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A Fourier-Based Approach to Generalization and
Optimization in Deep Learning

Farzan Farnia

Abstract—The success of deep neural networks stems from
their ability to generalize well on real data; however, Zhang et al.
have observed that neural networks can easily overfit randomly-
generated labels. This observation highlights the following ques-
tion: why do gradient methods succeed in finding generalizable
solutions for neural networks while there exist solutions with poor
generalization behavior? In this work, we use a Fourier-based
approach to study the generalization properties of gradient-based
methods over 2-layer neural networks with band-limited activa-
tion functions. Our results indicate that in such settings if the
underlying distribution of data enjoys nice Fourier properties
including bandlimitedness and bounded Fourier norm, then the
gradient descent method can converge to local minima with nice
generalization behavior. We also establish a Fourier-based gener-
alization error bound for band-limited function spaces, applicable
to 2-layer neural networks with general activation functions. This
generalization bound motivates a grouped version of path norms
for measuring the complexity of 2-layer neural networks with
ReLU-type activation functions. We empirically demonstrate that
regularization of the group path norms results in neural network
solutions that can fit true labels without losing test accuracy while
not overfitting random labels.

Index Terms—Deep learning, Fourier analysis, generalization
bounds, norm-based regularization.

I. INTRODUCTION

EEP neural networks (DNNs) have achieved state-of-the-

art performance on a wide array of tasks [2]. A given
DNN architecture represents a highly expressive space of func-
tions. However, numerous empirical results have shown that
a simple stochastic gradient descent (SGD) learner can effi-
ciently search over this complex space to find a solution that
achieves high performance on both training and test data.
Despite many successful applications of DNNs to practical
tasks such as computer vision [3], natural language process-
ing [4], and speech recognition [5], an adequate understanding

Manuscript received October 15, 2019; accepted March 8, 2020. Date of
publication March 26, 2020; date of current version June 8, 2020. This work
was supported in part by the National Science Foundation (NSF) under Grant
CCF-1563098, and in part by the Center for Science of Information, an NSF
Science and Technology Center under Grant CCF-0939370. (Corresponding
author: Farzan Farnia.)

Farzan Farnia was with the Department of Electrical Engineering, Stanford
University, Stanford, CA 94305 USA. He is now with the Laboratory for
Information and Decision Systems, Massachusetts Institute of Technology,
Cambridge, MA 02139 USA (e-mail: farnia@mit.edu).

Jesse M. Zhang was with the Department of Electrical Engineering,
Stanford University, Stanford, CA 94305 USA. He is now with Beacons Al,
San Francisco, CA 94103 USA (e-mail: jessemzhang @gmail.com).

David N. Tse is with the Department of Electrical Engineering, Stanford
University, Stanford, CA 94305 USA (e-mail: dntse@stanford.edu).

Digital Object Identifier 10.1109/JSAIT.2020.2983192

, Jesse M. Zhang, and David N. Tse, Fellow, IEEE

of the factors driving DNNs’ generalization behavior is still
lacking.

Addressing generalization for DNNs is hard for two rea-
sons: 1) Empirical risk minimization for neural networks
iS a non-convex optimization problem with possibly many
local minima, and 2) Two different local minima with the
same training performance can achieve significantly different
performance on test data. For these reasons, the optimization
method used for training a DNN plays an important role in the
generalizability of the local minima found. Gradient methods
have been shown to apply an implicit regularization, resulting
in a better generalization performance [1], [6]. Furthermore,
the performance of gradient methods can be improved upon
by incorporating the geometry of the DNN architecture [7].

However, a gradient-based optimization method is not
sufficient for guaranteeing good generalization performance.
Zhang et al. [1] empirically demonstrate that a neural network
trained by SGD can easily overfit random labels on the
CIFAR-10 [8] data. Yet, the same neural network fitted by
the same optimization algorithm achieves good generalization
performance for the original CIFAR-10 labels. This observa-
tion challenges the ability of traditional generalization error
bounds to explain why SGD learns generalizable hypotheses
over a highly-expressive neural network space.

To shed light on this phenomenon, several recent works
have developed generalization bounds and complexity mea-
sures for neural networks which can distinguish the local
minima found for true and random labels. Reference [9]
proves a margin-based generalization bound and shows how
the classification margin values of a spectrally-normalized
DNN help distinguish the DNN solutions fitting true and ran-
dom labels. Reference [6] explores different complexity scores
for DNNs and how they behave differently for true and random
labels. The complexity measures investigated in these works
help distinguish generalizable from poorly-generalizable local
minima. They do not explain, however, why gradient meth-
ods converge to generalizable local minima when there exist
poorly-generalizable local minima which can also perfectly fit
the training examples.

To approach this question, one needs to understand the key
properties of CIFAR-10’s original labeling which differentiates
its real labels from random labels and how those properties
are exploited by gradient methods to gain good generalization
performance. In this work, we approach this problem in the
Fourier domain where a non-random labeling scheme behaves
differently from a random labeling. While signals recoverable
from few measurements possess nice spectral properties such
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(a) A 2-layer neural network with activation function ¢, (b) Training and test accuracy on CIFAR10 with true and random labels on a 2-layer neural

network with 512 ReLU hidden units, regularized with an additive penalty: (bl) no penalty, (b2) £>-norm, (b3) x»-group path norm, (b4) £1-path norm. The
Xx2-group path norm and £{-path norm were successful to close the generalization gap for both true and random labels.

as bandlimitedness, fully random stochastic processes are not
band-limited and not recoverable from any finite number of
measurements.

Applying Fourier analysis, we focus on characterizing spec-
tral properties of an underlying distribution which can be
exploited by gradient-based methods to converge to generaliz-
able local minima. We address this problem for 2-layer neural
networks (see Figure 1a) with sinusoidal activation functions,
where we show that if the underlying labeling scheme has
limited bandwidth and Fourier £{-norm (i.e., “nice” Fourier
properties), a gradient descent optimizer can potentially result
in good generalization performance. To show this result, we
first develop a Fourier-based generalization bound for 2-layer
neural networks using the bandwidth and Fourier £1-norm of
the function space. Next, we prove that the local minima found
by the gradient descent method over a 2-layer neural network
with sinusoidal activation have bandwidth and Fourier £{-norm
bounded in terms of the Fourier properties of the underlying
labeling scheme.

To develop the Fourier-based generalization analysis, we
show generalization error bounds applicable to 2-layer neural
networks with general activation functions. For band-limited
activation functions with bounded Fourier £{-norm, such as
sinusoidal or Gaussian non-linearity, the generalization bound
is tighter than the standard generalization bounds based on the
activation function’s Lipschitz constant. For ReLU-type acti-
vation functions, the proposed generalization bound results in
a grouped version of path norm functions introduced in [7].
We call the new capacity norm group path norm and leverage
these norm functions to regularize 2-layer neural networks.
Our numerical results suggest that the generalization gap can
be effectively tightened by regularizing the group path norm.
Figure 1b demonstrates how the same path-norm penalty
help close the generalization gap for both true and random
labels.

II. PRELIMINARIES
A. Supervised Learning and Generalization Risk

Consider a set of n training samples (x;, y;)?_; drawn i.i.d.
according to the population distribution Px y. Here X denotes
the random vector of features and Y denotes the label variable.
Using these training samples, the goal in supervised learning is
to find a prediction rule f from a function set F which predicts
Y for an unseen test data point X. Therefore, considering a
loss function ¢ the supervised learner aims to find f* € F
minimizing the population risk averaged under the population
distribution of data, i.e.,

Ep[£(f(X), 1)]. ey

However, the supervised learner’s knowledge of the pop-
ulation distribution Px y is limited to the observed training
samples. Consequently, a standard approach to supervised
learning is to minimize the empirical risk, defined as

1 n
OLORDE ©)
i=1

and find f;° minimizing the defined emprical risk function.
Since the number of observed samples is limited, the empirical
risk can be considerably different from the population risk.
The generalization risk is defined as the difference between
the population risk and empirical risk, i.e.,

1 n
E[e(F00, )] = = L e(fx), 3. 3)
i=1

Bounding the generalization risk of learning over different
function spaces is a subject of central interest in statistical
learning theory.
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B. Fourier Transform and Band-Limited Functions

Consider a real-valued function f : R — R. The Fourier
transform of this function, which we denote by f, is defined as

F&) = /f(x) exp(—2mi&"x) dx. 4)

We will use the following Fourier transform examples several

times throughout the paper:
o Sinusoidal function: f(x) = exp(2miw!x), then ?(E) =
0(§ — w) where & denotes the Dirac delta function,

implying
- f(x) = cos(2rw’x), then F(&) = 1/2[8(¢ + w) +
3¢ —w)]. R
- f(x) = sinrw’x), then (&) = i/2[8(§ + w) —
3¢ —w)].

o Gaussian function: f(x) = (V2mo)kexp(— Ix15 2/262),

then f(£) = exp(—o2[|€[13/2).

We call a function f B-bandlimited if f (’g‘) = 0 for every
€]l > B. The smallest B for which this property holds is
called f’s bandwidth which we denote by B(f). We also use
|[?||1 to denote the ¢;-norm of f’s Fourier transform, i.e.,

il = f 76| dg )

which we call the Fourier £1-norm of f. Fourier £{-norm can
be interpreted as the absolute volume under f’s Fourier trans-
form, and provides an approximate measure of ?’s sparsity.
Note that Fourier £{-norm is both scale and shift invariant,
i.e., if we define g(x) = f(Wx + b) for a real-valued f and
W e Rk and b € R” with r < k, then |2l = Ifll1.

Some other useful properties of Fourier transform are as

follows:

o Synthesis: f(x) = f ?(‘;‘ )exp(2wi& Tx) d&, which also
1mphes |[f||1 =f(0) if f is real and non-negative.

o Shift: o (§) = GXQ(ZmbTE)f (§) where fp(x) == f(x —b),
which implies [Ifpll1 = [Ifll1 and B(fy) = B(f).

o Scale: fw(®) = (1/det(W)F(W~&) where fw(x) :
FWs). implying [wlls = Il and BGw) < IWILB()
with ||W]|, denoting the spectral norm of W.

o Isometry: [f(x)g(x)dx = [ F(&)2(€) d& where Z denotes
the complex conjugate of z.

o Convolution: gr\ ?* g where x denotes the convolution
operator, ie., f xg(§) = ff(n)g(g — 1) dy. Therefore,
B(fg) < B(f) + B(g) and |Ifgll < IIfll11gll:-

We refer the readers to the Appendix for a summary of the
utilized properties of Fourier series.

III. A FOURIER-BASED GENERALIZATION ERROR BOUND

Consider a supervised learning task with n training samples
(x;, yi)i_, and function space . We are interested in uniform
convergence bounds on the generalization risk. A standard
approach to bound the generalization risk is based on the
notion of Rademacher complexity. Given samples (X;, yi)?_;,
the empirical Rademacher complexity of F is defined as

REWP(F) = Eq |:sup Zaﬂx, ] (6)
feF N

where o;’s are i.i.d. random variables uniformly distributed
over {—1, +1}. In fact, the Rademacher complexity of F mea-
sures how well F can fit some random labels over input x;’s.
The following result shows how to bound the generalization
risk over F through its Rademacher complexity.

Theorem 1 [10]: Consider a p-Lipschitz loss function
£(f(x),y) bounded as |€(z,y)| < c. Then, for any § > O,
with probability at least 1 —§

1 n
Ve F  E[0¢X). 0] = =Y et )

i=1

< 2R (F) + de, w %)

Since tight bounds are known for the Rademacher com-
plexity of norm-bounded linear functions [11], Theorem 1
can be applied to bound the generalization risk of learning
over norm-bounded linear functions. To extend the appli-
cation of Theorem 1 to the Fourier space, we provide a
Rademacher complexity bound for band-limited functions with
bounded Fourier £1-norm. We apply the following Rademacher
complexity bound to bound generalization risk for 2-layer
neural networks in Section IV, and subsequently to analyze
the performance of gradient-based methods with sinusoidal
activation functions in Section V.

Theorem 2: Consider function space F = {f : RF —
R s.t. B(f) < B, [[fll1 < V} of B-band-limited functions with
V-bounded Fourier £1-norm. Then, the empirical Rademacher
complexity for samples (x;,y;)?_; is bounded as

REW(F) < v \/4k log(64 nB max; ||xi||2). ®
n
Proof: We defer the proof to the Appendix. |

Corollary 1: Assume that || X||> < C holds with probabil-
ity 1 and the loss function ¢ is p-Lipschitz. Then, for any
8 > 0 with probability at least 1 — § the following general-
ization bound holds for any B-band-limited function f with
V-bounded Fourier £;-norm:

1 n
E[L¢(X). 1) ] = = 3 e (). )

i=1

3 0<pv /w) ©

Proof: The corollary is a direct result of applying the bound
in Theorem 2 to Theorem 1. ]

The above corollary bounds the generalization risk uni-
formly over all band-limited f’s with B(f) < B and [[f]; < V.
Next, we apply the above result to 2-layer neural networks.
We refer the readers to the Appendix for the application of
the above results to shift-invariant kernel spaces.

IV. APPLICATION OF THEOREM 2 TO 2-LAYER NEURAL
NETWORKS

Consider a 2-layer neural network with d hidden units and
activation function ¢ (Figure 1a). The neural network’s output
can be formulated as

fawp(X) = a’ p(Wx +b). (10)
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Assuming ¢’s bandwidth and Fourier £;-norm are bounded,
the following corollary applies Theorem 2 to bound the gen-
eralization risk over the 2-layer neural network. Note that we
use ||[W]2,0 to denote W’s Ly o, group-norm defined as the
maximum Lp-norm |[w;||2 among all W’s rows.

Corollary 2: Let Fp = {f(x) = al ¢ (Wx+b) : [W]2,00 <
W, l|lall; < A} be the class of 2-layer neural networks where
B(¢) = B and ||$||1 = V. Then, the empirical Rademacher
complexity of Fy for samples (x;, y;)7_, is bounded as follows

klog(nBWmaX ||Xl||2)) (11)

n

REMP(Fp) < O <AV\/

Proof: We defer the proof to the Appendix. |

Note that for a band-limited activation function the above
generalization bound is increasing logarithmically fast in the
norm |[W]|2,0. For example, this result can be applied to
a sinusoidal activation ¢(x) = sin(2zx) with ||$ hh =1,
B(¢) = 1. On the other hand, the standard Rademacher com-
plexity bounds in the literature use only the Lipschitz constant
of the activation function, growing linearly with the norm
[Wll2,00 [10]. Therefore, by exploiting ¢’s Fourier proper-
ties, Corollary 2 results in a tighter generalization bound than
standard bounds based on ¢’s Lipschitz constant.

However, an unbounded function such as the popular ReLU
activation ¢(x) = max(x,0) has an unbounded Fourier
£1-norm. Therefore, Corollary 2 is not directly applicable to
the unbounded functions. The following result leverages the
assumption of having a bounded input X to extend Theorem 2
to ReLU-type activation functions. While the resulted general-
ization bound is growing faster than logarithmically with W’s
norm, it results in new capacity norms for 2-layer ReLU-based
neural networks.

Theorem 3: Suppose that ¢, (x) = max{x, ax} where o €
[0, 1] is an arbitrary constant. Consider a dual norm pair (|| -
lp, II-1lg) where 1 < p, g < oo satisfy 1/p+1/q = 1. Suppose
that ||x;]|, < C holds for each x;. Then, for Fy, = {faw(x) =
al g (Wx) 1 3L lailIwilly < V)

R, < O(VC /M)

Proof: We defer the proof to the Appendix. |

The above bound is based on the complexity score
>4 | laillwill, for function fo w(x) = a” ¢, (Wx). This com-
plexity score can be interpreted as the £1 4-group norm on the
product of weights on each path from the input nodes to the
output node of the 2-layer neural network,

12)

d K 1/q

Xg(faw) = D[ D (lailwijl)?

i=1 \ j=1

13)

Note that w;; denotes the weight between the jth node in the
input layer to the ith node in the hidden layer. Similar to
the path-norm function defined in [7], we call x,(fa,w) the
group path norm. For ¢ = 1, xj-group path norm revisits
the £1-path norm for 2-layer neural networks. We can further
apply group path norms to regularize learning over 2-layer
neural networks. In our numerical experiments, we test the
performance of regularizing y»-group path norm and ¢;-path

norm for controlling the generalization risk of learning over
2-layer neural networks.

V. FOURIER ANALYSIS OF GRADIENT-BASED METHODS
FOR 2-LAYER NEURAL NETWORKS
WITH SINE ACTIVATION

In this section, we apply Fourier analysis to analyze the gen-
eralization performance of gradient methods learning over a
2-layer neural network with a sinusoidal activation. We aim to
study the connection between the generalization behavior of
local minima found by gradient-based methods and Fourier
properties of the population distribution Px y. In our dis-
cussion, we assume that label variable Y is a deterministic
function Y (x) of input X, which we call the labeling scheme.
In our analysis, we consider the squared-error loss function
Ly, y) =@ —y)%

To analyze the generalization performance of gradient meth-
ods, we follow a similar approach to [12]’s by establishing
generalization bounds for both the empirical risk functions
and its first-order derivative. First, we show that the bandwidth
and Fourier £1-norm for the local minima of the population
risk can be bounded in terms of the bandwidth and Fourier
£1-norm of Y (x) and Px(x). Next, we establish a generaliza-
tion result for the gradient of the empirical risk, proving that
the gradient of empirical risk also remains close to the gradient
of population risk provided that Y(x) has limited bandwidth
and Fourier £1-norm. The two results together show that by
assuming a labeling scheme with constrained bandwidth and
Fourier £1-norm, the local minima found by a gradient descent
optimization method will have good generalization behavior.

A. Population Risk With Sinusoidal Activation
Consider fa wp(X) = Zj{j:l a; sin(ZnWij + b)) as a 2-layer
neural network with d sinusoidal hidden units. Given the

labeling scheme Y (x) the population risk will be

Epg [€(faw,p(X) Y(X) ]
d

Y(x) — Z a; sin(ZnWij + b))
j=1

— Ep,  (14)

where the expectation is according to the population density
function Px(x).

Lemma 1: Consider the population risk in (14). Assume w;
satisfies Vi # j : min{[lw; — w;ll2, [[w; + w;ll2} > B(Px).
Then, if (a, W, b) is assumed to be a local minimum of the
population risk,

lajl < 2|¥ % Px(w)). (15)

Proof: We defer the proof to the Appendix. |

Lemma 1 shows that if the component g; Sil’l(27TWjTX) is
isolated from the other components at a local minimum, by
which we mean there is no component a; sin(2nwiTx) with
min{||w; — w;ll2, [w; + wj|l2} less than Px’s bandwidth, then
a;’s value in that local minimum will be bounded based on
the population distribution’s bandwidth. This result leads to
the following theorem.

Theorem 4: Consider the minimization problem of the pop-
ulation risk (14). If a local minimum (a*, W*, b*) has isolated
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components, i.e., for any i # j we have min{||w;-"—w;-‘||2, W+
w;.‘||2} > 2 B(Px), then for the function fp+ w+ p*

o B(far,wep*) < B(Y) + B(Px),

o [faxweplli < 2(Y]1-

Proof: We defer the proof to the Appendix. |

Theorem 4 implies that the bandwidth of the local minima
of the population risk is less than the sum of bandwidths for
Y and Px. Also, the Fourier £{-norm for the local minima of
the population distribution is bounded by twice the Fourier
£1-norm of Y.

Remark 1: In Theorem 4, the bandwidth of Px is supposed
to be smaller than half the smallest distance among w}’s. If we
suppose that X ~ A (u, 02;5) has a multivariate Gaussian
distribution with mean g and scalar covariance matrix with
standard deviation o, then the result shows that if for any i, j
we have min{|lw} — w]’»*||2, lwr + w]?*||2} > 2C/o for some
constant C, then

o B(fwew) < BOY)+0Wk/o),

o IVfasweps 1 < 201+ dexp(—C?/2)) [ Y]

Proof: We defer the proof to the Appendix. |

B. Fourier Analysis Applied to the Empirical Risk

Theorem 4 characterizes the Fourier properties of the local
minima in the population risk. However, our main goal is to
study the generalization properties of the local minima in the
empirical risk for observed training samples (x;, Y (x;))_, i.e.,

1 n
=D Llfawn(x) Y(x))
i=1
2

d

1 ¢ _ r

== Yo v =) asin@rw!xi+ b)) | . (16)
i=1 j=1

To address this question, it can be seen that the bandwidth and

Fourier £1-norm of the loss’s derivative with respect to each

a; are bounded in terms of the bandwidth and Fourier £1-norm
of Y(x) as

Vo £ fawp®),Y®) | < [Y]l1 + llall1, (17)
J 1

B( Vg £(fawp®), Y(®)) < BY) +2[Wl2,c0. (18)

We apply Corollary 1 to show that not only the empirical
risk uniformly converges to the population risk, but also the
gradient of the empirical risk remains close to the gradient of
the population risk.

Corollary 3: Consider fa wp(X) = Z;l:l a; sin(ijx + b))
and squared error loss £. Then, assuming that ||X]|, < C holds
with probability 1, for any § > 0 with probability at least 1 —4§

we have

Vjia. W.bst llalli + Y] < V. 2[Wlaeo +B(Y) <B:

E[(Vast (fa.wpX). Y(X)))]

1 n
- > (Ve (fawn (x0). Y (x;) ))]‘
i=1

3 0<V [klog(nBC/3) )
n

Proof: The corollary is an immediate result of
Corollary (1), (17), and (18). Note that the generaliza-
tion bound holds with probability 1 — & for the derivative with
respect to all g;’s, since the bounds in (17) and (18) hold for
every j. |

Note that to prove Theorem 4 we only need to analyze the
risk function’s derivative with respect to g;’s. Hence, gener-
alization of the empirical risk’s gradient with respect to a;’s,
that is shown in the above corollary, is sufficient to apply an
approximate version of Theorem 4 in Section VII-I to a local
minimum (a*, W*, b*) with isolated components and found by
the gradient descent approach initialized at sufficiently small
llall; and ||W||2,00. Therefore, with probability at least 1 —§
the Fourier integral of fy* w+ p+ outside the bandwidth ball

with radius B(Y) + B(Px) is bounded by O(dV,/*eCEC/))

and also

. ~ klog(nBC/$§
ar wenellt < 20701 + o(dv\/gT/)

Based on the above discussion, if a gradient descent method
starts learning from f3 wp with small |lal|; and [|[W]2, and
also we assume that the bandwidth and the Fourier £{-norm
of Y(x) are properly bounded, Theorem 4 combined with
Corollary 1 will guarantee good generalization performance
for the local minima found by the gradient descent method.

VI. NUMERICAL EXPERIMENTS

For all experiments described in this section, we imple-
mented and trained the two-layer neural network described
in Figure la using TensorFlow 1.3.0. We used SGD to train
the model for 2000 epochs with an initial learning rate of 0.01.
The learning rate decayed slightly each epoch at a rate of 0.95
every 390 epochs. We used /2 = 512 hidden units and a batch
size of 128. When working with CIFAR10 data, we prepro-
cessed the data as described in [1], resulting in each training
sample having dimension d = 2352. Initial weights from the
first layer were sampled from A/ (0, 0.01/d) and initial weights
from the second layer were sampled from A (0, 0.01/h).

A. SGD Gradually Learns Higher Fourier €;-Norm,
Bandwidth Hypotheses

We first numerically demonstrate that how Fourier £{-norm
and bandwidth both increases during training via SGD.
Motivated by the analysis from Section V, we use the squared-
error as our loss function and sine as our activation function.
Our samples consist of cats and airplanes from the CIFAR10
dataset with the labels mapped to —1 and 1. We use 5000
and 2000 samples from each category for training and test,
respectively. We arbitrarily chose two of the ten classes to
accommodate our choice of loss function. We evaluate the
network’s performance for both random and true labels.

Figure 2a shows that without regularization, SGD learns to
perfectly fit both the true and random labels, which is consis-
tent with the results from [1]. Additionally, the random labels
are harder to learn, requiring more epochs before achieving
a perfect fit. Figures 2b and 2c confirm that both Fourier
£1-norm and bandwidth consistently increase with training,
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Fig. 3. Training and test performance on cat and airplane CIFAR10 images with true and random labels. ReLU activation and cross-entropy loss were used.

highlighting how SGD gradually finds more complex hypothe-
ses in order to fit the data. Finally, we see in figures 2d and 2e
how both Fourier £1-norm and bandwidth increase with gener-
alization risk (the difference between test mean squared-error
(MSE) and training MSE) with almost perfect correlation. This
suggests that, as implied by the theory above, regularizing
Fourier £1-norm and bandwidth could improve generalizability
of the final learned model.

B. Group Path Norm Regularization for ReLU Activation

We regularize group path norm for ReLU activation as moti-
vated by Theorem 3. Although x»-group path norm is not
convex, it is differentiable and we can use it as an additive
penalty and find a local minimum via SGD. Using the same
experimental setup as from Section VI-A, we swap sine for
ReLU and test the network’s performance for both random
and true labels.

Figure 3a confirms that, like before, the network can fit
both true and random labels. The generalization gap, how-
ever, remains large for random labels. By regularizing the
£>-norm of all the weights, we see that the generalization gap
closes for both the true labels and the random labels with-
out compromising test accuracy significantly (Figure 3b). This
result is further improved when we use the y»-group path
norm and ¢;-path norm (Figure 3¢ and 3d), demonstrating
that direct regularization of Fourier ¢1-norm leads to better
generalization.

We cross-validated the value of A for each regularization
technique, and we chose the A that resulted in the smallest
generalization gap with comparable validation performance.
To fairly compare different regularization strategies, we tested
five lambda values for each strategy and then reported the
performance on the test set for the lambda value that resulted
in the best performance on the validation set.
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We repeated the experiment using all 50000 CIFAR10 train-
ing samples (and 10000 test samples). We included all 10
classes and switched to cross-entropy loss. The results are
shown in Figure 1b. Again, we see that while all regularization
techniques give similar test performance, the generalization
gap is closed significantly for the x»-group path norm and
£1-path norm.

VII. RELATED WORK

Generalization has been a topic of central interest in sta-
tistical learning theory [13]. Generalization error bounds can
be derived using different tools such as the stability of
learning algorithms [14] and complexity measures of a func-
tion space including VC-dimension [15] and Rademacher
complexity [10]. Reference [16] develops a stability-based
generalization result for SGD as the learning algorithm, which
holds for non-convex loss functions. For kernel methods, gen-
eralization bounds can be shown by bounding the Rademacher
complexity of the kernel space [17], [18]. Moreover, the role
of overparameterization in the generalization properties of a
learned over-parameterized function has been recently studied
in the context of linear regression [19], [20], [21], [22], [23].
The goal pursued by these works is to demonstrate that over-
parameterization can result in harmless interpolation in the
linear regression context.

We note that Fourier analysis has provided a powerful
framework for analyzing neural networks. Reference [24] uses
a Fourier-based approach to prove the universal approximation
theorem for 2-layer neural networks. Reference [25] applies
Fourier analysis to extend Barron’s result to a general feed-
forward neural network. Also, our Fourier-based approach to
analyze SGD’s performance for 2-layer neural networks fol-
lows the same principles as the analysis performed in [26]
to prove the hardness of fitting periodic labeling schemes via
gradient-based methods. We should note that in this work we
use only periodic activation functions and not periodic label-
ing schemes. Therefore, the hardness result shown in [26] does
not affect our numerical experiments.

In general, theoretical studies of deep neural networks can
be categorized into three general categories: 1) Approximation:
Neural networks have been proven to be powerful in express-
ing rich spaces of functions [27] and in general deeper
networks need fewer neurons to express the same class of
functions [28], [29]. Recently, [30], [31] build an approxima-
tion analysis based on spline theory for deep neural networks.
2) Generalization: Tight bounds have been shown on the VC-
dimesnion of feed-forward neural networks [32], [33]. Also,
norm-based Rademacher complexity bounds have been proved
at [10], [34]. Sharpness of local minima and its connec-
tion to their generalizibility have been the focus of several
recent works [35], [36]. Reference [37] introduces a com-
pression approach to further improve the margin-based bounds
presented by [9], [38]. Also, [39] develops stronger generaliza-
tion bounds for over-parameterized 2-layer neural networks. 3)
Optimization: theoretical studies have shown both positive [40]
and negative [41] results about the performance of gradient-
based methods in training neural networks. Reference [42]

further connects the learning problem over convolutional
neural networks (CNNs) to a graphical model-based maxi-
mum likelihood problem, providing a probabilistic framework
for deep learning.

APPENDIX
A. Fourier Series and Periodic Functions

Let f : R — R be a piecewise continuous periodic function
with period T, i.e., f(x) = f(x+T). The Fourier series provides
a sinusoidal basis to express f as

+00

fx) = Z anexp2rinx/T),

n=—0oo

where

T/2

Vni a, =—= fx)exp(—2minx/T) dx. (19)
/2

T ) r

The above result also characterizes f’s Fourier transform
as f(§) = Y a,8(6 — 2min/T). Therefore, |f]l; =

¥ . lan|. If we further assume that f is continuous and
piecewise smooth, not only f’s Fourier series converges to f,
but also the Fourier series for f’s derivative can be derived by

element-wise differentiation of f’s Fourier series as

df +00
LW= >

n=—0oo

2mwinay,

exp2rinx/T). (20)

B. Application of Theorem 2 to Shift-Invariant Kernels

Kernel methods provide a popular approach to learn over
non-linear function spaces. Here, we learn a prediction rule
linear in a feature mapping ¥ (x) with ¥ mapping x to a
high-dimensional space specified by the kernel function. To
efficiently learn the optimal prediction rule, the kernel trick
can be applied for kernel « defined as « (x, X') = ¥ (x)T ¢ (x).
Given training samples (x;, y;)’_;, the solution f* has the form
f(x) =YL, afk(x;,x) for a vector a* € R". Therefore, the
kernel trick is to solve the risk minimization problem over
Fe={>1aik(x;,x) : a € R"}.

Here, we apply Theorem 2 to bound the generalization risk
of learning over the space of B-band-limited shift-invariant
kernel functions. Note that a kernel function « is called shift-
invariant if «(x, x’) is only a function of the difference x —
x'. For example, the Gaussian kernel «, (x, X') = exp(—||x —
x'||?/202) is shift-invariant. Bochner’s theorem characterizes
the Fourier transform of shift-invariant kernels.

Theorem 5 (Bochner’s theorem, [43]): The shift-invariant
k(x — x') is a kernel function if and only if the Fourier
transform % is real and non-negative everywhere.

Applying Bochner’s Theorem to Theorem 2, we obtain the
following corollary.

Corollary 4: Consider function space Fp = {f(x) =
ZLI aik (X;,X) : |lall1 <A, k € Op} where Op is the space
of all B-band-limited shift-invariant kernels. We also assume
every « in ®p is normalized, i.e., VX : k(X,x) = 1. Then,
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supposing that ||x;|[2 < C holds for every x; € R,

Ry < 0<A /w)

The above complexity bound is further applicable to the
random Fourier features scheme proposed in [44] for approx-
imating shift-invariant kernels. According to this scheme,
ii.d. sample @;’s are drawn according to the Fourier trans-
form of the normalized shift-invariant kernel «. Then, the
scheme fits a linear model using the random Fourier features
zi(x) = cos(wiTx). Corollary 4 bounds the generalization risk
of using random features for B-band-limited shift-invariant
kernels.

21

C. Proof of Theorem 2

We use a high-dimensional grid in the Fourier domain to
approximate the Fourier transform of a B-band-limited func-
tion. Consider the ball {& : ||&|l2 < B}. Using the bounds on
the covering number for £;-norm, for any 0 < ¢ < B we can
find a set of points {§; : 1 <j < (3B/€)*} such that for any &
with [|§]l2 < B, there exists some §; with [|§ —§;[2 <e.

LetSj={§: |§—§;ll2 <€} foreach 1 <j < (3B/€)*. Note
that {£ : [|£]l2 < B} C U;S;. We then define S} = S;\ U/_,S;
to have a group of disjoint sets S]’- covering {& : ||&|» < B}
Since any f € F is assumed to be B-bandlimited , for f € F

709 =+ [ 7@ exp(eniex) ag
Then, for any f € F = {f : B(f) < B, [fll1 < V} we have
j=1
(3B/e)k
£
J

(3B/e)
(22)
(B/e)
[exp(ans] 9 L d&}
(3B/e
< ; /Ees; If(&)[exp(Zni’;‘Tx) — exp(2ni§ij)]‘ dé
=1

B ; /ses;f(i)exp(ZﬂisT")dg'
fo - 3
Sy /g J®ew(mie") - exo(2mi]x) | at
j=1 U5
(3B/e)*

/E ; [F@® 2 IxI12 1§ — &1 d&

(3B/e)

< 27 x| ©|1E &2 d
_— ;/&S;[?EIE £l de

(3B/e)k

(c)

<omelxly Y &]d
TT € ||X][2 li:l V/EGSJ’D?g‘ E

- ||x||2/l?<§>|d€

< 2me|x[l2V.

Here, (a) is a direct application of (22). (b) holds as exp(ibz) =
cos(bz) + isin(bz) is b-Lipschitz as a function of z € R for

any real number b > 0. (c) holds because according to our
definitions SJ’. CSjand Sj=1{&: [|§ — &l <€}

Therefore, the following function space F. can approximate
any f € F = {f : B(f) < B, |Iflli < V} within 2reCV
accuracy for any ||x|| < C. Here a is, in general, a vector of
complex numbers, and ||a|; = Zj |aj| where |z| denotes the
absolute value of complex number z,

(3B/e)k

0 =Y ajexpQmi&x) : llalh < V. (23)
j=1

.7:5=

Then, F. is the space of £1-norm bounded linear functions
in terms of the input vector [exp(2ni§ij)]j. Now, we can
apply a well-known bound [13] on the Rademacher complex-
ity of £;-norm bounded linear space Fin1 = {f : RF —
R st f(x) =a’x, |la]l; <A} as

2log(2k
R (Fin1) = A max xilloey| o 24)
Applying the above bound, we can bound the Rademacher

complexity of F, as

2klog(6B

REMP(F,) <V M. (25)
n

Since for each f € F there exists f € F¢ such that V ||x||» <

C: [f(x) —f(x)| < 2meCV,

RE™P(F) = Ko [ sp -3 Uif(xi):|

fer M5

I -
< E(,|: sup — Zoif(xi)i| + 2meV max ||x;]|2
j‘EJ:E n i=1 !

= RE™(FO) + 2meV max [l (26)

Finally, combining (25) and (26) we obtain:

2k log(6B
Ves0:RM(F) < v | 2K08OBIO) ey max Ixila.
n i

(27)
If we choose the value € = m then we get
REW () < V(\/Zklog(mnanaxi xilk) 1)
n n
- V\/4klog(12nanaxi Ixi12) + 2/n
- n
_v \/4klog(64anaxl~ ||xi||2)’ 28)
n

where the last inequality follows from the fact that 1 < k, n.
Therefore, the proof is complete.

D. Proof of Corollary 2

First, we prove the following lemma.
Lemma 2: Given function f : R — R and matrix W €
Rk we define g(x) = f(Wx). Then,
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o B(g) < |W]l2 B(f) with ||[W||2 denoting the spectral norm
of W,
o I8l = Iflh-
Proof: From the properties of the Fourier transform we
know

86 = (29)

1 w-T
| de t(W)If( £).
Therefore, g(WTE') = Wf(g/) and if ||&'||> < B(f), then
IWTE' ||, < [W|2B(f) gives an upperbound on B(g). Also,

i@l = / 2(6)) d
| .
= [ tamcw TV "0t

1 T
B |det(W)|/[?W E dt

Idet(W)I /[?S Idet(W DI %

=/lf(£)|d£
= IIflh.

It can be seen that this result remains valid even if W
is not an invertible matrix, which will complete the proof
for Corollary 2. However, we continue proving Corollary 2
without using this fact.

As shown in the above lemma, Fourier £-norm and band-
width are invariant to an orthonormal transformation W. Given
fix) = a,-qb(wiTx), we define g;(x) = fi(A;x) where A; is
an orthonormal matrix with w; as an eigenvector. Note that
Ifilh = llgillh and B(fi) = B(g:). However, gi(x) is a func-
tion of only one of the coordinates, which we can assume,
without loss of generality, to be the first coordinate. Hence,
gix) = a,-¢(||wl||2x1) for the first coordinate xj, imply-
ing é\l(g) Twi H2¢(||W1||2) 82(52) Sk(éj_k) where 8/ is the
Dirac delta function across the jth dimension. Hence, we
can use the a/tzove lemma in the 1-dimensional case to show
Igilli = lailll¢ll and B(g:) = [[will2B(¢). As a result,

’

(30)

Bl = lalldli, B < Iwill2B@). (€2))

Hence, for f(x) = a’p(Wx +b) = Z | aip(Wrx + b;) we
have

7l < llallilidli,  BE) < IWl,coB@). (32)

The corollary is then a direct application of Theorem 2.

E. Proof of Theorem 3

Given a ReLU-type activation function ¢4 (z) = max{z, oz},

¢o(W'x) = ||w||(,<z>o,(<|| ” )x )
q

Since ||ﬁ||q = 1, if |x]l, < C, then |(ﬁ)TX| < C and
hence the input to ¢, in the R.H.S. of (33) is always between
—C and C.

Suppose that function v, satisfies Yy(z) = ¢o(z) for
z € [ — C,C]. Then, based on the above discussion, we

(33)

can bound the Rademacher complexity of Fg, by finding a
bound on the Rademacher complexity of Fy, = {fy,u(x) =
VY, (Ux) vl <V, Vit ully =1}

To find a good candidate for v, we use a symmetrization
trick to define

—aC if z< —C,
¢a(2) if —C<z<C,
$g(2C —7) if C <7 <3C,
—aC if 3C <z

Va(2) = (34)

Note that ¥ (2) = (1 —a)Ch(3E C)+2oeCh(
h(z) = max{0, 1 — |z|}. It can be seen that h(s) (*”‘(”5))2
which is real and positive everywhere. Therefore, ||h||1 =
h(0) =1 which means that ||17/;||1 <Cca + 2a) < 3C.

Since |h(§)| < 5—2, we have |1ﬁa(§‘)| < S_z' For B > 0, we
let the B-filtered ¥ p be a function with the following Fourier
transform:

) aC where

Va(§) if €] <B
w"‘ ) = { otherwise. (35)
Then, since |17/;(§)| < élz we have
2
VIER: [Yu®@ — Yus@)| < /S [Fal®)] a6 < -
(36)

Thus, for any B > 0 the defined vy, p approximates ¢, with a
max1mum error of 123 uniformly over [ — C, C]. ¥ p also sat-
isfies ||¢a gll1 < 3C and B(y4,8) = B. Applying Corollary 2,
we get

k1 B i 2
VB : Rzmp(]:%) S 0<VC\/ Og(n I:ax ||Xl||2)) + E

Here we can bound max; ||x;[2 < vk max; ||X;[lcc < vkC, and
choose B = n to get

REP(Fy,) < 0(vc,/@ + %) (37)

which completes the proof.

F. Proof of Lemma 1
Note that

Ve Erg[£(faw n(X), Y (X) )]
= Epy[ Ve £(fawp(X), Y(X))]

[
= Epy [Va, (fawp(X) — Y(X) )2]

- {25 271w X+b)

(Z arsin(2rw! X + by) — Y(X) ):|
=1
= Epy [2aj sin’ (27‘[fo + bj>]

— Epy[25in(2mw] X + b) Y(X) |
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+ Epy Z 2a; sin(antTX + b,) sin(ZnWjTX + bj)
1#]
=aj — 2[cos(bj) Im{? * f’;((wj)}
+ sin(b) Re{? * Px (W) -
To show the last equality, we use the isolatedness assumption

for w;, i.e., V¢ # j: min{|lw; — wjll2, [IW; + w;ll2} > B(Px),
and also [|w;[l2 > B(Px)/2. Then, for each ¢

Epy [2 sin(2rw; X + by) s1n<2anX +b; )]

=2 / Px(x) sin(ZnW,Tx + b,) sin (27tijx + bj) dx

= / Px(x) [cos (271 (ws

— cos(27r (w: + Wj)TX +b + b,-)] dx
=0.5 exp(/'(bt — bj))l/’-;( (Wt — Wj)
+ 0.5exp(j(b; — b,))lf’;((wj - W)
— 0.5exp(j(b; + bj)) Px (w; + w;)
— 0.5exp(—j(br + b,))ﬁ;( (—w, —
_ { 0 if t#£],
1

if r=j.
Also, by applying the convolution property of Fourier trans-
form we can show

Wj)TX + b; — bj)

wj)

(38)

Epy|sin(27w/ X + ;) Y(X)
= / Px(x)Y(x) sin(anij + bj) dx

- / (Px x V)(x)
x [cos () sin(2w]'X) + sin(by) cos (27w X) | dx
= cos(by) Im{Y x Px(w;)} + sin(b;) Re{Y » Px(w;)}.
Finally if (a, W.b) is a local minimum for the population

risk, for all #’s we have V,, Epi[£(fawp(X), Y(X))] =
Therefore, due to the isolatedness assumption of w; we have

% |cos( )Im{
< |V« Px(w;)|.

* Px(w))} + sin(b)) Re{Y » Px(w))}|

G. Proof of Theorem 4

Since the isolatedness assumption holds for all j’s, by
Lemma 1,

at

Vj:

< 2‘/)7*ﬁ;;<wj*) .

If |w}|2 > B(Y) 4+ B(Px) holds for some ¢ , (39) implies

(39)

|af| < 2|¥ « Px(w})| = 0. (40)
Hence, a; will be 0, implying there will be no component in
Sa* w+ p with |W]|l2 > B(Y)+ B(Px). This discussion proves
the first part of Theorem, i.e., B(fa w* p*) < B(Y) + B(Px).

To show the second part, note that

- *
[fax, w11 = lla™|l1
(@)

d
< 2ZI?*@(W:‘)I

= Y(&)Px(w; — &) dé

< 2Z/|?(£>P§(w;* )|t
t::l ) N

= 2Z/|Y(§)l |Px(w; —&)|d&
=1

d

2 [ I?@)I[Z@(WT :

=1

d
2 Y ()| d&
> JILG)

= 2||7]|;.

s)l} d&

INE

(41)

Here, (a) comes from Lemma 1. Also, since min{[w; —
w2, W) + w2} > 2B(PX) is assumed for any ¢ # r, for
any & at most one element in [Px (wy—§ )1, can be nonzero.
Because if both Px(w, &) and Px(w — &) are nonzero for
r # t, then ||lw; — || < B(Px) and also ||w; — & < B(Px)
which results in ||w}—w| < 2B(Px) which is a contradiction.
Hence,

Z\PX W —§)| < max |PX | < /|Px(x)|dx—1
=1

(42)

which proves (b) and completes the proof.

H. Applying Theorem 4 to Multivariate Gaussian X

Assume X ~ N(u, 02I;x) has a multivariate Gaussian
distribution with mean g and standard deviation o. Then,
the Fourier transform Px has a Gaussian shape with mean
0 and standard deviation 1/0. Hence, if for any i, j we have
min{|lw} — Wj’»‘llz, lwf + w]f*||2} > 2C/o for some constant
C, the approximation error term which should be added to
the upperbound in Equation (41) is 2||?|| 1dexp(—C2/2). Also,
given any € > O the Fourier £; norm outside the bandwidth
O(Vklog(1/€)/o) is at most €. Therefore, Theorem 4 implies

o B(farwepe) < BXY) + 0(Vk/o),

o Warwe bl < 2(1 + dexp(—C2/2) ||V |1

1. Approximate Version of Theorem 4

Here we show an approximate version of Theorem 4 which
applies to approximate population local minima.

Theorem 6: Consider minimizing the population risk (14).
Consider an approximate local minimum (a*, W*, b*) where
|quE[£(fa*,w*,b* X), YX)))]| < € for all j’s. If for any two
different i, j we have min{||wj.‘—w/’-k||2, ||wl’.‘+wl’.‘||2} > 2 B(Px),
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then the Fourier £1-norm of fa+ w+ p+ outside the bandwidth
B(Y) 4+ B(Px) is bounded by d ¢ and

farwe b1 < 211 Y1l1 + de.

Proof: Since the isolated components condition holds,

we

can apply Lemma 1’s proof to show under the above

assumptions

Vi lall < 2‘1?*13X<w;-‘>‘ te

Then, a simple modification of Theorem 4’s proof according
to the above inequality proves the above theorem. |
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