by restricting the generator to be linear, since
both the observed data and the randomness come from
Gaussian distributions. (The discriminator is still the ReLU
neural network). Since the generator is linear, zero error
cannot be achieved in the case of r < d. In this case,
a natural baseline is the r-PCA of the sample covariance
matrix (SM Section IX). GAN’s performance improves com-
pared to the case of nonlinear generator (Figure 2). We do
not observe oscillating behavior in WGAN+GP. However,
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Fig. 1. An illustration of the performance of WGAN+GP and WGAN+WC in different values of r (the dimension of the input randomness to the generator)
with different initialization procedures when the generator and the discriminator functions are both neural networks.

Fig. 2. A repeat of experiments of Figure 1 when the generator function is linear. A random covariance matrix is chosen instead of the identity matrix.

we still observe convergence to different bad local solutions
for both WGAN+GP and WGAN+WC. Unlike Figure 1
where WGAN+WC was performing better than WGAN+GP,
here the performance of WGAN+WC is significantly worst
than that of the WGAN+GP. Also, unlike other cases, in
WGAN+GP when r = 4, the Glorot initialization achieves
a smaller error than that of the He initialization. These results
highlight sensitivity of state-of-the-art GANs even in a sim-
ple benchmark. These empirical results motivate us to study
different fundamental aspects of GANs.

III. A GENERAL FORMULATION FOR GANS

Let {yi}n
i=1 be n observed data points in R

d drawn i.i.d.
from the distribution PY . Let Qn

Y be the empirical distribution
of these observed samples. Moreover, let PX be a normal distri-
bution N (0, Ir). GANs can be viewed as an optimization that
minimizes a distance between the observed empirical distribu-
tion Q

n
Y and the generated distribution PG(X). The population

GAN optimization replaces Q
n
Y with PY and is the setting we

focus on in this section. The question we ask in this section is:
what is a natural way of specifying a loss function � for GANs
and how it determines the GAN’s objective? We answer the
question in general and then specialize to the Gaussian bench-
mark by choosing an appropriate loss function for that case
which is the quadratic loss function. We then show that using
the resulting GAN, we obtain a good population solution (i.e.,
the maximum likelihood solution) under this loss function.

A. WGAN Revisited

Let us start with the WGAN optimization [4]:

min
G(.)∈G

W1
(
PY ,PG(X)

)
, (1)

where G is the set of generator functions, and the p-th order
Wasserstein distance between distributions PZ1 and PZ2 is
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defined as [22]

Wp
p

(
PZ1 ,PZ2

)
:= min

PZ1,Z2

E
[‖Z1 − Z2‖p], (2)

where the minimization is over all joint distributions with
marginals fixed. Replacing (2) in (1), the WGAN optimization
can be re-written as

min
G(.)∈G

min
PG(X),Y

E[‖Y − G(X)‖]. (3)

or equivalently:

min
PX,Y

min
G(.)∈G

E[‖Y − G(X)‖], (4)

where the minimization is over all joint distributions PX,Y with
fixed marginals PX and PY .

We now connect (4) to the supervised learning setup. In
supervised learning, the joint distribution PX,Y is fixed and
the goal is to learn a relationship between the feature variable
represented by X ∈ R

r, and the target variable represented by
Y ∈ R

d, according to the following optimization:

min
G(.)∈G

E[�(Y,G(X))], (5)

where � is the loss function. Assuming the marginal distribu-
tion of X is the same in both optimizations (4) and (5), we can
connect the two optimization problems by setting �(y, y′) =
‖y−y′‖ in optimization (5). Note that for every fixed PX,Y , the
solution of the supervised learning problem (5) yields a predic-
tor g which is a feasible solution to the WGAN optimization
problem (4). Therefore, the WGAN optimization (3) can be
re-interpreted as solving the easiest such supervised learning
problem, over all possible joint distributions PX,Y with fixed
PX and PY .

B. From Supervised to Unsupervised Learning

GAN is a solution to an unsupervised learning problem.
What we are establishing above is a general connection
between supervised and unsupervised learning problems: a
good predictor G learnt in a supervised learning problem can
be used to generate samples of the target variable Y. Hence, to
solve an unsupervised learning problem for Y with distribution
PY , one should solve the easiest supervised learning problem
PX,Y with given marginal PY (and PX , the randomness gener-
ating distribution). This is in contrast to the traditional view
of the unsupervised learning problem as observing the feature
variable X without the label Y . (Thus in this paper we break
with tradition and use Y to denote data and X as randomness
for the generator in stating the GAN problem.)

This connection between supervised and unsupervised
learning leads to a natural way of specifying the loss func-
tion in GANs: we simply replace the �2 in (3) with a general
loss function �:

min
G(.)∈G

min
PG(X),Y

E[�(Y,G(X))]. (6)

The inner optimization is the optimal transport problem
between distributions of G(X) and Y [22] with general cost
�. This is a linear programming problem for general cost, so

there is always a dual formulation under some general con-
ditions, this leads to the Kantorovich duality [22]). The dual
formulation can be interpreted as a generalized discriminator
optimization problem for the cost �. (For example, in the case
of � being the Euclidean norm, we get WGAN.) Hence, we
use (6) as a formulation of GANs for general loss functions.

Note that an optimal transport view to GANs has been stud-
ied in other references (e.g., [4], [23]). Our contribution in this
section is to make a connection between supervised and unsu-
pervised learning problems which we will exploit to specify a
proper loss function for GANs in the Gaussian model.

C. Quadratic Loss and Linear Generators

The most widely used loss function in supervised learning
is the quadratic loss: �(y, y′) = ‖y − y′‖2 (squared Euclidean
norm). The quadratic loss has a strong synergy with the
Gaussian model, as observed by Gauss himself. For exam-
ple, under the Gaussian model and the quadratic loss in the
supervised learning problem (5), the optimal g is linear, thus
forming a statistical basis for linear regression. Given the con-
nection between supervised and unsupervised learning, we use
this loss function for formulating the GAN for Gaussian data
. This choice of the loss function leads to the following GAN
optimization which we refer to as W2GAN:

min
G(.)∈G

W2
2

(
PY ,PG(X)

)
. (7)

A natural choice of G is the set of all linear generators, from
R

r to R
d.

Since Wasserstein distances are weakly continuous mea-
sures in the probability space [22], similar to WGAN, the
optimization of the W2GAN is well-defined even if r < d.
The dual formulation (discriminator) for W2

2 is [22]:

W2
2

(
PY ,PG(X)

) = max
ψ(.):convex

E

[
‖Y‖2 − 2ψ(Y)

]

− E

[
2ψ∗(G(X))− ‖G(X)‖2

]
, (8)

where

ψ∗(ŷ) := max
v

(
vtŷ − ψ(v)

)
(9)

is the convex-conjugate of the function ψ(.). Combining (7)
and (8), we obtain the minmax formulation of W2GAN:

min
G∈G

max
ψ(.):convex

E

[
‖Y‖2 − 2ψ(Y)

]

− E

[
2ψ∗(G(X))− ‖G(X)‖2

]
. (10)

D. Population Solution: PCA

There is a simple solution to the optimization problem (7)
in the population setting.

Theorem 1: Let Y ∼ N (0,K) where K is full-rank. Let
X ∼ N (0, Ir) where r ≤ d. The optimal GAN solution in
the population setting under linear generators G is the r-PCA
solution of Y .

We say Ŷ is the r-PCA solution of Y if KŶ is a rank r
matrix whose top r eigenvalues and eigenvectors are the same
as top r eigenvalues and eigenvectors of K. This theorem is
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satisfactory as it connects GANs to PCA, one of the most
basic unsupervised learning methods.

IV. GENERALIZATION OF GANS

Consider the empirical version of the population W2GAN
optimization problem (7):

min
G(.)∈G

W2
2

(
Q

n
Y ,PG(X)

)
, (11)

where Q
n
Y is the empirical distribution of the n data points

{yi}n
i=1. Let G∗

n be the optimal solution of this problem. The
distance between the generated distribution G∗(X) and the true
distribution PY , W2

2 (PY ,Pg∗
n(X)), converges to zero as n → ∞.

It was shown in [19] that if the generator class G is rich enough
so that the generator can memorize the data and generate the
empirical distribution Q

n
Y itself, then this rate of convergence

is very slow, of the order of n−2/d. (Strictly speaking, they
have only shown it for the W1 distance, but a very similar
result holds for W2 as well.) This is because the empirical
distribution Q

n
Y converges very slowly to the true distribu-

tion PY in the W2 distance. Hence, the number of samples
required for convergence is exponential in the dimension d. In
this section, we show that in our Gaussian setup, even if we
constrain the generators to single-parameter linear functions
that can generate the true distribution, the rate of convergence
is still n−2/d.

First, we define the generalization error in GANs as follows.
Definition 1: Let n be the number of observed samples from

Y . Let Ĝ(.) and G∗(.) be the optimal generators for empirical
and population W2GANs respectively. Then,

dG
(
PY ,Q

n
Y

)
:= W2

2

(
PY ,PĜ(X)

)
− W2

2

(
PY ,PG∗(X)

)
, (12)

is a random variable representing the excess error of Ĝ over
G∗, evaluated on the true distribution.

dG(PY ,Q
n
Y) can be viewed as a distance between PY and

Q
n
Y which depends on G. To have a proper generalization prop-

erty, one needs to have dG(PY ,Q
n
Y) → 0 quickly as n → ∞.

First, we characterize this rate for an unconstrained G. For an
unconstrained G, the second term of (12) is zero (this can be
seen using a space filling generator function [24]). Moreover,
PĜ(X) can be arbitrarily close to Q

n
Y . Thus, we have

dG
(
PY ,Q

n
Y

) = W2
2

(
PY ,Q

n
Y

)
, (13)

which goes to zero with high probability with the rate of n−2/d.
The approach described for the unconstrained G corresponds

to the memorization of the empirical distribution Q
n
Y using the

trained model. Note that one can write

n− 2
d = 2− 2 log(n)

d .

Thus, to have a small W2
2 (PY ,Q

n
Y), the number of samples n

should be exponentially large in d [25]. It is possible that for
some distributions PY , the convergence rate of W2

2 (PY ,Q
n
Y) is

much faster than n−2/d. For example, [26] shows that if PY

is clusterable (i.e., Y lies in a fixed number of separate balls
with fixed radii), then the convergence of W2

2 (PY ,Q
n
Y) is fast.

However, even in that case, one optimal strategy would be

to memorize observed samples, which does not capture what
GANs aim for.

In supervised learning, constraining the predictor to be from
a small family improves generalization. A natural question
is whether constraining the family of generator functions G
can improve the generalization of GANs. In the Gaussian
setting, we are constraining the generators to be linear. To sim-
plify calculations, we assume that Y ∼ N (0, Id) and d = r.
Under these assumptions, the W2GAN optimization can be
re-written as

min
μ,K

W2
2

(
Q

n
Y ,N (μ,K)

)
, (14)

where K is the covariance matrix. The optimal population
solution of this optimization is μ∗

pop = 0 and K∗
pop = I,

which provides a zero Wasserstein loss with respect to the
true distribution.

In the following theorem, we characterize the convergence
rate of the W2GAN optimization for linear generators with
single-parameters. In this case, K = s2I (K is a diagonal
matrix whose diagonal elements are equal to s2). Note that if
s = 1, the trained model matches the population distribution.

Theorem 2: Let μ∗
n and K∗

n = (s∗)2I be optimal solutions
for optimization (14) where K is restricted to s2I (i.e., the
generator is a single-parameter linear function). Then, s∗ → 1
with the rate of n−2/d.

Now, consider a ball around the distribution Q
n
Y where PY

lies on its surface. Note that the radius of this ball is a random
variable that is concentrated around n−2/d [22]. This radius
is large and goes to zero exponentially slow in d. If there
is another Gaussian distribution inside this ball, the learner
would select that distribution in the optimization rather than
PY . The Gaussian distribution computed in Theorem 2 satisfies
this condition. Thus, in this case, one needs n to be exponen-
tially large in d to have the error go to zero. To enhance the
convergence rate of GANs, in practice, discriminators are con-
strained. We discuss how discriminators should be constrained
properly in the Gaussian benchmark in the next section.

V. QUADRATIC GAN

The discriminator of the W2GAN optimization (10) is
constrained over all convex functions. Since this set is non-
parametric, we are unable to use gradient descent to compute
a solution for this optimization. Moreover, having such a large
feasible set for the discriminator function can cause poor
generalization as explained in the previous section.

To overcome both of these issues, one option is to further
constrain the discriminator. Ideally one would like to properly
constrain the discriminator function such that any population
solution of the constrained optimization is a population solu-
tion of the original optimization and vice versa, while at the
same time allowing fast generalization. In this section, we
show how we can achieve this goal for the Gaussian bench-
mark. This view can potentially be extended to more complex
distributions as we explain in Section VII.

The following lemma characterizes the optimal solution of
optimization (8) [22].
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Fig. 3. (a) Quadratic GAN, with a linear generator and a quadratic discriminator. On the training data, the generator minimizes over the d by r matrix G
and the adversary maximizes over the d by d matrix H. (b) Performance comparison between quadratic GAN and WGAN+GP for d = r = 32.

Lemma 1: Let PY be absolutely continuous whose support
contained in a convex set in R

d. For a fixed G(.) ∈ G, let ψopt

be the optimal solution of optimization (8). This solution is
unique. Moreover, we have

� ψopt(Y)
dist= G(X), (15)

where
dist= means matching distributions.

In our benchmark setup, since G(X) is Gaussian, �ψopt

is a linear function. Thus, without loss of generality, ψ(.) in
the discriminator optimization can be constrained to quadratic
functions of the form ψ(y) = ytAy/2 where A is positive
semidefinite. For the quadratic function, we have ψ∗(ŷ) =
ŷtA†ŷ/2 when range(Ŷ) ⊆ range(A). Here range(.) refers to
the co-domain of its input matrix.

Replacing these in optimization (10), we obtain:

min
G

max
A�0

E
[
Yt(I − A)Y

] − E

[
Ŷ t

(
A† − I

)
Ŷ
]

range(G) ⊆ range(A). (16)

Without loss of generality, we can replace the constraint
range(G) ⊆ range(A) with range(G) = range(A). It is because
for a given A, this increases the size of the feasible set for G
optimization, thus the objective can achieve a smaller value.
For a given G, one can decompose A as A1 + A2 where
range(A1) = range(G) and range(A2) ∩ range(G) = ∅. Note
that by ignoring A2, the objective function does not decrease.
Therefore, optimization (16) can be written as

min
G

max
A�0

E
[
Yt(I − A)Y

] − E

[
Ŷ t

(
A† − I

)
Ŷ
]

range(G) = range(A). (17)

Using the fact that trace is invariant under cyclic permutations
and by replacing A = HHt, the objective function of the above
optimization can be re-written as:

J(G,H) = Tr
[(

I − HHt)K
] − Tr

[((
HHt)† − I

)
GGt

]
. (18)

In practice, we apply GANs to the observed data (i.e., the
empirical distribution). In that case, in the above objective
function, K (the true covariance) should be replaced by K̃
(the empirical covariance). This leads to the quadratic GAN
optimization:

min
G

max
H

Tr
[(

I − HHt)K̃
]

− Tr
[((

HHt)† − I
)

GGt
]

range(G) = range(H). (19)

Note that since the global optimizer of optimization (18) is
PCA (Theorem 1), the global optimizer of optimization (19)
is empirical PCA.

Theorem 3: Let K̃r be the r-PCA of the sample covariance
matrix. Let (G∗,H∗) be a global solution for the quadratic
GAN optimization (19). Then, we have G∗(G∗)t = K̃r. I.e.,
quadratic GAN recovers the empirical PCA solution as the
generative model.

Next, we examine the generalization error of the quadratic
GAN. Consider the case where d = r (the case r < d is simi-
lar). The generalization error can be written as the W2 distance
between the true distribution PY and the learned distribution
PG∗(X) (Section IV):

W2
2

(
PY ,PG∗(X)

) = W2
2

(
N (0,K),N (0, K̃)

)
. (20)

The W2
2 distance between two Gaussians depends only on the

covariance matrices. More specifically:

W2
2

(
N (0,K),N (0, K̃)

)
= Tr(K)+ Tr(K̃)

− 2Tr

((
K1/2K̃K1/2

)1/2
)
. (21)

The convergence of this quantity only depends on the con-
vergence of the empirical covariance to the population one,
together with smoothness property of this function of the
covariance matrices. The convergence has been established to
be at a quick rate of Õ(√d/n) [27].

Figure 3-a illustrates the quadratic GAN architecture.1

Figure 3-b compares performance of quadratic GAN and
WGAN+GP for r = 32. Quadratic GAN demonstrates stable
behavior and much faster convergence to the maximum-
likelihood baseline compared to WGAN. In fact, due to its
simple structure, training of the Quadratic GAN takes less
than 1 second on a laptop CPU which is orders of magnitudes
faster than training WGAN on a GPU.

Remark 1: In the connection between unsupervised and
supervised learning in Section III, we see that unsupervised
learning is interpreted as optimizing both the coupling between
X and Y and the predictor G in the resulting supervised

1For simplicity, we assume that samples have been centered to have zero
means. In the general case, the generator should be an affine function.
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learning problem. Thus, in addition to constraining the pre-
dictor G, another approach to improve generalization is to
constrain the primal coupling as well, through regularization.
One form of such regularized version of optimal transport is
called Sinkhorn divergence [28]. However, our approach of
constraining the discriminator in the dual form has a different
interpretation. As shown in [29], the proposed quadratic con-
straint on the discriminator can be interpreted as weakening
the original Wasserstein distance to the minimum Wasserstein
distance between any two distributions sharing the same
mean and covariance matrix with PY and PG(X). However,
as we prove here this change in the target distance does not
affect the optimal solution to the W2GAN problem under the
LQG assumptions. A deeper investigation into the connec-
tion between these two approaches is an interesting research
direction.

VI. GLOBAL STABILITY

Theorem 3 merely focuses on the quality of the global
solution of the quadratic GAN’s optimization, ignoring its
computational aspects. One common way to solve the GAN’s
min-max optimization is to use alternating gradient descent
with sG gradient steps for the generator updates and sD gra-
dient steps for the discriminator updates. For simplicity, we
refer to such a method as the (sG, sD)-alternating gradient
descent (AGD). In this section, we analyze the global sta-
bility of the quadratic GAN under the alternating gradient
descent approach. The global stability feature indicates the
convergence of the AGD algorithm to the optimal solution
irrespective of its initialization point.

First, we analyze the stability of the quadratic GAN under
the (1, 1)-alternating GD in the full-rank case. By using vari-
ables U := GGt and A := HHt, optimization (19) can be
written as

min
U

max
A

Tr
[
(I − A)K̃

]
− Tr

[((
At)† − I

)
Ut

]

range(U) = range(A). (22)

For this case, we have the following result.
Theorem 4 [30]: In the quadratic GAN optimization (22),

assuming full rank A and r = d, the (1, 1)-alternating gradient
descent is globally stable.

Note that reference [30] discusses the stability of general
convex-concave min-max optimization problems while here
we aim to characterize the global stability of the proposed
quadratic GAN. In particular, in the standard quadratic GAN,
the alternating GD is applied on the (G,H) objective function
which is not generally convex-concave. For this case, we have
the following result.

Theorem 5: In the quadratic GAN optimization (19),
assuming K̃ = I, full rank H and r = d, the (1, 1)-alternating
gradient descent is globally stable.

To prove Theorem 5, we use the following function as a
Lyapunov function:

V(G,H) = Tr
[
GGt − I − log

(
GGt)]

+ Tr
[
HHt − I − log

(
HHt)]. (23)

Each term of this function is the Von Neumann divergence.
Note that log(.) of a positive-definite matrix is defined by
taking the logarithm of its eigenvalues. We prove that this
non-negative function is monotonically decreasing along every
trajectory of the (1, 1)-alternating gradient descent and its
value is zero at the global solution. This phenomena is non-
trivial because the Frobenius norm distance between GGt

and K̃ is not monotonically decreasing along every trajectory
(Appendix Figure 6).

In the low-rank case where r < d, however, we have the
following negative result.

Theorem 6: In the quadratic GAN optimization (19), if
r < d, the (sG, sD)-alternating gradient descent is not globally
stable for any sG and sD.

One can think about using an equivalent optimization (19)
where the constraint range(G) = range(H) is replaced by the
constraint range(G) ⊆ range(H) (by assuming A = HHt).
For example, if H is full-rank, this constraint always holds.
However, this does not solve the stability issue of Theorem 6.
It is because in the desired saddle point, H∗ should be a low-
rank matrix whose range matches the range of G∗. If one
starts the alternating GD with a full-rank H, the second term
of the objective function (19) would decrease unboundedly
when H loses rank in the null-space of G (because of the term
(HHt)†GGt). Therefore, unless H has a matching range with
G, alternating GD will not converge to a low-rank solution
for H. Note that if the covariance matrix of the observed data
itself is low rank, it makes sense to use a low rank generative
model which will fall in the regime of r < d.

As we explained above, the main source of the instability of
the quadratic GAN optimization in the low-rank case comes
from the constraint range(G) = range(H), i.e., the matching
column-space of the generator and the discriminator functions.
One way to deal with this issue is to decouple the optimization
to two parts where in one part we optimize the subspace and in
the second part, we solve GAN’s min-max optimization within
that subspace. Below, we explain this approach. We denote the
subspace by some orthogonal basis S ∈ R

d×r where StS = I.
Then, we re-write

G := SGS, H := SHS, (24)

where GS and HS are full-rank r× r matrices. Also, we define
KS := StKS. Using these notation, the objective function of
the quadratic GAN can be re-written as:

J(S,GS,HS) = Tr
[(

I − HSHt
S

)
KS

]

− Tr
[((

HSHt
S

)† − I
)

GSGt
S

]
+ Tr[K − KS].

(25)

Note that the first two terms of this objective is the same
as (18) where all variables are projected to the column-space
of S. Using the above argument, we propose the following
min-min-max optimization:

min
S

min
GS

max
HS

J(S,GS,HS)

StS = I. (26)

The inner min-max optimization over GS and HS for a given S
is similar to the full-rank case analysis (Theorem 5). Given the
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global convergence of the (1, 1)-alternating GD in the full-rank
case, the outer optimization on S can be re-written as

max
S

Tr
[
StKS

]

StS = I. (27)

Although this optimization is non-convex, it has been
shown that its global optimizer, which recovers the leading
eigenvectors of K, can be computed efficiently using GD [31].

An alternative approach to solve the quadratic GAN
optimization (19) is to solve the max part as a closed form and
use GD to solve the min part. We analyze the convergence of
this approach in Appendix Theorem 7.

VII. DISCUSSION

Our experiments on state-of-the-art GAN architectures sug-
gest limitations of model-free designs even when data comes
from a very basic Gaussian model. This motivates us to take
a model-based approach to designing GANs. In this paper, we
accomplish this goal in the spacial case of Gaussian models.
Even though this is for a restrictive case, we have learnt a few
lessons which will be useful as we broaden our approach. We
obtained a general way to specify loss functions for GANs,
by connecting the unsupervised GAN learning problem to the
supervised learning problem. The quadratic loss function used
for the Gaussian problem is a special case of this general
connection. Moreover, we learnt that by properly constrain-
ing the class of generators and the class of discriminators in
a balanced way, we can preserve good population solution
while allowing fast generalization. Finally, we saw that using
a model-based design, we could analyze the global stability
of different computational approaches using gradient descent.
These properties are hard to come by in model-free designs.
Extending these results to more complex distributions than
Gaussians is an interesting direction for the future work.
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