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Abstract—Visual exploration has become an integral part of big spatial data management. With the increase in volume and number of
spatial datasets, several specialized mechanisms have been proposed to speed up the exploration of these datasets. However, the
existing techniques have major limitations which make them incapable of providing visual exploration for hundreds of thousands of big
datasets on a single machine. This paper introduces a new index structure, termed AID*, that facilitates the visual exploration of an
arbitrarily large number of big spatial datasets on a single machine. The AID* index defines multi-resolution fixed-size tiles on the input
and classifies them as image, data, shallow, or empty tiles, based on their processing cost. Then, it uses this classification to build an
index with a minimal index size and construction time, while supporting the desired real-time exploration interface. The index is
constructed in parallel, using Hadoop or Spark, and is accessible to end users through a standard web interface similar to Google
Maps. The small size of the index allows a single-machine server to host arbitrarily many datasets. Our experiments, on up-to 1 TB of
data and 27 billion records, show that the construction of the proposed index is up-to an order of magnitude faster than the baselines

without compromising the end-user interactivity.

Index Terms—Interactive Exploration, Big spatial data, Indexing

1 INTRODUCTION

With the advent of IoT sensors, autonomous vehicles, satel-
lite data, 3D microscopes, and social networks, we have
hundreds of thousands and peta bytes of geospatial datasets
at the disposal of scientists and developers. At the same
time, there is a global movement of open data which aims at
making large amounts of data available for the public. One
prime example is data.gov which is run by the US federal
government and hosts more than 250,000 datasets to the
public, out of which more than 60% are geospatial. Other
examples include data.gov.uk, World Bank Open Data, and
United Nations Open Data. Unfortunately, users get flooded
with hundreds of thousands of datasets with no easy way to
choose the ones that fit their needs. For example, Data.gov
lists more than 140,000 geospatial datasets in a mere textual
form with no insight about these datasets. Users need to
download tons of these, run a tool to process them, and
finally discard most of them as unsuitable which wastes
hundreds of hours of work.

Figure 1 shows the alternative method that we advocate
for in this paper, i.e., the exploratory interface. In this figure,
users can see the data on an interactive map where they can
either zoom out to a bird view to inspect data coverage and
distribution or zoom in to inspect individual records and
assess the quality and accuracy of the data. Figure 2 depicts
another example from the popular NYC Taxi Cab dataset.
This figure clearly highlights the noisy nature of the data
and its coverage which helps the users to decide whether
or not to use this dataset. Interested readers can refer to
hundreds of additional examples at https://star.cs.ucr.edu
which are all built by the method proposed in this paper.
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(a) Overview of data coverage  (b) Displays individual records
Figure 1: World-wide road network that can show both the
a high-level coverage overview or individual records

Requirements: The goal of this paper is to empower open
data repositories with a simple interactive exploratory in-
terface that allows users to quickly explore the datasets
before downloading them. Such a system must have the
following five requirements: (1) Many datasets: The system
must be able to host a large number of datasets (100,000 ap-
prox.) concurrently as we already have that many datasets
available and more datasets are constantly being added.
This means that users should be able to quickly switch
between datasets without a significant overhead to load the
data. For example, each city might publish a dataset about
traffic violation and the users should be able to visualize
any of them. There are some systems that can efficiently
support one big dataset by pre-rendering all possible visu-
alizations [1], [2] which would not scale to 100,000 datasets
since there will be too many pre-rendered data. (2) Big
data: The proposed system must be able to handle big data
efficiently as some of these datasets can be in the order
of terabytes. These datasets are not only big in terms of
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volume but also in terms of variety. Not only some are
as big a few terabytes, they also come in different formats
like geojson, csv, shapefile, wkt and so on. (3) Individual
records: The users must be able to zoom in to see individual
records as shown in Figure 1(b) to assess their quality and
accuracy. (4) Cost Effective: The system must be hosted on a
single commodity machine for cost effectiveness. A cluster
of machines or multiple GPUs might be used to index or
prepare the data but it cannot be used 24/7 by this system.
(5) Interactivity: The system must be able to respond to user
interactions in less than 500 milliseonds as recommended by
existing HCI studies [3].

Limitations of existing work: All existing work for big
spatial data visualization and exploration would fail to
satisfy one or more of the five requirements. HadoopViz [4]
produces a multilevel pyramid image which grows expo-
nentially in size as the users zoom in thus it fails to satisfy
requirement #1 due to the large image size and #3 due to the
limited zoom depth. GeoSparkViz [5] preloads data in the
distributed memory of the Spark cluster which violates re-
quirements #1 and #3. Web maps such as OpenStreetMap [6]
rely on MapBox [7] to build and visualize data but they need
to produce billions of image tiles that consume terabytes of
disk space [2] which does not scale to accommodate a large
number of datasets (fails requirement #1).OmniSci [8], [9]
preloads the dataset to a GPU to provide fast access which
makes it limited to the size of the GPU (fails requirements #1
and #2). If multiple GPUs are used to support big data, the
system would be expensive and fail requirement #4. Some
systems rely on sampling as in VAS [10] and aggregation
as in NanoCubes [1] to reduce the data size, thus, they fail
requirement #3.

To satisfy the above five requirements, this paper pro-
poses two optimized adaptive image-data index, termed AID
and AID*, which enable visual exploration of big spatial
datasets. Both indexes are entirely stored on disk and have
a very small size which allows it to support arbitrarily
many datasets (requirement #1). The index can be con-
structed using Spark or Hadoop and can be constructed
on terabyte-scale datasets (requirement #2). These indexes
provide access to individual records as users zoom into
the visualization (requirement #3). Despite the size of the
dataset, the proposed indexes, especially AID*, can always
provide a subsecond query response using a single machine
query processor (requirements #4 and #5).

The key idea behind the proposed indexes is to build
a quadtree-like pyramid structure that covers the entire
input space in 20 zoom levels similar to existing web maps.
While this pyramid structure can contain up-to hundreds
of billions of tiles, the AID and AID* indexes use a cost
model to classify these tiles into four categories based on
their processing cost. Based on this classification, only a few
tiles are generated (a few tens of thousands of tiles for the
biggest datasets) which can be easily stored on disk. These
tiles can be generated in parallel using Spark or Hadoop
in a one-time offline job. After that, a query processor, that
runs on a single machine, can use these tiles to generate
a visual exploration where each of these tiles are accessed
or generated in less than 500 milliseconds to ensure real-
time response. Depending on the system requirements on
interactivity, the proposed indexes can be tuned using a

(b) Closer view

(a) Bird’s eye view

Figure 2: Scatter plot of the NYC Taxi data which reveals the
noisy nature of this dataset

single parameter 6 to generate as many or as few tiles
as needed in the index. The two variations of the index
proposed are as follows: (1) AID stores a mix of image and
data tiles in the index, and (2) AID* which stores only image
tiles and reuses an existing spatial index on the data. While
both indexes scale to big data, the AID* is more practical
due to its low overhead and better scalability.

Our experimental evaluation shows that the proposed
indexes can be generated in less than 20 minutes for a
dataset of 27 billion records. At the same time, more than
99% of the visualization requests are processed within half
a second on a single machine. The overhead of the index is
less than 0.01% even for the 1 TB dataset which makes it
perfect for handling hundreds of thousands of datasets.

Contribution The contribution of the paper can be sum-
marized as: (1) It introduces a novel indexing technique
AID* for multilevel visual exploration of spatial data. (2)
AID*, with an index overhead of around 0.1% of the original
data, is extremely scalable, easily providing 20 zoom-levels
for 1-TB of data. (3) The extremely small size of this indexes
enables building an open-sourced geospatial repository for
interactive visual exploration. This repository can host more
than hundreds of thousands of the spatial dataset within a
single machine. (4) It introduces a visualization query that
is fast and effective, keeping the response time within 500
milliseconds, making the system highly interactive. (5) It
provides an analysis of the index construction method and
how it affects the index sizes for uniform data which can
further be extended to non-uniform data. (6) It provides the
community an opportunity to visually explore and interact
with the publicly available geospatial datasets, without ac-
tually having to download or process these data.

The rest of the paper is organized as follows Section 2
discusses the related work. Section 3 gives a high-level
overview of the index. Section 5 details the index construc-
tion process. Section 6 describes the interactive visualization
query processing. Section 7 provides an extensive experi-
mental evaluation of the proposed work. Finally, Section 8
concludes the paper.

2 RELATED WORK

This section covers the related work in the area of geo-
spatial visual exploration. Table 1 summarizes how the
existing work satisfy the five requirements of interactive
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Table 1: Related work based on the five requirements

exploration. The works are classified under two categories,
single-machine systems and distributed systems as follows.

2.1 Single Machine Visual Exploration Systems

The work under this category aims at using single-machine
algorithms and indexes to speed up the visual exploration of
big spatial data. In general, they use downsizing techniques
such as aggregation, clustering, sampling, and approxima-
tion, to achieve fast response. Some of them use main-
memory indexes to further speed up the query processing.
For example many systems like VAS [10], imMens [11],
Nanocubes [1], VisTrees [12], and IGV [13] focus on an-
alyzing spatial data, relying heavily on aggregation and
binning that negates requirement #3 preventing us from ac-
cessing individual records or giving access to only selected
data. Moreover, the single machine processing of the input
datasets restrict the amount of data it can process and render
contradicting requirement #1. Another group of systems like
Mapzen [14] and Tableau [15] focus on plotting data on
top of an existing map. This visualization is done on the
browser using JavaScript libraries. Due to browser limita-
tions, these systems cannot scale to big datasets, resulting
in poor interactivity and hence violating requirements #2
and #5. OmniSci [8], on the other hand is a GPU-accelerated
system, limited by the size of the GPU.Much of its capacity
of hosting big data or a large amount of dataset is dependent
on the power of the GPU, since most GPU based systems
needs the entire data to be loaded into the GPU memory
for an efficient use of the GPU. A NVDIA gtx1080 has a
GPU memory of 8 GB, and costs roughly around $500.
Clearly one such GPU is not sufficient for even for one single
dataset (say of 100 GB), making a GPU based solution super
expensive.

2.2 Distributed System Visualizations

Most systems that work with big spatial data rely on dis-
tributed systems to preprocess the raw data to generate an
efficient visualization. Systems like HadoopViz [4] and Sha-
hed [16] employ Hadoop map-reduce and GeoSparkViz [5]
uses Spark systems respectively, to preprocess the datasets
to produce the desired visualization. They use a pyramidal
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Figure 3: System overview

quad-tree [19] image index to generate a multilevel visual-
ization. However, the amount of image tiles increase expo-
nentially with each level. As a result of which HadoopViz,
GeoSparkViz does not scale above 10 levels GeoSparkViz
[20] and Cloudberry [17] provide an alternative solution that
preloads and indexes the data on a cluster and generates vi-
sualizations on-the-fly. However, this defies requirement #4
which requires a single-machine system for cost efficiency.
EarthDB [18] uses the array-based indexes of SciDB and Hi-
erarchical Data Format (HDF) to speed up the selection and
aggregation but similar to many other analytical systems,
cannot fulfill requirements #3 and #4.

Our proposed approach is a mix of distributed and
single-machine systems. It builds a light-weight disk-
resident index which can serve 100,000’s of datasets. These
indexes (AID or AID*) are constructed on a Spark or
Hadoop cluster to support big data and can provide an
arbitrary number of zoom levels to visualize individual
records. In AID, after the index is constructed, it is exported
to a single-machine while the cluster can be used to do other
work or be terminated to save the cost. For AID*, the image
index as well the spatially indexed input dataset are both
exported to the single-machine. Despite running on a single
machine, the proposed indexes can provide an interactive
response to any visualization request which makes them
ideal for interactive data exploration.

3 OVERVIEW

Figure 3 gives a high-level overview of the proposed work.
The system takes input geospatial datasets and provide an
interactive web-based exploratory interface for end users.
First, the input data goes through a distributed index
construction process that runs on Spark or Hadoop. The
output is an adaptive visualization index that is stored
in the Hadoop Distributed File System (HDEFS). Then, a
visualization server provides an interactive web-based user
interface to display the visualization from the generated
index. The web server is hosted on a single machine for two
reasons. First, it is cost effective as it releases any cluster
resources so that the cluster can be used by other tenants or
terminated if it is in the cloud. Second, Hadoop and Spark
are not optimized for short real-time queries so a single-
machine web-server can handle these visualization requests
more efficiently. The proposed design supports arbitrarily
many datasets by building a separate index for each one.
The extremely small overhead of each of these indexes does
not hinder the system from hosting hundreds and thousand
of such indexes.
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3.1 Offline Index Construction

This first step processes the input data in parallel to con-
struct the proposed adaptive index (AID or AID*). We
follow the multilevel pyramid structure shown in Figure 4
where each tile is stored as a separate file to allow a
fully parallelized index construction where each machine
generates a set of files without a need for a centralized
step. Users can configure three parameters to control the
index construction process, number of zoom levels (Z), tile
dimension (T'), and threshold (). The number of zoom levels
(Z) defines the maximum zoom that the constructed index
can provide. The tile dimension (T) indicates the size of each
generated tiles in pixels. The threshold () is used to balance
the number of image and data tiles in the index while
satisfying the user interactivity requirements. The index can
either physically store each data tile in a file (AID), or reuse
an existing R*-tree index to further reduce the index size
(AID*).

3.2 Real-Time Query Processing

This part defines the visualization query and its processing
using the adaptive index. We propose a simple query that
retrieves a single tile as an image to be displayed to the user.
This query is plugged into a web interface that uses a tile
layer in OpenLayers [21] to provide the desired functional-
ity. The challenge in this part is to generate the image tiles
efficiently out of the index. Depending on the tile size, it
can be available in the index as an image tile, data tile, or it
might not be stored at all. Section 6 will show the details on
how the visualization query handles all these cases.

4 PRELIMINARIES AND PROBLEM DEFINITION

This section gives some preliminary definitions for the mul-
tilevel visualization problem. Figure 4 illustrates an example
of the pyramid structure that we define below.

Definition 1. A two-dimensional bounding box (BB) is a
rectangular area in the two-dimensional plane R? which
contains all points (z,y) that satisfy Zpmin < & < ZTimag
and Ypmin < Y < Ymaz- Ithasa width of w = Tya0 — Tinin
and height A = Yya2 — Ymin. Based on the context, we
either define a BB by Zyin, Ymin, Tmaz, aNd Ymaz, OF by
Tmins Ymin, W, and h.

Definition 2. A feature f is record that is associated with a
bounding rectangle (f.BB). Similarly, a feature set is a
set of features F = {f}. The bounding box of F is the
minimum bounding box that contains all features in the

set. F.BB = BB (Ujer /- BB)

Definition 3. A pyramid P is defined by an integer Z that
represents the number of zoom levels and a bounding
box P.BB. Each zoom level in the pyramid 0 < z < Z
contains a set of tiles organized in a uniform grid with 27
rows and columns. The total number of tiles in level z is
47. The total number of tiles in a pyramid with Z levels is
S7=0 47 = (47 —1)/3. Since we start the zoom level at 0,
the value of z always ranges from 0 to Z —1. For example
for Z = 20 zoom-levels, z will range from 0 to 19. In
summary, the number of tiles increases exponentially with
the number of zoom levels.

4

Definition 4. Each tile t is identified by three parame-
ters (z,x,y), where z is the zoom level,  and y are
the column and row indexes of the tile in that level,
x,y € [0,27] and are both integers. Each tile covers an
area defined by the bounding box t.BB calculated as
follows:

t.BB.w =P.BB.w/2?

t.BB.h =P.BB.h/2*
t.BB.xpmin = P.BB.xyin +t.BBw - x
t.BB.Ymin = P.BB.Ymin + t.BB.h -y

M

Definition 5. We say that a tile t1 = (21, 21, y1) is the parent
of another tile to = (20, 22,y2) if 21 = 20 — 1 and 27 =
|z2/2] and y1 = |y2/2]. The root tile (0,0, 0) does not
have a parent.

Definition 6. Given a tile t = (z, x, y) and a feature set F, the
contents of the tile ¢, called t.F, is the set of all features
f € F that overlap the area covered by the tile based
on their bounding boxes, i.e., t.F' = {f € F : f.BBN
t.BB # 0}.

Definition 7. Tile visualization is the process of converting
the contents of a tile ¢ to an image with dimensions
T x T In this paper, we use the visualization abstraction
proposed by HadoopViz [4] which can generate a variety
of visualization, e.g., scatter plot and heat map, in both
raster and vector formats.

Problem Definition: Given a feature set 7, a pyramid P
with Z zoom levels, and an image dimension 7', we need
to visualize any tile ¢ in the pyramid within a specific time
limit, e.g., 500 milliseconds.

Background: HadoopViz [4] solves the multilevel visu-
alization problem by pregenerating and materializing all
non-empty tiles which proved to work well for 10-12 zoom
levels but does not scale beyond that due to the exponential
increase in the number of tiles with zoom levels. It uses a
traditional image index, which explodes exponentially with
increasing zoom levels.

5 INDEX CONSTRUCTION

The index construction phase is responsible for processing
the input features set F to generate the proposed AID or
AID* index. This construction process runs in a distributed
environment and we implement it on both Spark and
Hadoop. Index construction is an offline phase which is
carried out before users start visualizing the data.

There are two main design objectives of this phase,
minimize the index size and reduce the index construction
time. To achieve these goals, we propose two adaptive index
construction methods, AID and AID* that classify the tiles
based on their estimated processing time into four classes,
image, data, shallow, and empty tiles. In AID [22], two types
of tiles are materialized to disk, image and data. Image
tiles contain prerendered images and data tiles contain data
records that can be used to generate more tiles as needed
on-the-fly. In AID*, only image tiles are materialized in the
index. Instead of storing the data tiles, an existing general
purpose R*-tree index is utilized to generate the tiles that
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Dataset
< Image tiles (43 tiles)
Data tiles (92 tiles)

Shallow tiles (1230 tiles)

Figure 4: Adaptive indexing showing different number of
image, data and shallow tiles

Input dataset

and tile contents Tile classification

@ Image Tiles
<2 Data Tiles

<> Shallow Tiles
< Empty Tiles

Index Sizes
HadoopViz: 16 tiles

AID: 14 tiles
AID*: 8 tiles

Figure 5: Tile classification example

are not materialized. The rest of this section describes the
out in Section 5.1. Section 5.2 details the process of building
the index. Section 5.3 derives a theoretical analysis for the
index construction phase.

5.1 Index Layout

The proposed index follows the multilevel pyramid layout
similar to the one illustrated in Figure 4.

Tile Classes: In this paper, we make the observation that
not all tiles are equal from a data management perspective.
For example, a tile that covers New York City is more
expensive to visualize than a a tile in a small city like Palm
Springs due to the disparity in the number of features in
each tile. Based on this observation, we classify the tiles into
four classes, namely, image, data, shallow, and empty tiles.
We use Figure 5 as a running example where the input
has 22 records indicated as points, and the four tile classes
are illustrated. The ID of some tiles is indicated between
(...) to refer to in the discussion. Below, we first define
the parameter § and then we define the four classes of tiles
based on 6.
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Figure 6: Tuning of the parameter 6

Definition 8. The threshold 0 is an index parameter that de-
fines the largest number of records that can be visualized
within the time limit of 500 milliseconds.

The visualization performance relies on the implementa-
tion of the visualization abstraction (Definition 7). To tune
the parameter #, we simply run a mini-experiment on a
single thread where we gradually increase the input size
and measure the visualization time and observe when the
500 millisecond cutoff is reached. Figure 6 shows the results
of this experiment on a point dataset where the cutoff is
reached at around 160,000 records. Normally, this tuning
step would take around 26 time, i.e., one second.

Definition 9. A tile ¢ is an image tile if it has a size [t.F| > 0.
In Figure 5, tile (1, 1, 0) is an image tile because it has five
records while § = 2.

Definition 10. A tile ¢ is a data tile if its size 0 < [¢t.F| < 0
and its parent tile ¢, has a size |t,.F| > 6. In other words,
the parent tile ¢,, is an image tile.

In Figure 5, tile (1,1, 1) is a data tile because it has two
records while its parent (0, 0, 0) is an image tile.

Definition 11. A tile t is a shallow tile if its size 0 < |[t.F| < 0
and the size of its parent |t,.F'| < 6. In other words, its
parent is not an image tile.

In Figure 5, tile (2,3,3) is a shallow tile as it has one
record while its parent is a data tile.

Definition 12. A tile t is an empty tile if it does not contain
any features, t.F' = (). Tile (2,0,0) is an example of an
empty tile.

In traditional image indexes [4], each non-empty
tile is stored as an image in a separate file named
‘tile—z-x-y.png’. This makes the total number of tiles in
a pyramid P with Z zoom levels, |P| = (4% — 1)/3, which
exponentially explodes as Z increases.

In the proposed AID index, we reduce the size of the
index by only storing image and data tiles where an image
tile is stored as a prerendered image and a data tile is stored
as a data file. In AID*, we further reduce the size of the index
by only storing image tiles while using a general purpose
R*-tree index to replace all data tiles.

Each of these image tiles are .png files or raster images of
a fixed size (256 x 256 default image size). However the data
coverage that constitute these images can be way larger. For
example, a data of 1000 Mb can generate an .png file of size 4
Mb. The size of the data file is dependent on the size of §. A
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Algorithm 1 Classify a tile in constant time

Algorithm 2 Create tiles

1: function CLASSIFYTILE(t = (2, z,y), H,0)
2: k = H.size/2* > Number of cells covered by ¢

3 (c1,m1) = (z »<k, ;gr kk) ><Firi’§C (column,row) covered by ¢
4: tileSize =  °=7 TSR Hir,e] > O(1) operation
5: if tileSize g(c):tﬁen 1%:1:1';11 emp’c[y7 ] op
6: if tileSize > 6 then return image
7: if z=0 then return data © Special case for the root tile
8: // Compute the size of the parent tile
9% z=lz/2];y=ly/2]
10: k=k/2]; (c1,m1) = (z-k,y-k)
11: parentSize = Ziiﬁi% 2122” Hlr, c] > O(1)operation
12: if parentSize > 6 then return data > Parent is image tile
13: return shallow

data tile can be extremely small, even smaller than the size
of an image tile, if an extremely small value of 6 is chosen.
However, choosing extremely small § can make it almost
equivalent to image-only indexes. The results of such low 6
are explained in more details in Section 7.6. The next part
explains how the AID and AID* indexes are constructed.

5.2 Index Building

This part describes how to build the AID and AID* indexes.
The input consists of a set of records F, a threshold 6, and
the number of zoom levels Z to generate.

In this paper, we consider the two types of data par-
titioning (default and pyramid partitioning) and we make
two new contributions. 1) we add a preprocessing summa-
rization phase that computes a histogram of the input data.
This histogram is used to estimate the size of each tile. 2)
we enrich the tile creation phase by employing a novel tile
classification algorithm that accurately classifies each tile in
constant time. The index building process consists of three
phases, data summarization, tile classification, and tile creation
as described below.

5.2.1 Data summarization

This first preprocessing phase summarizes the data to allow
classifying the tiles based on their visualization cost. Based
on the work in [23], we build a uniform grid histogram with
dimensions h X h, where h = omin(zmaz,hmaa) Zmax = 4 —
1 is the maximum zoom level requested by the user and
Rmae is an upper bound which is configured based on the
available memory in the system.

The summarization phase runs as two Spark jobs one
computes the MBR of the input which is used to define the
grid dimensions and the other uses those grid dimensions
to compute the histogram values, in parallel. Finally, the his-
togram is processed on a single machine by computing the
prefix sum along rows and columns to enable the constant
time estimation and the final histogram is broadcast to all
the cluster nodes. More details can be found in [23].

5.2.2 Tile classification

In this part, we show how we use only the histogram
and the threshold 6 to classify any tile in constant time.
Algorithm 1 shows the pseudo code of the classification
algorithm. The input is a tile ID (z,z,y), the histogram

1: function CREATETILES(F, H, 0, [z, zx])

2: Initialize P to an empty hash map

3: for each record f € F do

4 for each tile ¢ that overlaps f: z € [z1, zx] do
5: td = retrieve the tile data @(z, z, y) from P
6: if td is NULL then

7: tile-class = CLASSIFYTILE((z, z,y), H, 0)
8 if tile-class is image then

9: Initialize td as an empty image canvas
10: else if index type is AID then
11: and tile-class is data
12: Initialize td as an empty set of records
13: Insert td into P at position (z, z, y)
14: if td is an image canvas then
15: Plot the feature f on the image canvas td
16: else if td is a set of records then
17: Add the feature f to the set td
18: return P

H which is a two dimensional array of numbers, and the
size threshold . The output is one of the four labels, image,
data, shallow, or empty. Lines 2-3 compute the range of grid
cells in the histogram that overlap the given tile. The top-
left corner of the overlapping block of cells is at (¢, 71) and
the block contains k£ x k cells, as shown in the pseudo code.
Line 4 computes the size of the tile. Notice that we use the
summation notation for clarity but the algorithm uses the
prefix-sum to compute the summation in constant time. If
the computed size is zero, the tile is classified as empty. If
it is larger than the threshold 6, it is classified as an image
tile. Otherwise, we have to check the size of its parent tile
as well to decide whether it is a data tile or a shallow tile.
Line 7 handles the special case where the tile is the root and
there is no parent tile in which case it has to be a data tile.
Otherwise, Lines 9-11 compute the size of the parent tile
similar to Lines 2-4. Finally, Lines 12-13 determine the type
of the tile based on the size of its parent. If the parent is an
image tile (size > 0) (Line 12), then the tile is a data tile.
Otherwise, the tile has to be a shallow tile (Line 13).

In the example in Figure 5, we need a histogram of size
2371 x 2371, For this example, we set the threshold 6 to two
records. The root tile (0, 0, 0) is an image tile as it covers the
entire histogram with a total size of 22 records. At level 1,
three tiles are classified as image tiles except for tile (1,1, 1)
which is classified as a data tile because it has two records
only. Atlevel 2, more tiles are classified as data tiles. The two
shaded tiles at level 2 are classified as shallow tiles because
they are not empty and their parent is a data tile, e.g., tile
(2,3,3).

5.2.3 Tile Creation

This phase scans the input and creates the image tiles
and optionally the data tiles based on the histogram com-
puted earlier. Similar to HadoopViz [4], we introduce two
algorithms, namely, default-partitioning-based algorithm and
pyramid-partitioning-based algorithm. The two techniques are
synchronized together to produce the desired multilevel
image. The primary logic of the two algorithms is based
on the function CREATETILES listed in Algorithm 2 and
described below.
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The function takes four parameters, a feature set F, a
histogram H, a threshold 6, and a range of zoom levels
(2L, zm]. It returns a pyramid P as a list of key-value pairs
where the key is a tile ID and the value is either an image,
for image tiles, or a set of records for data tiles. Notice that 7
is not the entire input set but a subset based on how the data
is partitioned as explained shortly. The function has two big
loops in Lines 3 and 4 that iterate over each feature f € F
and each tile that overlaps the MBR of that record in the
given range of zoom levels [zr, zy]. For each overlapping
tile t with a record f, Line 5 tries to retrieve the tile data td
from the pyramid P. If the tile data is not in the pyramid
(Line 6) it has to be initialized to either an empty canvas
(image), for image tiles, or an empty set of records, for data
tiles. Line 7 uses the CLASSIFYTILE function (Algorithm 1)
to determine the type of the tile which is then initialized in
Lines 8-12 based on its class. Lines 14-17 process the record
by either plotting it on the canvas (for image tiles) or adding
it to the set of records (for data tiles). Notice that AID and
AID* only differ in Line 11.

The CREATETILES function is used as a building block to
create all the tiles in parallel. The pyramid is split horizon-
tally into two ranges of zoom levels [0, z*] and [z*+1, Z—1],
where z* is computed as shown in [4]. The upper part
of the pyramid is processed using the flat partitioning
algorithm which partitions the data randomly and uses the
CREATETILES with 2z, = 0 and 2y = 2" on each partition to
generate partial tiles. The created partial tiles are shuffled,
merged, and finally written to the output. The lower part
of the pyramid is processing using the pyramid partitioning
method which first partitions the data based on the tiles
and then the tiles in each partition are generated using the
CREATETILES function and written to the output. No shuffle
or merge is needed for the pyramid partitioning algorithm.

5.3 Analysis of Index Construction

To further understand the cost of the index construction and
index size, this part makes a simple analysis of the index size
and relates it to the index construction time. Our approach
is to estimate the number of tiles that affect the index sizes,
i.e., image, data, and shallow tiles. Then, based on which
tiles are constructed and stored in each type of index, we
can estimate their cost.

Let us assume that the input has [V uniformly distributed
points, number of zoom levels Z, an image tile dimension
T, and a threshold 6 that represents the maximum number
of records in a data tile. The uniform distribution results in
all tiles in each zoom level z to have the same number of
records:

N,=N/4*,2€10,2) 2

Where N, is the number of records in a tile at level z. As a
result, all data tiles appear at one zoom level, say zp, while
all higher levels (z < zp) contain image tiles. To determine
the value of zp, we notice that all tiles at z > zp have less
than 0 records as the tiles get smaller in deeper levels. That
is,Vz > zp : N, < 0. Therefore, Vz > zp : z > log(N/6) /2.
Since z > zp in this inequality, zp is the smallest integer
that satisfies the inequality which results in:

zp = [log, (N/6)] ~ log, (N/0) (©)

7

Notice that if the user requests fewer levels, thatis, Z < zp,
the data tiles are too deep to be reached and no data tiles
will be processed or generated. The number of data tiles D

is computed as:
0
p={{.

Similarly, the total number of zoom levels with image tiles
is Z; = min{zp, Z} which makes the total number of image
tiles I given as below.

14 < zp

14 > zZp (4)

421 —1
I = 4Z =
> Yo 5)
z€[0,Zr1)
Finally, the number of shallow tiles (.S) is calculated as
47 —1
S = 4% = —-D-1 6
> - ©)

z€(zp,Z)

We approximate Equations 4, 5, and 6, by assuming Z > zp
and removing the ceiling and floor functions. This results in
the following approximations.

D =~ 4*P ~ N/f (7)

41

1

~ N/30 ®)

S~47/3 - N/ — N/30 = %(42 —4N/0) )

Where I, D, and S are the number of image tiles, data tiles,
and shallow tiles, respectively. Based on the above analysis,
we can estimate the size of each of the three indexes as
follows. (1) AID*: The AID* index only materializes image
tiles. This makes the index size upper-bounded by N/6
tiles. Each tile has a resolution of 7% which makes the total
index size to be T2 N/6. (2) AID: The AID index stores both
the image and data tiles. Since all the data tiles appear in
one level, their total size is equal to the input size IN. This
makes the index size equal to 4N/36 files with a total size of
T?N/6 + N. (3) HadoopViz: In HadoopViz, all non-empty
tiles are materialized as images which makes the index
size equal to D + I + S = 4%/3 tiles with a total size of
T247 /3. Both AID versions increase linearly with the input
size which makes them more scalable as we experimentally
verify in the experiments section. In addition, AID* is much
smaller in terms of number of files and total size which
makes it more scalable.

An important observation is that the parameter § defines
the value of zp which in turn define an upper bound for
the number of image and data tiles. However, the number
of shallow tiles can be arbitrary large. This explains why
AID index can be much smaller than the image index and
AID* is even smaller. In the image index like HadoopViz,
all the shallow tiles are also materialized as images. Since
we assume that data are uniformly distributed, we do
not consider empty tiles in the cost model. However, this
analysis can be extended for non-uniform distribution of
data based on the box-counting technique [24], [25]. In such
a case, the biggest change in the cost model would be
introduction of empty tiles (E). The box counting technique
estimates the number of non-empty buckets in a histogram
given the cell size of the histogram using an exponential
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Algorithm 3 Get a tile from the index

1: function GETTILE(z, z, y)

: if an image tile tile-z-x-y.png is available then
return the pregenerated image tile

. // Compute the MBR of the requested tile

. tileMBR.width = InputMBR.width / 27

. tileMBR.height = InputMBR .height / 27

. tileMBR.x = InputMBR.x + tileMBR.width * x

: tileMBR.y = InputMBR.y + tileMBR.height * y

. if index type is AID* then

Retrieve the records in tileMBR from the R*-tree
Visualize the retrieved records and return the image

© ® N U W

— =
=)

—_
N

: // AID index. Locate and process the ancestor data tile

: while z > 0 and file ‘tile-z-x-y’ does not exist do
z=z—1,2=|z/2];y = |y/2] > Go the parent tile
. if ‘tile-z-x-y.png’ exists then

16: return empty image

17: else if ‘tile—-z-x—-y.csv’ then

18: // Either a data or a shallow tile

19: Retrieve the records in tileMBR from the data tile

20: Visualize the retrieved records and return an image

—_
= W

—_
a1

correlation function. To compute the correlation coefficients,
we need to first compute several histograms of the data to
catch its distribution. Once the number of non-empty tiles
are calculated, Equations 4- 6 will need to be adjusted so
that they add up to the number of non-empty tiles.

Non-uniform data can also result in each tile at a par-
ticular zoom level z to have unequal amount of records.
As a result, there will not be a z; that will have all the
data tiles. Instead z,; can be defined as the level where first
data tile/s appear. Similarly the definition of Z; gets altered
accordingly. Even though the actual numbers that our cost
model produces might be inaccurate due to the uniformity
assumption, we will show in the experiment section that the
general trends are similar, so, we will leave the extension of
the cost model to a future work.

6 VISUALIZATION QUERY

This section describes how the visualization server uses the
indexes to provide an interactive exploratory interface. The
main challenge is to provide a real-time experience to the
end users. Especially, data and shallow tiles need to be
processed to visualize. In the next part, we first define the
visualization query and then we show how to answer it
using the AID and AID* indexes.

6.1 Query Definition

The primary link between the front-end visualization in-
terface and the visualization server is the query to fetch
the tile called GETTILE. The input is a tile ID (z,z,y) and
the output is an image that represents this tile. The image
can be either a vector image or a raster image as defined
by the visualization abstraction (See Definition 7). Notice
that while the index might contain image or data tiles, the
return value of the GETTILE query is always an image. The
conversion of the raw data file into images in real time is
the primary challenge in visualization query. This keeps the

8

index structure transparent to the front-end interface in the
browser.

6.2 Query Processing

Given a tile ID, this part describes how to generate and/or
return the corresponding tile image given an AID or an AID*
index. Since the visualization server can host many datasets
and cannot keep all their histograms in the memory, the
histograms are discarded after the index creation. Therefore,
the query processor only relies on the generated tiles to
answer the query. For simplicity, we assume that image tiles
and data tiles are in . png” and ‘. csv’ files, respectively.

Algorithm 3 provides the pseudo code for the GETTILE
function which is more clearly explained with Figure 7.
First, if the user requests a tile which is stored as an image
tile (e.g., tile A in Figure 7), the corresponding image is
returned. This case is handled in the code in Lines 2-3.
Otherwise, an image might need to be generated on the
fly. Lines 4-8 compute the MBR of the requested tile to
retrieve the corresponding data from the index as explained
in Definition 4.

At this point, the query processing of AID and AID*
diverges. In Lines 9-11, if an AID* index is being processed,
then there is an accompanying data index R*-tree. The index
is directly processed with a range query of the tileMBR to
retrieve all overlapping records. The retrieved records are
visualized on-the-fly and the generated image is returned.

On the other hand, if an AID index is being processed,
then there is no R*-tree index but there are data tiles. In this
case, the index is searched for the corresponding data tile.
Lines 13-14 keep climbing up the pyramid structure until
the first file is located. If that file is an image tile (e.g., Tile B
in Figure 7) this indicates that the requested tile is empty
and an empty image is returned. If that file is a data tile,
it indicates that the requested tile is either a data tile (e.g.,
Tile C) or a shallow tile (e.g., Tile E). Both are processed in
the same way as shown in Lines 17-20. The contents of the
data tile is searched for all records that overlap the tileMBR
and those records are visualized and the generated image
is returned. As an example, consider an AID index built
on the dataset in Figure 5 and a visualization query that
requests the tile (2, 3, 3) at level 2. First, the server looks for
either an image or a data file named ‘tile-2-3-3.png’
or ‘tile-2-3-3.csv’ which are both not found. Next, it
checks for the parent tile (1, 1, 1) which happens to be a data
tile, i.e., a file ‘tile-1-1-1.csv’ is found. It concludes
that the requested tile is a shallow tile and generates it from
the encountered data file.

One major difference between AID and AID*, is that
AID can identify an empty tile (Line 16) and process it very
efficiently by returning an empty image. On the other hand,
when processing AID?*, the algorithm will always search the
R*-tree index for any tile that is not pregenerated which is
typically more costly. On the other hand, data and shallow
tiles are processed by first retrieving the records and the
retrieved records are visualized. According to the design
of both AID and AID*, the number of records to visualize
is always upper-bounded by 6 to ensure an interactive
response time of the visualization query.
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Figure 7: Examples of the visualization query

the parent data tile

7 EXPERIMENTS

This section aims at providing an extensive experimental
evaluation of our proposed work. We primarily highlight
the following: 1) Our index can scale up-to terabytes of
data, 2) It is applicable across platforms (Spark or Hadoop),
but performance varies for these two, 3) The preprocessing
phase for visualization is significantly faster than the base-
line, 4) There is a significant decrease in the index size with
the proposed index, and 5) The visualization query operates
within 500 milliseconds for almost all the queries.

The experiments are based on four performance metrics:
1) Index construction time 2) Index size in terms of number
of files, 3) Index overhead as the percentage increase over
the non-indexed data, 4) Visualization query time. Addi-
tionally we also depict the effect of threshold 6 and tile
dimension of each tile on the proposed index.

7.1 Experimental Setup

The experiments are executed on Amazon Web Service
(AWS) with m3.xlarge nodes (30-150 nodes) for scalability
and reproducibility. The visualization server runs on a single
machine with 16 cores, 128 GB of RAM, and 10 TB HDD. The
front-end of the server is implemented in JavaScript using
OpenLayers APIs [21] while the back-end is implemented
as a Jetty server in Java. Table 2 lists the datasets that we use
in this work. Unless otherwise mentioned, the experiments
use the default parameter values listed in Table 3. We denote
the threshold 6 in terms of bytes by multiplying with the
average record size.

Table 2: Input Datasets

[ Dataset [ Size | #records [ Description |
All-Nodes 96GB 2.7 B | All points on the map
All-Nodesxn | nx96GB nx 2.7B | All-Nodes replicated n

times (up-to 10)
Buildings 26 GB 115M | Buildings footprint
Tweets 1.6 GB 20 M | Geotagged tweets

We use the following notation for the algorithms that we
use in this part. The suffix */Hadoop” and */Spark’ indicates
which implementation is tested and on which platform.

7.2 Scalability and Platform Independence

To show the scalability of the proposed indexes, this ex-
periment constructs AID and AID* indexes of Z = 20

Table 3: Parameters and default values

[ Parameter [ Values (default) |
Input size 1.6 GB-1TB
Number of levels (Z) 1-(20)

Threshold (6)
Tile dimensions (7T')
Cluster size

10KB--- (I0MB)--- 1GB
(256), 512, 1024 pixels
12, 30, 65, (100), 150 (nodes)

zoom levels on the 1 TB A11-nodesx10 dataset. We show
the index construction time on both Hadoop and Spark.
This experiment propagates the following important points.
1) The proposed indexes can be be implemented in both
Spark and Hadoop. 2) Both Hadoop and Spark scale well
on large clusters. 3) Spark is generally more efficient due
to its architectural differences. 4) Spark is up-to an order of
magnitude faster than Hadoop.

=S o 5
T T T

Index construction time in mins

IS
T

| I | I I I | I
30 65 100 150 30 65 100 150
Number of Nodes Number of Nodes

(a) Spark (b) Hadoop
Figure 8: Scalability of AID and AID* on Hadoop and Spark

Hadoop failed to produce an AID index of the 1 TB
dataset with 30 nodes after taking too much time. This
experiment not only shows the scalability of the proposed
indexes, but also proves the advantage of AID* over AID.

7.3

This section studies the index construction time for both
AID and AID*. HadoopViz is kept out of these experiments
because it doesn’t scale beond level 10. In Figure 9(a), we
vary the input size from 100 GB to 1 TB and report the
overall index construction time. As shown, while both AID*
and AID scale well up-to 800 GB, AID ceases to scale beyond
that, while AID* continues up-to 1TB. Additionally, AID*
is generally more efficient as it only generates image tiles
while AID generates both image and data tiles.

Index Construction Time

10~

Index construction time in minutes

| | | | | | |
200 400 600 800 1,000 10 12 14 16 18 20
Input Size

Number of levels

(a) Effect of input size (b) Effect of number of levels
Figure 9: Index construction time

In Figure 9(b) we fix the input size at 100 GB and vary
the number of levels from 10 to 20. We have the following



TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO.X

four observations in this experiment. 1) All variations of
AID and AID* scale well with large number of zoom levels.
2) For small number of levels, e.g., Z = 10, AID and
AID* behave almost similarly with very small difference in
construction time. According to our analysis in Equation 3,
zp = [log(100 GB/1 MB)/2] = 9 which means that
most of the tiles in the generated pyramid are image tiles
which makes both techniques similar. As Z increases, we
start to see a difference between the different algorithms
depending on which tiles are generated in each index. 3) As
we increase the number of levels beyond 12 levels, the
running time starts flattening for both AID and AID*, as
they stop generating new tiles. In AID, as we move into
deeper levels, the number of image tiles decreases, and the
number of data tiles increases first for a few initial levels,
and eventually we get shallow and empty tiles which do not
require any computation time for AID. For AID*, we do not
generate data tiles because of an already pre-existing data
index which causes the index construction time to stabilize
at an earlier level (Z = 12.)

A AD
- AD
—k— System A
10°| -5 GeosparkViz
—A— HadoopViz

A AID*
& AD
—k— System A
B GeosparkViz
. —&— Hadoopviz
8 10 12 14 16
Number of Levels

Index size in MB (Log Scale)

" :.‘74::;!:3:':‘.:‘. ]

| I I I I il
8 10 12 14 16 12 4 6

Index construction time in mins (Log Scale)

Number of Levels

(a) Index construction time across (b) Index size for various systems
various systems

Figure 10: Various system comparisons in terms of index
construction time and index sizes.

We conduct a similar experiment on other systems with
Twitter data and a cluster of 12 nodes as shown in figure
10(a). A smaller input data was chosen to accommodate
system A which runs on a single machine. It should be noted
that despite choosing a smaller dataset, while generating
indexes for System A, we had to choose an option that
allows dropping dense tiles as and when required without
which, System A failed to generate indexes beyond level 6.
It should also be noted, according to the latest implementa-
tion of GeosparkViz [20], their emphasis is on generating
specific image tiles based on spatial range query, instead of
generating the entire index together. The observations are as
follows: 1)AID and AID* takes extremely small construction
time as compared to other systems, mainly because, they
spend way less time creating images from the data. 2)
Geosparkviz, which is designed to produce extremely fast
spatial range query visualization, takes longer preprocess-
ing time with increasing zoom levels. 3) System A takes
the longest time, mainly because it is a single machine
system and despite being able to operate on parallel threads,
it fails to match up with a distributed system set-up. 4)
GeosparkViz fails to produce an index beyond level 14. It
makes sense because GeosparkViz is not designed for a deep
multilevel visualization. Instead it more efficient for visual
analysis and queries.
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7.4 Index size

In this section we measure the index size. The experiments
measure the index size using two metrics. 1) The number of
files which is an important metric given that the index will
be hosted on a single machine web server. The performance
of many file systems degrade as the number of files increase
so we would like to reduce this number. For the sake of
comparison, we set the node size in R*-tree to 1 MB (equal
to #) and count the number of leaf nodes. 2) The index
overhead as the ratio of the added size divided by the
original size. This measures how much additional data we
need to write to build the index. HadoopViz rarely scales
above level 10. Hence to keep the comparison fair, we have
computed the index overhead for AID and AID* upto a
zoom level 10.

Figure 11(a) depicts the index size, in terms of number of
materialized tiles, for A11-nodes. For lower levels, AID*,
AID and HadoopViz produce almost the same number of
tiles which indicates that Z is too small to generate many
data tiles. As the number of levels increases, the number
of tiles of HadoopViz index exponentially explodes while
both AID and AID* keep it under control. HadoopViz fails
to generate an index beyond level 10 as it takes too long
to execute. R*-tree is oblivion of the zoom levels and is not
affected by changing zoom levels.

X X X X : : 100 F— T T .

| R —R—&-® Retree K
107 A AID*
- AD 5 10 F g

~A-HadoopViz

1072 =
A AID*

10t i - AD
A/A/"_'A—‘—A 1073 —A-HadoopViz
0| A\A\‘\A ,

| | | |
é ]b 1‘2 ]‘4 1‘6 1‘8 100 300 500 800
Input Size

(b) Index Overhead Vs Input Size

R*-tree

Number of Tiles (log scale)
Index Overhead (log scale)

Levels

(a) Tiles Vs Zoom Levels
Figure 11: Index size

In Figure 11(b), we increase the input size from 100 GB
to 800 GB and measure the index overhead. 1) The overhead
of the proposed AID* index is minimal and it is always
less than 0.1% as it only contains a few image tiles. The
extreme small index overhead also ensures that 1000,000
of big datasets can be hosted on a single machine. 2) The
index overhead for AID and AID* decreases with increasing
input size, whereas for R*-tree index it remains constant for
any input size. For R*-tree, the index overhead is around
45% which is in line with the work in literature. For AID
and AID*, the overhead decreases because the number of
tiles is upper bounded due to the fixed size of the pyramid
(Z = 20) while the input size can increase indefinitely.
Therefore, it is expected that the index size increases at a
slower rate as compared to the input size. 3) HadoopViz fails
to run on any index sizes beyond 300 GB of data. 4) AID*
has almost 3.5 times less overhead compared to AID, which
is caused by the AID’s requirement to generate both data
and image tiles. This confirms our theoretical analysis in
Equations 7 and 8 where the number of images tiles is
roughly one third the number of data tiles.
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Figure 10(b) shows how index size increases for different
systems with increasing zoom levels for Twitter data. The
figure provides the following observations: 1) AID* takes
least indexing space, which makes it obvious why it can
support multiple datasets unlike many other systems. 2) The
index size becomes constant for AID and AID* after level
8 while others show an exponential increase. 3) The index
size of GeosparkViz and Hadoopviz is almost same and it
expands exponentially with the zoom levels.

7.5 Visualization Query
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(a) Average visualization time per (b) Number of generated tiles
zoom level grouped by visualization time

Figure 12: Visualization query processing time

This part evaluates the performance of the visualization
query described in Section 6 In this experiment, we use
a benchmark that comprises a set of 1,000 random points
in the input space. For each point, we generate all the
overlapping tiles in levels 0 to 19 for A11-Nodes dataset in
HadoopViz, AID, and AID*. This benchmark simulates the
real workload of users zooming in from the root tile to a cho-
sen location on the image. This runs on a single machine. We

Time in seconds
Time in seconds
T

[ | | | |
12 4 6 8 10 1 2 4 6 8 10
Number of subsequent zoom-in actions

Number of concurrent users

(a) Visualization query time for (b) Visualization query time for
subsequent zoom-in action multiple users

Figure 13: Visualization query time with parallel requests

can see the following observations in this experiment. 1) For
levels [0, 2] all techniques, AID, AID*, and HadoopViz, take
almost the same time because all the tiles at these top levels
are usually image tiles which are just retrieved from disk.
2) Since HadoopViz materializes all possible images, the
visualization time remains constant regardless of the zoom
level. While being efficient in this query, it is also considered
over-optimized from the visualization perspective as the users
do not usually realize the difference between a 1 millisec and
a 500 millisec [3] response time. Moreover since HadoopViz
does not scale over 10 levels in the index construction
phase, we can explore it visually only up-to level 10. 3) The
performance of AID and AID* increases as the zoom level
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increases as they start to processes data records to generate
images on the fly. Both AID and AID* do a good job at
keeping the running time below 1 second on average for
the initial 8-9 levels. Although AID* is significantly more
efficient throughout the 20 levels as it relies on an efficient
R*-tree index while AID relies on small non-indexed raw
files of 1 MB each. It should also be noted that the AID’s
query time increases significantly after level 10. The primary
reason for this phenomenon is, all the tiles beyond level 10
are shallow tiles and each time a shallow tile is requested
the server goes up to fetch the parent tile and generate the
image of the shallow tile. The deeper the zoom level is the
higher the server has to go up the pyramid to get the parent
tile of the requested shallow tile. This increases the average
query processing time for the tiles belonging to the parent
tiles” level (say level 9,10 and 11 for all nodes).

Figure 12(b) projects the number of tiles that are com-
puted within a specific time to project the number of tiles
that need more than 500 milliseconds query processing. As
we can see, for AID* the entire set of tiles up-to level 20
can be queried within 500 milliseconds. In AID*, each time
a non-image tile is requested, they are fetched from a R*
index of the input data. For deeper levels these requests
fetch very small amount of data making the query time
extremely small. For AID on the other hand, for a shallow
tile requests, the server needs to find its parent data tile by
climbing up the pyramid. Each of these data tiles are almost
of size 6, making it computationally heavy. This is primarily
the reason for AID having so many tiles taking more than
500 ms to execute the query.

In order to measure how the visualization query re-
sponds to an extremely fast zoom-in or zoom-out actions we
generated the entire hierarchy of tiles of subsequent zoom
levels together. For example if a user zooms from level 15
to level 20 very fast, the children, grandchildren of tile 15 to
20 were requested simultaneously and must be generated in
real time. Figure 11(a) shows the results for such actions.
We chose data tiles, since image tiles are fetched in constant
time. As we can see though, AID took roughly 3500 millisecs
for zooming into 10 levels together, AID* could competently
keep it around 500 millisecs.

Another scenario could be when multiple users want to
visualize a dataset simultaneously. To address more com-
plex operation, we expect each of these users to zoom-in
upto the deepest level. Figure 13(b) shows the number of
users varying from 10 to 1, while for each of these tiles,
each user zooms-in upto level 20. As we can see though
AID increases exponentially with increase in tile numbers,
AID* remains almost constant. The reason for AID* having
almost a constant time for visualizing these tiles is because
AID* spends most of the time in reading the files, but do
not spend much time in processing, so parallelism makes it
more efficient. On the other hand, AID has a complicated
process of reading really big files and generating images for
each of the shape in the .csv files. Hence adding more tiles
to that process adds more to the processing and hence adds
more time.

7.6 Threshold

In this section, we vary the threshold (#) from 10 KB to 1 GB
and measure the indexing time, the index overhead, and
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query processing times for different thresholds. Figure 14
shows the results of this experiment on the ALL NODES
dataset. Since HadoopViz does not use a parameter 0, we
don’t show it in our figure.
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Figure 14: Effect of changing threshold on index construc-
tion time and number of tiles generated
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Figure 15: Effect of changing threshold on visualization
query

From Figure 14 a), we can simply say that increasing
the threshold 6 reduces the indexing time as well as the
number of tiles. But the index overhead of AID increases
significantly as depicted in Figure 14 b). As we increase
the threshold, we are making image tile generation more
restrictive. This results in less image tile generation, which
also results in reducing the index construction time. Besides,
it results in more records in a single data tile for AID, which
although reduces the number of data tiles, increases the
individual size of the files. This causes a drastic increase
in index overhead in AID. Since AID* generates no data
tiles, the index construction time of AID* is significantly
low from the very beginning. Finding the optimal value of
6 depends on how the users weigh the indexing time and
query processing time.

In figure 15 we provide the results of querying AID,
AID*. In figure 15 a), a low threshold results in most of
the tiles being image tiles and hence for AID, all the tiles
could be retrieved in constant time. Despite, AID and AID*
generating same number image tiles, AID* star experiences
a growth in time for visualization query. Unlike AID, in
AID* for each empty, data or shallow tile requested by the
user,it needs to refer to its R*-index to return the appropriate
tiles. This phenomenon caused the visualization query time
to grow in figure 15 a). However, it never crossed 500
millisecs. It should also be noted that a low threshold of 10
KB generates almost as same number of tiles as HadoopViz,
making it impossible to scale upto level 20. On the other
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hand, figure 15 b), the threshold being as high as 1 GB not
only makes the image tiles less in number, but also makes
each of the data tiles of AID, as big as 1 GB. Such big data
tiles are computationally exhaustive to be generated on fly.
Hence the visualization query of AID reaches almost 1.2
secs for many tiles. AID* being devoid of any data tiles,
does not encounter any such issues and successfully keeps
the visualization query time less than 500 millisecs.

7.7 Tile Dimension

This section focuses on the effect of tile dimensions of
the image tiles on the performance of the AID index. It
emphasizes on finding an optimal tile dimension that 1)
does not take too long in index construction 2) is not too
big to be optimally queried by the visualization server

In this experiment, we used five tile dimensions
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Figure 16: Effect of tile dimension in index construction time
and number of tiles generated
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Figure 17: Visualization query performance with changing
tile dimension

In Figure 16 we are conducting the experiments to
measure the index construction time and number of tiles
generated in the index construction phase. It should be
noted that as we move up in tile dimension, we construct
one less level to keep the same resolution. So this is a trade-
off between many small tiles, increasing the number of files
in the index or some small number of tiles containing a lot
more information. The reduction in the number of levels
does not affect the time though as we see in figure 16 b).
This is because for levels as deep as 19-22, the tiles are
mostly shallow or data for AID, and AID* has no extra
image tiles so deep. Most image tiles are realized by level
14, as seen in earlier experiments. As figure 16 a) suggests, a
tile dimension of 256 x 256 takes the least index construction
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time. This can be explained by the fact that in lower tile
dimension, we have to construct more tiles to represent the
same visual area. This increases the index construction time.
On the other hand, for higher tiles dimension, since a single
tile represent a big area, it might end up having very less
info in one tile. As a result higher tile dimension has fewer
empty tiles, which results in a longer index construction
time. When we test these various tile dimension for visual-
ization queries, the time taken to visualize the different tile
dimensions are not very significantly different for 64 x 64
tiles and 1024 x 1024 tile as portrayed in figure 17.

7.8 Qualitative Comparison

This section compares the visual exploration provided by
AID* with two different commercial systems referred in the
paper as System A and System B.

7.8.1 SystemA

In this experiment, we visualize the Twitter dataset with
20 million records, on both AID* and System A. Similar to
AID*, System A preprocesses the data according to a given
number of zoom levels and produces vector tiles that are
then used by a visualization server to display on the map.
The index construction time and index size in System A
in comparison with other systems, are provided in figures
10(a) and 10(b).

(a) AID* - Index construction in (b) System A - Index construc-

11 minutes. Index size is 989.4 K. tion in 42 mins. Index size is 1

All records are visualized. GB. Only a sample of the records
is visualized

Figure 18: Comparison of exploring the Tweets dataset on
AID* and System A

Figure 18 shows that AID* is able to visualize all the
records which gives a superior user experience while Sys-
tem A chooses to sample the records and visualize only a
few of them. Figure 18(b) highlights some of the areas that
seem empty on System A while they do have data as shown
on AID*.

7.8.2 System B

This system does not provide a detailed description of their
index construction or tile generation method. However, they
provide a web-hosted visualization of the Microsoft’s Build-
ing Footprint data which covers the entire United States.
We took the same dataset and generated AID* index and
visualized it on our server. The first observation in this visu-
alization is that System B does not produce any visualization
until level 8. It is a plain blank map until then. We start
seeing data points from level 9 onward and as Figure 19
suggests, AID* provides a more detailed visual points as
compared to System B. We also noticed a significant delay
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(a) AID* visualizes all records (b) System B visualizes sample
records
Figure 19: Comparison of exploring the Microsoft

Buildings dataset on AID* and System B

in the response time of System B which goes up-to five
seconds. However, we could not run a formal experiment
on the response time due to the lack of access to the back-
end server to run a controlled experiment.

7.9 Cost Model Verification

This section experimentally verifies the the accuracy of the
proposed cost model. Figure 20 measures the index size in
terms of number of files. We use equations 8, 7, and 9 to
compute the number of image, data, and shallow tiles. Then,
we compute the estimated size of the three indexes based
on which tiles are materialized in each index. We further
generated a synthetic uniform data as described in [26] to
test the model. Since the results were exactly the same as
figure 20(b), we do not show them as a separate figure.
We also generate the actual index using the three method
to compute the actual sizes of the three indexes. From the
first glance, the trends of the three lines look very similar
which verifies that the growth of the estimated index size
is correct. While HadoopViz could not finish on time, the
estimated cost model projects the exponential growth which
explains why it fails.
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Figure 20: Verification of the cost model with Z

We still noticed two discrepancies between the estimated
and actual sizes. First, the AID and AID* indexes stabilize
at around 10° tiles based on the cost model in Figure 20(a)
while they stabilize at around 10* tiles in the real experiment
in Figure 20(b). This is a result of ignoring the empty tiles in
our analysis which results in an over estimation of the index
size. Second, the estimated cost model has an abrupt change
at levels 10 and 12 for AID* and AID, respectively while in
reality the change is gradual. This is a direct result of the
uniformity assumption that causes all data tiles to appear
at one level while in reality they appear gradually based on
the data distribution and skewness. Despite these discrep-
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ancies, the cost model is still very effective in explaining the
behavior of the experiments.
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Figure 21: Verification of the cost model with 6

Figure 21 illustrates the effect of the threshold (f) on the
index size based on the cost model and reality. Both plots
in Figure 21 show a steady decline in the number of tiles
for both AID and AID* with increasing threshold as it is
expected. Due to skewness of data at a very low threshold
of 10, AID and AID* generate same amount of tiles in reality.
But according to the cost model, the data tiles are all on level
12 for a threshold of 10. Hence the difference in index size of
AID and AID* in Figure 21(a). But we see a similar trend in
the decline of index size with increasing threshold in both
the cost model and reality. As we increase 6, the level that
contains most data tiles (zp) decreases. Once zp becomes
smaller than Z, data tiles start to appear. As we increase 0
more, the number of data tiles will start to decrease.

8 CONCLUSION

This paper addresses the problem of interactive exploration
of big spatial data. It defines five requirements for a suc-
cessful system for this problem and shows that existing sys-
tems do not support all five of them. Then, we introduced
AID and AID* indexes which successfully satisfy the five
requirements leading a successful interactive exploratory
system. We also defined the visualization query interface
that uses the proposed indexes to answer any visualization
query in less than 500 milliseconds. Finally, we provided
an extensive experimental evaluation on up-to a terabyte
of data to show the scalability of the proposed solution
as compared to baselines. This paper opens many future
research directions in the area of exploratory analysis of big
spatial data such as further tuning the index based on other
user requirements such as the desired index size, indexing
time, or the number of generated files.
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