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This article explores the use of deep learning to choose an appropriate spatial partitioning technique for big
data. The exponential increase in the volumes of spatial datasets resulted in the development of big spatial data
frameworks. These systems need to partition the data across machines to be able to scale out the computation.
Unfortunately, there is no current method to automatically choose an appropriate partitioning technique
based on the input data distribution.

This article addresses this problem by using deep learning to train a model that captures the relationship
between the data distribution and the quality of the partitioning techniques. We propose a solution that runs
in two phases, training and application. The offline training phase generates synthetic data based on diverse
distributions, partitions them using six different partitioning techniques, and measures their quality using
four quality metrics. At the same time, it summarizes the datasets using a histogram and well-designed skew-
ness measures. The data summaries and the quality metrics are then use to train a deep learning model. The
second phase uses this model to predict the best partitioning technique given a new dataset that needs to be
partitioned. We run an extensive experimental evaluation on big spatial data, and we experimentally show the
applicability of the proposed technique. We show that the proposed model outperforms the baseline method in
terms of accuracy for choosing the best partitioning technique by only analyzing the summary of the datasets.

CCS Concepts: « Computing methodologies — Neural networks; « Information systems — Database
management system engines;

Additional Key Words and Phrases: Spatial partitioning, deep learning, skewed data, data synopsis

ACM Reference format:

Tin Vu, Alberto Belussi, Sara Migliorini, and Ahmed Eldway. 2020. Using Deep Learning for Big Spatial Data
Partitioning. ACM Trans. Spatial Algorithms Syst. 7, 1, Article 3 (August 2020), 37 pages.
https://doi.org/10.1145/3402126

1 INTRODUCTION

In recent years, there has been a notable increase in the amount of spatial data produced by IoT
sensors, social networks, and autonomous vehicles, among others. This led to many research

This work was partially supported by the Italian National Group for Scientific Computation (GNCS-INDAM) and by “Pro-
getto di Eccellenza” of the Computer Science Dept., Univ. of Verona, Italy. This work was also supported in part by the
National Science Foundation (NSF) under grants IIS-1838222 and CNS-1924694 and by the USDA National Institute of Food
and Agriculture, AFRI award number 2019-67022-29696.

Authors’ addresses: T. Vu and A. Eldway, University of California, Riverside, 900 University Ave, Riverside, CA 92521,
USA; emails: tin.vu@email.ucr.edu, eldawy@ucr.edu; A. Belussi and S. Migliorini, University of Verona, Strada Le Grazie
15, 37134 Verona VR, Italy; emails: {alberto.belussi, sara.migliorini}@univr.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

2374-0353/2020/08-ART3 $15.00

https://doi.org/10.1145/3402126

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 1, Article 3. Publication date: August 2020.



https://doi.org/10.1145/3402126
mailto:permissions@acm.org
https://doi.org/10.1145/3402126

3:2 T. Vu et al.

Table 1. Execution of the DJ in SpatialHadoop with Different Kinds of
Indexes (i.e., Gr = regular grid, Qt = Quadtree, Rt = R-tree) and Different
Distributions of the Datasets (i.e., Uni = uniform distribution,

Skw = skewed distribution)

Dataset Dataset Tot. time Map tasks
distribution  index (mills)  #tasks AVGtime %RSD
(millis) time
Uni/Uni Gr/Gr 145,307 37 15,833 4%
Uni/Uni Gr/Qt 150,458 51 18,902 9%
Uni/Uni Gr/Rt 147,646 54 16,231 7%
Uni/Skw Gr/Gr 125,327 33 22,710 90%
Uni/Skw Gr/Qt 96,001 52 11,209 50%
Uni/Skw Gr/Rt 40,205 21 18,087 28%

# tasks is the total number of map tasks, AVG time is the average time for a map task,
and %RSD is the relative standard deviation for the running time of map tasks.

efforts for developing big spatial data frameworks that are able to absorb and process these huge
amounts of data such as SpatialHadoop [13], Simba [38], GeoSpark [39], and others [14, 28, 32].
Regardless of their internal architecture, all these systems have a common and necessary first
step, that is, spatial data partitioning. These systems scale out by partitioning the data across
machines and then processing these partitions in parallel. However, there is no single partitioning
technique that all the systems agree on. Rather, most of these systems provide a wide range of
spatial partitioning techniques and it is up to the user to choose an appropriate one. Past studies
showed that the spatial partitioning approach is critical to the performance of many spatial
analytic operations such as indexing [11], computational geometry [12], visualization [16], spatial
joins [13], kNN joins [24], and others.

Choosing an appropriate spatial partitioning technique is a very challenging and complicated
problem for two reasons. First, the efficiency of these partitioning techniques rely on the char-
acteristics and distribution of the dataset, e.g., uniform Vs skewed data, points Vs rectangles, or
clustered Vs scattered data. Second, the requirements of the analytic operations play a huge role
in choosing a partitioning technique, e.g., maximize load balancing, minimize partition overlap, or
prefer square-like partitions. Recent studies provided both theoretical [6, 8] and experimental [11]
evaluations of several partitioning techniques for big spatial data and highlighted the complexity
of choosing one technique over the others. As new partitioning techniques are developed [35], the
problem becomes even more complex.

To illustrate the complexity of the problem, Table 1 shows the result of the execution in Spatial-
Hadoop of the Distributed Join (DJ) [7, 15] applied to two synthetic datasets, where the first one is
uniformly distributed (i.e., “Uni”) and partitioned using a regular grid (i.e., “Gr”), while the second
one varies from a uniform (i.e., “Uni”) to a skewed (i.e., “Skw”) distribution and has been partitioned
using different techniques, namely regular grid (i.e., “Gr’), Quad-tree (i.e., “QOt”), and R-tree (i.e.,
“Rt’). Interestingly, when both datasets are uniformly distributed, the response time of the D] is the
best with the uniform grid partitioning with Rt and Qt coming as close second and third. However,
when a skewed distributed dataset (Skw) is considered, then the differences are significant, and in
this particular case are in favor of the R-tree-based partitioning technique. This is due mainly to
the fact that when the distribution is skewed the partitioning of the geometries based on a regular
grid does not produce balanced splits, while the Quad-tree and the R-tree-based partitioning tech-
niques perform better and produce more balanced splits. This is evident from columns 4, 5, and 6
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Fig. 1. The workflow of the proposed solution.

of Table 1, which report the characteristics of the map tasks in the different cases. In particular,
column 4 contains the number of instantiated map tasks (which depends on the pair of intersecting
partitions from both datasets), column 5 reports the average time taken by a map task, and column
6 shows the relative standard deviation of the execution time of the map tasks w.r.t. to their mean
signifying the load balance. It is clear that balancing the cost of the single map tasks is crucial for
the total cost of the MapReduce job, in particular when the implemented operation is performed
primarily in the map phase.

The aim of this article is to define a new mechanism for choosing the most appropriate partition-
ing technique for a given dataset. There are three design goals for the proposed work: (1) ability to
make a decision based on parameters that can be computed quickly, (2) support arbitrarily many
partitioning techniques, and (3) provide different choice criteria based on the requirements of the
analytic operation and the user preferences.

To achieve the three goals mentioned above, we propose the framework illustrated in Figure 1.
The framework works in two main phases, namely, training and application phases. In the training
phase, we build the partition selection model that is able to choose an appropriate index for any
given dataset. This phase is executed as an offline phase, and it consists of the following four
components.

e Dataset Generator: This component generates many diverse synthetic datasets that are
used to train the model. This step is important for deep learning that needs a very large
training set that catches as many input features as possible.

e Data Summarizer: This component takes every input dataset and computes a set of de-
scriptors that summarizes the dataset and catches its details. This step transforms the
variable-size input dataset to a fixed-size feature vector X that the deep learning algorithm
can process. This article considers two summarization techniques, fractal-based techniques,
which utilize skewness measures that are developed by experts, and a simple histogram that
represents a detailed density map.
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e Partitioning Selector: This component assesses the quality of all supported spatial parti-
tioning techniques to choose the best one. It evaluates the performance of all the available
partitioning techniques using a set of standard quality metrics and generates a label Y that
contains the best partitioning technique for each quality metric. The deep learning can use
the pair (X, Y) for training the model.

e Model Training: This last step takes the feature vector X and the label vector Y and
uses deep learning to build a model that can estimate the performance vector Y given the
features X.

The second phase, the application phase, uses the model produced by Phase I and applies it on a
new (real) dataset, provided by the user, and chooses the most appropriate partitioning technique
for it. This phase first computes the feature vector X’ exactly as in Phase I but on the real dataset.
Then applies the model M on the vector X’ to produce an estimated performance vector Y’ that
encodes the most appropriate partitioning technique. The chosen technique, taking into account
also the user requirements (i.e., which operation she/he needs to apply), can then be passed to any
big-spatial data system, e.g., SpatialHadoop or GeoSpark, for actual data partitioning and analysis.

In this article, we build a prototype for the proposed system using six different partitioning
techniques, five quality metrics, and two data summarization techniques. The first summariza-
tion technique uses a few well-crafted skewness measures for spatial data including box counting
[6, 8] and Moran’s Index [25]. The second summarization technique uses a simple histogram for
the entire dataset that represents a details density map but could be harder to use by the machine
learning component due to their big size. One of the goals of this article is to study which summa-
rization technique works better for this problem. In other words, can the deep learning technique
extract its own skewness measures from the histogram that outperforms the ones developed by
the experts? We test the proposed framework using both synthetic and real big datasets to show
the effectiveness of the proposed framework. The initial experiments show up to 90% accuracy
with synthetic data and 80% with real data.

In summary, the contributions of the article are listed and presented hereby:.

(1) Training set generation: Deep learning model require a sufficiently large and represen-
tative training set. In the considered context where the problem to address is to choose
the most suitable partitioning technique for a given spatial dataset of unknown distri-
bution, no training set is available (unlike the image classification problem where huge
repositories are freely available on Internet). So the first contribution of this article is to
propose an approach for generating a training set addressing this kind of problems, and
this includes a set of algorithms for producing the training set in a reasonable amount of
time. In particular, the application that generates the training set has been implemented
in Spark.

(2) Feature extraction: Once a training set is generated, we need to decide the features
that should be extracted from the dataset to use as input to the machine learning model.
There is an agreement that the distribution of the dataset is the key feature for choosing
the best partitioning technique but the question is as follows: Which descriptors should
be chosen? Which statistical descriptor is the best one for supporting the choice of
a correct partitioning technique? To answer this question, this article proposes two
techniques. The first technique extracts an ensemble of carefully selected skewness
measures that have been shown to catch several important features of spatial data
including box-counting [6, 8] and Moran’s Index. This techniques resembles classical
image processing techniques that extracts manually designed image features. The second
technique uses the dataset histogram as one big feature and let the modern deep learning
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method extracts its own features from the histogram. We show in this article that this
method is easier to implement, since it avoids hand-picking the skewness measures and,
thanks to deep learning, can provide very high accuracy.

(3) Experimental evaluation: Finally, as third contributions we configure, train and test a
Neural Network proving that the proposed idea is feasible. In the experiments we use a
considerable amount of synthetic datasets with different distributions and some real huge
datasets. The results support our intuition that the histograms can be a good choice for
addressing the optimization issue regarding data partitioning.

The rest of this article is organized as follows. Section 2 formalizes the problem. Section 3 de-
scribes the training phase that builds the partition selection model. Section 4 describes the ap-
plication phase applying the model to real datasets provided by the user. Section 5 provides an
extensive experimental evaluation of the proposed system using real datasets. Section 6 describes
the related work. Finally, Section 7 concludes the article.

2 PROBLEM DEFINITION

The problem that this article addresses is, given a spatial dataset, how to choose the best parti-
tioning technique that will provide the best performance. Considering the case study shown in
Table 1, it is evident that this is an important yet challenging problem given the complexity of big
spatial datasets. In addition, the objectives of the spatial partitioning vary by the spatial operation
that will be applied and the requirements of the system that applies this operation. For example,
in selection and join operations, it could be desired to minimize the total area or total margin
of the partitions [3, 4, 11]. However, for computational geometry operations [12], minimizing or
eliminating the overlap between partitions could be more beneficial. For scanning and aggregate
operations, load balance (i.e., minimize the variance) could be of a high advantage to minimize the
straggler effect. This section aims at clearly defining the problem that includes how to identify the
best partitioning technique.

Definition 2.1 (Feature (f)) A spatial feature f represents a record that contains a geometry g
and a set of non-spatial attributes A = {a;}. The minimum bounding rectangle f.MBR is the small-
est orthogonal rectangle that encloses the geometry g. The size f.s is the total size of the feature
representation, i.e., geometry plus attributes, in bytes. In this article, we do not process the actual
geometry or attributes, rather, we only consider the MBR and size. A feature is also referred to as
a record following the database terminology.

Definition 2.2 (Partition (P)). A spatial partition P = {fj, ..., fi,} is a set of spatial features that
are stored in the same file block(s). The MBR, size, total number of blocks and average cardinality
of blocks of the partition are defined as:

P.MBR =MBR|| ] f.g| = MBR[(_] f.mbr
ep

epP
P.s= Zfs
feP
P.blocks = [P.s/B]
| P |
P.card = ————
4= D blocks’

where B is the block size of the file system that has a default value of 128 MB in HDFS.
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Any partitioning technique aims at producing partitions having at most one block; however, in
practice the application of a technique to a real dataset D might produce also partitions containing
more than one block, due to the particular distribution of the features of D in the reference space.

Definition 2.3 (Partitioning Technique (PT)). A partitioning technique (PT : D — %) is a function
that can be applied to a dataset D = {f;} to produce a set of partitions = {Pi} such that each
feature f; is assigned to at least one partition, i.e., [ Jp ep P = D.

Definition 2.4 (Quality Metric (QM)). The quality metric (QM : £ — R) is a function that is
applied to a set P of partitions to quantify its quality as real number gm € R, e.g., the total area of
partitions or standard deviation of the partition sizes or a combination of them.

Notice that the quality metric to be chosen might depend on the user requirements, i.e., the
requested operation. Moreover, the quality metrics used in this article are better when having
lower values, e.g., total area or total margin. However, there exist other quality metrics for which
the higher the value the better, e.g., disk utilization. The approach proposed in this article can
handle both types of quality metrics.

Next, we define the main problem that we address in this article.

Definition 2.5 (Partitioning Selection Problem (PSP)). Given a spatial dataset D, a set of parti-
tioning techniques PT = {PTy,...,PT,}, and a quality metric QM, choose the best partitioning
technique PT; that will minimize/maximize the quality metric QM when applied to the dataset D.

A naive solution to the PSP problem is to apply all partitioning techniques to the big dataset and
then compute the quality metric for all the resulting partitions and choose the best one. However,
since the big spatial data frameworks deal with peta bytes of data, it is not feasible or effective to
apply all possible partitioning techniques.

This article proposes a solution to this problem through a framework that uses deep learning to
predict the best partitioning technique based on a history of how all partitioning techniques behave
with datasets that are similar to the input dataset D. At a very high level, the proposed framework
works in two phases: training and application. The training phase looks at a huge number of
reference datasets and their quality when partitioned with all the available partitioning techniques.
Then, it builds a small model M that captures this complicated relationship. The application phase
takes a new dataset D and applies that model on D to choose a partitioning technique that is
expected to be the best. This entails the following challenging problems that we address in this
article.

e Dataset generation: How should we generate large and diverse reference datasets that
can be used for training? These datasets should capture as many aspects of the partition-
ing techniques as possible. They should also simulate real datasets so that the generated
model can be used with real data. We address this problem by surveying a large number
of synthetic data distributions used in literature and choosing a set of representative dis-
tributions that are close to real datasets. Then, we generate a large number of datasets for
each distribution by varying its parameters. Finally, we combine the generated datasets to
generate more compound distributions that cannot be represented by a single distribution.
This process has been done with the support of our open-source spatial data generator [36].

e Dataset similarity: One of the biggest problems is how to measure the similarity between
different datasets including real datasets that are only available in the second phase. We
evaluate and contrast two directions. The first direction uses some skewness measures de-
fined by the experts such as box counting [6] and Moran’s index [25]. The second direction
uses a simple uniform histogram that is easier to compute but of a much larger size. The
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second option is particularly intriguing to use with deep learning as the histogram looks
like an image that deep learning is particularly good at.

e Performance evaluation: Given a dataset D, a set of partitioning techniques PT, and a set
of quality metrics QM, how to measure all the quality metrics for all the partitioning tech-
niques on the dataset D to be able to identify the best one for training purpose? We address
this problem by proposing a distributed Spark-based algorithm that is able to generate the
partitions ¥ for all partitioning techniques as one distributed job without really having to
partition the actual features of D. This technique allows us to generate a large number of
reference datasets in a short time to improve the accuracy of the model during the training
phase.

e Model training: Given the reference datasets and their corresponding quality measures,
how to build a model that captures this complicated relationship? To address this problem,
we use deep learning to build such a model and explain in this article how we choose the
parameters for this model and do the model training.

3 TRAINING PHASE

The training phase is responsible of building the machine learning model M that can choose the
best partitioning technique for a dataset D. This phase works in four steps. (1) Generate a set
of reference datasets to use as training set. (2) Summarize each training dataset into a fixed-size
vector that is used for training. (3) Compute all quality metrics for each dataset and label each
dataset with the best partitioning technique for each quality metric. (4) Apply deep learning to
learn the relationship between the data summary and the best technique. Details of the four steps
are provided below.

3.1 Training Set Generation

This section describes the distributions of the synthetic datasets that we use for model training.
Different distributions of geometries in the reference space produce different behavior of the par-
titioning techniques, which provide very different subdivisions of the features in the resulting
partitions. Figure 2 illustrates an example with four datasets: a uniformly distributed set of rect-
angles (Uniform distr.), a set of rectangles distributed around the diagonal of the reference space
(Diagonal line), a set of rectangles distributed around the lower left and upper right corners of the
reference space (Double cluster), and a real dataset containing the primary roads of the USA (Pri-
mary roads). Three partitioning techniques have been applied: regular grid, QuadTree, and RTree
to all the datasets. The resulting partitions are shown by drawing the boundary of their MBRs on
top of the datasets plots. Notice that the MBRs produced by different techniques are very differ-
ent from each other. Thus, the dataset distribution is a vital characteristic for deciding the correct
partitioning technique. To build an effective training set, it is crucial to generate datasets with
different distribution, in particular with different kind of skewed distributions.

For all datasets, two common parameters are set, the reference space (a bounding rectangle of the
input space), and the total size. In addition, each distribution can have some additional parameters
that control the dataset generation. In particular, we consider the following dataset distributions
exemplified in Figure 3:

e Uniform distribution: The dataset geometries are uniformly distributed inside the reference
space (Figure 3(a)). A parameter s is adjusted to represent the maximum side length of each
rectangle. This distribution models real datasets that are uniformly distributed, e.g., houses
in suburbs.
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Uniform distr. Diagonal line Double cluster Primary Roads

Regular Grid

.

RTree-based Grid

Fig. 2. Partitions produced by applying different techniques (first row: regular grid; second row: QuadTree-
based grid; third row: RTree-based grid) for both synthetic and real datasets.

e Linear distribution: The dataset geometries are all located very close to a line, namely they
are uniformly distributed inside a small buffer around it (Figure 3(b)). The training set con-
siders as reference line both the main diagonal of the reference space, and about 100 possible
rotations of it. This distribution can be customized by setting the maximum side length of
a rectangle (s) and the size of the buffer (b). This distribution can represent data that are
centered around a line, e.g., shops along a highway or houses along a river.

e Diagonal distribution: The dataset geometries are located around a line with a normal dis-
tribution. More specifically, the concentration of the geometries decreases as the distance
from the main line increases (Figure 3(c)). In generating the various datasets, the percentage
of geometries concentrated around the line and the dimension of overall buffer are changed.
Moreover, beside to the main diagonal, we consider as reference line also about 100 possible
rotations of it. This distribution can model data around a linear region such as river banks.

e Parcel distribution: This dataset is generated by recursively splitting the reference space by
horizontal and vertical lines. After that, each resulting rectangle is randomized by slightly
changing its size (Figure 3(d)). The parameter r represents the randomization factor as a
percentage of the rectangle size. Parcel distribution can model some real datasets such as
farm lands and green areas that cover a large region with slight or no overlap.
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I
(d)

Fig. 3. Example of distributions contained in the training set.

(e) (f)

e Cluster distribution: The dataset geometries are located around two main kernels. In par-
ticular, the majority of geometries are placed inside a smaller buffer around one of the two
kernels, while the remaining ones are inside of a bigger buffer (Figure 3(e)). To produce the
various datasets the percentage of closer geometries and the dimension of the two buffers
are changed, as well as their position. The parameters for this distribution consist of the
locations and sizes of the two centers. Cluster distributions can represent urban areas that
are centered around big cities.

e Combinations of two of the previous distributions: several combinations of the above dis-
tributions have been produced. Figure 3(f) shows an example of combination between a
cluster and linear distribution. These combinations allow for producing more complicated
datasets that cannot be represented with a single distribution.

In generating the synthetic datasets, also the length of the rectangle sides have been changed to
obtain datasets with small and big rectangles. A separate group of datasets have been generated for
representing the MBRs produced by linear networks or similar real data where oblong rectangles
are very frequent. Some snapshots of diagonal datasets extracted from the generated data are
shown in Figure 4. This method is also applied to the other distributions to vary the shapes of the
rectangles.

The experiments section provides the details of the parameters and sizes of the synthetic datasets
that we use in our experimental evaluation.

3.2 Dataset Summarization

This part describes how we summarize the big and variable-size datasets into a fixed-size vector
that catches their characteristics and can be used as an input to the deep learning model. We con-
sider two types of summarization techniques, fractal-based and histogram-based techniques. The
fractal-based technique is inspired by sophisticated skewness measures developed by research ex-
perts in literature, e.g., box-counting [5] and Moran’s-Index [25]. Since inspired by experts, these
skewness measures are supposed to make an effective summary of the input dataset. However,
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(b)

Fig. 4. Example of rectangles contained in the training set. (a) Regular rectangles of different sizes and
(b) oblong rectangles of different sizes.

the histogram technique is basically a uniform histogram that is much bigger in terms of repre-
sentation size but might be able to catch more details about the dataset. The research question
that we address in this article is as follows: Can the machine use deep learning to come up with
its own skewness measures based on the histogram that outperforms the fractal-based techniques
developed by experts?

Considering the case study shown in Table 1, it is clear that an easy and efficient way for evalu-
ating the skewness of a spatial dataset is crucial for choosing the right partitioning technique. The
parameters that we have chosen for describing the dataset distribution are presented below; they
represent one of the main contributions of this work and are called distribution descriptors in the
rest of the article.

Two distinct approaches have been considered: The first one, called histogram-based, computes
a histogram by superimposing a fixed grid onto the dataset to describe extensively its distribution:
Each cell of the grid stores the number of geometries intersecting it. The second one, called fractal-
based, computes some synthetic parameters deriving from the application of the fractal dimension
concept and the Moran’s index for capturing in a synthetic way the dataset distribution. Other
statistics can be exploited to produce different descriptors; among them we can list the Ripley’s K
and L functions and other spectral analysis, but we choose the fractal-based ones, since, first, they
have already proved to be effective for the partitioning decision problem and, second, we need a
representative technique for comparing the feature-extraction based approach with the usage of
histograms, that is instead an approach based on row data, thus more deep learning oriented.

Table 2 summarises the symbols used in the formal presentation of the descriptors.

Histogram-based Summarization. Regarding the histogram-based approach, given a spatial
dataset D containing geometries, we compute the histogram by choosing a regular grid G and
computing for each cell of G the number of geometries of D that it intersects.

Definition 3.1 (Histogram). Given a dataset D, containing a set of geometric features, and a grid
G(n x n) with cell size r = I/n (I being the length of the grid side) and covering the reference space
of D (i.e., the MBR of D), the histogram hsg is defined as follows:

hsp, (i) = count(features of D with an MBR intersecting the ith cell). (1)
In the histogram-based approach given a dataset D the ordered list of values representing the

counts in the histogram cells is used for describing its distribution (hs},(1), ..., hs},(n X n)). The
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Table 2. Symbols

Symbol Meaning

D D represents a spatial dataset containing geometries.

G G represents the grid used for computing an histogram on D.

n n is # of cells on one side of the grid G. G has n X n cells.

l 1 is the length of one side of the grid G.

r r is the width of a cell belonging to G.

hst, (i) it is # of features of D intersecting the ith cell of G with side length r (Definition 3.1).

q An integer that represents the exponent of the box-counting function.

BC%(r) it represents the computation of the box-counting function with exponent q on
dataset D with a grid with cell of width r (Definition 3.2).

a it is the constant of proportionality used in Equation (3).

Eq it is the exponent of the power law (see Equation (3)), it represents the fractal
dimension of the dataset.

xr (i) it represents the variable of interest in the computation of the Moran’s index.

Xk it is the average of the variable of interest computed on all cells of the histogram used
in the Moran’s index computation.

N N = n X n is the total number of cell of the histogram used in the Moran’s index
computation.

Wi j it represents the weight that is assigned to the pair of cells (i, j) in the computation of

the Moran’s index. Notice that each cell is identified by a single index i (or j).
EMPp it is # of empty cells in the histogram of a spatial dataset D.

histogram is computed efficiently using either Spark (used in this article) or Hadoop as shown in
References [9, 30]. The choice of the parameter r can have an impact on the effectiveness of the
histograms in representing the dataset distribution. In Section 5.5, we illustrate the results of some
specific experiments devoted to the analysis of this issue.

Fractal-based Summarization. Since the list of values in the histogram representation can be
quite long, an alternative approach is to use the concept of fractal dimension to describe the dataset
distribution by mean of a single number. This approach is usually applied to theoretically infinite
set of points and has been extended to finite set of geometries, as proposed in References [6, 8].
Using this idea, given a dataset D a family of histograms are computed and from each histogram
a single number is obtained by summing up all the values contained in its cells. This sum is called
box-counting, and the trend of this function, by varying the size r of the grid cells, provides informa-
tion about the dataset distribution; in particular, this is straightforward when the dataset presents
the self-similarity property (like, any fractal does), which occurs quite often on real datasets. More
than one box-counting function can be defined by considering different values for the exponent g,
producing different fractal dimensions (Ey, Es, . . .) as theoretically defined in fractal theory.

Definition 3.2. Given a dataset D, containing a set of features, the box-counting plot is the plot
of BCg(r) versus r in logarithmic scale, where

BCY (r) = Z (hsp (@) with q # 1. )

1

Now, we can consider such plot and exploit the following observation of Reference [5]: For real
datasets the box-counting plot reveals a trend of the box-counting function that, in a large interval

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 1, Article 3. Publication date: August 2020.



3:12

¢ 808l ¢ B0%e )
- ~slope BC (range log(r): -8.3 5.5) -+ ~slope BC (range log(r): -8.3-6.2)
- = -slope BC (range log(r): -4,1-0,7) log(BC) -~ ~slope BC (range log(r): -4,1-0,7) log(BC)
10 7
o i 190 -
P, * s s
4 'y 7 » 14
Aaddy ~ .
g’ 5 S s 2 s
2 B LN K]
P atfh =
s eh E_ ﬁ‘\ 5 e 12
e ey e N L3 n
<. L= = 3 * 1
£ . .
> 4 .i 2 St EEE T J B
- N = 1 3
L X s ]
0 7
s 8 7 s a3 2 o ] s e 2 1o
log(r) log(r)
R
- = - slope BC range log(: 9.0 45)
log(BC) - & = lope BC (range loglr 4.2 0.7) ﬂ"’!(ﬁc)
r. 14
° n
> » -e
. [Gw e ®
N o
u\“ 5 w] e -
v, e
o “ o
~o-. 2
Te
N I o T
og(r) og(r)
. ® 80, 0 © BPnaue)
Bt 4 -~ slope BC (range log(r): 8.3 -4.8) ~~slope BC (range log(r): 8.3 -5.5)
NN . . log(8C) .- : log(BC)
\:ﬁ{ \ slope BC (range log(r): -4.1-0.7) slope BC (range log(r): -4.8-0.7)
s Y 10 I
{ \ ) oy 2 © 2
e —g-o-=® »
Y o °"
. o o 20
. . o
~o.[i=] |
S N
‘e,\o | 7
o 15
s s 7 s o4 o3 2 a4 o s e 7 s 5 a4 2 1 0
log(r) log(r)

Fig. 5. Example of box-counting plot for ((a)-(c)) a synthetic dataset with the distribution of a Sierpinski’s
triangle, ((d)-(e)) a synthetic dataset containing a diagonal line with buffer, and ((g)-(i)) a real-world dataset
representing the primary roads of Australia.

of scale values r, behaves as a power law:
BCL(r) = a-rha, (3)

where « is a constant of proportionality and Ej is a fixed exponent that characterizes the power
law.

The box-counting plot is vital for the computation of the exponent E, for a given dataset D,
since this exponent becomes the slope of the straight line that approximates BCIqJ(r) in a range
of scales (ry,r;), and thus it can be computed by a linear regression procedure. In our case, we
choose to consider the exponents E, E,, and Es. Figure 5 shows the computation of E, and E;, for
some synthetic and real datasets. The first dataset contains small polygons with the distribution
of the Sierpinski’s triangle, which is a well-known fractal whose dimension is theoretically fixed
to the value log(3)/log(2) ~ 1.585. The computed value of Ej and E; in this case are very closed to
the expected value 1.585. The first part of the plots, for both Ej and E,, has a different slope; this
is due to the fact that the considered dataset is finite, and thus when the cells of the grid becomes
small enough, they will contain only one geometry each, and as a consequence the value of
BC%(r) tends to be constant. Also, the second dataset can be described as a fractal with dimension
1, since its distribution follows a straight line representing the diagonal of the reference space.
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Also, here the computed slopes are very closed to the expected value. Finally, a real dataset has
been considered, representing the primary roads of Australia. In this case, we can notice that
the dataset behaves indeed like a fractal, since we can measure slopes in the box-counting plot.
Notice that the values of E, and E, vary according to the considered intervals of values for r
(representing the length of the cell side), and for higher values of r they are considerably less than
two. This means that the dataset is not uniformly distributed in the reference space.

Again, a MapReduce implementation of this procedure allows the efficient computation of these
descriptors as described in References [6, 8].

Moran’s Index. Another well-known index that we have adopted for characterizing the dataset
distribution is the Moran’s index, which is a measure of spatial autocorrelation first presented in
Reference [25]. This index is able to detect the grade of autocorrelation regarding a variable of
interest x that assumes different values in the cells of a grid, representing the domain of x. In our
case, the histograms computed for the previous descriptors E, are used, and the variable of interest
x is represented by the count stored in each cell of the grid in the considered histogram; thus, the
reference space where the geometries are embedded represents the domain of x. As shown in the
following definition, the Moran’s index analyses each cell of the histogram and evaluates how the
value stored in the cell is correlated to the values stored in the adjacent cells.

Definition 3.3 (Moran’s index). Given a spatial dataset D together with its histogram (hs,(1),
..., hsj(nxn)), the Moran’s index have been computed considering the variable of interest
X = (hsg(i))k , with the exponent k € {0, 1}. The reasoning behind this choice can be explained
as follows: With k = 0 the presence (1) or absence (0) of geometries inside a cell is considered;
conversely, with k = 1 the variation of concentration of geometries inside the cells are evaluated.

N 2 2 wi,j (ex (i) = %) (xk () = %)

M =75 CROEEDE ’

where:

e w; j is a matrix of spatial weights with zeroes on the diagonal, given a row i it contains ones
only for the cells that are adjacent to the ith cell and zeroes everywhere else.

e N =nXn (ie., the histogram size)

e W=73,%;w; (ie, the sum of all spatial weights)

o xi(i) = (hslr)(i))k is the variable of interest in the considered case

® Xy is the average of the variable xy (i).

In general, the typical values of the Moran’s index belongs to the range —1,+1. Values near —1
indicates negative spatial autocorrelation (dispersion), while values near +1 means positive spatial
autocorrelation (concentration), finally values around zero represent a random arrangement.

In Figure 6, an example of computation of the Moran’s index is shown. We consider the dataset
representing a collection of small polygons distributed along the diagonal of the space with a
portion of the data that are spread within a given distance (buffer) from the diagonal (an example
of this dataset is shown also in Figure 2, second column Diagonal line). Notice that the cell on
the left provides a positive contribution to the index calculation, since it detects similar values of
the variable of interest in its neighbors, while the cell on the right, on the contrary, produces a
negative contribution to the index, since very different values of the variable of interest are stored
in its neighboring cells.

The MapReduce procedure for computing the descriptors Ey, Ez, and E3 has been extended to
compute also the values of the Moran’s indexes: MI, and MI;. In the experiments, to emphasis
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(a) Dataset Diagonal Line (b) One of the computed histograms
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D =D+ ((0-284)2)
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(c) Chosen cells for showing (d) Contributions of the chosen cells
the computation of MI; (numbers to the numerator N and denominator D

are reduced for sake of readability) of MI; (average = 2.84)

Fig. 6. Example of Moran’s index computation on the Diagonal Line dataset (a). In (b) the considered his-
togram is shown. In (c) the cells of the histogram are labelled with their count (# geometries they intersect)
and two cells are highlighted together with their adjacent cells. Finally, in (d) the contribution of the cells to
the computation of the numerator (N) and the denominator (D) of the Moran’s index is shown.

the spatial autocorrelation, we introduce also a discretization in five classes of the variable of
interest x.

Empty Cells. We also consider an additional descriptor that simply counts the percentage of
empty cells (cells that are not intersected by any geometry); we call it EMPp when computed on
a spatial dataset D.

In Table 3, the values of My, M;, and EMP for some datasets are shown. Notice that M, is often
close to 1, since it tends to be influenced by the spatial autocorrelation produced by the fact that
empty cells are closed to other empty cells or by the fact that not empty cells are closed to other
not empty cells. Thus, a similar value is obtained both for the uniform distribution and the real
dataset representing the primary roads of USA. In this situation, M; can distinguish the two cases
more effectively, but definitively the EMP value separates them clearly. The other two datasets are
not well separated by these values, but they are if we consider the other descriptors Ey, E,, and Es.

3.3 Evaluation of Quality Metrics

In this section, we briefly describe the quality metrics that characterize the partitioning techniques
that we consider in this article, and we show their effect on skewed distributed datasets. We also
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Table 3. Computation of the Moran’s Indexes My, M; and Percentage of Empty
Cells for the Datasets Presented in Figure 2: (a) a Synthetic Dataset with the
Distribution of a Sierpinski’s Triangle, (b) a Synthetic Dataset Containing a
Diagonal Line with Buffer, (c) a Synthetic Dataset Containing a Double Cluster,
and (d) a Real-world Dataset Representing the Primary Roads of USA

Dataset M, M; EMP
Uniform distribution 0.719 0.011 12.6%
Diagonal line with buffer 0.917 0.739 81.6%
Double cluster 0.847 0.875 87.9%
Primary roads of USA 0.655 0.552 96.7%

describe an efficient way to compute all quality metrics for all partitioning techniques in one
Spark job.

Why do we need quality metrics? All big spatial data frameworks that run on multiple machines
have to partition the data across machines before being processed. This applies to disk-based sys-
tems such as Hadoop, memory-based systems such as Spark, streaming systems such as Storm,
key-value stores such as HBase, and big data managements systems such as AsterixDB [17]. Un-
fortunately, there is no agreement in the community of a single spatial partitioning technique
that is universally recommended. The common partitioning techniques are based on grid, R-tree,
Quad-tree, and space filling curve. Furthermore, there are many variations under each of these
techniques. One of the reasons for having so many spatial partitioning techniques is that the re-
quirements of the systems vary by their architecture and the type of spatial analytics they perform.

To be able to quantify the goodness of the different partitioning techniques, several quality met-
rics have been developed. Each quality metric measures one aspect of the spatial partitioning tech-
niques. Depending on the user requirements, one or more of these quality metrics might be chosen
to minimize or maximize. The problem is that the quality of the resulting partitions depends on
both the dataset distribution and the spatial partitioning technique.

Quality Metrics. To measure the quality of the partitioning techniques when applied to a cer-
tain dataset D, we define four quality metrics that have been previously shown to improve the
query performance of range query, kNN, and spatial join [11]. These quality metrics are total area
(Q1), total margin (Q), total area overlap (Qs), standard deviation of partition cardinality (Q4), and
average range query cost (ARQ), all defined below.

Definition 3.4 (Total area-Q; ). Given a set of partitions = {P;}, this quality measure is obtained
by computing the sum of the areas of all partitions P;:

Q:1(P) = Z area(P;.MBR) - P;.blocks.
P;eP
The multiplication by number of blocks P;.blocks allows the quality metric to take into account
the processing mechanism of big spatial data frameworks. Simply, a partition with multiple blocks

is treated by those query processing engines as multiple partitions each with one block. This mul-
tiplication ensures that it is counted as multiple partitions.

Definition 3.5 (Total margin-Q,). Given a set of partitions # = {P;}, this quality measure is ob-
tained by computing the sum of the length of the semiperimeter of all partitions P;:

0:(P) = Z semiperimeter(P;.MBR) - P;.blocks,
P;eP
where semiperimeter(MBR) = MBR.width + MBR.height.
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Similarly to Q;, the multiplication by number of blocks ensures that a partition with multiple
blocks is treated as multiple partitions with one block.

Definition 3.6 (Total Overlaps-Qs). Given a set of partitions # = {P;}, this quality measure is
obtained by computing the sum of the area of the overlapping regions produced by intersecting
each partition P; with all other partitions P; (i # j):

03(P) = Z area(P;.MBR N P;.MBR) - P;.blocks - P;.blocks
Pi, P €PAI%]
P;.blocks - (P;.blocks — 1)
5 .

+ Z area(P; . MBR) -
PieP

The first term in the equation above calculates the total area of overlap between every pair
of different partitions. The multiplication by P;.blocks - P;.blocks ensures that each partition is
treated as separate partitions each with one block. The second term calculates the overlap that
results when we have one partition with more than one block. In this case, if we treat each block
as a separate partition, then all blocks will be completely overlapping with all others. Notice that,

if P; has only one block its contribution to the second term is equal to zero.

Definition 3.7 (Standard deviation of partition cardinality (Q,)). Given aset of partitions P = {P;},
this quality measure is obtained by computing the average of the deviation from the average of
the cardinality of each partition:

i — P card)?
Qu(P) = \/ZP"EP(Pl'ja;d' P .card) ’

where P.card represents the average cardinality of the blocks of the partitions belonging to .

Definition 3.8 (Average range query cost (ARQ)). Given a set of partitions # = {P;}, this quality
measure is obtained by computing the sum of the average number of blocks that would be scanned
if we execute a square query of size S X S at a random position on the dataset’s space that is
partitioned by P,

(Pi.width + S) - (P;.height + S)

D MER - P;.blocks.

ARQ(P) = )

P;eP

Similarly to previous ones, the multiplication by number of blocks is necessary to consider the
actual query processing cost as each block is treated as a separate partition.

A previous work [11] proved that the quality metrics Q1-Q4 are good indicators to evaluate the
efficiency of a partitioning technique for a specific dataset. In other words, given two partitioning
techniques, the one that achieves better quality metrics would provide a better query performance
as well. To validate this statement, we carry an experiment that partitions the OSM-Nodes [18]
datasets of different sizes by R*-Grove [35], STR, and Z-Curve, as shown in Figure 7. Figure 7(a)
and (c) clearly shows that there is a linear relationship between total partition area and overlap
with average range query cost. In Figure 7(b) and (d), there are gaps of cost between different
techniques, because the cost for a single technique is affected by the combination of all quality
metrics. However, there is still an upward trend for each partitioning technique. This observation
was also mentioned in Reference [11]. In more detail, Table 4 verifies this observation by showing
the correlation values between quality metrics and query performance in different partitioning
techniques. These high values validate our claim that we could use partition quality metrics to
evaluate performance of a partitioning scheme.
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Fig. 7. The relation of partition quality and query performance.

Table 4. Correlation between Quality Metrics and Query Performance

Partitioning technique =~ Total area Total margin  Total overlap Load balance
All techniques 0.9853496033  0.4225531469 0.9775651893  0.1635463961
R*-Grove 0.9639500086  0.989214543 0.9639500086  0.9094351766
STR 0.9456511908  0.970685173 0.8974233437  0.9588232937
Z-Curve 0.9927921874  0.9741114139  0.9949534266 0.9516883534

The following part describes how these quality metrics are computed efficiently using Spark.

Quality Metrics Computation. This part describes how we compute a set of quality metrics for a
given dataset while considering many partitioning techniques. In our discussion, we borrow some
terminology from SpatialHadoop [13] but the approach can generalize to other systems, including
Spark-based systems. This step is critical, as it needs to be done for each training dataset that we
consider. A naive approach is to simply partition the dataset using all possible partitioners and
then evaluate their quality using all quality metrics. However, this would be too slow and would
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limit the performance of the training phase. Rather, we consider a more efficient technique that
can accurately calculate the quality metrics without having to actually partition the data. Below,
we first describe the notion of a master file and then explain how we use it to compute the quality
metrics efficiently.

Master files: SpatialHadoop manages the metadata of a partitioned dataset by a small text file,
called a master file. The master file of a partitioned dataset contains a list of metadata for all
partitions of that dataset. The metadata of a partition includes partition ID, total number of records,
partition size, and partition MBR. To execute a query, for example, range query, the query executor
would take a look at the master file for early pruning the partitions that certainly do not contribute
to the answer. According to previous work, the data partitioning, as encoded in the master file, is
the main driving factor for query performance [13].

The key observation is that we can produce many master files for all partitioning techniques in
one Spark/MapReduce job without having to actually partition the data. In particular, the quality
metrics that we consider in this article are total area (Q1), total margin (Q2), total overlaps (Q3),
or average range query cost (ARQ) of all partitions, as we mentioned in Section 3.3. All of those
metrics could be computed from the master file of the partitioned dataset, as they only require
the MBR and total size of each partition. Furthermore, other researchers can easily extend these
quality metrics based on the demands of the desired analytic operation, e.g., standard deviation of
partition size, and disk utilization.

Efficient Computation of Master Files: To create a training data point, we have to find the best
partitioning technique among several options (e.g., kd-tree, R*-Tree, STR, Grid, and Z-Curve) in
terms of a specific quality metric, for example, total area of all partitions. Instead of physically
partitioning the data using these techniques, we observe that all information encoded in the mas-
ter files, i.e., MBR and total size, are associative and commutative aggregate functions that can
be computed in a local/global manner without the need to group all records of one partition in
one machine. In other words, instead of partitioning the data into partitions and then comput-
ing those aggregate functions, we can directly compute these aggregate functions. Simply, each
machine computes local values for all partitions and then they are grouped by partition ID to be
further aggregated into final values. Furthermore, we can compute these aggregate values for all
partitioning techniques in one job by extending the grouping key to be (partitioner ID, partition
D).

Once all the master files are computed, we can then compute the quality metrics (i.e., Q1, Q2,
Q3, and ARQ) as described above on a local machine since the size of the master files is sufficiently
small.

3.4 Model Training

In this section, we describe how we conduct a deep learning model that is able to predict the
best partitioning technique for a spatial dataset in terms of a specific quality metric. The first
challenge that we have to address is to choose a suitable deep learning algorithm for this problem.
As we mentioned, the partitioning selector problem is analogous to image classification problem.
Thus, we could consider several novel classification models such as Convolutional Neural Network
(CNN) or a fully connected neural network (FC). If the number of data points is large enough, e.g.,
millions of data points, then CNN would mostly outperform a fully connected model. However, this
might not be applicable for our system, where the number of data points is only in the thousands.
Based on a previous work [27], we carried an experiment for algorithm selection at Section 5.2.
Finally, we chose a fully connected neural network to train and test our model. Figure 8 shows
the architecture of a fully connected neural network that we use for spatial partitioning selection
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Fig. 8. A sample fully connected model that we adopt in the article. In this work, we vary the number of
hidden (blue) layers and the number of hidden units per layer.

model. The input vector (X) consists of a summary of the input dataset, either the histogram or
the fractal-based descriptors. In particular, the vector X is composed of the following.

Histogram-based vector: In this case, the vector contains exactly all the counts collected in the
cells of the histogram computed on dataset D:

= (hsp (1), ... hs}y(m)).

This means that the size of the input layer is always equal to the size of the histogram, i.e.,
number of bins in the histogram.

Fractal-based vector: In this case, the vector contains the descriptors computed on dataset D:
X =(| D |,Ey(D), Eg(D), E>(D), E;(D), E(D). E5(D),
Mo,,;, (D), M., (D), M,,,. (D), M,,,, (D), Mz, (D), Ma,,,,.. (D),
Ms,,, (D), M, (D),Ms,,, (D), EMPp),

where (i) Eo(D) is the exponent E, computed for a dataset D, and we have two values, E, and
E:], for each exponent, since in many cases the behaviour of the dataset follows trends similar to
those shown in Figure 5; (ii) My(D) is the Moran’s index computed for the variable of interest
(hsh,(i))?, and here we use three values, since we consider a family of histograms and thus we
produce several values for M, (D). Thus, we take the minimum, maximum and average value for
representing the behaviour of the dataset D.

The hidden layers are fully connected, and we vary their sizes in the experiments section to
tune the system. The size and number of hidden layers can be tuned differently according to which
summarization technique we use. The output vector is a single categorical value, which is the best
partitioning technique among Kd-tree, R*-Grove, STR, Z-Curve, Grid, and RR*-Tree. The output
value is encoded as a number in range [0 — 5], which is the order of the corresponding partitioning
technique. We choose to build a separate model for each quality metric as each one of them might
need to catch different aspects of the input vector.

The activation function for hidden units is ReLU function, except for the last layer, where we
use softmax function. Since the output value is categorical, we use categorical_crossentropy as
the loss function.
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As recommended in deep learning, we separate the input dataset into three parts: training, val-
idation, and testing. The training set is used to train the model and adjust the weights on all the
connections in the neural network. The validation set is used during the training phase to evaluate
the current model and avoid overfitting. The validation set is never fed through the input layer,
so it is always a new dataset to the model. Finally, the test dataset is used for final evaluation as
shown in the experiments section.

To give the network enough time to stabilize without overfitting, we periodically measure the
accuracy of both the training and validation sets. When the accuracy of the validation set stops
improving or starts to drop, it is a signal of overfitting. Therefore, we terminate the training phase
and retrieve the last good model right before the accuracy dropped.

4 APPLICATION PHASE

In this phase, the system takes a dataset D that was not inspected earlier by the framework and a
quality metric (QM). The goal is to predict which partition technique (PT) among the ones consid-
ered by the framework will produce the best behaviour in the chosen quality metric QM. The main
challenge of this step is that is has to be much faster than applying all partitioning techniques and
choosing the best. This phase works in two steps.

The first step summarizes the data to produce a fixed-size vector (X’) that describes the input
data distribution as described in Section 3.2.

The second step feeds the vector (X’) computed in the first step into the machine learning model
(M) that corresponds to the quality metric QM. The output of the model is a label (Y”) that simply
names one of the partitioning techniques (PT) that is estimated by the model to produce the best
quality metric (QM). The selected partitioning technique is then passed to any big spatial data
system, e.g., SpatialHadoop or GeoSpark, to actually partition the data. In other words, our frame-
work does not actually partition the data, it just chooses a partitioning technique to apply and it
is up to the user to choose how to apply it.

More specifically, in the following subsection the application of the system to the spatial join
operation is illustrated by considering a test case with real datasets.

4.1 Application of the Model in a Real System

To show how the proposed model can be applied in a real system, we show in Figure 9 the flow
chart describing the necessary steps to perform a given operations OP, for example, a spatial join,
on a pair of datasets, D; and D;, with unknown distributions. In the figure, the optimization task
is composed of the following steps:

(1) Histogram computation: For each dataset D;, the corresponding histogram H; is
computed, representing the input vector X’; the cost of this operation is denoted as
COSTH(D;).

(2) Quality metric choice: Given the operation to execute OP, the corresponding quality
metric QMj is chosen; the cost of this operation is trivially close to zero.

(3) Partitioning technique choice: Given QM,, the corresponding model NNy is activated
passing as input the vector X’, obtaining the suggested partitioning technique PT;, one for
each input dataset. The cost of this operation is again close to zero, thanks to the trained
machine learning model NN,.

(4) Partitioning: Each chosen technique PT; is applied to the corresponding dataset D;, pro-
ducing a partitioned dataset PD;.

(5) Operation computation: The operation OP is executed on the partitioned datasets PD;;
the cost of this execution is denoted as COSTop(PD1, PD,).
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Fig. 9. Flow chart of the optimization task.

The application of the proposed approach is convenient, since the following conditions are very
often satisfied in particular for the spatial join operation (I><0); in this case the quality metric is
total margin (QMr,y):

e Basic condition: The cost for generating the histogram (i.e., the input vector X’) for a
given dataset must be significantly less than the cost of partitioning the same dataset:

COSTy (D;) << COSTp(D;).

This operation is preformed by a parallel task implemented in Spark and as shown in
Figure 18 of the next section, this cost is an order of magnitude less than the cost for parti-
tioning a dataset.

e Specific condition for ><: the average cost of the execution of OP on the partitioned
datasets must be less than the cost of executing it on the original datasets:

COST,.(PDy,PD,) < COST. (D1, Ds).

e Optimization condition for ><1: The average cost of the optimization phase must be less
than the gain produced by the optimization:

COSTy(D;) + COSTy (D) + COSTp(Dy) + COSTp(D;) < COST. (D1, D;) — COST,._(PDy, PD,).

To test the application phase and verify the satisfaction of the second and the third conditions,
we performed some experiments in a specific case using real datasets. In particular, we consider
two real datasets, Dproags and Dpyjiq4s, containing the primary roads and buildings of the USA,
respectively. Each dataset has been partitioned by applying the six considered techniques. Then,
the spatial join between all possible combinations of partitioned datasets has been performed (in
total 36 joins). In Table 5, the execution time in seconds of each combination is shown.
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Table 5. Execution Times of the Spatial Join Operations in Seconds

Combinations of part. tech. Dgyitas

Dproads Grid Kd-Tree RR*-Tree R*-Grove STR Z-Curve

Grid 413.2 303.4 245.0 259.6 293.1 279.2
Kd-Tree 318.2 172.3 142.8 148.3 134.9 217.0
RR*-Tree 325.2 208.3 159.4 160.0 148.6 232.9
R*-Grove 357.8 212.3 170.7 171.9 166.9 217.0

STR 343.8 200.2 312.2 16.95 145.2 292.7
Z-Curve 361.0 251.5 220.2 217.2 229.2 235.3

All possible combinations of partitioning techniques applied to datasets Dproqas and Dy, i1qs are considered.

Finally, considering the pair (RR*-Tree, RR*-Tree) chosen by the proposed machine learning
model NNry (i.e., the neural network for the chosen quality metric: total margin), we can observe
that (i) NN,y is able to detect the pair that is in the top positions in the ranking of spatial join time
execution; (ii) the gain with respect to the join performed on the original datasets is about 99.4%;
(iii) the gain with respect to the average performance of all pairs is about 31.9%; and, finally, the
gain with respect to the worst pair is about 61.4%. The gain obtained by applying the suggested
partitioning techniques is as follows:

COST,. 4(Dy,D;) — COST. ,(PDy, PD;) = 28,859 s
and the cost of optimization is
COSTy(D;) + COSTy(Dz) + COSTp(D1) + COSTp(D3) = 1,238s.

This results allow us to confirm that the above-mentioned conditions are all satisfied. A wider
analysis of applicability considering other operations is out of the scope of this article, also because
previous works [11] about spatial partitioning techniques already confirm the effectiveness of their
use.

A tutorial showing the steps for applying the proposed system is available at: https://github.
com/tinvukhac/deep-spatial-partitioning.

5 EXPERIMENTS

This section provides the details of our extensive experimental evaluation. The goal of this ex-
perimental evaluation is to measure how accurate the proposed approach is in choosing the best
partitioning technique. The experiments will also compare the two summarization techniques to
verify which one is more effective for this problem. In the rest of this section, Section 5.1 pro-
vides the experimental setup. Section 5.3 describes how we tune the deep learning model. Then,
we evaluate the accuracy of the proposed model for both synthetic and real data in Section 5.4.
Section 5.5 illustrates the effect of histogram size to the model accuracy, model complexity and
training cost. After that, Section 5.6 shows the effect of the dataset size on quality metrics and jus-
tify the medium sizes of the synthetic datasets that were used for training. Section 5.7 will focus on
evaluating the performance of the system in terms of running time considering both the creation
of the training set on one side and the computation of the Histograms-based and Fractal-based
summarizations on the other side. Notice that, in the fractal-based summarization we also include
the Moran’s index. Section 5.8 considers the effect of including in the training set also collection
of data with oblong rectangles.
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Table 6. Experiments and Performance Metrics

Experiment Parameters Metrics

Model tuning # of hidden layers, units Accuracy

Model accuracy dataset distribution Accuracy

Histogram effect histogram size Accuracy, model complexity
Stability of quality metrics dataset size, HDFS block size =~ Quality metrics
Summarization performance dataset size Running time

5.1 Experimental Setup

Table 6 shows the list of experiments that we are carrying out. (1) First, to tune the parameters
of the deep learning models, we vary the number of hidden layers and the number of units per
layer to find a suitable fully connected architecture for each summarization technique and for each
quality metric. (2) Second, we conduct several experiments to see how the model learns to predict
the best partitioning technique from training data for both synthetic and real data. (3) Third, we
vary histogram size to see how it affects the model accuracy and complexity. In particular, for each
histogram size, we feed the data to several models with different number of hidden layers/units
to see which configuration is suitable for a specific histogram size. This experiment explains how
we choose histogram size and model architecture for the second experiment. (4) Fourth, to justify
the parameters that we use for synthetic data generation, we show the stability of the quality
metrics as the dataset size varies. This allows us to generate many medium-size synthetic datasets
to save time instead of generating a few large datasets. (5) Fifth, we measure the running time of
the summarization process to show that the proposed solution can be applied in practice, since the
required effort is significantly less than the cost for partitioning the dataset with all six available
techniques. (6) Sixth, we measure the effects on model accuracy of the addition to the training set
of new synthetic datasets containing oblong rectangles.

We run our experiments on a cluster of one head node and 12 worker nodes, each having
12 cores, 64 GB of RAM, and a 10 TB HDD. They run CentOS 7 and Oracle Java 1.8.0_131. The
cluster is equipped with Apache Spark 2.3.0 and Apache Hadoop 2.9.0. We implement our deep
learning model on Keras [19] with TensorFlow 1.12.0 as the backend.

Datasets: In Table 7 the characteristics of the generated synthetic datasets are presented [36].
Notice that for training the model, the generated datasets do not have to be very big. They just
have to be diverse enough to represent various characteristics of real data. In Section 5.6 below, we
justify this decision by showing the independence of the relative quality of partitioning techniques
with dataset size. For each distribution, we generate 100 different datasets with different seeds. The
collection contains 1,600 datasets with about 210 millions of geometries in total.

Table 8 shows the real datasets that we use for testing the model. All datasets are publicly avail-
able through the SpatialHadoop website [13]. We picked three datasets, buildings, lakes, and roads.
To have a decent number of datasets with different distributions, we split each dataset into five
parts that roughly enclose North America, South America, Europe, Africa, and Asia+Australia. The
size of each part is shown in the table.

Notice that the aim of this experiment session is to verify the quality of the model, i.e., to test
the performance of the neural network that predicts the right technique to choose to obtain the
best partition with respect to a given quality measure. We are not testing the impact of the choice
on the final operation that is applied by the user on the partitioned datasets.

Training sets: We produced the data points of the training sets from the generated synthetic
datasets, listed in Table 7. For deep learning, a data point is a pair (X, Y), where X represents the
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Table 7. Training Set Generation: Datasets of Different Distributions Generated for
the Training Phase

Distribution Num. of Datasets Size Num. of Features
Uniform 100 512 Mb 7,000,000
Linear 100 512 Mb 7,000,000
Linear rotated 100 420 Mb 6,000,000
Diagonal 100 1.1 Gb 15,000,000
Diagonal rotated 100 1.1 Gb 15,000,000
Parcel 100 512 Mb 7,000,000
Cluster 100 1.0 Gb 5,000,000
Linear/Linear rot. 100 1.0 Gb 11,000,000
Linear/Uniform 100 1.0 Gb 14,000,000
Linear rot./Uniform 100 1.0 Gb 11,000,000
Diagonal/Diagonal rot. 100 2.2 Gb 30,000,000
Diagonal/Uniform 100 1.6 Gb 22,000,000
Diagonal rot./Uniform 100 1.6 Gb 22,000,000
Parcel/Uniform 100 1.0 Gb 14,000,000
Parcel/Linear rot. 100 1.0 Gb 13,000,000
Cluster/Linear rot. 100 1.5 Gb 11,000,000

Table 8. Real Datasets Used for Testing

Dataset Num. of Features
Buildings-1 1,393,451
Buildings-2 8,708,373
Buildings-3 91,657,814
Buildings-4 7,925,531
Buildings-5 5,111,326
Lakes-1 828,221
Lakes-2 4,246,874
Lakes-3 2,072,660
Lakes-4 619,689
Lakes-5 652,583
Roads-1 3,672,499
Roads-2 19,729,459
Roads-3 33,078,006
Roads-4 6,725,578
Roads-5 9,137,471

summarization of one dataset (using one of the two proposed summarization techniques) and
Y represents the corresponding best partition. Since we have in total five quality metrics and
two summarization techniques, histograms-based and fractal-based, for each dataset we produce
10 data points, one for each training set dedicated to one model: (Xp,Y;)p,, 1 <i <5 for the
histograms-based summarization and (XF, Y;)g,, 1 < i < 5 for the fractal-based one.

In total, in each training set we have 1,600 data points generated from the synthetic datasets.
Unless otherwise mentioned, we use 80% of generated data points as training data and the other
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Fig. 10. Algorithm comparison between the CNN and FC models.

20% as the testing data. Of the 80% training set, 20% of it is used as a validation set, i.e., 16% of the
overall data.

Accuracy Metrics: We use a Boolean accuracy metric. That is, we compare the label generated
by the model with the true label that was selected by computing the actual quality metrics and
choosing the best. If they match, then the accuracy is 1.0; otherwise, it is 0.0. Then, we take the
average over all the test set. Notice that since we have six possible labels that correspond to the
six partitioning techniques, a completely random baseline would have an accuracy of 1/6 = 17%.

5.2 Algorithm Selection

In this experiment, we compare two approaches in the context of spatial partitioning selection
problem: the CNN model and an FC model. The choice of these two candidate models is inspired
by the observation that our problem is analogous to an image classification problem. We are trying
to set up the same parameters, e.g., number of hidden layers and number of hidden units in each
layer for both models. After that, we train these models and evaluate their accuracy. Figure 10
shows that FC models outperform CNN models in terms of model’s accuracy. Furthermore, CNN
also requires more training time before its convergence point for a same given dataset. The reason
is that CNN typically requires a training and testing set with very large number of data points.
However, the training set we created from histograms is limited in size, which might be more
suitable to a simple architecture like FC models. Finally, we chose to use FC model for our following
experiments. In our published repository, we provide the implementation for both the CNN and
FC models. Therefore, users could choose any model that is suitable for their own datasets.

5.3 Model Selection

This experiment shows our effort to find the suitable model architecture for our training datasets.
As we mentioned in Section 3.4, there are two options to generate training dataset with data points
(X,Y). First, X could be the flatten vector of the histogram matrix, which is chosen as 50 X 50 in
this experiment (see Section 5.5 for more details about this choice). Second, X can be considered as
the ordered skewness values that are computed by fractal-based summarization methods (fractal
dimensions and Moran’s indexes). Y is the single number that reflects the order (base 0) of the best
partitioning options among Kd-tree, R*-Grove, STR, Z-Curve, Grid, and RR*-tree.
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Fig. 11. Tuning model parameters for the histogram-based summarization technique.

In this experiment, we use total partition area as reference quality metric to evaluate partitioning
techniques. The best technique should have the smallest total area. The different kinds of feature
vector might require different configurations of the learning model. Moreover, we use a fully con-
nected neural network and vary both the number of hidden layers and the number of units per
layer to find the suitable model for each kind of input vector.

Figure 11(a) shows the accuracy of a fully connected model with three hidden layers for the
training dataset with histogram vector as the input vector. We vary the total number of units in
each layer to see how the accuracy changes. When the number of hidden units is small, e.g., 2, the
model is not able to capture the complex information from training data. As the number of hidden
units increases, the accuracy for both training and testing process are stabilized. Thus, we choose
10 as the number of hidden units for each layer.

In the next experiment shown in Figure 11(b), we fix the number of units per layer as 10 and
then vary the number of hidden layers to see how it affects the model accuracy. We observe that
the accuracy is stable when the number of layers changes with the best value at 3 hidden layers.
Based on these two experiments, for the model with an input vector composed of the flatten rep-
resentation of the histogram matrix with size 50 X 50, we choose the fully connected model with
3 hidden layers and 10 hidden units per layer.

We repeat the same procedure with the other summarization technique, i.e., the fractal-based
one, as shown in Figures 12(a) and (b). In this case, we choose an architecture with three hidden
layer and five hidden units in each layer.

In these experiments, we can also observe that the model can reach up to 90% and 80% accuracy
when applied on synthetic and real test data, respectively, which shows the applicability of the
proposed approach to the problem of spatial partitioning.

5.4 Model Accuracy

This section shows the accuracy of our model to predict the best partitioning technique for
datasets with different distributions including synthetic and real datasets. We only use the syn-
thetic datasets for training, and we use both synthetic and real data for testing, reporting their
accuracy separately.

In such experiments, we measure the accuracy of our predictive models considering two con-
figurations: (i) In the first one, the input vector is the ordered list of skewness values, which are
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Fig. 12. Tuning model parameters for the fractal-based summarization technique.

computed by fractal-based summarization methods, while (ii) in the second one the flatten vector
representing the histogram of the dataset is the input.

The quality metrics include the following: total area (Q;), total margin (Q2), total overlaps (Qs),
the standard deviation of the partition size (Q4), and the average range query cost (ARQ) of par-
titioned datasets. We evaluate such metrics in six different partitioning techniques: Kd-tree, R*-
Grove, STR, Z-Curve, Grid, and RR*-tree. Generally, if we randomly choose a technique between
those options, then the probability that we can choose the best one is 17%. Since there are no simi-
lar work that exists in literature, we choose this number as the baseline accuracy to compare with
our proposed method, which is a common practice in machine learning evaluation.

Figure 13(a) and (b) shows the accuracy of training and testing process when we train and test
our model with data points coming from synthetic datasets. As we can observe, in both configu-
rations, the models can predict the best partitioning technique for different quality metrics with
an accuracy of up to 78%, which is significantly better than the baseline method.

Figure 13(c) and (d) shows the accuracy of training and testing process when we train our model
on data points coming from synthetic datasets, and test it on data points from real datasets. Although
the test accuracy is not as high as the synthetic datasets, it still gives us a good accuracy with up
to 64%. Keep in mind that the model was trained on synthetic data only and the real datasets used
in testing are observed by the model for the first time.

Comparison of the two summarization techniques: One interesting observation in this experiment
is that the histogram-based summarization outperforms the fractal-based skewness measures de-
veloped by the experts for synthetic data. However, when it comes to real data, the results for both
summarizations are very similar (only in some cases the experts’ measures outperform the simple
histogram).

This indicates that the deep learning model can learn and produce an accurate model for the
datasets it sees during the training phase and can outperform existing methods. However, the
skewness measures, as developed by experts, are good at extracting meaningful measures of skew-
ness and allow to find hints of similarity between two datasets that, from a simple comparison of
their plots, might seem very different. In the histogram configuration the models learn to detect
similarity between datasets mainly considering a visualization-based comparison working at the
granularity of the histogram. This implies that the model that learns from histograms need a train-
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Fig. 13. Model accuracy when train and test on synthetic and real datasets.

ing set containing a higher variety of distributions and datasets with a higher similarity to the real
ones to increase its accuracy.

We expect that if we have a bigger training set with more diverse synthetic datasets, then the
deep learning approach with histogram can produce better results. We plan to verify this conjec-
ture in future works by adding more distributions and more datasets to the training set.

Figure 14 shows the accuracy of the predictive models with skewness and histogram input when
we vary the ratio between number of train and test data points. As expected, the accuracy increases
and then stabilizes as the ratio of the training set increases. This verifies that the predictive models
are able to capture the characteristics of the input datasets and that they get more accurate with
more training points.

Another accuracy metric that is usually used in multi-labeled deep learning models is the con-
fusion matrix. As shown in Figure 15, this matrix shows for each pair (label, metric), a square
divided in four parts containing the percentage of (i) true positive cases obtained in the test (lower
right sub-square), (ii) true negative cases (upper left sub-square), (iii) false positive (lower left sub-
square), and (iv) false negative (upper right sub-square).

Figure 15(a)—-(e) shows the five confusion matrices regarding the STR partitioning technique,
one for each each quality metric. Notice that for this technique, which is the one having more
samples in the training set, the true positive percentage is always over 89%. However, for the other
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techniques we do not reach the same optimal results. For instance, considering the RR"-tree no test
cases are available for such technique with the load balance metric, and in the other metrics the
results are varying: good for the range query cost metric (Figure 15(j)), but not as good for the total
area metric (Figure 15(f)). The same is true for other techniques, for instance, the Grid technique
show very good results with the load balance metric (Figure 15(i)), but for the others no test cases
are available.

The main reason for the above-described results is that many techniques (but STR) are underrep-
resented in the training data, which is a known problem that causes machine learning models to be
incapable of learning their characteristics. In our problem, it was not easy to balance the training
data, as we cannot directly specify which partitioning technique is the best for a specific dataset;
rather, we generate different synthetic data and run them through all the partitioning techniques,
and the best is selected based on their behavior.

5.5 The Effect of Histogram Size

In this section, we study the effect of the histogram size. Since the histogram size controls the size
of the input, the optimal model parameters, i.e., number and size of hidden layers. Therefore, for
each histogram, we repeat the model tuning experiments described in Section 5.3, and we report
here the results of the optimal model.

Figure 16 reports the accuracy of the best model found as the histogram sizes from 10 x 10 to
100 X 100. This experiments shows the tradeoff between the model complexity and accuracy. One
one hand, when the histogram size is small, the model also tends to be small but can be trained
accurately. On the other hand, when the histogram is large, the model becomes more complex, but
it cannot be trained accurately given the amount of training data that we have. The histogram size
of 50 X 50 tends to strike a balance between these two.

Figure 16(b) further confirms this observation by showing the optimal model parameters that
we found for each histogram size, i.e., number of hidden layers and size of the hidden layers. For
the largest histogram size, the neural network model becomes more complex with more layers and
more neurons per layer. We expect that if there are more training data, then a larger histogram
size could be more suitable. Additionally, we also show in Figure 16(c) that a 100 X 100 histogram
requires a significantly 2.5 times longer to stabilize as compared to the 50 X 50 histogram, which
is also attributed to the complexity of the model.

5.6 Stability of Quality Metrics

In this experimental evaluation, we used moderate-size synthetic data with about 1.0 GB each.
Although the real datasets can be arbitrarily large, we chose to keep the synthetic datasets small
to be able to generate many datasets in a short time. We experimentally show in this part that
this is still a valid approach by showing that the relative performance of the synthetic datasets is
the same regardless of the size. Which means that the deep learning model will see no difference
between the small and big datasets in terms of which partitioning technique is better as long as
the distribution is fixed.

In the experiment shown in Figure 17, we fix the distribution type to the diagonal dataset, and
we vary the generated dataset size from 5 to 80 GB. As we increase the dataset size, we also increase
the block size to ensure that the number of blocks is roughly the same for a fair comparison. For
example, when we increase the size from 5 to 10 GB, we also increase the block size from 16 to
32 MB. We evaluate the performance of four partitioning techniques (Kd-tree, R*-Grove, STR, and
Z-Curve) in two quality metrics (Q1, total area, and Q2, total margin). The main observation from
Figure 17 is that the quality measures of partitioning technique do not change as long as the ratio
of dataset size/block size remains constant. Therefore, the best partitioning technique (STR) is
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Table 9. The Independence of the Best Index in Terms of Total Area and
Dataset Size

Dataset size(GB) Kd-tree R*-Grove STR Z-Curve Best Index

20 0.057 0.030 0.026 0.032 STR
50 0.039 0.028 0.029 0.034 R*-Grove
100 0.037 0.030 0.020 0.041 STR
200 0.036 0.032 0.032 0.050 STR

also consistent over different dataset sizes as well. Given this result, instead of spending hours to
compute the best partitioning technique of a dataset with size 128 GB with normal HDFS block
size (128 MB), we could execute the same operation for a dataset size of 1 GB with HDFS block
size 1 MB and get the same result. This observation allow us to significantly reduce the time to
generate our training data points. In practice, we generate the training data points from datasets
in Table 7 with HDFS block size 4 MB.

To show that there is no dependency also on the HDFS block size and therefore on the number
of blocks that the technique produces, we perform an additional experiment where we consider a
collection of datasets with diagonal distribution from 20 to 200 GB. For each dataset, the master files
of four partitioning techniques are generated, and quality measure Q1 (i.e., total area) is computed.
The number of blocks generated by the different techniques is changing, since the dataset size
changes while the HDFS block size is fixed to 128 MB. Results are shown in Table 9. Notice that
again the best technique is almost the same one (STR): The only case in which it is not corresponds
to a size of 50 GB. However, in this case STR is very close to the best technique (R*-Grove) in terms
of quality with a difference of only 4%. This confirms that we can train the model considering
medium-size synthetic datasets without sacrificing the accuracy of the model.

5.7 Performance of the Summarization Phase

This section discusses the performance of the proposed approach for generating the summariza-
tion of each dataset, which is particularly important, since this computation has an impact on both
the generation of the training set and the application phase. Notice that the first is only applied
once, while the second is at work when the solution is operative.

We focus on the algorithm that computes the master files, and hence the quality metrics, on one
side and the procedure that generates the histogram of a dataset on the other side. The first one is
used only for generating the training set, and the second one is used also in the application phase.

For the latter, we compute the histograms using Spark as further explained in Teference [9],
while to compute the master files for the six partitioning techniques we use our optimized algo-
rithm, which is mentioned in Section 3.3 to correctly compute the six collections of master files in
one job without physically partitioning the data.

In both cases, we consider as baseline approach the algorithm that physically partitions the
data using the six partitioning techniques and then collects the master files from the outputs and
determines the best technique by considering five quality metrics.

Figure 18 shows the efficiency of computing the histogram and the master files. It is clear that
our method of generating the master files is much faster than the baseline method; this allow us
to save a lot of time when producing the training set for synthetic datasets. Notice that we only
compute master files for training purpose, where we compute the label for a dataset by determin-
ing the best partitioning option based on master files. In the application phase, we only need to
compute the histogram or skewness features of the given dataset to predict the best partitioning
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Fig. 18. Summarization performance.

technique. Figure 18 also indicates that the time to compute histogram of a dataset is very small
when compared to the time to compute master files. This promises that if we have a good-enough
trained model, we can quickly predict the best partitioning option instead of actual computing the
master files for all techniques to determine the best one.

5.8 Training Data with Skewed Shapes

In this section, we study the effect of using non-point training data. More precisely, in the previous
experiments the generated synthetic datasets contain rectangles that, considering the reference
space, are relatively small, since they have to represents real objects like buildings or road segments
compared to the extension of a state or continent. The goal is to explore whether a non-point
dataset, i.e., dataset containing big and oblong rectangles, would enrich the model by extending
the dataset characteristics. Figure 4 illustrates an example how the new datasets look like. We
generate a total of 60 new datasets that follow the six distributions illustrated in Figure 3.

Figure 19 shows the results of the model when the input dataset contains a mix of points and
rectangular datasets. Comparing these results with the results in Figure 13, we have two obser-
vations. First, the accuracy improves when adding the oblong rectangle datasets to the training
sets, which affirms that non-point data enriches the training set by adding new characteristics.
This is especially true when testing on real data (Figure 19(c) and (d) as compared to Figure 13(c)
and (d)). Second, the gap between the histogram-based summarization and the fractal-based skew-
ness measure summarization is reduced after using the non-point dataset. This shows a promise
in deep learning being more efficient than the hand-crafted skewness measures provided that we
can generate training datasets with diverse distributions and characteristics.

6 RELATED WORK

In this section, we review the related work in literature in three categories: spatial partitioning,
data summarization, and deep learning.
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Fig. 19. Experiments on training data with skewed shapes.

6.1 Spatial Partitioning

Spatial partitioning is an essential operation in all big spatial data frameworks [14]. Regardless
of the underlying architecture, e.g., disk-based or memory-based, data partitioning is essential
to scale out to multiple machines. SpatialHadoop [13] proposed the idea of sampling-based par-
titioning in which a sample is used to estimate the data distribution and then a partitioning is
applied to the big dataset in parallel. This idea was generalized to seven partitioning techniques in-
cluding Grid-based, R-tree-based, Quad-tree-based, and space-filling-curve-based techniques [11].
Other systems follow a similar approach such as Scala-GiST [23], SATO [33], GeoSpark [39], and
Simba [38]. AQWA [2] uses an adaptive histogram rather than a sample to summarize the data
and query workload for data partitioning. In Reference [24], a Voronoi-diagram-based partition-
ing technique is proposed to solve the kNN-join operation. R*-Grove [35] is another spatial parti-
tioning technique that extends the R-tree family for big spatial data systems. Other research work
reuses some of these partitioning techniques to address other spatial analytic operations such as
computational geometry operations [12] and visualization [16].

This article does not propose a new partitioning technique; rather, it proposes a framework that
can suggest one of these partitioning techniques based on the input data distribution and analytic
operation requirements.
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6.2 Data Summarization

Many statistical techniques are used in data processing systems to provide a summarized descrip-
tion of a dataset, for instance, through a sample, a histogram, or a distribution model. These de-
scriptors, often called sketches, are used to speed up the query processing by providing approx-
imated answers based on them [10, 29-31]. One of their main uses in spatial big data analysis
can be the estimation of selectivity for a join operation. The two sketching techniques that are
relevant to this article can be classified into two main categories: sampling-based methods and
histogram-based methods. Sampling-based methods are the basis of most existing spatial parti-
tioning technique available in big data systems, like SATO [33], SpatialHadoop [11, 13], ScalaGiST
[23], and Simba [38]. A histogram-based technique was employed by AQWA [2] to provide an
adaptive partitioning technique for big spatial data based on query workload. The histogram is
used to summarize the query workload, which is then used to adaptively partition the data. In
general, histogram-based methods are shown to be superior for accurate spatial selectivity esti-
mation [1, 26], and some attempts have been made to use them to answer range queries in constant
time [9, 20].

This article uses histogram-based techniques to summarize the data into a fixed-size vector.
Unlike AQWA [2], which used Euler histogram, this article also uses skewness measures based on
these histograms including Moran’s Index and box counting [6, 8].

6.3 Deep Learning

With the rise of deep learning, more research work aim at utilizing it improving decisions and
recommendations such as visualization recommendation [21], query optimization [34]. One of the
notable works is the learned index structures [22], which replaces the complex index structures
for datasets with certain characteristics with a small neural network model and an auxiliary data
structure. Similarly, there has been some work on learning locality sensitive hashing (LSH) to build
approximate nearest neighbor (ANN) indexes [37]. In this work, we do not aim to replace existing
methods but to alleviate the choice between existing ones using deep learning.

7 CONCLUSION

This article explores the use of deep learning techniques to choose an appropriate spatial parti-
tioning method. It formally defines partitioning techniques, quality metrics, and the partitioning
selection problem that aims at choosing the partitioning technique that will maximize a given qual-
ity metric for a dataset. The proposed framework runs in two phases, training and application. The
training phase builds a deep learning model by generating synthetic datasets of diverse distribu-
tions. It uses these synthetic datasets to train a model by choosing the best partitioning technique
for each one. To allow the deep learning model to work with a variable size dataset, we choose
and contrast two summarization techniques termed fractal-based and histogram-based techniques.
The application phase uses this model to choose the best spatial partitioning technique. We build
a prototype of this framework that uses six partitioning techniques and four different quality met-
rics. The experimental results show up to 87% accuracy of the proposed model in recommending
the best partitioning technique. We also found that the histogram-based summarization is more
efficient for synthetic data while the fractal-based techniques are more efficient with real data.
This suggests that we can increase the size and diversity of the training data to achieve a higher
accuracy with histogram-based technique. In summary, the results show that deep learning can
be used to catch the spatial data distribution in an efficient and concise way.
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