SpiderWeb: A Spatial Data Generator on the Web

Puloma Katiyar Tin Vu Ahmed Eldawy
Computer Science and Engineering Computer Science and Engineering Computer Science and Engineering
Department Department Department
University of California, Riverside University of California, Riverside University of California, Riverside

puloma. katiyar@email.ucr.edu tin.vu@email.ucr.edu eldawy@ucr.edu

Sara Migliorini
Computer Science Department
University of Verona, Italy
sara.migliorini@univr.it

ABSTRACT

This demonstration presents a web-based generator for spatial data.
This generator allows users to choose from a wide range of spatial
data distributions and configure the cardinality of the data and the
distribution parameters. It then provides three functionalities. First,
it provides a visualization of how the data will look like. Second,
it allows users to download this data in several standard formats
including CSV and GeoJSON. Third, it provides a permalink that
users can bookmark or share with their team members to reproduce
the same dataset later. This service is a step towards standardized
benchmarking for spatial data systems.

CCS CONCEPTS

« Information systems — Spatial-temporal systems; Web ap-
plications.

KEYWORDS
synthetic data, generator, spatial data

ACM Reference Format:

Puloma Katiyar, Tin Vu, Ahmed Eldawy, Sara Migliorini, and Alberto Belussi.
2020. SpiderWeb: A Spatial Data Generator on the Web. In 28th International
Conference on Advances in Geographic Information Systems (SIGSPATIAL °20),
November 3-6, 2020, Seattle, WA, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3397536.3422351

1 INTRODUCTION

In many published papers, researchers often need to test their imple-
mentations of new index structures or query execution methods on
large scale spatial data. While some real datasets exist, the research
community also needs to try datasets with specific characteristics
to highlight how the proposed research behaves under certain cir-
cumstances. Synthetic data generation gives researchers full control
over the data characteristics such as data skewness, complexity of
geometries, or amount of overlap between datasets [5].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGSPATIAL °20, November 3—6, 2020, Seattle, WA, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8019-5/20/11.

https://doi.org/10.1145/3397536.3422351

Alberto Belussi

Computer Science Department
University of Verona, Italy
alberto.belussi@univr.it

A potential tool for generating synthetic spatial datasets with
various skewed distributions has been proposed recently [5]. The
generator takes a dataset descriptor, which is a vector containing in-
formation about the data to be generated. This descriptor uniquely
identifies the data and consists of two parts: (1) the distribution
ID for 6 implemented distributions and (2) the model parameters
depending on the chosen distribution. Additionally, an affine trans-
formation can be applied to the data, allowing for scaling, rotating,
and moving the data. This generator has been successfully used in
existing research to evaluate index construction, query processing,
spatial partitioning, and cost model verification [5].

In this demonstration, we implement a Spatial Data Generator
on the Web (Spider-Web), available at http://_spider.cs.ucr.edu. This
generator focuses on minimizing the time and space complexity
to allow the program to serve hundreds of concurrent users and
generate terabytes of data with minimal resources [2]. We anticipate
that this tool will be utilized to generate large datasets (over a billion
data points) with sizeable download file sizes. In order to streamline
the generator, we use the following strategies:

e Streaming the generated data to reduce the user’s wait times
for downloading files

e Developing a more efficient algorithm for the parcel distri-
bution generator, which previously had the highest time and
space complexity of all the other distribution types

Through these methods, we created a web-based tool to improve
the reproducibility of experiments on synthetic data. The web gen-
erator provides a simple interface for users to enter the desired
dataset parameters. Then, users can immediately visualize a sam-
ple of the data to confirm that this is the desired datasets. After
that, users can ask to generate and download the full dataset and
the download starts immediately regardless of the dataset size. In
addition, the web generator generates a permalink that users can
bookmark or share with their team members to regenerate the same
dataset later.

2 DATASET GENERATION

As described in the introduction, this web-based generator was
developed primarily with time and space efficiency in mind. In this
section, we detail several techniques used to achieve this.

https://doi.org/10.1145/3397536.3422351
https://doi.org/10.1145/3397536.3422351
http://spider.cs.ucr.edu

SIGSPATIAL ’20, November 3-6, 2020, Seattle, WA, USA

2.1 Streaming the Generated Data

Since the generator is expected to be used to generate large datasets,
it is crucial that the file download of the data begins in less than a
seconds of the user clicking a button on the web interface. Some
existing systems, e.g., MNTG [3] and TAREEG [1], generate the
dataset to disk before providing the user with a download link.
This requires users to enter their email address, enter a queue of
requests, and when their data is generated they receive an email
with the download link. This might seem inevitable if the dataset is
very large and would take several minutes to generate.

In this demonstration, we address this problem by designing
the generator to stream the data from the back-end to the browser
rather than generating the data, storing it in a file on the server,
and then transferring it over. This relies on an HTTP feature called
chunked transfer which generates the response one chunk at a time
and sends it back to the requester. So, we design our generator to
stream the generated data back to the client rather than saving all
of them to a file and sending a link to that file.

This approach has multiple benefits for both the user and the
server. First, and most notably, it saves resources on the server. With
the streaming method, the server does not store any of the data as
it is being generated. Second, if the user cancels the request for data
while it is in progress, the server will be notified of the disconnec-
tion and will immediately free the compute resources required to
generate the remaining data. Third, this approach prevents the sys-
tem from being overwhelmed with multiple consecutive requests
that might consume all the server resources.

On the user side, users do not have to wait for all the data to
be generated before starting to receive it. By asking the user to
select a download location on their computer upfront, we avoid
requiring the user’s attention during the remainder of the data
generation and download. This gives the user instant confirmation
that their request is valid and frees them up from waiting to begin
a download. Additionally, if the generated dataset was intended
for use as input for a software that accepts streaming input, this
technique of streaming the generated data allows the software
further down the pipeline to begin immediately. For example, this
data can be piped through curl to a Python script that processes
the data as it is generated by the server. If the script had an error,
for example, it will be caught immediately rather than waiting for
the entire file to download first.

The technique of streaming the data consists of two parts. First,
the HTTP header “Content-Disposition: attachment” is sent to
the browser well before any of the generated data is sent over.
Upon receiving this header, the browser triggers the save dialog
box, prompting the user to select the download location before
the client can begin saving data to that file. Second, the generator
program forces a flush of a small chunk of data at the beginning of
the data generation. By doing this flush on the stdout buffer, which
is used to send the data to the browser, we are choosing not to
rely on the implementation details of Python or the host operating
system of the server and its memory capacity and buffer sizes. In
the generator program, we flush the output pipe after 10 data points
have been generated so that the file writing on the client side can
start immediately.

Katiyar et al.

LT

it B D =wnan =

.ﬁ—‘

Figure 1: Parcel Distribution Model [5]

2.2 Streamed Parcel Generator

Among the six distributions currently supported by the spatial
data generator [5], five of them are inherently designed for stream
generation. They generate one record at a time with all records
independent of each other. However, the parcel distribution is in-
herently sequential since it work by recursively splitting the space
until the desired number of records are generated then the records
are disturbed with some noise and written to the output. The final
output of the parcel distribution includes geometries that represent
boxes of different sizes as illustrated in Figure 1. This distribution
can model land sections delineated in urban areas.

First, let us describe how the parcel generator works in its origi-
nal implementation. In addition to the cardinality card of the gen-
erated dataset, the parcel generator takes two specific parameters r
and d, where:

e r € [0,0.5] is the minimum tiling range for splitting a box.
r = 0 indicates that all the ranges are allowed while r = 0.5
indicates that a box is always split into half.

e d € [0,1] is the dithering parameter that adds some random
noise to the generated rectangles. d = 0 indicates no dither-
ing and d = 1.0 indicates maximum dithering that can shrink
rectangles down to a single point.

The original implementation of the parcel distribution algorithm
relied on a breadth-first traversal of the tree of rectangles, as de-
scribed in our previous paper [5]. However, we adapted this method
to better fit with our streaming data technique.

The new parcel distribution algorithm proposed in this demo
uses a depth-first traversal to start generating data at the leaf node
level as quickly as possible. Compared to the other 5 distribution
types, the parcel distribution is unique because generating each
data point relies on the previously generated data point, or the
parent bounding box. Originally, all the parent nodes would have
to be generated before the first piece of data could be sent to the
client. But by converting the algorithm to a depth-first traversal,
we are able to generate the first data point much more quickly.

In the previous breadth-first traversal, a queue was used to store
all the boxes from the second to the last level in the tree, which could
take up a very large amount of memory. In the depth-first algorithm,
the number of intermediately stored boxes is proportional only to

SpiderWeb: A Spatial Data Generator on the Web

SIGSPATIAL °20, November 3-6, 2020, Seattle, WA, USA

Algorithm 1: G,g,c.; (7, d): Generate boxes of the parcel
distribution

Input: card, dim = 2,r,d

Result: Stream of geometries: G = {geom}

Initialize the random number generator with given seed;
2 G « {Box(0,0,1.0,1.0,0)}; // Initial box at depth @
maxHeight =[log, card];

-

w

'S

numSplit = 0;

numToSplit = card - gmax{maxHeight-1,0},
boxesGenerated = 0;

while boxesGenerated < card do

o

o

N

8 | b G.pop;

9 if b.depth > maxHeight - 1 then
10 if numSplit < numToSplit then
11 b1, by = split(b);

12 numSplit += 1;

13 Dither and output by, by;
14 boxesGenerated += 2;

15 else

16 Dither and output b;

17 boxesGenerated += 1;

18 if boxesGenerated == 10 then
19 ‘ Flush output;

20 else

21 b1, by = split(b);

22 G .push(by);

23 G .push(by);

24 return G

the log of the cardinality card. This vastly reduces the amount of
memory needed to generate the data.

The depth-first traversal algorithm is described in Algorithm 1,
with a helper function detailed in Algorithm 2. The algorithm begins
with an initial 1 square unit bounding box. This box is continually
split in two, generating a tree of boxes. The tree will be of the
minimum height h needed to have the number of boxes on the leaf
level be greater than or equal to the cardinality. If the number of
boxes on the level of height 1 (second to last level) is n short of the
cardinality, then n boxes will be split on that level to generate n * 2
boxes on the leaf level. The remaining boxes will be generated on
the level of height 1. This method produces realistic variations in
the sizes of the parcels.

3 DEMONSTRATION SCENARIO

This tool is best demonstrated in an interactive setting, where
the audience can directly test the application. This web appli-
cation will be hosted on a university web server at the domain
http://spider.cs.ucr.edu/, making it available for public use. For our
demonstration, we will set up a laptop for the audience to interact
with the application. The audience may configure the data to their
preferences, then see a visualization of the dataset and download it.

Algorithm 2: Split(b, r): Split box using split range r

Input: b, r
Result: List of boxes: B = [boxes]
1 if b.width > b.height then
2 splitSize = b.width «U(r,1—7r) ;
3 b1=Box(b.x, b.y, splitSize, b.height, b.depth + 1);
4 ba=Box(b.x + splitSize, b.y, b.width - splitSize, b.height,
b.depth + 1);
5 else
6 splitSize = b.height «U(r,1-7r) ;
7 b1=Box(b.x, b.y, b.width, splitSize, b.depth + 1);
8 ba=Box(b.x, b.y + splitSize, b.width, b.height - splitSize,
b.depth + 1);

9 return B

3.1 Web Interface

Figure 2 shows the current state of the main page of the data gen-
erator web interface. The top portion of the web page has multiple
input fields for users to configure the dataset to their needs. The
“distribution” drop-down field offers 6 different distribution types:
uniform, diagonal, Gaussian, Sierpinski, bit, and parcel. The in-
put of the “cardinality” field determines how many data points (or
rectangles, in the case of parcel distribution) should be generated.
“Dimension” indicates the dimensions of the data and the “format”
field allows users to choose from 3 different download format types:
CSV, WKT, and GeoJSON.

The next 6 input fields are specific to the type of distribution cho-
sen, so not all will apply concurrently. These input fields are grayed
out if they are unnecessary for the currently selected distribution
type. Fields will become available to edit once the corresponding
distribution is chosen. For instance, if “bit” is selected for the distri-
bution type, the input fields for “probability” and “digits” will be
enabled since those parameters are needed to generate “bit” dis-
tribution data. Finally, the “seed value” input field gives users the
option to enter a value that will be used to seed the random func-
tion in the generator. This enables the user to generate a dataset
that is both random and reproducible.

This generator offers a considerable degree of customization
for the user, which increases its usability. Since the generator uses
standard, widely accepted data distributions, it can be used in bench-
marking tests.

3.1.1 Data Visualization. The third part of the web interface is a
visualization space that displays how the chosen dataset will look
like when generated. Once all the necessary initial inputs are given
by the user, a graph will appear at the bottom of the web interface
displaying the generated data as shown in Figure 2. As input values
are changed, the visualization will immediately reflect the result of
the change.

The graph is created using the OpenLayers API, which offers
the flexibility to create multiple vectorlayers to display multiple
datasets [4]. Users will be able to overlap different datasets and
easily compare them. Additionally, users can see what the generated
data will look like prior to downloading the full file. This makes it

SIGSPATIAL ’20, November 3-6, 2020, Seattle, WA, USA

Katiyar et al.

Spatial Data Generator

@Layer 1 X

Distribution: @ Bit B Cardinality:® 1000 <

Dimension: @2 Format:@ wkt <]

Percentage: @ 0.5 Buffer:@ 0.5
Probability:@/0.2 Digits: @10 .
Split range:@ 0.5 Dither:@ 0.5
Seed value: @ 2
Affine transformation parameters®

al(Sx):00.8 a2 (Rx):00

a3 (Tx):@|0.1 a4 (Ry):@/0

a5 (Sy):0/0.8 26 (Ty):@ 0.1

Download Layer | Refresh Layer | Add Layer

vLayer 2

Permalink: http://ec-dn.cs.ucr.edu/spi

Developed at UC Riverside Big Data Lab
By Puloma Katiyar, Tin Vu, Ahmed Eldawy, Sara Migliorini, Alberto Belussi

Figure 2: Spatial data generator web interface

simple for users to see how to alter the data characteristics to fit
their needs.

To support this feature in the demo, the web interface sends a
generation request in the background with the same parameters
that the user is currently specifying but with a limited cardinality
of 1,000 records. This upper limit ensures that the visualization
would appear immediately on the web interface. The 1000 point
limit was found to display within 1 second and still give users an
accurate representation of the chosen dataset distribution.

This visualization also offers the option of transforming the data.
As seen in Figure 2, the black dots in the corners of the graph can
be clicked and dragged by the user to scale or rotate the data that
is currently displayed. Users can also select individual datasets and
move them around on the graph for comparison purposes. The
values on the x-axis and y-axis will change accordingly to reflect
the location of the newly transformed dataset.

3.1.2 Downloading and Accessing Datasets. The third user scenario
involves bookmarking a dataset to retrieve it later. The proposed
web generator automatically generates a unique ID for any dataset
given its distribution and generation parameters. This unique ID
consists of three parts:

o The distribution ID for 6 implemented distributions.

e The parameters dependent on the chosen distribution.

e The affine transformation applied on the generated dataset
to scale, translate, or rotate it.

With these three components, a dataset can be exactly repro-
duced by anyone. This is the most impactful strength of this appli-
cation. Since the dataset descriptor fully identifies the generated
dataset, researchers who use this tool can simply cite the appli-
cation’s corresponding papers and list the descriptors they used.
Others can then generate the exact same datasets for their own test-
ing purposes. With this web-based tool, users can just share a link

that directly generates the same dataset. Thanks to our streamed
generator, no book keeping is needed on the server side and all

these links are essentially provided for free.

Figure 2 shows that the application gives users access to a perma-
link consisting of all the dataset descriptors needed to replicate the
synthetic data. This permalink updates as inputs are changed, giving
users an easily accessible method of reproducing a certain dataset.
Users can also share this permalink with others, such as a research
group, so that they may all generate and utilize identical datasets.

4 FUTURE WORK

The simplicity and flexibility of this application makes it possible
to easily expand it in the future. We plan to add more distributions
to our generator. If researchers start to use the generator, we also
plan to add citation information that includes the dataset ID and
sample Latex code that authors can directly embed in their papers.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Foundation
(NSF) under grants IIS-1838222 and CNS-1924694 and by Agricul-
ture and Food Research Initiative Competitive Grant no. 2019-67022-
29696 from the USDA National Institute of Food and Agriculture.
This work is also partially supported by the Italian National Group
for Scientific Computation (GNCSINDAM) and by “Progetto di
Eccellenza” of the Computer Science Dept., Univ. of Verona, Italy.

REFERENCES

[1] Louai Alarabi, Ahmed Eldawy, Rami Alghamdi, and Mohamed F. Mokbel. 2014.
TAREEG: a MapReduce-based system for extracting spatial data from Open-
StreetMap. In SIGSPATIAL. ACM, Dallas/Fort Worth, TX, USA, 83-92. https:
//doi.org/10.1145/2666310.2666403

[2] Puloma Katiyar. 2020. Spatial Data Generators. GitHub Repository. https:
//github.com/puloma-k/spatialdatagenerators

[3] Mohamed F. Mokbel, Louai Alarabi, Jie Bao, Ahmed Eldawy, Amr Magdy, Mo-
hamed Sarwat, Ethan Waytas, and Steven Yackel. 2013. MNTG: An Extensible
Web-Based Traffic Generator. In SSTD (Lecture Notes in Computer Science, Vol. 8098).
Springer, Munich, Germany, 38-55. https://doi.org/10.1007/978-3-642-40235-7_3

[4] OpenLayers. 2029. Class: VectorLayer. https://openlayers.org/en/latest/apidoc/
module-ol_layer Vector-VectorLayer.html

[5] Tin Vu, Sara Migliorini, Ahmed Eldawy, and Alberto Belussi. 2019. Spatial Data
Generators. 1st ACM SIGSPATIAL International Workshop on Spatial Gems (2019).

https://doi.org/10.1145/2666310.2666403
https://doi.org/10.1145/2666310.2666403
https://github.com/puloma-k/spatialdatagenerators
https://github.com/puloma-k/spatialdatagenerators
https://doi.org/10.1007/978-3-642-40235-7_3
https://openlayers.org/en/latest/apidoc/module-ol_layer_Vector-VectorLayer.html
https://openlayers.org/en/latest/apidoc/module-ol_layer_Vector-VectorLayer.html

	Abstract
	1 Introduction
	2 Dataset Generation
	2.1 Streaming the Generated Data
	2.2 Streamed Parcel Generator

	3 Demonstration Scenario
	3.1 Web Interface

	4 Future Work
	References

