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Abstract— In this paper, we tackle the long-standing problem
of ensemble control design and analysis with a geometric
approach in a Hilbert space setting. Specifically, we formulate
the control of linear ensemble systems as a convex feasibility
problem that can be solved using the techniques of iterative
weighted projections. Such a non-trivial geometric interpre-
tation enables a systematic design procedure for constructing
feasible and optimal ensemble control signals, and, further,
enables the implementation of numerical schemes to examine
ensemble reachability. We conduct numerical experiments to
validate the theoretical developments and demonstrate the
robustness of the iterative projection methods.

I. INTRODUCTION

The ensemble control problem, concerning the manipula-
tion of a parameterized family of nearly identical systems by
using a broadcast control signal, has recently received much
attention due to its new theoretical structures and strong
practical relevance to a broad spectrum of fields, ranging
from quantum physics [1], [2], [3], and neuroscience [4],
[5], [6] to other emerging engineering problems [7], [8].

In the past decade, extensive studies of ensemble control
have been conducted, and the focus has been placed on the
investigation of fundamental properties, such as ensemble
controllability and ensemble observability [9], [10], [11],
[12], [13], and on the design of optimal ensemble controls.
Various computational and explicit control design approaches
have also been proposed, such as pseudospectral methods
[14], [15], polynomial approximation and expansion [16],
[17], [18], iterative methods [19], and moment-based control
designs [20].

To date, the developed theoretical methods for ensemble
control analysis have made good use of the algebraic struc-
ture of an ensemble system to quantify its reachable set or, its
observable space defined by the parameter-dependent vector
fields, so as to understand controllability or observability [9],
[21]. These methods are generally not suitable for designing
ensemble controls, so that, independent of control-theoretic
analysis, numerical methods [14], [17] or customized compu-
tational algorithms [19] are often the ultimate avenue toward
tackling the challenge ensemble control design problems.
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In this paper, we develop a unified geometric approach
to not only analyze fundamental properties of ensemble
systems as well as but also to synthesize feasible and optimal
ensemble controls. Our main idea is to cast the problem
of designing a feasible, or, further, an optimal, control for
an ensemble system as a ‘convex feasibility problem’, i.e.,
finding a feasible point in the intersection of a collection
of convex sets defined by the admissible control sets of the
individual systems in the ensemble. This novel interpretation
leverages the iterative projections to synthesize a geometric
method for systematic and efficient design of an ensemble
control law and for rigorous numerical evaluation of ensem-
ble controllability in a Hilbert space setting.

The paper is organized as follows. In Section II, we
introduce the geometric interpretation of ensemble control
and demonstrate that such an important interpretation leads to
a systematic approach for ensemble control analysis and de-
sign. In Section III, we further cast the design of minimum-
energy control as an ‘orthogonal projection’ problem and
show that the minimum-energy control design problem can
be integrated into the same geometric approach as designing
feasible controls. In Section IV, we present several numerical
experiments substantiating the claimed performance of the
proposed approach.

II. GEOMETRIC INTERPRETATION OF ENSEMBLE
CONTROL

In this section, we present the idea of casting the ensemble
control design and controllability analysis as a ‘convex
feasibility problem’. Leveraging this novel interpretation,
we develop methods based on the techniques of iterative
projections to systematically construct feasible and, further,
optimal controls for linear ensemble systems. In addition, the
developed methods offer a rigorous numerical evaluation for
reachability between ensemble states of interest, which has
not been explored in the literature.

A. Feasibility Problem and Ensemble Control Design

Consider a time-varying linear ensemble system defined
on a Hilbert space,

d

dt
X(t, β) = A(t, β)X(t, β) +B(t, β)u(t), (1)

indexed by the parameter β taking values on a compact set
K ⊂ R, where X(t, ·) ∈ L2(K,Rn) is the state, an n-
tuple of L2-functions over K for each t ∈ [0, T ] with T ∈
(0,∞); u ∈ L2([0, T ],Rm) is an L2 control function; A ∈
L∞(D,Rn×n), and B ∈ L2(D,Rn×m) are matrices whose
elements are real-valued L∞- and L2-functions, respectively,



defined on the compact set D = [0, T ]×K. A typical goal
for the control of such an ensemble system is to design the
‘broadcast’ control signal u that steers the entire ensemble
from an initial state X(0, β) to, or to be within a desired
neighborhood of, a target state XF (β) at a finite time T .

Due to the nonstandard, under-actuated nature of ensem-
ble systems, it is opaque to realize how to assemble the
right toolkit from classical systems theory for ensemble
control-theoretic analysis and design. To our surprise, such
a challenging task may become transparent from a delicate
geometric perspective. To fix ideas, let us now consider a
finite sample of systems, X(t, βi), i = 1, . . . , N , from the
ensemble in (1), with the parameter βi taking values in K.
Without loss of generality, we assume that βi are all distinct;
otherwise, they represent identical systems. In this way, each
sampled system is a finite-dimensional time-varying linear
system in Rn, following the dynamics

d

dt
X(t, βi) = A(t, βi)X(t, βi) +B(t, βi)u(t), (2)

where X(t, βi) ∈ Rn for each βi and for all t ∈ [0, T ]. From
linear systems theory [22], the control input u(t) driving the
system in (2) with a given βi from an initial state X(0, βi) ∈
Rn to a target state XF (βi) ∈ Rn at time T satisfies the
following integral equation

Liu = ξi,

where Li : L2([0, T ],Rm)→ Rn is defined by

Li(u) =

∫ T

0

Φ(T, σ, βi)B(σ, βi)u(σ)dσ, (3)

and ξi ∈ Rn is formed by the initial and target states,

ξi = XF (βi)− Φ(T, 0, βi)X(0, βi), (4)

and Φ is the transition matrix associated with the system in
(2).

We first observe that the linearity of the operator Li

with respect to the control u in (3) gives convexity of the
admissible control set.

Lemma 1. The admissible control set of the system in (2)
associated with a given pair of initial and target states
(X(0, βi), XF (βi)), defined by

Ci =
{
u ∈ L2([0, T ],Rm) | Liu = ξi

}
, (5)

is a convex and closed affine subspace, where Li and ξi are
defined as in (3) and (4), respectively.

Proof. For any two controls u1, u2 ∈ Ci and any constant
λ ∈ [0, 1], it holds that

Li(λu1 + (1− λ)u2) = λLiu1 + (1− λ)Liu2

= λξi + (1− λ)ξi = ξi,

and hence Ci is convex. Because Li is continuous, Ci is
closed since it is the inverse image of {ξi}, which is a closed
set in Rn. In addition, since Li(u1 − u2) = 0 holds for
any u1, u2 ∈ Ci, Ci is an affine subspace, as shown by the
linearity of Li.

This result, though straightforward to show, inspires a
new interpretation of ensemble control design. That is, if we
consider two systems in (2) characterized by βi and βj for
i 6= j, then a common control law that simultaneously steers
the two systems to achieve the respective desired transfers
must lie in the intersection of the convex admissible control
sets Ci and Cj , which is also a convex set. In this case, we
have u ∈ Ci∩Cj such that Liu = ξi and Lju = ξj . The same
logic applies to an arbitrary number of systems, as illustrated
in Figure 1. Therefore, the design of a broadcast ensemble
control input is equivalent to a ‘convex feasibility problem’
over a Hilbert space, namely, a problem of finding a point
in the intersection of convex sets. This can be formulated as
an optimization problem of the form

min 0

s.t. u ∈
N⋂
i=1

Ci,
(6)

where Ci are defined in (5) for i = 1, . . . , N .

(a) (b)

Fig. 1: Illustration of ensemble control design as a feasibility problem. (a)
The case in which the admissible control sets Ci, i = 1, 2, 3, for three
linear systems, have a nonempty intersection indicating the existence of a
feasible ensemble control law that will steer these systems to the desired
states. (b) The case in which Ci do not intersect, so that a control law for
simultaneously steering the three systems as desired does not exist.

B. Searching Feasible Points using Iterative Projections

Because all of the admissible control sets, Ci, i =
1, . . . , N , are closed and convex, and so is their intersection,
a systematic and powerful approach to solve the feasibility
problem as in (6) is then to utilize the techniques of iterative
projections, as presented in the theorem on the iterative
weighted projection algorithm.

Theorem 1 (Iterative Weighted Projection). Let C1, . . . , CN

be a collection of closed and convex subsets in a Hilbert
space U and let PCi be the projection operator onto Ci for
i = 1, . . . , N . Consider the sequence {u(k)} generated by
the convex combination of projections,

u(k+1) =

N∑
i=1

λiPCiu
(k), k = 0, 1, 2, . . . , (7)

with any u(0) ∈ U , where λ1, . . . , λN ∈ (0, 1) and∑N
i=1 λi = 1.

(i) If
⋂N

i=1 Ci 6= ∅, then {u(k)} converges to a point
u∗ ∈ C weakly. Specifically, if Ci’s are closed affine
subspaces of U , then {u(k)} converges in norm.



(ii) If
⋂N

i=1 Ci = ∅, then if inf
u∈U

∑N
i=1 d

2(Ci, u) is attain-

able, where d(Ci, u) is the distance between u and
Ci induced by the inner product, then u(k) converges
weakly; otherwise ‖u(k)‖ → ∞.

Proof. The proof can be facilitated by considering the prod-
uct space Ω = U×· · ·×U constituted by a Cartesian product
of N copies of U equipped with the inner product 〈·, ·〉Ω :
Ω×Ω → R defined by 〈U, V 〉Ω =

∑N
i=1 λi〈ui, vi〉U , where

U = (u1, . . . , uN ), V = (v1, . . . , vN ) and 〈·, ·〉U is the inner
product in U . Now, let us construct two closed and convex
sets C and D in Ω , defined by

C = C1 × · · · × CN , (8)
D = {U ∈ Ω | u1 = · · · = uN}. (9)

Let us associate each u(k) ∈ U with a unique element U (k) ∈
D defined by U (k) = (u(k), . . . , u(k)), such that if {U (k)}
converges to U∗ := (u∗, . . . , u∗) ∈ D, then {u(k)} converges
to u∗ ∈ U .

For the sequence {u(k)} generated by (7), we can prove
that the associated sequence {U (k)} satisfies U (k+1) =
PDPCU

(k) (see Appendix I). So the sequence

{U (k) = PDPC · · ·PDPCU (0)}

is an alternating projection onto C and D. By the von
Neuman alternating projection algorithm in Hilbert space
[23], we have the following results:

(i) If C ∩ D 6= ∅, then U (k) converges to U∗ ∈ C ∩ D
weakly [24]. Equivalently, if

⋂N
i=1 Ci 6= ∅, then u(k)

converges to u∗ ∈
⋂N

i=1 Ci weakly. Furthermore, in
the case that C and D are closed affine subspaces,
then U (k) → U∗ in norm when C ∩ D 6= ∅ [23].
Equivalently, if Ci’s are closed affine subspaces, then
u(k) → u∗ in norm when

⋂N
i=1 Ci 6= ∅.

(ii) If C ∩ D = ∅, then when d(C,D) is attainable,
U (k) converges weakly;otherwise U (k) → ∞ [25].
Equivalently when inf

u∈U

∑N
i=1 d

2(Ci, u) attainable, then

u(k) converges weakly; otherwise u(k) →∞.

(a) (b)

Fig. 2: Illustration of the iterative weighted projections. (a) If C1 ∩ C2 6=
∅, then the weighted projection, defined by u(k+1) = 1

2
(PC1

u(k) +

PC2
u(k)), converges to a point u∗ in C1 ∩ C2, where C1, C2 are closed

and convex sets. (b) If C1 ∩C2 = ∅, then the iterative weighted projection
algorithm still converges, but is convergent to a point outside C1 and C2.

Figures 2a and 2b schematically depicts using weighted
iterative projections in (7) to solve the convex feasibility
problem formulated in (6). Figure 2a illustrates the case in
which a point in the intersection of two intersected convex
sets is found from an arbitrary initial point u(0) by applying
u(k+1) = 1

2 (PC1
u(k) + PC2

u(k)). The process generates a
sequence of points {u(k)}, and the iterations finally converge
to a point in the intersection, say u(k) → u∗ ∈ C1 ∩ C2, as
k → ∞. On the other hand, if C1 ∩ C2 = ∅, the procedure
will still be convergent, but not to a point of interest, i.e.,
u∗ /∈ C1 and u∗ /∈ C2, as displayed in Figure 2b.

C. Computing Ensemble Control Laws and Controllability

Theorem 1 provides a systematic approach and a powerful
means to compute a feasible point in the intersection of
finitely many closed and convex sets in a Hilbert space by it-
erative weighted projections. This feasible point corresponds
to a feasible ensemble control law for steering the ensemble
system in (2) from X(0, βi) to XF (βi). Most importantly, a
distinct feature of the iterative weighted projection algorithm
is its capability to verify the existence of a nonempty inter-
section among the given convex sets by computing {u(k)}
using (7). This validation is of particular importance in the
context of ensemble control since it informs whether the
ensemble is controllable or not. In particular, for a linear
ensemble, because the admissible control set defined in (5)
is an affine subspace of U , by the contraposition of statement
(i) in Theorem 1, if {u(k)} does not converge to a point
in U in norm (either with ‖u(k)‖U → ∞ or with u(k)

oscillating because of weak convergence), then it must hold
that

⋂N
i=1 Ci = ∅. Hence the system in (2) is not ensemble

controllable because there exists no common control u that
will simultaneously steer the entire ensemble to XF (βi).

On the other hand, if {u(k)} converges in norm with
u(k) → u∗, then there are two possible cases, as shown
in Figures 2a and 2b. To distinguish them, one can simply
apply the control law u∗ to the linear ensemble (2). If u∗

steers the ensemble to the desired target state, then we have
the case

⋂N
i=1 Ci 6= ∅ (Figure 2a); otherwise, it must hold

that
⋂N

i=1 Ci = ∅ (Figure 2b). As a result, this convergence
property renders a rigorous and tractable numerical approach
to examining the reachability of an ensemble system and
to systematically designing an ensemble control law, as
described in the following theorem.

Theorem 2. Consider the linear ensemble system in (2). Let
{u(k)} be a control sequence generated according to the
iterative weighted projections in (7), given by the explicit
form

u(k+1) =
(
Id −

N∑
i=1

λiL
∗
i (LiL

∗
i )−1Li

)
u(k)

+

N∑
i=1

λiL
∗
i (LiL

∗
i )−1ξi, (10)

starting with an arbitrary initialization u(0) ∈
L2([0, T ],Rm), where Id is the identity operator in



L2([0, T ],Rm); Li and ξi = XF (βi) − Φ(T, 0, βi)X(0, βi)
are defined in (3) and (4), respectively; L∗ denotes the
adjoint operator of L; and λi ∈ (0, 1) with

∑N
i=1 λi = 1.

If {u(k)} converges in norm to u∗ ∈ L2([0, T ],Rm) and
u∗ satisfies Liu

∗ = ξi for i = 1, . . . , N , then the system is
ensemble reachable with respect to ξi, and u∗ is a feasible
ensemble control law. Otherwise, the given state XF (βi) is
not ensemble reachable from X(0, βi).

Proof. The proof directly follows Lemma 1, Theorem 1, and
the analysis above Theorem 1. What remains to be shown
here is to derive the explicit expression of the projection
operator PCi in (7).

It is known that finding the projection of a vector u ∈
L2([0, T ],Rm) onto a closed subspace Ci, denoted PCi

u, is
equivalent to solving the least-squares problem

min
v∈L2([0,T ],Rm)

‖u− v‖2
s.t. Liv = ξi.

(11)

For the ensemble control problem, we are interested in the
case when the system indexed by each βi is controllable.
Then we have R(Li) = Rn (see [22]). It is well-known in
functional analysis that R(LiL

∗
i ) = R(Li) = Rn, and the

solution of (11) can be written as

PCiu = (Id − L∗i (LiL
∗
i )−1Li)u+ L∗i (LiL

∗
i )−1ξi. (12)

Substituting (12) into (7) yields the update rule in (10).

III. MINIMUM-ENERGY CONTROL FOR LINEAR
ENSEMBLE SYSTEMS

In Section II, we formulated ensemble control design as
a convex feasibility problem, through which we were able
to calculate a feasible ensemble control law. In this section,
we take a step further and extend the developed method to
find optimal ensemble controls for linear ensemble systems.
Here, we study the minimum-energy control for the ensemble
system as in (2).

A. A Formulation of Minimum-Energy Ensemble Control as
an Optimization Problem

Adopting the same idea of formulating the ensemble
control design as a feasibility problem, the minimum-energy
control of the ensemble system in (2) can be cast as an
optimization problem, given by

min ‖u‖22

s.t. u ∈
N⋂
i=1

Ci,
(13)

where ‖u‖22 =
∫ T

0
u′u dt and Ci are defined as in (5).

An intriguing fact in this optimization is that the objective
function represents the distance between u and the origin,
i.e., the zero function in L2([0, T ],Rm). Therefore, mini-
mizing the energy of u simply involves finding the point
in
⋂N

i=1 Ci that is closest to the origin in L2([0, T ],Rm),
which is the ‘orthogonal projection’ of the origin onto the
set
⋂N

i=1 Ci.

B. Orthogonal Projection onto Intersection of Convex Sets

Let U be a Hilbert space and Ci be closed and convex
sets in U . It is in general difficult to directly compute the
projection of a vector u ∈ U onto

⋂N
i=1 Ci. Fortunately, when

the projection onto each Ci, i.e., PCi
u, is easy to compute,

the projection onto the intersection
⋂N

i=1 Ci can then be
obtained by cyclic projections onto each individual set.
Dykstra’s algorithm [26] is a notable method of performing
such computations, described in Algorithm 1.

Algorithm 1 Dykstra’s algorithm
function DYKSTRA(C1, . . . , CN , u(0))

Initialize:
(0) Assign u

(1)
0 = u(0).

(1) Project u(1)
0 onto C1 to obtain u

(1)
1 .

Compute I
(1)
1 = u

(1)
1 − u

(1)
0 .

...
(N) Project u(1)

N−1 onto CN to obtain u
(1)
N .

Compute I
(1)
N = u

(1)
N − u

(1)
N−1.

for k ← 2, 3, . . . do:

(0) Assign u
(k)
0 = u

(k−1)
N .

(1) Project u(k)
0 − I

(k−1)
1 onto C1 to obtain u

(k)
1 .

Compute I
(k)
1 = u

(k)
1 − (u

(k)
0 − I

(k−1)
1 ).

...
(N) Project u(k)

N−1 − I
(k−1)
N onto CN to obtain u

(k)
N .

Compute I
(k)
N = u

(k)
N − (u

(k)
N−1 − I

(k−1)
N ).

end for
return {u(k)

1 }
∞
k=1, . . . , {u

(k)
N−1}

∞
k=1

end function

Lemma 2. Let C1, . . . , CN be closed and convex in a Hilbert
space U , and let u∗ be the orthogonal projection of u(0) onto⋂N

i=1 Ci. Then the sequence {u(k)i } obtained by Algorithm
1 converges to u∗ in norm for any 1 ≤ i ≤ N . Furthermore,
if Ci is affine for all i = 1, . . . , N , then the offset I(k−1)i in
Algorithm 1 can be set as 0 for all k = 2, 3, . . ., with the
same guarantee that {u(k)i } converges to u∗ in norm for all
i = 1, . . . , N .

Proof. See the proof of Theorem 2 in [26].

Remark 1. (Dykstra’s algorithm v.s. iterative weighted pro-
jection algorithm) It is worth pointing out that Dykstra’s
algorithm involves an offset I(k)i when projecting the next
iteration u(k+1)

i onto Ci, which eventually finds in the point
in
⋂N

i=1 Ci that is the closest to u(0); while the iterative
weighted projection algorithm returns only one feasible point
in
⋂N

i=1 Ci, but not necessarily the one closest to u(0).

C. Minimum-Energy Control for Linear Ensembles by Iter-
ative Projections

From the discussion in Section III-A, we have interpreted
the minimum-energy ensemble control problem as the pro-
jection of the zero function, 0 ∈ L2([0, T ],Rm), onto the
intersection of the admissible control sets, formulated as in
(13). Here, we show that computing this projection using
Dykstra’s algorithm, for linear ensemble, is equivalent to
conducting the iterative weighted projections as in (10), as
stated by the following theorem.



Theorem 3. (Minimum-energy control for linear ensemble
systems) Consider the linear ensemble system in (2), with
Li, ξi, and Ci defined as in (3), (4) and (5), respectively. If⋂N

i=1 Ci 6= ∅, then the control sequence {u(k)}, with u(0) =
0 ∈ L2([0, T ],Rm), generated by the iterations,

u(k+1) = (Id −
N∑
i=1

λiL
∗
i (LiL

∗
i )−1Li)u

(k)

+
N∑
i=1

λiL
∗
i (LiL

∗
i )−1ξi,

for k = 0, 1, 2, . . . , converges to the minimum-energy en-
semble control in norm, where Id is the identity operator in
L2([0, T ],Rm), L∗i denotes the adjoint operator of Li, and
λi ∈ (0, 1) with

∑N
i=1 λi = 1.

Proof. We first define the product space H and the aug-
mented sets C and D in the same way as in (8) and (9) in the
proof of Theorem 1. Then we associate each u ∈

⋂N
i=1 Ci

with an element U ∈ D defined by U = (u, . . . , u), so that
we have U ∈ C ∩ D, and ‖U‖2H =

∑N
i=1 λi‖u‖2U = ‖u‖2U .

This reformulates the optimization problem in (13) into a
new optimization problem over the product space H to
minimize ‖U‖22 subject to U ∈ C ∩ D. The solution of
the new optimization problem is provided by the orthogonal
projection of 0 ∈ H that can be computed by the Dykstra’s
algorithm. Since C and D are both closed affine subspaces
of H, Dykstra’s algorithm for C ∩ D with U (0) = 0 ∈ H
boils down to the iterative weighted projections on C and D,
which leads to the projection of u(0) = 0 ∈ U onto

⋂N
i=1 Ci.

The convergence of the iterative weighted projections on
C and D has already been fully analyzed in Theorem 1.
Hence simply changing the initial condition of Theorem 2
provides a sequence {u(k)} converging to the minimum-
energy control law of the ensemble.

IV. NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments to show
the performance of the presented geometric approach in
designing control laws for linear ensemble systems. All the
numerical experiments are implemented in Matlab R2017b
on a single workstation with a Xeon Gold 6144 3.5 GHz
processor and 192 GB memory.

We consider controlling an ensemble of harmonic oscilla-
tors modeled by

d

dt

[
x1(t, ωi)
x2(t, ωi)

]
=

[
0 −ωi

ωi 0

] [
x1(t, ωi)
x2(t, ωi)

]
+

[
u1(t)
u2(t)

]
, (14)

where the frequencies of the oscillators are uniformly sam-
pled over [−1, 1] with a step size of 0.1, resulting in 21
systems in the ensemble. All the systems in the ensemble
are steered from the same initial state X(0, ωi) = (1, 0)′ to
the same target state XF (ωi) = (0, 1)′ at time T = 1.

Figure 3a shows the feasible control law and final state
errors under the designed feasible ensemble control. The
update rule (10) is applied by discretizing u(k) and the

operator Li in time. It is demonstrated that more iterations
lead to smaller final state errors.

Figure 3b provides the minimum-energy control and
the corresponding final state error by initializing (10)
with u(0) = 0. In this experiment, the Hilbert space
L2([0, T ],Rm) is expanded using Legendre polynomials of
orders up to 20. Then the update rule (10) is applied to iterate
the coordinates of control law u(k) under the Legendre basis.
It is observed that the control law computed after 1 × 107

iterations works well and is same as the one generated by
existing control synthesis methods such as [27].

V. CONCLUSION

In this paper, we propose a geometric method for ensemble
control analysis and design. Our main idea is to cast these
challenging tasks as a convex feasibility problem in a Hilbert
space. This novel geometric interpretation allows us to nu-
merically evaluate reachability between specified ensemble
states, and to design a feasible or an optimal ensemble
control. We present numerical experiments to illustrate the
theoretical development and applicability of the presented
iterative projection methods.

APPENDIX I
PROOF OF THE ITERATIVE WEIGHTED PROJECTIONS

ALGORITHM

Since C1, . . . , CN is closed and convex, C is also closed
and convex. D is a subspace of H, which is automatically
closed and convex. Therefore the projections onto C and D,
denoted as PC and PD, are well-defined. We associate each
u(k) ∈ U with U (k) := (u(k), . . . , u(k)) ∈ H. Then

Lemma 3. The update rule (7) yields

U (k+1) = PDPCU
(k).

Proof. We first show that

PCU
(k) = (PC1u

(k), . . . , PCN
u(k)).

By the definition of projection, PCU (k) = argmin
V ∈C

‖U (k)−

V ‖H. Instead of minimizing ‖U (k) − V ‖H, we are seeking
to minimize

‖U (k) − V ‖2H = 〈U (k) − V,U (k) − V 〉H, ∀V ∈ C. (15)

By the definition of inner product on H, (15) is computed
as

‖U (k) − V ‖2H = 〈U (k) − V,U (k) − V 〉H

=
N∑
i=1

λi〈u(k) − vi, u(k) − vi〉U =
N∑
i=1

λi‖u(k) − vi‖2U

(16)

Since each vi ∈ Ci ⊂ X , by the definition of projection on
U , ‖u(k) − vi‖2U ≥ ‖u(k) − PCi

u(k)‖2U . Hence (16) can be
bounded below by

‖U (k) − V ‖H ≥
N∑
i=1

λi‖u(k) − PCi
u(k)‖2U . (17)



(a)
0 0.2 0.4 0.6 0.8 1

-10

-8

-6

-4

-2

0

2

4

6

8

10

u
1
(t)

u
2
(t)

-2 -1 -0.3 0.3 1 2

10-2

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

5  10
3
 iterations

1  10
4
 iterations

1  10
5
 iterations

(b)
0 0.2 0.4 0.6 0.8 1

-500

-400

-300

-200

-100

0

100

200

300

400

500

u
1
(t)

u
2
(t)

-5 -4 -3 -2 -1

10-7

-3

-2

-1

0

1

2

3

4

5

6

7
10-7

Fig. 3: Results of controlling an ensemble of 21 harmonic oscillators. Initial states and target states are set as X(0, ωi) = (1, 0)′ and XF (ωi) = (0, 1)′,
for all i = 1, . . . , 21. (a) A feasible control law obtained by running iterative weighted projections for 1× 105 iterations and the corresponding final state
errors. The initial control law is (u

(0)
1 (t), u

(0)
2 (t)) ≡ (1, 1). (b) Minimum-energy ensemble control law and the corresponding final state errors.

We observe that PCi
u(k) ∈ Ci for all i, and the equality

in (17) can be achieved when V = (PC1
u(k), . . . , PCN

u(k)).
Hence we conclude that PCU (k) = (PC1u

(k), . . . , PCN
u(k)).

Denote W = (w, . . . , w) = PDPCU
(k). We observe that

D is a subspace in H. Hence it holds that ∀s ∈ H, ∀t ∈
D, s − PDs ⊥ t. Now taking s = PCU

(k) and t = rW ,
where r is an arbitrary real number yields that

〈PCU (k) −W, rW 〉H = 0. (18)

Substituting the definition of the inner product in H into (18)
yields

N∑
i=1

λi〈PCiu
(k) − w, rw〉U = 〈

N∑
i=1

λiPCiu
(k) − w, rw〉U .

(19)

Since (19) holds for all r ∈ R,
∑N

i=1 λiPCiu
(k)−w must be

0, which implies that w =
∑N

i=1 λiPCi
u(k). By (7), it holds

that u(k+1) =
∑N

i=1 λiPCiu
(k), which implies U (k+1) =

W = PDPCU
(k).
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