Unsupervised Paraphrasing via Deep Reinforcement Learning

A. B. Siddique

University of California, Riverside
msidd005@ucr.edu

ABSTRACT

Paraphrasing is expressing the meaning of an input sentence in
different wording while maintaining fluency (i.e., grammatical and
syntactical correctness). Most existing work on paraphrasing use
supervised models that are limited to specific domains (e.g., image
captions). Such models can neither be straightforwardly transferred
to other domains nor generalize well, and creating labeled training
data for new domains is expensive and laborious. The need for
paraphrasing across different domains and the scarcity of labeled
training data in many such domains call for exploring unsuper-
vised paraphrase generation methods. We propose Progressive Un-
supervised Paraphrasing (PUP): a novel unsupervised paraphrase
generation method based on deep reinforcement learning (DRL).
PUP uses a variational autoencoder (trained using a non-parallel
corpus) to generate a seed paraphrase that warm-starts the DRL
model. Then, PUP progressively tunes the seed paraphrase guided
by our novel reward function which combines semantic adequacy,
language fluency, and expression diversity measures to quantify
the quality of the generated paraphrases in each iteration without
needing parallel sentences. Our extensive experimental evaluation
shows that PUP outperforms unsupervised state-of-the-art para-
phrasing techniques in terms of both automatic metrics and user
studies on four real datasets. We also show that PUP outperforms
domain-adapted supervised algorithms on several datasets. Our
evaluation also shows that PUP achieves a great trade-off between
semantic similarity and diversity of expression.

CCS CONCEPTS

+ Computing methodologies — Natural language generation;
Unsupervised learning; Reinforcement learning; Natural lan-
guage processing; Discrete space search.

KEYWORDS

Unsupervised paraphrasing; deep reinforcement learning; natural
language generation; natural language processing.

ACM Reference Format:

A. B. Siddique, Samet Oymak, and Vagelis Hristidis. 2020. Unsupervised
Paraphrasing via Deep Reinforcement Learning. In Proceedings of the 26th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining USB
Stick (KDD °20), August 23-27, 2020, Virtual Event, USA. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3394486.3403231

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD °20, August 23-27, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7998-4/20/08.

https://doi.org/10.1145/3394486.3403231

Samet Oymak
University of California, Riverside
oymak@ece.ucr.edu

Vagelis Hristidis
University of California, Riverside
vagelis@cs.ucr.edu

1 INTRODUCTION

Paraphrasing is the task of generating a fluent output sentence,
given an input sentence, to convey the same meaning in differ-
ent wording. It is an important problem in Natural Language Pro-
cessing (NLP) with a wide range of applications such as summa-
rization [20], information retrieval [21], question answering [28],
and conversational agents [38]. Most of the previous paraphrasing
work [15, 23, 34] has focused on supervised paraphrasing methods,
which require large corpora of parallel sentences (i.e., input and
corresponding paraphrased sentences) for training. Unlike large
datasets in neural machine translation, there are not many parallel
corpora for paraphrasing, and they are often domain-specific, e.g.,
Quora is a questions dataset, and MSCOCO is an image caption-
ing dataset. Acquiring big parallel datasets for paraphrasing across
many domains is not scalable because it is expensive and laborious.
Moreover, a model trained in one domain does not generalize well
to other domains [24].

The abundance of domains and applications that could benefit
from paraphrasing calls for exploring unsupervised paraphrasing,
which is still in its infancy. There are relatively few works on unsu-
pervised paraphrasing such as Variational Autoencoder (VAE) [5],
Constrained Sentence Generation by Metropolis-Hastings Sampling
(CGMH) [30], and Unsupervised Paraphrasing by Simulated Anneal-
ing (UPSA) [26]. Although unsupervised approaches have shown
promising results, the probabilistic sampling based approaches such
as VAE [5] and CGMH [30] are less constrained, and they produce
paraphrases that lack semantic similarity to the input. On the other
hand, UPSA [26] does not effectively explore the entire sentence
space, resulting in paraphrases that are not different enough from
the input.

Given the success of Deep Reinforcement Learning (DRL) [43]
in a wide range of applications such as Atari games [31], alp-
haZero [39], and supervised paraphrasing [23], can DRL also help
boost the performance of unsupervised paraphrase generation? To
the best of our knowledge, this is the first work to employ DRL
in unsupervised paraphrase generation, which is challenging due
to the following reasons: (i) DRL is known to not work well with
large vocabulary sizes when starting with a random policy (i.e., ran-
dom exploration strategy) [10, 23]; (ii) paraphrasing is a multi-step
(word-by-word) prediction task, where a small error at an early
time-step may lead to poor predictions for the rest of the sentence,
as the error is compounded over the next token predictions; and (iii)
it is challenging to define a reward function that incorporates all
the characteristics of a good paraphrase with no access to parallel
sentences (i.e., the unsupervised setting).

Our proposed method, Progressive Unsupervised Paraphrasing
(PUP), progressively trains a DRL-based model for unsupervised
paraphrasing and addresses the aforementioned three challenges
using the following techniques:


https://doi.org/10.1145/3394486.3403231
https://doi.org/10.1145/3394486.3403231

Action Sequence:
Pick from the VAE's trajectory.

o Pre-train Phase

Input sentence: how can i work in microsoft

VAE sample:  how can i serve in microsoft <eos> VAE sample:
[ i Epoch # 10
how  can i serve  in microsoft <eos> how  can
A
L & % & & & & & |§F
) M o
o
@
<sos> how  can 1 serve  in microsoft <sos> how
Generation: how can i serve in microsoft Reward: 0.60

o DRL Phase

Action Sequence:

Pick according to the policy.

Input sentence: how can i work in microsoft

Epoch # 100

at microsoft <eos> ! o @

<s50s> <sos> how

Generation: how do i get a job at microsoft

Reward: 0.85

O Transition Phase

Input sentence: how can i work in microsoft

how can i serve in microsoft <eos>

Decoder's Input: Pass the VAE's previous time-step token to the decoder with
probability 8, and the policy's generation with probability 1-3.

Generation: how do i serve at microsoft Reward: 0.70

Action Sequence: Pick the first max(0,m-w) tokens from the VAE's trajectory,
and the rest according to the policy.

Input sentence: how can i work in microsoft

VAE sample:  how can i serve in microsoft <eos>

Epoch # 11

serve  at microsoft <eos>

1 serve  in microsoft <sos> how  can i serve  in microsoft

Generation: how can i serve in microsoft Reward: 0.60  Generation: how can i serve at microsoft Reward: 0.65

Where § = sigmoid(m-i-w/l)
m = max. generation length
= epoch number

i = time-step

1 = epoch slow-down factor

Epoch # 120

serve  at microsoft <eos> how do i serve  at microsoft <eos>

i serve  in <sos> how  can i

Generation: how do i serve at microsoft Reward: 0.70

Figure 1: Illustration of the decoding process of the proposed unsupervised paraphrasing method: PUP. Red and black color
tokens represent the output from VAE and the DRL’s chosen action sequences respectively. Whereas the sentence in green is
the final paraphrased sentence generated by PUP for the given input sentence.

e Unsupervised warm-start of DRL: PUP warm-starts reinforce-
ment learning by an unsupervised pre-trained VAE [5], which acts
as an expert [9, 36] in the pre-training phase. The pre-trained VAE
saves the DRL model from expensive global exploration during
the initial training phase. Remarkably, the proposed technique is
the first instance that can successfully warm-start DRL with an
unsupervised model. At the end of DRL training, our DRL model
achieves up to 54% higher reward compared to the initial VAE
model. We expect that our idea of warm-starting DRL models in an
unsupervised fashion may have implications on a broader range of
NLP problems with limited labels.
o Progressive transition for seq2seq DRL: Another major is-
sue DRL models face is the accumulation of error over the predic-
tions of future tokens. This is particularly significant during the
initial exploration of the space. To overcome this, we use a progres-
sive transition that takes advantage of the Sequence-to-Sequence
(seq2seq) [42] nature of the problem by transitioning between al-
gorithms (e.g., VAE to DRL) token by token, as shown in Figure 1.
Instead of taking actions according to the initial policy (i.e., ran-
dom action), the model chooses VAE’s output as the action, and
then incrementally (i.e., one token per epoch) allows the agent to
take actions according to the DRL policy. This technique greatly
facilitates the convergence of DRL to models with high rewards
and is at the heart of the success of DRL.
e Unsupervised reward function for paraphrasing: We pro-
pose a novel reward function for the DRL model that can measure
the quality of the generated paraphrases when no parallel sentences
are available. This is accomplished by incorporating the most desir-
able qualities of a good paraphrase , informed on the paraphrasing
literature [8, 29, 41, 48-50]. Our reward function is a combination of
semantic adequacy, language fluency, and diversity in expression.
Figure 1 provides an illustration of the decoding process of PUP.
First, the decoder of the DRL model relies on the VAE’s sample to

pick its actions in the pre-train phase. Then, in the transition phase,
the model gradually starts taking actions according to its policy.
Finally, in the DRL phase, the model picks actions entirely according
to its policy to maximize the expected reward. For example, when
our DRL model is pre-trained with the VAE sample "how can i serve
in microsoft”, our fully-trained DRL model amazingly generates the
paraphrase "how do i get a job at microsoft".

We evaluate PUP on four real datasets and compare it against
state-of-the-art unsupervised paraphrasing techniques; we show
that PUP outperforms them in all standard metrics. We also con-
duct a human study, which demonstrates that human evaluators
find PUP’s paraphrases to be of higher quality compared to other
methods’ paraphrases across several carefully selected measures.
Moreover, we consider comparisons against domain-adapted mod-
els - i.e., models trained on one dataset such as Quora in a super-
vised setting and then domain-adapted for another dataset such
WikiAnswers in an unsupervised fashion. Remarkably, PUP out-
performs domain-adapted supervised paraphrasing methods in
datasets where applicable.

The rest of the paper is organized as follows. Background is
discussed in Section 2, and an overview of PUP is presented in Sec-
tion 3. The details of PUP are described in Section 4. Sections 5 and 6
present the experimental setup and results, respectively. Section 7
presents the related work, and Section 8 concludes the paper.

2 BACKGROUND

2.1 Encoder-Decoder Framework

An encoder-decoder model (e.g., seq2seq) strives to generate a tar-
get sequence (i.e., paraphrase) Y = (y1,y2, - - , Ym) given an input
sequence X = (x1,x2, -+, Xp), where m and n are target and input
sequence lengths respectively. First, the encoder transforms the in-
put sequence X into a sequence of hidden states (h1, hy, - - - , hy) em-
ploying RNN units such as Long Short-Term Memory (LSTM) [17].



The encoder reads the input sequence, one token at a time, until the
end of the input sequence token occurs and converts it to hidden
state h; = Encoder(h;—1, emb(x;)) by considering the word embed-
ding of the input token x; and the previous hidden state h;_; at
time-step i. Encoder(.) is a non-linear mapping function and emb(.)
maps the given word into a high dimensional space. The decoder
utilizes another RNN to generate the paraphrased (i.e., target) se-
quence Y. The decoder is initialized with the last hidden state h,
and generates one token at a time, until the end of sentence token
(i.e., < eos >) is generated. At time-step i, the generation is con-
ditioned on the previously generated words §;—1,- - -, §1 and the
current decoder hidden state h:

P(yilii-1. -+~ . §1.X) = sof tmax(Decoder(h}, yi-1)). (1)

Where Decoder(.) is a non-linear mapping function and so f tmax(.)
converts the given vector into a probability distribution. Such an
encoder-decoder model is typically trained by minimizing the neg-
ative log-likelihood of the input-target pairs. However, since we do
not have access to target sentences in the unsupervised paraphrase
generation task, we utilize the reinforcement learning framework.

2.2 VAE: Variational Autoencoder

VAE [19, 35] is a deep generative model for learning a nonlinear
latent representation z from data points X. It is trained in an unsu-
pervised fashion for the following loss function:

Loae(@.9) = By, (z1x)[ log py(X12)] + KL(g0(zX)lIp(2)). (2)

where g, (z|X) is the encoder with parameters ¢ that encodes the
data points X into a stochastic latent representation z; py(X|z)
is the decoder with the parameters ¢ that strives to generate an
observation X given the random latent code z; and p(z) is prior
distribution, i.e., standard normal distribution N(0, I). The first term
in Equation 2 is the negative log-likelihood loss for the reconstruc-
tion of the data points X. The second term is used to measure
Kullback-Leibler (KL) divergence between the the encoder’s distri-
bution g, (z|X) and the prior distribution p(z). At inference time,
sentences are sampled [5] from the learned latent representation
z. In this work, VAE is employed to provide a warm-start to the
DRL-based paraphrasing model so that it does not start from a
random policy.

3 OVERVIEW OF PUP

This section provides an overview of the progressive training phases
of PUP (Figure 1). It consists of three phases: pre-train, progressive
transition, and DRL.

Pre-train phase: For tasks like unsupervised paraphrasing, the big
vocabulary impedes the learning process of DRL models. It becomes
practically infeasible to train such a model based on the reward
alone. To address this issue, we employ a pre-trained VAE (trained
on a non-parallel corpus) to provide a warm-start to the DRL model.
That is, the output of VAE is used to pick action sequences instead
of the agent policy’s output. We can think of it as demonstrating the
expert’s (VAE) actions to DRL, where the expert is an unsupervised
model.

Progressive transition phase: The next critical step is to gracefully
transition from following the expert’s actions to taking actions

Pre-trained VAE

. Action ' Expert
Encoder  Decoder Policy Sequence Acti Decoder Latent space  Encoder
~ Sequence ction
X, —> LSTM “‘Lsma Poru(h/h) - o« s < LSTM / '”'\/\ LSTM X
‘LSTM—’ Py (§:1h) }‘

\ LbTM %,

|
|
|
|
i
|
|
)
|
| X~ LSTM
|
i
|
i
)
|
i
|
|
|
|

i \
! '
! ' '
! 1 1
! 1 1
! 1 '
! T '
! 1 '
! [ 1
: : v |
. AZ <1 s <{LSTM LSTM [ X, |
! ' Linear| |Linear !
! [ '
! 1 '
! 1 1
! 1 '
! '
i B |
i ! i
| | i
i

i
| b

i i

| |Adequacy Fluency Diversity - ! !
' Model Model Model Reward ‘ !
: [ ¥ i :
|

Backpropagation ‘

Figure 2: Deep reinforcement learning paradigm for unsu-
pervised paraphrase generation.

according to the policy (i.e., DRL decoder’s distribution). An abrupt
transition can obstruct the learning process due to the nature of the
task, i.e., multi-step prediction, where error accumulates. Especially,
an inappropriate sample at an early stage of the sentence (i.e., first
few words) may lead to a poor eventual paraphrase generation (i.e.,
ungrammatical or semantically unfaithful). We propose an intuitive
way to pick the first max(0, m — w) tokens from VAE’s output, and
pick the rest according to the agent policy, where m is the length
of the generated sentence and o is the epoch number. Moreover,
we pass the output of VAE to the decoder’s next time-step with a
decreasing probability § (i.e., decreasing with respect to w), and
the DRL’s generation otherwise. This helps with mitigating the
accumulation of error, especially in the beginning of the transition
phase when the model is expected to make mistakes.

DRL phase: Finally, the model is trained to produce an optimized
policy by sampling sentences according to its policy and maximiz-
ing its expected reward, which is a combination of the semantic
adequacy, language fluency, and diversity in expression.

Figure 2 presents an overview of the DRL paradigm, where action
sequences are picked either from VAE'’s output or the agent policy
( highlighted by red dashed arrows) depending on the different
phases.

4 PROGRESSIVE UNSUPERVISED
PARAPHRASING (PUP)

We first describe how to incorporate DRL for the unsupervised
paraphrasing task, then the proposed reward function, and finally
we describe the details of PUP.

4.1 Reinforcement Learning Paradigm

The reinforcement learning paradigm for unsupervised paraphras-
ing is presented in Figure 2. In DRL terminology, the encoder-
decoder model (Section 2.1) acts as an agent, which first encodes
the input sentence X and then generates the paraphrased version
Y. At time-step i, the agent takes an action ; € V according to
the policy Pprr(9ilj1:i-1, X) (see Equation 1), where V represents
the possible action space (i.e., vocabulary for generation). The hid-
den states of the encoder and the previous outputs of the decoder
constitute the state. The agent (i.e., model) keeps generating one



token at a time, until the end of sentence token (i.e., < eos >) is
produced, which completes the action sequence (i.e., trajectory)
Y = (§1. 72, - , jm). The policy is optimized by maximizing the
expected reward r for the action sequences.

4.2 Paraphrasing Reward

Automatic quality measures for machine translation (or paraphras-
ing) such as BLEU [32], Rouge [18], TER [40], and METEOR [2]
only work when parallel sentences (i.e., targets or references) are
available. We propose a novel reward function that incorporates all
the characteristics of a good paraphrase and does not require paral-
lel sentences. The most desired qualities of a good paraphrase [8,
29, 41, 48-50] include: semantic adequacy (i.e., similarity in mean-
ing), language fluency (i.e., grammatical correctness), and diversity
of expression (i.e., sentence dissimilarity). We define the reward
(X, Y) of an output sequence ¥ generated by the DRL model for
input X as a combination of the above components:

rGY) = arsim( ) + Bore(Y) +y. rp(X, V), 3)

where rgim(X, Y), rp(Y) and, rp(X, Y) € [0, 1]. rgim(X, Y) is the
semantic similarity between input X and generated paraphrase Y.
re(Y) captures whether the generated sentence Y is grammatically
correct or not. rp(X, ¥) measures the diversity between X and
Y.a, B, and y € [0, 1] are respective weights. Each component is
described below.

Semantic Adequacy: The semantic adequacy reward rs;, (X, 1)
makes sure that the generated paraphrase Y is similar in meaning
to the input sequence X. We use the universal sentence encoder [7],
as it has achieved state-of-art results for semantic textual similarity
on the STS Benchmark [6] and it provides a straightforward process
to incorporate it in any implementation. In a nutshell, it is trained
with a deep averaging network (DAN) encoder, and it generates 512-
dimension embedding vector for arbitrary length sentence(s). Then,
the semantic similarity can be calculated using the cosine similarity
of the vectors vx and vy, which are embedding vectors for the

input sequence X and the paraphrased sequence Y, respectively.
vx. Uy
llox llloy

rsim(X,Y) = cos(vx, vy) = 4)
Language Fluency: The fluency reward rg(Y) measures the gram-
matical correctness of the generated paraphrase Y. Since language
models such as n-grams [16] and neural models [4] are trained to
predict the next token given previous tokens, they can be used to
score sentences for fluency. Recently, the Corpus of Linguistic Ac-
ceptability (CoLA) [45] has produced the state-of-art results on the
grammatical acceptability for in-domain as well as out-of-domain
test sets. In its simplest form, CoLA [45] utilizes ELMo-Style (Em-
beddings from Language Models) and pooling classifier, and it is
trained in a supervised fashion. We use a pre-trained CoLA [45] to
score our generated paraphrased sequences Y.

Expression Diversity: The expression diversity reward rp(X, ¥)
encourages the model to generate tokens that are not in the input
sequence X. One of the simplest methods to measure the diversity,
inverse Jaccard similarity (i.e., 1 —Jaccard Similarity), could be used.
In this work, we use n-grams dissimilarity. To measure the diversity
in expression, we use the inverse BLEU of input sequence X and

the generated sequence ¥, which is computed using 1 - BLEU( X,
Y). The average of the uni-gram and bi-gram inverse BLEU scores
are used in rp(X, Y).

Combining the three components: In practice, a reward func-
tion that can force the DRL model to generate good quality para-
phrases must maintain a good balance across the reward compo-
nents (i.e., semantic similarity, fluency, and diversity). For example,
generating diverse words at the expense of losing too much on the
semantic adequacy or fluency is not desirable. Similarly, copying
the input sentence as-is to the generation is clearly not a paraphrase
(i.e., cosine similarity = 1). To achieve this, we impose strict criteria
on the components of the reward function as given below:

. o _ rsim(X, ?)’ if Timin < rsim(X, ?) < Tmax
rsim(X.Y) = {O, otherwise )
o\ VF(?), ifrF(?) 2 Amin
re(Y) = {0, otherwise ©)
N rp(X, ?)s if rgim(X, ?) > 7:min’rF(}}) > Amin
rp(X.Y) = {O, otherwise

™)
Equation 5 makes sure that the model does not copy the input sen-
tence as-is to the generation (i.e., condition: 75 (X, ¥) < Trmax) to
enforce the diversity in expression, and does not generate random
sentence, which has very low similarity with the input (i.e., condi-
tion: rg;m(X, ¥) > Tmin). Equation 6 penalizes the generations that
are not fluent. Finally, diverse words (i.e., Equation 7) get rewarded
only if the generated sentence achieves a reasonable score on the
semantic similarity (i.e., condition: rg;,, (X, Y) > tyin) and fluency
(i.e., condition: rp(Y) > Amin). Note that a diversely expressed
output sentence, which is not fluent or is not close in meaning to
the input sentence needs penalization so that the model may learn
a policy that generates not only diverse sentences but also fluent
and semantically similar to the input. The objective of combining
all the constraints is to ensure competitive outputs in all metrics
and to penalize the model for poor generations on any metric. The
weights for each component in the reward (i.e., a, §, and y), and
thresholds (i.e., Tmin, Tmax, and Amin) for Equations 5, 6, and 7 can
be defined based the application needs.

4.3 Progressively Training the DRL

The training algorithm optimizes the policy (i.e., encoder-decoder
model’s distribution Ppgy (.|X)) to maximize the expected reward
r(.) for the generated action sequence Y = (41,72, - ,Jm). The
loss for a single sample from the possible action sequences is:

LO) = -E@., g5, ,9m) ~ PDRLCIX)IF @1, G2, . gm)]. (8)
The loss is the negative expected reward for the action sequences.
Infinite number of possible samples make the expectation calcula-

tions infeasible, thus it is approximated [46]. The gradient for the
L(0) is:

m
VLO) ~ Y Viog PpRr(@ildri-1, X)[r(@Gn do. -+ dm)l.  (9)
i=1
The training process for the DRL-based unsupervised paraphrase
generation model is outlined in Algorithm 1. We explain each of



Algorithm 1: Progressively training DRL-based method.

Input: A non-parallel training example

X = (x1,x2,- -+ ,xp), a paraphrase generated by VAE
S = (51,82, -, Sms), probability § to pass VAE’s
output as input to decoder, probability € to sample
according to the policy, epoch number w,
pre-training status p, and the learning rate 7.

1 Initialize £(0) < 0

2 for i=1,---, mdo

3 vae_in « Uniform(0,1)

if vae_in < § then

4 | Gi-1 < si1

5 if i <m—w OR p = True then

6 L Ui « si

7 else
8 explore « Uniform(0, 1)
if explore < € then
9 | i < Sample Pprr(Jilh}, Ji-1)
10 else
u | §i < Argmax PpRr.(dilh}, §i-1)

12 | L(0) « L(0) +log Pprr(Filh} Ji-1)
130 —0+n.(VLO).rX, 1)

the training phases below. Note that the pre-trained VAE and the
DRL model share the same vocabulary.

Pre-train Phase: Pre-training is a critical step for DRL to work in
practice. Since one of the main contributions of this work is to make
DRL work in purely unsupervised fashion for the task of paraphrase
generation, the pre-training step also has to be unsupervised. We
use VAE [5], which is trained in an unsupervised way, and serves as
a decent baseline in unsupervised paraphrase generation tasks [30].
The pre-trained VAE (section 2.2) guides as an expert in the pre-train
phase to provide a warm-start. Line 6 in Algorithm 1 refers to the
pre-train phase. At time-step i, the algorithm picks VAE’s sample s;
as the action 7j;. The loss £(6) is computed and accumulated (see
line 12 in Algorithm 1). Once, the action sequence is complete (i.e.,
(91,92, -+ » Um)), the reward r is calculated and parameters 6 are
updated (line 13). This step is a requisite for the DRL model to work
in practice for unsupervised paraphrasing.

Transition Phase: Once the model is able to generate sensible
sentences, the next critical step is to progressively allow the agent
(i.e., encoder-decoder model) to take actions according to its policy.
Line 5 in Algorithm 1 refers to whether to take action according to
the policy Ppry or to utilize VAE’s output S. First max(0, m — w)
tokens are picked from VAE, and the rest are sampled according to
the policy Ppryr (ilh;, §i-1) at time-step i, where m is the length
of the generation (i.e., action sequence) and w is the epoch number.
This way, the model picks all tokens from VAE in epoch 0, and in
epoch 1, the model is allowed to pick only the last token according
to its policy, and so on. Similarly, by epoch m, the model learns
to pick all the tokens according to its policy and none from the
VAE. The intuition behind this gradual token-by-token transition
is that mistakes at earlier tokens (i.e., words at the beginning of

Table 1: Statistics about paraphrase datasets

Dataset Train Valid Test Vocabulary
Quora 117K 3K 20K 8K
WikiAnswers 500K 6K 20K 8K
MSCOCO 110K 10K 40K 10k
Twitter 10K 2K 2K 8K

the sentence) can be catastrophic, and picking the last few tokens
is relatively easy. Moreover, allowing the model to pick according
to its policy as soon as possible is also needed, hence we employ
gradual transitioning.

Since we allow the DRL model to pick according to its policy

at an early stage in the transition phase, the model is expected
to make mistakes. However, letting these errors compound over
the next predictions may result in never being able to generate
sufficiently good samples that can get high rewards. Lines 3-4 in
Algorithm 1 attempt to overcome this issue by passing the VAE’s
previous token S;—; to the decoder as input at time-step i with
probability § = sigmoid(m—i—w/l)) € [0, 1], where m is the length
of the output sentence, w is the epoch number, and [ is the slow-
down factor to decay the probability § as w grows. It is similar to
the above gradual transitioning, but I times slower and probabilistic.
The intuition behind the slow progressive transition is that if the
DRL model samples wrong token, passing the VAE’s output to
upcoming time-step’s decoder would eliminate the accumulation
of error in the beginning of the transition phase.
DRL Phase: The DRL phase is the classic reinforcement learning,
where the agent takes action ¥ according to its policy Ppgy, gets
reward r, and optimizes its policy to maximize its expected reward.
Greedy decoding impedes the exploration of the space, whereas
continuous exploring is also not a desirable behaviour. To keep
a balance between exploration (i.e., sample) and exploitation (i.e.,
argmax), we use a probabilistic decaying mechanism for exploration
with probability € = k¥, where k € [0, 1] is the constant to control
the decay rate of the probability € as w grows. Lines 7-11 in Algo-
rithm 1 refer to this phase. Pre-trained VAE is used as a baseline
model in this phase.

5 EXPERIMENTAL SETUP

In this section, we describe the datasets, competing approaches,
evaluation metrics, and the implementation details of PUP.

5.1 Dataset

We use Quora [1], WikiAnswers [14], MSCOCO [25], and Twit-
ter [22] datasets to evaluate the quality of the paraphrase generated
by PUP and other competing approaches. Table 1 presents key sta-
tistics about the datasets. It is important to mention that although
these datasets have parallel sentences, we don’t use them for train-
ing nor for validation. We only use parallel sentences to compute
the evaluation results on the respective testing sets.

Quora is a popular dataset for duplicate question detection anno-
tated by humans which has been used for evaluating paraphrase
quality as well, since a pair of duplicate questions can also be consid-
ered paraphrases of each other. We follow the training, validation,



Table 2: Performance of the unsupervised and domain-adapted methods on Quora and WikiAnswers datasets.

Quora WikiAnswers
Method i-BLEU BLEU Rougel Rouge2 i-BLEU BLEU Rougel Rouge2
Supervised + Pointer-generator 5.04 6.96 41.89 12.77 21.87 27.94  53.99 20.85
domain adapted Transformer+Copy 6.17 8.15  44.89 14.79 23.25 29.22  53.33 21.02
Shallow fusion 6.04 7.95 44.87 14.79 22.57 29.76  53.54 20.68
MTL 4.90 6.37 37.64 11.83 18.34 23.65 48.19 17.53
MTL+Copy 7.22 9.83 47.08 19.03 21.87 30.78 54.10 21.08
DNPG 10.39 16.98  56.01 28.61 25.60 35.12  56.17 23.65
Unsupervised VAE 8.16 13.96  44.55 22.64 17.92 24.13  31.87 12.08
CGMH 9.94 15.73  48.73 26.12 20.05 26.45 43.31 16.53
UPSA 12.02 18.18 56.51 30.69 24.84 32.39  54.12 21.45
pUP 14.91 19.68 59.77 30.47 25.20 38.22 58.88 26.72

and testing splits used by [26, 30] for a fair comparison.
WikiAnswers contains 2M duplicate question-paraphrase pairs.
We use 500K non-parallel sentences for training, following previous
works [24, 26].

MSCOCO is an image captioning dataset that has over 120K im-
ages, each captioned by 5 different human annotators. Since all the
captions for an image can be thought of as paraphrases, it has also
been utilized for the paraphrasing task. We follow the standard
splitting [25] and evaluation protocols [26, 34] in our experiments.
Twitter dataset is also annotated by humans for duplicate detec-
tion. We use the standard train/test split [22], and further split the
training set to create a validation set (i.e., 2K sentences).

5.2 Baselines

We consider the following unsupervised baselines and domain-
adapted approaches for comparison.
UPSA is a simulated annealing based approach [26] that attempts
to generate paraphrases using a stochastic search algorithm and
achieves state-of-art unsupervised paraphrasing results. We use
its open source implementation to generate the paraphrases and
compare against our approach.
CGMH is a Metropolis-Hastings based approach [30] that gener-
ates paraphrase by constraining the decoder at inference time. We
use its open source implementation in our comparisons.
Domain-adapted models are trained in a supervised fashion on
one dataset and adapted to another dataset in an unsupervised
fashion. For this, we use previously reported results in [24] for
Quora and WikiAnswers datasets.

We do not compare with the rule-based approaches such as [3,
28] due to the lack of availability of the rules or any implementation.

5.3 Evaluation Metrics

We use well-accepted automatic quantitative evaluation metrics
as well as qualitative human studies in order to compare the per-
formance of our method against the competing approaches. For
quantitative measures, we use BLEU [32] and ROUGE [18] metrics,
which have been widely utilized in the previous work to measure
the quality of the paraphrases. Additionally, we use i-BLUE [41]
by following the metrics in the most recent work [24, 26]. The

metric i-BLUE [41] aims to measure the diversity of expression in
the generated paraphrases by penalizing copying words from input
sentences.

5.4 Implementation Details

The VAE contains two layers with 300-dimensional LSTM units. Our
DRL-based model also has two-layers and uses 300-dimensional
word embeddings (not pre-trained) and 300-dimensional hidden
units. LSTM is utilized as a recurrent unit, and dropout of 0.5 is used.
All the sentences are lower cased, and the maximum sentence length
is 15 (i.e., we truncate longer sentences to maintain consistency
with previous work). The vocabulary size for each dataset is listed
in Table 1, and infrequent tokens are replaced with < unk > token.
We use Adam optimizer with learning rates of 0.15, 1073, and 107*
in the pre-train, transition, and DRL phases, respectively. The mini-
batch size is 32 and gradient clipping of a maximum gradient norm
of 2 is used in all the phases. The validation is done after every
epoch and the model with the best rewards is saved automatically.
Whether to sample or use argmax, k = 0.9995 is used. To compute
the probability §, which determines whether to pass VAE’s output to
the decoder, [ is set to 8 during training. At inference time, we utilize
beam search [47] with a beam size of b = 8 to sample paraphrases
for the given input sentences. For the reward function, & = 0.4,
B =03,y =0.3, tmin = 0.3, Tmax = 0.98, and A, = 0.3 are used.
All the hypterparameters are picked based on the validation split
of the Quora dataset, and then consistently used for all the other
datasets.

6 RESULTS
6.1 Automatic Metrics

Table 2 presents the performance of unsupervised and domain-
adapted methods on the Quora and WikiAnswers datasets; the best
method among all is shown in bold and the best among unsuper-
vised methods is underlined for each metric. Unsupervised methods
are trained with non-parallel corpora, and domain-adapted tech-
niques are trained on Quora dataset in a supervised fashion and then
domain adapted for WikiAnswers dataset in an unsupervised fash-
ion (and vice versa). Our proposed method, PUP, outperforms all



Table 3: Performance of Unsupervised approaches on MSCOCO and Twitter dataset.

MSCOCO

Twitter

Method i-BLEU BLEU Rougel

Rouge2 i-BLEU BLEU Rougel

Rouge2

VAE 7.48 11.09 31.78 8.66
CGMH 7.84 11.45 32.19 8.67
UPSA 9.26 14.16  37.18 11.21
pPUP 10.72 15.81 37.38 13.87

2.92 3.46 15.13 3.4
4.18 5.32 19.96 5.44
4.93 6.87 28.34 8.53
6.62 13.03 39.12 12.91

Table 4: Subjective human studies on paraphrase genera-
tions by unsupervised methods on Quora dataset.

Method Diversity Fluency Similarity
CGMH  3.14 £ 0.053 4.1+0.042 2.97 £0.055
UPSA 2.96 £0.052 4.35+0.033 3.89+0.045

PUP 3.27 £0.048 4.42+0.027 4.09 +0.035

the unsupervised approaches on all metrics for Quora and WikiAn-
swers datasets (except Rouge2 for Quora dataset where perfor-
mance is very competitive with UPSA). Similarly, PUP also outper-
forms domain-adapted methods for automatic metrics on Quora and
WikiAnswers (except i-BLEU for WikiAnswers dataset where the
performance is competitive). Although domain-adapted approaches
have the advantage of supervised training on one dataset, this ad-
vantage does not transfer effectively to the other dataset despite
the similarities between the datasets - i.e., Quora and WikiAnswers
are both questions datasets. This also highlights that unsupervised
approaches are worth exploring for the paraphrasing task as they
can be applied to a variety of unlabeled domains or datasets in a
flexible way without a need for adaptation. Moreover, the results
for VAE (which we use to pre-train our DRL model) are presented
in Table 2 and Table 3 to highlight the performance gain of PUP on
each metric.

Table 3 presents the results of all unsupervised approaches on
MSCOCO and Twitter datasets, where the best model is shown in
bold for each metric. Our proposed method, PUP, is a clear winner
on all the metrics among all the unsupervised approaches, which
demonstrates the stellar performance of our method as well as the
quality of our DRL reward function. The lower performance of un-
supervised methods on Twitter dataset can be ascribed to the noisy
tweets data, however, PUP has significantly better performance (i.e.,
90% performance gain on BLEU, and 34% on i-BLEU scores with
respect to UPSA) compared to other methods on all of the metrics,
which signifies the robustness of the PUP.

6.2 Subjective Human Evaluations

To further illustrate the superior quality of the paraphrases gener-
ated by PUP, we conduct subjective human evaluations on Quora
dataset. Table 4 presents the average scores along with the confi-
dence intervals of human evaluators for diversity in expression,
language fluency, and semantic similarity on randomly selected 300
paraphrases generated by all three unsupervised methods (CGMH,
UPSA, and PUP). We used Amazon Mechanical Turk (a widely-
used crowd sourcing platform) in our human studies. We selected

Table 5: Performance of the unsupervised methods for the
components of the reward function on Quora dataset.

Method Diversity Fluency Similarity Reward

VAE 0.31 0.72 0.47 0.497
CGMH 0.29 0.73 0.49 0.502
UPSA 0.25 0.72 0.68 0.563
PUP 0.53 0.95 0.81 0.768

Mechanical Turk Masters from the USA with a HIT approval rate
of > 90% to rate the paraphrases on a scale of 1 — 5 (1 being the
worst and 5 the best) for the three evaluation criteria diversity,
fluency, and similarity. Each paraphrase is scored by three differ-
ent evaluators. Our method PUP outperforms all the competing
unsupervised approaches on all criteria. It should also be noted
that CGMH is better on diversity of expression than UPSA, and the
opposite results are observed for semantic similarity and fluency. In
contrast, our reward function facilitates a good balance between the
diversity in expression, semantic similarity, and fluency. A similar
trend can also be observed in Table 5 and Table 6, which present
automatically calculated reward and a few example paraphrases
generated by all three unsupervised approaches, respectively.

6.3 Evaluation on Reward Function

Table 5 presents the average scores of all the components of our
proposed reward function on Quora dataset for all the unsupervised
approaches. Perhaps not surprisingly, our method outperforms
other methods on each individual component of the reward by large
margin. Intuitively, this arises from the fact that our DRL-based
model is explicitly trained to optimize these reward components.
Remarkably, DRL process improves the reward by more than 50%
compared to the pre-training phase, i.e., the reward of VAE. This
is also visible in Figure 3 where PUP starts with a reward value of
around 0.5 and is able to achieve up to 0.77 towards the end of the
last phase of training.

6.4 Ablation Study

Figure 3 presents the rewards achieved over the course of different
epochs by three models: (i) PUP, pre-trained and uses the transi-
tion phase; (ii) No Transition, pre-trained but does not use the
transition phase; and (iii) No Pre-train, not pre-trained at all. It
highlights the need for the distinct phases in our training proce-
dure. It can be observed that without the pre-training phase, No
Pre-train model is unable to maximize the expected reward. The



Table 6: Example paraphrase generations by PUP and other unsupervised competing methods on Quora dataset.

Sr. #  Input Sentence CGMH Generation

UPSA Generation

PUP Generation

1. how can i work in microsoft

which is the best shampoo for
dandruff

how can i prepare for cpt
what is the best shampoo for sciatica

hich ing 1 is the
3. which book is the best to learn algo Which propramiming ‘anghage 1s the
best to learn algo

4. what is the best mac game what is the best video game

how can i get to work at microsoft

which is the best shampoo for oily skin

which book is best to learn algo

what is the best mac app for android

how do i get a job at microsoft
what are the proper shampoos for
dandruff

what is a best book for learning
algos

what are some good mac games

what are the positive aspects of
5.  what are the reasons of war _
nuclear war

games

what are the main reasons for a civil war ~ what is the main reason for war

Model
0.8 _ PUP
0.7 No Transition
—— No Pre-train
0.6 Y
o M

0 250 500 750 1000 1250 1500 1750 2000
Epoch Number

Figure 3: Evolution of the reward value for PUP variants
over the course of the training.

reward remains small and fluctuates randomly. Similarly, transition
phase is also required, as abrupt shift from VAE to DRL derails the
training for No Transition model, whereas PUP is able to rapidly
and consistently improve the reward as the number of epochs grow.

7 RELATED WORK

The automatic paraphrasing task is one of the common NLP tasks,
which has widespread applications. A wide range of approaches
were developed to solve this problem. Rule-based [3, 13, 28, 33]
and data-driven approaches [27, 48] are some of the earliest tech-
niques. Automatically constructed paraphrase detection datasets
using SVM-based classifiers and other unsupervised approaches
are introduced in [11, 12].

Recently, supervised deep learning approaches have also been
used for paraphrase generation. Stacked residual LSTM networks [34]
is one of the earliest efforts in the paraphrase generation utiliz-
ing deep networks. [23] makes use of deep reinforcement learn-
ing for paraphrase generation in a supervised fashion. Supervised
paraphrase generation using LSTM-based VAE [15], transformer
model [44], pointer-generator networks [37] have also shown promis-
ing results. Supervised paraphrase generation at different gran-
ularity levels (i.e., lexical, phrasal and sentential levels) [24] is
achieved with template learning. Additionally these models can
also be adapted to new domains in an unsupervised fashion, utiliz-
ing the learned templates with the assumption that both domains
share similar templates.

Unsupervised paraphrasing is a challenging and emerging NLP
task, and the literature is relatively limited. The VAE [5] is trained
in an unsupervised fashion (i.e., no parallel corpus is required), by
maximizing the lower bounds for the log-likelihood. The VAE’s
decoder can sample sentences (i.e., paraphrases), which are less
controllable [30], but serve as a good baseline for the unsupervised
paraphrasing task. CGMH [30] proposes a constrained sentence gen-
eration using Metropolis-Hastings Sampling by adding constraints
on the decoder at inference time, and hence does not require parallel
corpora. UPSA [26] generates paraphrases by simulated annealing,
and achieves state-of-art results on the task. It proposes a search
objective function, which involves semantic similarity and fluency
for performing diverse word replacement, insertion or deletion
operations, thus generating paraphrases in an unsupervised fash-
ion. In contrast, we formulate the task as a deep reinforcement
learning problem and progressively train the policy to maximize
the expected reward, which includes semantic adequacy, language
fluency, and diversity in expression.

8 CONCLUSION AND FUTURE WORK

We have presented a progressive approach to train a DRL-based
unsupervised paraphrasing model. Our method provides a warm-
start to the DRL-based model with a pre-trained VAE (i.e., trained
on non-parallel corpus). Then, our model progressively transitions
from VAE’s output to acting according to its policy. We also pro-
pose a reward function which incorporates all the attributes of a
good paraphrase and does not require parallel sentences. The para-
phrases generated by our model outperform both state-of-the-art
unsupervised paraphrasing and domain-adapted supervised models
on automatic metrics. Specifically, our method achieves up to 90%
and 34% performance gains for the BLEU and the i-BLEU metrics
compared to state-of-the-art unsupervised methods, respectively.
Moreover, the paraphrases generated by our method were rated the
highest by human evaluators for all considered criteria: diversity
of expression, fluency, and semantic similarity to input sentences.
Since our technique is the first to successfully warm-start DRL
with an unsupervised model, we plan on investigating the broader
implications of our technique on other NLP problems with scarce
labeled training data.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Foundation
(NSF) under grants IIS-1838222, IIS-1901379 and CNS-1932254.



REFERENCES

(1]

[2

—

[10]

(11

[12

[13]

[14

=
A

[16]

(17

(18]

[19

[20]

[21

[22]

[23

[24

[25]

[26

[27

[n.d.]. Quora Question Pairs | Kaggle. https://www.kaggle.com/c/quora-question-
pairs. (Accessed on 02/14/2020).

Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for
MT evaluation with improved correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evaluation measures for machine
translation and/or summarization. 65-72.

Regina Barzilay and Lillian Lee. 2003. Learning to paraphrase: an unsuper-
vised approach using multiple-sequence alignment. In Proceedings of the 2003
Conference of the North American Chapter of the Association for Computational Lin-
guistics on Human Language Technology-Volume 1. Association for Computational
Linguistics, 16-23.

Yoshua Bengio. 2008. Neural net language models. Scholarpedia 3, 1 (2008), 3881.
Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz,
and Samy Bengio. 2015. Generating sentences from a continuous space. arXiv
preprint arXiv:1511.06349 (2015).

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. 2017.
Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual
focused evaluation. arXiv preprint arXiv:1708.00055 (2017).

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al.
2018. Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018).
David L Chen and William B Dolan. 2011. Collecting highly parallel data for
paraphrase evaluation. In Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Language Technologies-Volume 1.
Association for Computational Linguistics, 190-200.

Hal Daumé, John Langford, and Daniel Marcu. 2009. Search-based structured
prediction. Machine learning 75, 3 (2009), 297-325.

Peter Dayan and Yael Niv. 2008. Reinforcement learning: the good, the bad and
the ugly. Current opinion in neurobiology 18, 2 (2008), 185-196.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Unsupervised Construction
of Large Paraphrase Corpora: Exploiting Massively Parallel News Sources. In
Proceedings of the 20th International Conference on Computational Linguistics
(Geneva, Switzerland) (COLING ’04). Association for Computational Linguistics,
Stroudsburg, PA, USA, Article 350. https://doi.org/10.3115/1220355.1220406
William B Dolan and Chris Brockett. 2005. Automatically constructing a corpus
of sentential paraphrases. In Proceedings of the Third International Workshop on
Paraphrasing (IWP2005).

Michael Ellsworth and Adam Janin. 2007. Mutaphrase: Paraphrasing with
framenet. In Proceedings of the ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing. Association for Computational Linguistics, 143-150.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. 2013. Paraphrase-driven
learning for open question answering. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). 1608-1618.
Ankush Gupta, Arvind Agarwal, Prawaan Singh, and Piyush Rai. 2018. A deep
generative framework for paraphrase generation. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence.

Kenneth Heafield. 2011. KenLM: Faster and smaller language model queries. In
Proceedings of the sixth workshop on statistical machine translation. Association
for Computational Linguistics, 187-197.

Sepp Hochreiter and Jurgen Schmidhuber. 1997. LSTM can solve hard long time
lag problems. In Advances in neural information processing systems. 473-479.
Eduard H Hovy, Chin-Yew Lin, Liang Zhou, and Junichi Fukumoto. 2006. Auto-
mated Summarization Evaluation with Basic Elements.. In LREC, Vol. 6. Citeseer,
899-902.

Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

Emily Kissner. 2006. Summarizing, paraphrasing and retelling. Portsmouth, NH:
Heinernann (2006).

Kevin Knight and Daniel Marcu. 2000. Statistics-based summarization-step one:
Sentence compression. AAAI/IAAI 2000 (2000), 703-710.

Wuwei Lan, Siyu Qiu, Hua He, and Wei Xu. 2017. A continuously growing dataset
of sentential paraphrases. arXiv preprint arXiv:1708.00391 (2017).

Zichao Li, Xin Jiang, Lifeng Shang, and Hang Li. 2017. Paraphrase generation
with deep reinforcement learning. arXiv preprint arXiv:1711.00279 (2017).
Zichao Li, Xin Jiang, Lifeng Shang, and Qun Liu. 2019. Decomposable neural
paraphrase generation. arXiv preprint arXiv:1906.09741(2019).

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollar, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740-755.
Xianggen Liu, Lili Mou, Fandong Meng, Hao Zhou, Jie Zhou, and Sen Song.
2019. Unsupervised Paraphrasing by Simulated Annealing. arXiv preprint
arXiv:1909.03588 (2019).

Nitin Madnani and Bonnie J Dorr. 2010. Generating phrasal and sentential
paraphrases: A survey of data-driven methods. Computational Linguistics 36, 3
(2010), 341-387

[28

[29

(30]

®
=

[32

[33

[34

[36

[37

[38

[39

[40

[41]

[42

[43

=
ot

[45]

[46

(47]

[48

N
)

[50

Kathleen R McKeown. 1983. Paraphrasing questions using given and new infor-
mation. Computational Linguistics 9, 1 (1983), 1-10.

Donald Metzler, Eduard Hovy, and Chunliang Zhang. 2011. An empirical eval-
uation of data-driven paraphrase generation techniques. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies: short papers-Volume 2. Association for Computational
Linguistics, 546-551.

Ning Miao, Hao Zhou, Lili Mou, Rui Yan, and Lei Li. 2019. Cgmh: Constrained
sentence generation by metropolis-hastings sampling. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 33. 6834-6842.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting on association for computational linguistics. Association for
Computational Linguistics, 311-318.

Ellie Pavlick, Travis Wolfe, Pushpendre Rastogi, Chris Callison-Burch, Mark
Dredze, and Benjamin Van Durme. 2015. Framenet+: Fast paraphrastic tripling
of framenet. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers). 408-413.

Aaditya Prakash, Sadid A Hasan, Kathy Lee, Vivek Datla, Ashequl Qadir, Joey Liu,
and Oladimeji Farri. 2016. Neural paraphrase generation with stacked residual
LSTM networks. arXiv preprint arXiv:1610.03098 (2016).

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic
backpropagation and approximate inference in deep generative models. arXiv
preprint arXiv:1401.4082 (2014).

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. 2011. A reduction of imi-
tation learning and structured prediction to no-regret online learning. In Pro-
ceedings of the fourteenth international conference on artificial intelligence and
statistics. 627-635.

Abigail See, Peter J Liu, and Christopher D Manning. 2017. Get to the point:
Summarization with pointer-generator networks. arXiv preprint arXiv:1704.04368
(2017).

Pararth Shah, Dilek Hakkani-Tiir, Gokhan Tiir, Abhinav Rastogi, Ankur Bapna,
Neha Nayak, and Larry Heck. 2018. Building a conversational agent overnight
with dialogue self-play. arXiv preprint arXiv:1801.04871 (2018).

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of go without human knowledge. Nature 550,
7676 (2017), 354.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John
Makhoul. 2006. A study of translation edit rate with targeted human annotation.
In Proceedings of association for machine translation in the Americas, Vol. 200.
Hong Sun and Ming Zhou. 2012. Joint learning of a dual SMT system for para-
phrase generation. In Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Short Papers-Volume 2. Association for Computational
Linguistics, 38-42.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems. 3104—
3112.

Richard S Sutton, Andrew G Barto, et al. 1998. Introduction to reinforcement
learning. Vol. 135. MIT press Cambridge.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998-6008.
Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. 2019. Neural net-
work acceptability judgments. Transactions of the Association for Computational
Linguistics 7 (2019), 625-641.

Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3-4 (1992), 229-256.
Sam Wiseman and Alexander M Rush. 2016. Sequence-to-sequence learning as
beam-search optimization. arXiv preprint arXiv:1606.02960 (2016).

Shiqi Zhao, Xiang Lan, Ting Liu, and Sheng Li. 2009. Application-driven statistical
paraphrase generation. In Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP: Volume 2-Volume 2. Association for Computational
Linguistics, 834-842.

Shigi Zhao and Haifeng Wang. 2010. Paraphrases and applications. In Coling
2010: Paraphrases and Applications—Tutorial notes. 1-87.

Shiqi Zhao, Haifeng Wang, Xiang Lan, and Ting Liu. 2010. Leveraging multiple
MT engines for paraphrase generation. In Proceedings of the 23rd International
Conference on Computational Linguistics. Association for Computational Linguis-
tics, 1326-1334.


https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs
https://doi.org/10.3115/1220355.1220406

A SUPPLEMENTARY MATERIAL
A.1 Human Evaluations Details

A set of 300 randomly selected sentences from the test test of the
Quora dataset were used for evaluation by crowd workers. The para-
phrases generated by every model (i.e., CGMH, UPSA, PUP) were
rated by three different crowd workers on the following criteria:

e Semantic Similarity: how close is the meaning of para-
phrased sentence to the original sentence (i.e., 5 means same
meaning, and 1 means completely different meaning).

e Fluency: whether the paraphrased sentence is grammati-
cally acceptable (i.e., 5 means grammatically correct and 1
means that it makes no sense).

e Diversity in expression: whether different words are used
in the paraphrased sentence with respect to the original
sentence (i.e., 5 means at least half of the words are new, and
1 means that it makes no changes other than stop-words).

The raters were also provided with the positive (i.e., good ex-
ample for each criteria) and negative (i.e., poor example for each
criteria) examples for a sample sentence.

Test Sentence: To avoid carelessly filled responses, a test sentence
(negative example) was placed with the three paraphrase genera-
tions (one from each model) for each input sentence, which was
used to discard the rating provided by that particular worker for the
paraphrases of that sentence. The workers were informed about the
test sentence in the instructions. The responses of the workers who
rated the sentence > 2 were discarded from the further analysis,
which is reported in Section 6.2. However, workers were still paid.

There were a total of three test sentences; one of these was ran-
domly placed in each set (three paraphrases by model, and one test
sentence). The test sentence was easy to spot for: 1) totally different
meaning than input (i.e., should get 1 on semantic similarity), 2)
totally wrong for grammar correctness (i.e., should get 1 on flu-
ency), and 3) same copy of the input (i.e., should get 1 on diversity
in expression).

A.2 Datasets Preprocessing

We perform some of the standard pre-processing steps on all the
datasets, which are briefly explained in the main paper as well. In
this section, we explain the exact pre-processing steps. We use spa-
Cyto tokenize the sentences. The maximum sentence length is set
to 15, and longer sentences are trimmed (i.e., to remain consistent
with previous works and easy comparison). We further pre-process
and build vocabulary using torchtext by setting init_token (i.e., start
of sentence) to <sos>, eos_token (i.e., end of sentence) to <eos>,
and lower (i.e., lower case) to True. We also set min_freq (i.e., min-
imum frequency) to 4, unk_init (i.e.; infrequent/unknown token
replacement) to <unk> for all the datasets, and we set max_size
(i.e., vocabulary size) to 8K, 8K, 10K, and 8K for Quora, WikiAn-
swers, MSCOCO, and Twitter datasets respectively. No pre-trained
word embeddings are utilized, instead embeddings are trained while
models are being trained. Both the VAE, and DRL model share the
same vocabulary.

A.3 Training Details

All the hyperparameters are described in Section 5.4. We follow the
following steps to train the model for each dataset:

o The dataset is preprocessed as explained in Section A.2. All
the datasets used for the experiments are publicly available.
Variational Autoencoder (VAE) is trained for 15 epochs,
which provides a warm-start to the our deep reinforcement
learning-based model.
The deep reinforcement learning-based unsupervised para-
phrasing model is pre-trained for 15 epochs with the VAE.
e Then the model is trained in the transition, and DRL phases
for 2000 epochs with the same parameters, as explained in
Section 5.4.
The weights for each component of the reward function, and
the values for the thresholds are given in Section 5.4.
e The model that achieves best reward on the validation set is
stored to generate paraphrases on the test-test for automatic
evaluation metrics and human studies.



	Abstract
	1 Introduction
	2 Background
	2.1 Encoder-Decoder Framework
	2.2 VAE: Variational Autoencoder

	3 Overview of PUP
	4 Progressive Unsupervised Paraphrasing (PUP)
	4.1 Reinforcement Learning Paradigm
	4.2 Paraphrasing Reward
	4.3 Progressively Training the DRL

	5 Experimental Setup
	5.1 Dataset
	5.2 Baselines
	5.3 Evaluation Metrics
	5.4 Implementation Details

	6 Results
	6.1 Automatic Metrics
	6.2 Subjective Human Evaluations
	6.3 Evaluation on Reward Function
	6.4 Ablation Study

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References
	A Supplementary Material
	A.1 Human Evaluations Details
	A.2 Datasets Preprocessing
	A.3 Training Details


