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Abstract: Swarm robotic search aims at searching targets
using a large number of collaborating simple mobile robots,
with applications to search and rescue and hazard localiza-
tion. In this regard, decentralized swarm systems are touted
for their coverage scalability, time efficiency and fault tol-
erance. To guide the behavior of such swarm systems, two
broad classes of approaches are available, namely nature-
inspired swarm heuristics and multi-robotic search methods.
However, the ability to simultaneously achieve efficient scal-
ability and provide fundamental insights into the exhibited
behavior (as opposed to exhibiting a black-box behavior), re-
mains an open problem. To address this problem, this paper
extends the underlying search approach in batch-Bayesian
Optimization to perform search with embodied swarm agents
operating in a (simulated) physical 2D arena. Key contribu-
tions lie in: 1) designing an acquisition function that not only
balances exploration and exploitation across the swarm, but
also allows modeling knowledge extraction over trajectories;
and 2) developing its distributed implementation to allow
asynchronous task inference and path planning by the swarm
robots. The resulting collective informative path planning
approach is tested on target-search case studies of vary-
ing complexity, where the target produces a spatially vary-
ing (measurable) signal. Notably superior performance, in
terms of mission completion efficiency, is observed compared
to exhaustive search and random walk baselines as well as
a swarm optimization-based state-of-the-art method. Favor-
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able scalability characteristics are also demonstrated.

Keywords: Swarm Robotic Search, Informative Path Plan-
ning, Bayesian Optimization, Gaussian Process.

Nomenclature

N,: Number of robots (swarm size)

r: Robot index, a value between 0 and N,

X:: The location of the observations made by robot-r while
it is moving from waypoint-(i — 1) to waypoint-i

yi]: The source signal measurements made by robot-r while
it is moving from waypoint-(i — 1) to waypoint-i

Di: A set of observations of an environment that made by
robot-r after finishing its i-th waypoint; i.e., D\ = [X!,y]
DU,r: The observations history of robot-r, including self-
observations and shared by its peers, from beginning of the
mission until finishing its i-th waypoint

)?f’,p: The current local peer-p’s next waypoint of robot-r at
the decision-time k;

X’ﬁ',: The current local peers’ next waypoint of robot-r at the
decision-time k,; i.e., X’ﬁ‘r = Upzl;p#,)?f’,p

xk*1: The next waypoint of robot-r at the decision-time k,
hy(.): The source seeking term of robot-r in Bayes-Swarm
gr(.), The knowledge-gain term of robot-r in Bayes-Swarm
o: The exploitation weight, where o = 1 would be purely
exploitative.

Iy: The length of path s

T: The decision-horizon time of robots



V: The nominal velocity of robots

GP,: The Gaussian process (GP) model trained and used by
robot-r

AO: Initial feasible direction

Nmax: Downsample threshold, which defines the maximum
allowed samples for fitting the GP model by each robot

1 Introduction

Swarm robotic search is concerned with searching for
or localizing targets in unknown environments with a large
number of collaborative robots. There exists a class of search
problems in which the goal is to find the source or target with
maximum strength (often in the presence of weaker sources),
and where each source emits a spatially varying signal. Po-
tential applications include source localization of gas leak-
age [1], nuclear meltdown tracking [2], chemical plume
tracing [3], and magnetic field and radio source localiza-
tion [4,5]. In such applications, decentralized swarm robotic
systems have been touted to provide mission efficiency, fault
tolerance, and scalable coverage advantages [6—8], compared
to sophisticated standalone systems. Decentralized search
subject to a signal with unknown spatial distribution usually
requires both task inference and planning, which must be un-
dertaken in a manner that maximizes search efficiency and
mitigates inter-robot conflicts. This in turn demands deci-
sion algorithms that are computationally light-weight (i.e.,
amenable to onboard execution) [9], preferably explain-
able [10], and scalable [11] — it is particularly challenging
to meet these characteristics simultaneously.

In this paper, we perceive the swarm robotic search pro-
cess to consist of creating/updating a model of the signal
environment and deciding future waypoints thereof, so as
to collectively find the target source (location with maxi-
mum signal strength) as fast as possible. Specifically, we
design, implement and test a novel decentralized algorithm
founded on a Bayesian search formalism. This algorithm
tackles the exploration/exploitation balance over trajectories
(as opposed to over points, which is typical in non-embodied
search), while allowing asynchronous decision-making. In
this context, we also explicitly consider other constraints at-
tributed to the embodiment of the search process, e.g., in-
dividual robot’s speed and rage constraints. The remainder
of this section briefly surveys the literature on swarm search
algorithms, and converges on the contributions of this paper.

1.1 Swarm Robotic Search

In time-sensitive search applications under complex sig-
nal distributions, a team of robots can broaden the scope
of operational capabilities through distributed remote sens-
ing, scalability and parallelism (in terms of task execu-
tion and information gathering) [12]. The multi-robot
search paradigm [11] uses concepts such as cooperative con-
trol [13], model-driven strategies, [ 14], Bayesian filter by in-
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corporating mutual information [15], strategies based on lo-
cal cues [16], and uncertainty reduction methods [17]. Scal-
ing these methods from the multi-robotic (<10 agents [11])
to the swarm-robotic level (10 to 100 agents) often becomes
challenging in terms of online computational tractability.

A different class of approaches that is dedicated to guid-
ing the search behavior for larger teams is that based on
nature-inspired swarm intelligence (SI) principles [18-20].
SI-based heuristics have been used to design algorithms
both for search in non-embodied n-dimensional space (e.g.,
particle swarm optimization) and for swarm robotic search
[21,22]. Majority of the latter methods are targeted at lo-
calizing a single source [9,23]. A notable exception is the
Glowworm optimization based algorithm reported by Krish-
nanand et al. [19]. This approach was showed to handle
multi-modal source localization by assuming robots are ini-
tially distributed in the search space, with its effectiveness re-
lying on the usage of adaptive parameters (e.g., changing in-
ertia weight) [23]. The localization of the maximum strength
source in the presence of other weaker sources (i.e., given a
multi-modal spatial signal-distribution), without making as-
sumptions such as distributed starting points, remains a chal-
lenging problem.

Translating optimization processes: Similar in principle
to some SI approaches, here we aim to translate an optimiza-
tion strategy [24], namely Bayesian Optimization, to perform
search in the physical 2D environment. In doing so, it is im-
portant to appreciate two critical differences between these
processes: 1) Movement cost: unlike optimization, in swarm
robotic search, moving from one point to another may re-
quire a different energy/time cost depending upon the en-
vironment (distance, barriers, etc.) separating the current
and next waypoints. 2) Sampling over paths: robots usu-
ally gather multiple samples (signal measurements) over the
path from one waypoint to the next (as sampling frequency
>> waypoint frequency), unlike in optimization where we
sample only at their next planned point. This “sampling over
paths” characteristic has received minimal attention in exist-
ing SI-based approaches.

Moreover, with SI-based methods, the resulting emer-
gent behavior, although often competitive, raises questions
of dependability (due to the use of heuristics) and mathemat-
ical explainability [25]. The search problem can be thought
of as comprising two main steps: task inference (identi-
fying/updating the signal spatial model) and task selection
(waypoint planning). In SI methods, the two steps are not
separable, and a spatial model is not explicit. In our pro-
posed approach, the processes are inherently decoupled —
robots exploit Gaussian Processes to model the signal distri-
bution knowledge (task inference) and solves a 2D optimiza-
tion over a special acquisition function to decide waypoints
(task selection). Such an approach is expected to provide
explainability, while preserving computational tractability.



1.2 Objective of this Paper

This paper is an extension of our recent work presented
in the ASME 2019 IDETC/CIE conference [26]'. In this
paper, we develop (an explainable) decentralized and asyn-
chronous swarm robotic search algorithm, subject to the fol-
lowing assumptions: i) all robots are equipped with pre-
cise localization; and ii) each robot can communicate their
knowledge, state and decisions with all neighbors (full ob-
servability) at waypoints. In asynchronous decision-making,
agents/robots take decision in an event-driven scheme, as op-
posed to a synchronous approach where all robots need to
take decisions at fixed intervals. The asynchronous decision-
making is critical in most real-world settings, due to the pres-
ence of stochastic action effects and imperfect and unreliable
communication [27]. In addition, it has been shown that hav-
ing asynchronous parallel sampling in Bayesian optimiza-
tion (the motivating algorithm behind our proposed search
method) can improve the optimization progress in compar-
ison to synchronous implementations [28]. Decentralized
decision-making here relates to how each swarm robotic
agent independently plans its immediate future waypoint.

Within this context, the primary contributions of this pa-
per lies in the following developments: /) a novel decentral-
ized algorithm (Bayes-Swarm) that extends Gaussian pro-
cess modeling (to update over trajectories) and integrates
physical robot constraints and other robots’ decisions to per-
form informative path planning — simultaneously mitigating
knowledge uncertainty and getting closer to the source; and
2) a simulated parallelized implementation of Bayes-Swarm
to allow asynchronous search planning over complex multi-
modal signal distributions.

The remaining portion of the paper is organized as fol-
lows: The next section presents the problem definition and
GP modeling. Then our proposed decentralized algorithm
(Bayes-Swarm) is described. Numerical experiments and re-
sults, encapsulating the performance of these methods on
different-sized swarm and a parametric analysis of the pro-
posed decentralized method are then presented. The paper
ends with concluding remarks.

2 Background
2.1 Gaussian Process Model

Gaussian process (GP) models [29] are probabilistic sur-
rogate models that have been used successfully in differ-
ent applications such as modeling the objective function in
Bayesian optimization [30]. If we have a set of n observa-
tions of an environment, D = x;,y;[i = 1...n, then we can
write the following equation by assuming that the observed
values y differ from the function f(x) values by an additive
noise €, where x denotes an input vector:

!"This manuscript is an invited paper, being submitted to the 2019 CIE
Research Highlights Issue of the JCISE journal, and is based on our 2019

IDETC/CIE Conference paper numbered IDETC2019-97887, Ref. [26].
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y=f(x)+¢e (1)

By assuming the noise follows an independent, identically
distributed Gaussian distribution with zero mean and vari-
ance 62, we have € ~ N'(0,62). The function f(x) can be
estimated by a GP with mean function u(x) and covariance
kernel 6%(x) given by:

f(x) ~ GP(u(X),6%(X)) @)
where,
u(x) = A(x)(y — PB) 3)
6% (x) = k(x,%) — A(X)Ky(x) 4
A(x) =k, (x)" [K+ 0, (01" )

Here & is the vector of explicit basis functions and K =
K(X,X]|0) is the covariance function matrix such that
(K)ij = k(x:,x,), and k, (x) = [k(x1,X),...,k(X,X)]7. In this
paper, the hyper-parameters of the GP model are optimized
by maximizing the log-likelihood P as a function of f,8,52:

~

B, 6, & = arg max log P(y|X,B.6,5;) ©)
) )G)l
where,

log P(y/X,B,0,03) =~ 5 (v ~ @) A(Y) (v~ @)

(M
N, 1
- —25 log 21— = log |A(X)]

3 Swarm Bayesian Algorithm
3.1 Bayes-Swarm: Overview

The robot behaviors including its motion, communica-
tion, and decision-making are illustrated in Fig. 1 and the
pseudocode of our proposed decentralized Bayes-Swarm al-
gorithm is depicted in Alg. 1. Each robot in a team of size
N, is assumed to run the Bayes-Swarm algorithm at each
decision-making step (i.e., after reaching its waypoint) to
take the best action by maximizing an acquisition function
that guides the team to the source location over the course of
the operation. Importantly, these decision-making instances
need not be synchronized across robots, unlike several other
existing decentralized implementations. Before elaborating
on the mathematical formulation of each component of the
Bayes-Swarm algorithm, we provide here a brief description
of how the overall algorithm works, using Fig. 1 as refer-
ence. At the beginning of the mission, the robots do not have
any observations from the environment, and thus no belief
model to follow (as the default setting); prior knowledge, if
available in a practical application, can however be readily
incorporated as a prior belief model in our formulation. By
default, in the “Select First Waypoint” block in Fig. 1, each
robot chooses a waypoint such that the heading directions
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Fig. 1. Bayes-Swarm architecture for each robot in the swarm

of the team are somewhat uniformly distributed over the do-
main of interest. Then, each robot shares its decision with its
peers and starts moving toward the planned waypoint. Dur-
ing its movement, each robot takes location-tagged signal
measurements (observations) at a fixed sampling rate. Once
the robot reaches the planned waypoint, it runs a check for
ending the mission (based on algorithm termination criteria),
and if unsatisfied, it proceeds to decide its next waypoint.
This generic planning process involves four major sub-steps,
represented by the four blocks inside the “Waypoint Plan-
ning” block in Fig. 1). First the robot combines its own re-
cent observations with the recent observations received (over
a wireless network) from its peers, and then down-samples
the new data set for preserving the tractability of onboard up-
dating of the GP model. Subsequently, it uses the new data
set to update its GP-model based acquisition function. The
next waypoint is then determined by maximizing this acqui-
sition function, subject to certain range constraints. Each
robot then creates an information packet (“Prepare Packet”
block in Fig. 1) comprising a downsampled version of its re-
cent observations and its decided next waypoint, and broad-
casts that information to all peers, before moving to its next
waypoint. This procedure is then repeated until the target of
interest is found or other mission termination criteria (e.g.,
maximum endurance of robots) is reached.

3.2 Acquisition Function

For swarm robotic search, it is important to design an
acquisition function that accounts for the characteristics of
the embodied search process, i.e., where 1) data is collected
and uncertainty is reduced over trajectories and not over sep-
arate points in the domain of interest, and ii) robots can only
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travel finite distances constrained by their maximum speed
over a given time step. Here, we design our own acqui-
sition function partly motivated by the work of Morere et
al. [31]. However, in the future, there remains opportunity
to translate other well-known acquisition functions such as
GP-UCB [32] and g-EI [33] from the BO and batch-BO do-
main [24] to suit the needs of swarm robotic search. Below,
we describe our unique design of the acquisition function,
and how it is used by each robot for waypoint planning.

Robot-r solves an optimization problem based on its in-
formation (DY*r and )A(k_’,), including self-observations and
shared peers’ observation from the beginning of the mis-
sion till the decision-time k, (D'* = (Y Ui Di; Di =
[Xi,y']) and the current local peers’ next waypoint ()A(k_’r =
Up=1: p#)&’,p). For the 7™ robot, our mathematical formu-
lation of the acquisition function can be expressed as:

X = arg max (()L-/’lr(X,'D]:k’) +(1 —Oc)g,(x,D]’k’,)A(k_’,))
xeXkr

s.t. ®
0<Ifr=|x—xy| <VT )

where the first term, 4,(.), leads robot r to the expected loca-
tion of the source (exploitation) and the second term, g,(.),
minimizes the knowledge uncertainty of robot r. The coeffi-
cient o € [0, 1] represents the exploitation weight, i.e., o0 = 1
would lead to purely exploitative behavior. The length (I;) of
the path s is bounded based on the decision-horizon 7 and
the nominal velocity of the robots (V). The individual terms
of the acquisition function are described next.

3.3 Source Seeking Formulation

The source location is the optimum point of the source
signal. In this approach, robots model the source signal us-
ing a GP and the location with the maximum expected value
based on their then-current GP model of the environment
would represent the greedy (exploitive) choice at each way-
point planning instance. Due to the motion constraints of the
robot and limited decision-time horizon, all such a location
may not be a feasible choices. To consider this factor, we
define the source seeking term as follows:

1

hr(x, D) = I+ (x—%)T(x —%*)

(10)

where X* = arg maxz u(X).

3.4 Knowledge-gain Formulation

As we mentioned in the first section, robots typically
gather information over their path; therefore, different paths
cause different knowledge-gains. This concept is known as
informative path planning (IPP), where robots plan paths
such that best/maximum possible information is extracted.
In this paper, we are interested in paths that minimizes the



uncertainty in the robots’ belief (knowledge), which is anal-
ogous to maximizing the knowledge-gain. For this purpose,
we are estimating the uncertainty in the belief (modeled by
a GP) based on the gathered observations and the planned
future observations (other robots’ planned paths). We thus
define the knowledge-gain as follows:

&/(x,D,X) = / o(s(u))du (1)
5(x)
where, the path is written in the parametric form as:
s(u) = ux+ (1 —u)x¥; u € [0,1] (12)

3.5 Information Sharing

Inter-robot communication is a key element of any
swarm system, and robots often require to communicate with
each other over an ad-hoc wireless network in outdoor appli-
cations. However, given the bandwidth limitations of ad-hoc
wireless communication and the energy footprint of wire-
less communication [34], it is typically desirable to reduce
the communication burden. To this end, in our proposed
method, the decision-making is allowed to be asynchronous
and robots share only a down-sampled set of observations.
Table 1 provides a quick overview of the type and frequency
of the information shared by each UAV with all its peers

Algorithm 1 The Bayes-Swarm Algorithm

Input: GP,,X,,Xf’, - the current location and recent obser-
vations of the robot (x), and the next waypoints of its peers
(X5,
Output: x**! - the next waypoint of robot-r at its iteration
k.

1: procedure TAKEDECISION(r, k,, N, AB)

2: if k, = 0 then

3: x’;r < TAKEFIRSTDECISION(r, k,, N, AB)

4: else

5 if Size of DX > Npax then B> Npax = 400
6: Down-sample D’,‘" to Npax observations

7: xkr « by solving the optimization, Eq.(8)

8: k< k,+1

9:  return x’ k.

10: procedure TAKEFIRSTDECISION(r,N,,A0,V,T)
11: d+ VT

12: if A6 = 360 then > AO: Initial feasible direction

range
13: 0 < rA0/N,

14: else

15: 0« rA0/(N,+1)
16: x! < [dcos®,dsin6]
17: return x!

7

across the swarm. Algorithm 2 lists two procedures that
each robot uses to share or receive information. Robots then
proceed to individually update their respective knowledge
model based on their own information and the future plan
of its peers. Having presented an overview of the Bayes-
Swarm method, the next section introduces its distributed
virtual implementation, case studies developed to test the
performance of Bayes-Swarm, and the corresponding imple-
mentation settings that we used.

3.6 Downsampling Collective Swarm Observations

In order to keep the Bayes-Swarm algorithm scalable
and computational tangible, we are required to downsam-
ple the collective data set of the swarm (i.e., observations
made by the agents). This is because updating the GP mod-
els presents a cubic time complexity (O(n*)) with respect to
the size (n) of the data set. In this work, we use a simple
downsampling approach, known as sample rate compression
by an integer factor M [36]. This approach reduces the data
set by keeping the first sample and then every M-th sample
after the first, where M = [size(D"*") /Npax |.

4 Numerical Experiments & Case Studies
4.1 Distributed Virtual Implementation of Bayes-
Swarm

In order to enable a better representation of distributed
planning process embodied by a physical swarm of robots,
we develop a simulated environment that provisions a par-
allel computing deployment of Bayes-Swarm. This uses
"MATLAB”’s parallel programming capabilities to invoke 40
dedicated threads. Each robot operates (the behavior illus-
trated in Fig. 1) in parallel with respect to the rest of the
swarm, updating its own knowledge model after each way-
point and deciding its own next waypoint. The entire process
is simulated in a virtual environment developed with MAT-
LAB R2017b and is executed on a workstation with Intel®
Xeon Gold 6148 27.5M Cache 2.40 GHz, 20 cores processor
and 196 GB RAM. The simulation time step is set at 1 mil-

Algorithm 2 Communication Procedures

1: procedure RECEIVEINFORMATION(}’,p,XI;,p7'Df,p)
% DYk Dl DY

3 X o(1:2)« %5314

4 )A(f",p(3 14) x],c,”

. return D}*r XY

6: procedure SENDINFORMATION(r, x*r DFr)
7 if k, = 0 then

8 Broadcast xr
9 else

10: Broadcast {x%; D%}

> 4 bytes

>4+ 6T bytes
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Table 1.

Content, size, and frequency of information shared by robot r via communication across the swarm.

Property

Descriptions

Inter-robot communication frequency

After each waypoint planning instance

Content of transmitted data

1) Its next location to visit (x’;’); and 2) Its observations over the last path (D’,")

Average size of outgoing data packets (with time-horizon 1 min)

364 Bytes

-20 (d)

20 -10 0
x[m]

0 1 2 3
x [m]

Fig. 2. Five case studies with source distributions of different levels of complexity. (a) Case study 1: large arena, convex signal distribution;
(b) Case study 2: small arena, non-convex signal distribution; (c) Case study 3: large arena, non-convex signal distribution; (d) Case study 4:
large arena, highly multi-modal signal distribution; (e) Case study 5: small arena, multi-modal signal distribution (given in [35]).

liseconds. Robot settings: we set the velocity of each swarm
robot at 10 cm/s based on the specifications of e-puck 2 [37].
The observation frequency is set at 1 Hz. To keep the com-
putational complexity of refitting the GP low, the size of data
(D)%) used by each robot is downsampled to 400 (i.e., when
it grows beyond 400 in the latter stages of the mission).

4.2 Case Studies

We design and execute a set of numerical experiments
to investigate the performance of the proposed decentralized
Bayes-Swarm approach. In order to provide an insightful
understanding of the Bayes-Swarm algorithm, three types
of tests are conducted for all case studies and the results
are evaluated and compared in terms of completion time,
cost incurred by robots, knowledge-gain per robot, and map-
ping error. Mapping error measures how the estimated re-
sponse surface using GP deviates from the actual response
surface of the source in terms of the Root-Mean Square Er-
ror (RMSE) metric. The three tests are described next. Ex-
periment 1: A parametric analysis is conducted to study how
the exploitation coefficient of Bayes-Swarm affects its per-
formance. Experiment 2: A scalability analysis is conducted
to investigate the performance of Bayes-Swarm across mul-
tiple swarm sizes. Experiment 3: Bayes-Swarm is run us-
ing the default values listed in Table 2 to analyze its perfor-
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mance in response to different single- and multi-modal spa-
tial distribution of signal strength, and results are compared
with those of standard exhaustive search and random walk
methods.Experiment 4: The performance of Bayes-Swarm is
compared with that of Glowworm optimization (GSO) algo-
rithm proposed by Krishnanand et al. [19], tested on case
study 5.

To conduct the first three experiments stated above, five
distinct case studies are defined, each corresponding to a dif-
ferent spatial distribution of the signal strength; as shown in
Fig. 2. The first case study is a large convex source signal
distribution and the rest of the case studies are non-convex
multi-modal signal distributions (involving multiple signal
sources). Case study 4 is expected to be the most challeng-
ing case as it contains one global maxima (target source) and
five local maxima (weaker sources) in a large arena. Case
study 5, adopted from [35], contains one global maxima (tar-
get source) and two local maxima (weaker sources).

In this paper, Bayes-Swarm utilizes two termination cri-
teria during operation. The primary criterion terminates the
search if any robot arrives within €-vicinity of the source
signal location. In addition, Bayes-Swarm terminates if the
operation reaches a maximum allowed search time (7ax)-
The distance threshold € is set at 5 cm and the maximum
search time Tp.x is outlined for each case study in Table 2.
The decision-time horizon (T) is set at 4 seconds for the first



decision-making step; then it changes to 10 seconds for the
later decision-making steps.

4.3 Demonstrating Bayes-Swarm: Case Study 2

Figure 3 depicts four snapshots of the Bayes-Swarm al-
gorithm for case study 2 with 4 robots and o0 = 0.4. It can
be seen from this figure how the estimated knowledge model
and its uncertainty improves by exploring the search space.
The top figures show the uncertainty map (6(x)) and the bot-
tom figures show the robot location and its knowledge state
(dashed contours). In the bottom figures, the gray solid con-
tours represent the actual source signal (ground truth) and
the gray dashed contours represent the source signal (knowl-
edge) model of a robot at the stated time point. Blue solid
lines show the paths that robots have already traveled and the
observations over which have been shared with all peers, as-
sisting the refitting of their knowledge model. The red solid
line shows the paths traveled but the observations over which
have not yet been shared with peers. The red dashed lines
represent the paths that have been planned but not yet trav-
eled.

From Fig. 3(a)-3(e), it can be seen that when Robot 1
reaches its first waypoint, only 4 self observations are avail-
able to it;, hence it is able to build only a relatively inaccu-
rate knowledge model (that gives the expected location of the
source at (1.6,1.0), which is in reality far away from both of
the actual sources). When the last robot (robot 4) takes de-
cision, it has its peers’ observations at ¢t = 4*s. The knowl-
edge model (Fig. 3(f)) is still inaccurate, but the uncertainty
map (Fig. 3(b)) is improved. After 26 seconds (Figs. 3(c)
and 3(g)), the robots are able to converge to a fairly accurate
knowledge model of the signal distribution, and their future
updates and planning (seen in Figs. 3(d) and 3(h)) puts two
robots in the team within the threshold of the source location
at time ¢t = 54s.

5 Results and Discussion
5.1 Experiment 1: Parameter Analysis of Bayes-Swarm

In the proposed decentralized method, there is one ma-
jor prescribed parameter that needs to be prescribed or tuned
— the exploitation coefficient parameter ., that regulates the
balance between exploration and exploitation. We run an ex-
periment to study how this exploitation coefficient parameter
(o varying from O to 1) affects the performance of Bayes-
Swarm for the case studies 2 and 4, across multiple swarm
sizes. Snapshots of the final state of robots for three values
of o for the case study 2 with 4 robots are depicted in Fig. 4.
The performance outcomes in terms of completion time, and
mapping error are summarized in Figs. 5-6.

Pure source seeking (oo = 1): One of the extreme case
happens when the knowledge-gain term is eliminated in the
objective function; in this mode, robots try to reach the ex-
pected source location faster without exploring the area (get-
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Table 2. Max. allowed search time, Trhax (in sec), for case studies.

Case Study 1 2 3 4 5
Bayes-Swarm 500 100 500 700 100
Random-walk | 4,000 50,000 60,000 60,000 10,000

ting enough knowledge) - basically the purely greedy ap-
proach. For this purpose, the exploitation coefficient is set
at oo = 1. Figure 4(c) illustrates the behavior of robots under
this setting. It can be seen from this figure that, the estimated
source signal or knowledge model is quite inaccurate, due to
the lacking of explorative search.

Only knowledge-gain term (0. = 0): By setting o0 = 0,
the objective function (Eq. (8)) is reduced to the knowledge-
gain term (Eq. (11)), which results in purely explorative
search. As expected, under this setting robots are able to
estimate a relatively accurate model of signal distribution
(Fig. 4(a)). This mode is suited for mapping applications,
such as mapping offshore oil spills [12].

Combined source seeking & knowledge-gain terms —
different trade-offs (0 < o < 1): By setting the exploita-
tion coefficient o at values between 0 and 1, we can tune the
degree of exploration and exploitation of the swarm search.
Figures 5(b) and 6(b) show that, by increasing the exploita-
tion coefficient from O to 1, the mapping error increases, es-
pecially for a values beyond 0.3. Figure 4(b) depicts the
search behavior of the swarm for o = 0.4. In this setting, one
robot successfully reaches the source location while other
robots are still exploring the search area. Depending on the
complexity of the source signal distribution, the effect of
exploitation coefficient parameter on the estimation of the
knowledge model will vary.

In terms of completion time, the complexity of the
source signal distribution and the initial path of robots play
important roles. In case study 2, the impact of o on comple-
tion time varies with the size of the robot team (Fig. 5(a)).
In case study 4, we can see from Fig. 6(a) that Bayes-Swarm
with & > 0.04 is not able to lead the robots to find the tar-
get/source within the maximum allowed time (700 seconds).
In order to get the best performance, the exploitation coeffi-
cient (o) needs to be less than 0.02. This is attributed to the
need for greater exploration in a multimodal environment. In
summary, for choosing the correct value of o to get the best
performance, we need to consider the number of robots, the
complexity of the source signal distributions, and the robots’
capabilities.

5.2 Experiment 2: Scalability Analysis of Bayes-Swarm

In this experiment, we use case study 4 to perform
an analysis of how the size of the robot swarm impacts
Bayes-Swarm’s performance. To this end, we run Bayes-
Swarm simulations with o0 = 0.4 and swarm sizes varying
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from 2 to 100. Figure 7 illustrates the results of this analysis
in terms of the completion time, averaged knowledge-gain
of each robot (g(x)), averaged number of decisions per robot
(N;) and mapping error. The results show that the perfor-
mance improves by increasing the size of the swarm from 2
to 100, with completion time reducing by ~ 41.3%. More-
over, the averaged number of decisions (waypoint planning
instances) per robot and the averaged knowledge-gain per
robot respectively decrease by about 64% and 83.3% when
the swarm size grows from 2 to 100. Although the mapping
error with 100 robots is 16.6% less than the mapping error
with 2 robots, increasing the number of robots does not uni-
versally improve the mapping error, as evident from the non-
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monotonic trend seen in the top right plot of Fig. 7 (unless o
is tuned based on the size of swarm).

To summarize the observations made from Fig. 7, in-
creasing the size of swarms become increasingly effective for
complex signal distribution environments. However, beyond
a certain swarm size (~20 in this analysis), there is a decreas-
ing rate of improvement. These observations provide strong
evidence of the scalability of the Bayes-Swarm method. At
the same time, they highlight the importance of identifying
suitable team sizes for suitable mission profiles, given re-
source constraints and time sensitivity of the mission.
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5.3 Experiment 3: Comparative Analysis w/ Baselines

Exhaustive search and random-walk algorithms are im-
plemented along with Bayes-Swarm for comparative analy-
sis. We test these algorithms to find the source location in
the five case studies, illustrated in Fig. 2. The settings of
Bayes-Swarm are not individually tuned for each case, in or-
der to allow fair comparison; the exploitation coefficient is
set at 0.4 and T at 4 seconds. Table 3 summarizes the results
of this experiment in terms of the completion time. In this
experiment, the maximum allowed search time for random-
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walk is adjusted to 1.5 times of what is needed by exhaustive
search for each case study environment. In case study 4, we
partition the arena into 4 parts and each robot searches one
part using the exhaustive search method. Note that, in this
table, we only report the best performance across 5 runs of
the random-walk method for each case.

The results show that the Bayes-Swarm algorithm per-
forms significantly better than the exhaustive search and
random-walk approaches in all the five case studies. Due
to the complexity of some of the search environments, the



random-walk method often fails to find the source location
within the allowed maximum search time, as evident from
its poor success rate in Cases 1, 3, 4 and 5. Table 3 shows
that Bayes-Swarm finds the primary source location about 5
to 100 times faster than exhaustive search in all five cases.
As the random-walk reaches the goal only in the first two
case studies, we compare Bayes-Swarm with the random-
walk method only in these case studies; Bayes-Swarm is ob-
served to perform 83 and 5 times faster than the random-walk
method in case studies 1 and 2.

5.4 Experiment 4: Comparing Bayes-Swarm with a
Swarm Intelligence Method

To perform further comparative analysis of Bayes-
Swarm with a state-of-the-art method, the well-known
Glowworm-based swarm search algorithm [19] is chosen.
Specifically, we use the implementation of the Glowworm
algorithm available at [38]. For this analysis, both algo-
rithms are run on case study 5 (first problem in [35], further
described in Appendix A.5). Both algorithms are run with
the same robot specifications and environment settings as
in [35]. It should be noted that there are two main differences
between the generic mission objectives of the Bayes-Swarm
algorithm and the Glowworm algorithm: 1) Bayes-Swarm is
designed to find the source with maximum strength signal
in the presence of other weaker (say decoy) sources, while
the Glowworm algorithm is designed to find all local and
global sources (both mission objectives can translate to im-
portant practical applications in the emergency response and
defense domains). 2) The Glowworm algorithm assumes the
robots to be initially distributed in the search arena, while
Bayes-Swarm makes no such assumption. With regards to
the first difference, we compare Bayes-Swarm’s completion
time to find the global target source (with maximum signal
strength) with the time that the Glowworm algorithm takes
to find the first source (i.e., any source, local or global) —
thus Bayes-swarm’s job is made to be at least as (or likely
more) difficult. The second difference, w.r.t. starting points,
is readily handled in our algorithm, since Bayes-Swarm is
agnostic to the initial location of the robots.

We assume 50-robot teams and randomly generate the
initial location of the robots in the arena, to be used by both
methods: —3 < x; < —1.2 and —3 < xp < 3; based on the
settings used in the reported Glowworm algorithm, the robot
velocity is set at V = 1m/s 2. Since the Glowworm algorithm
employs a stochastic search approach, it is run 10 times on
this problem. It is observed that the robot team under Bayes-
Swarm finds the source with maximum strength in 1.86 time
units. In contrast, the robot team under the Glowworm al-
gorithm takes 3.0410.4 time units (mean=+tstd-dev. over 10
runs) to find the first (any) source, and 4.4440.55 time units

2These settings are purely computational, and are used here to preserve
the sanctity of the Glowworm implementation, and allow fair comparison.
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Table 3. Performance of the Bayes-Swarm, baseline, and compet-
ing algorithms on five test case studies with 5 robots; the exploitation
coefficient of the Bayes-Swarm algorithm is set at 0.4 for all case
studies, except the case study 5, which is set at 0.99.

Case Study  Algorithm Total Time * [s]  Success Rate
Bayes-Swarm 246.1 171

1 Random-Walk 20,394 1/5
Exhaustive Search 22,174 11
Bayes-Swarm 42.5 171

2 Random-Walk 227.6 5/5
Exhaustive Search 225.3 171
Bayes-Swarm 260.1 171

3 Random-Walk - 0/5
Exhaustive Search 22,174 1/1
Bayes-Swarm 373.2 171

4 Random-Walk - 0/5
Exhaustive Search 9,163 11
Bayes-Swarm 31.9 1/1

5 Random-Walk - 0/5
Exhaustive Search 992 7 1

* As all random-walk runs are not able to find the source, we only report
the total time of the best solution obtained using the random-walk.

T For this case, we divide the search space into four equal quarters and each
robot does an exhaustive search in each portion (two in the global portion).

to find the source with maximum signal strength. These re-
sults show that not only Bayes-Swarm is 58% faster than the
Glowworm algorithm in finding the global target source, but
also finds the global target source is less time than that taken
by the Glowworm method to find any source.

It is important to note that the performance of both
Bayes-Swarm and Glowworm algorithms are affected by
their respective prescribed parameters. In the case of the
Glowworm implementation, we used the same parameter set-
tings as those recommended by Kaipa et al. [38] (i.e., the
paper from which we adopt the implementation of this algo-
rithm). In the case of Bayes-Swarm, it was readily evident
from earlier parametric analysis (Fig. 6) that, for complex
multimodal signal environments a value of o0 < 0.4 works
well. Hence, we explored how Bayes-Swarm would compare
to the Glowworm algorithm when implemented with differ-
ent values of o < 0.4. The results show that Bayes-Swarm
found the target with maximum strength in 2.43, 3.32, and
2.40 time units for o set at 0.05, 0.1, and 0.2, respectively;
these mission completion times are still better than that re-
sulting from the Glowworm implementation.



5.5 Discussion of Bayes-Swarm Performance

The various empirical analyzes performed here show
that the proposed Bayes-Swarm algorithm is scalable with
respect to the number of robots and is able to localize targets
involving complex multimodal signal environments. The al-
gorithm also requires minimal heuristics, being dependent on
only a single tunable parameter ¢ that regulates the balance
between exploration and exploitation. While, in the numer-
ical experiments presented in this paper, a value of o < 0.4
was found to yield promising performance, in future it would
be important to pursue approaches to automatically adapt o
to the environment during the mission. Another important
advantage of the Bayes-Swarm algorithm over model-free al-
gorithms is its provisioning of a belief model of the signal en-
vironment during the mission. This makes the emergence of
the robotic swarm system, from agent level micro-planning
to team level macro search dynamics, relatively interpretable
(as opposed to a blackbox phenomena).

The current form of the Bayes-Swarm method needs to
overcome a few crucial limitations in the future. The need for
downsampling is one of them. Since updating the Gaussian
Process (GP) based belief model presents a cubic time com-
plexity w.r.t. data-set size, we are required to downsample
the collective data set of the swarm (observations made by
agents). Without such downsampling, the cost of updating
the belief model and thus of decentralized waypoint plan-
ning onboard simple robotic agents (with frugal computing
capacity) will become burdensome. Currently, we use a sim-
ple downsampling approach based on sample rate compres-
sion. While this approach is simple to implement, it is far
from optimal, especially for large swarm systems with 100’s
of robots. In such scenarios, choosing the most informative
samples (to update the belief model) out of the entire set of
observations remains a critical question, which will need to
be addressed in future research on Bayes-Swarm. Another
limitation of the current approach is the assumption of full
observability, or a fully connected wireless network, where
each swarm-robotic agent can communicate with all team
members. In practice, it is more common to experience par-
tial observance across the team due to communication range
restrictions or communication intermittency issues. The al-
lowance of asynchronous decision-making (currently offered
by Bayes-Swarm) does help to some extent in mitigating the
impact of such communication network limitations. How-
ever, in order to minimize potential conflict between agents’
decisions under partial observance, further advancements are
needed in the formulations of the acquisition function and
constraints guiding the waypoint planning of swarm agents.

6 Conclusion

In this paper, we proposed an asynchronous and decen-
tralized algorithm to guide the path planning of a team or
swarm of robots that is searching for the source of a spatially

JCISE-19-1275, P. Ghassemi & S. Chowdhury

distributed signal in 2D arenas. This algorithm is founded
on an extension of the batch Bayesian optimization method,
with advancements made for application to embodied swarm
systems. A new acquisition function is designed to be able to
uniquely incorporate the following: 1) modeling knowledge
gain over trajectories, as opposed to at points; 2) implicitly
mitigating overlapping trajectories among robots to maxi-
mize unique knowledge gain; and 3) incentivising robots to
reach (closest to) the expectation of the source, while ac-
counting for constraints on the robot’s motion and cost in-
curred by it in reaching a candidate waypoint. A heuristic
(parameter, o) is currently used to balance the source seek-
ing and knowledge gain components of the acquisition func-
tion, and thus further parametric analyzes is performed to
understand its impact. It is found that suitable values of this
parameter depends both on the size of the swarm and the
complexity of the signal’s spatial distribution. An important
direction of future research will be to build on this under-
standing to formulate a situation-adaptive variation (instead
of user prescription) of the weighting coefficient.

To evaluate and compare the performance of the
proposed algorithm, Bayes-Swarm, exhaustive search and
random-walk baselines are considered. These algorithms
are tested on five distinct case studies, with varying arena
size and complexity (non-convexity) of the spatial distri-
bution of the signal. Performance is analyzed in terms of
completion time and mapping error. The Bayes-Swarm ap-
proach easily outperforms the exhaustive search and random-
walk approaches by achieving up to 90 times better val-
ues of completion time. In addition, we compared our al-
gorithm with the state-of-the-art SI-based Glowworm algo-
rithm, over a benchmark (multi-source) problem, with the
outcomes clearly demonstrating the search efficiency bene-
fits of Bayes-Swarm.

Scalability of the Bayes-Swarm algorithm is also ana-
lyzed, with significant performance gain (in terms of super-
linear reduction in completion time) observed as the swarm
size is changed from 2 to 20, and then mostly saturating ow-
ing to the bounds on the size of the arena. Increased swarm
size, while beneficial to the mission, also increases the rate at
which signal data is collected; this then increases the online
computational cost of updating the GP model of the signal
environment by every robot during the mission. Thus fu-
ture work will look at advanced downsampling-based update
approaches (e.g., using active learning techniques) or direct
sharing of model updates across robots (instead of sharing
of data), especially for applications where 100’s—1000’s of
robots are needed, or where longer mission time periods are
needed. This, along with physical demonstration and the
consideration of partial observability due to communication
constraints, will allow us to more comprehensively explore
the scalability of the Bayes-Swarm algorithm in the future.
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A Definition of Case Studies
A.1 Case Study 1: Large arena, convex signal distribu-
tion

Cx—e?

130 ) (13)

J = exp(

Here, x = (x1,x2), where 0 < x; < 24, and ¢; = (5,23). The
initial feasible direction, A@ is set at 90.

A.2 Case Study 2: Small arena, non-convex signal dis-
tribution

2
X—C| 1
Pl 1 L exp(-2ls—eal?)

: (14)

f=exp(—

Here, x = (x1,x3), where 0 < x; < 2.4, ¢; =(1.9,2.3), and
¢ = (1.5,0.5). The initial feasible direction, A is set at 90.

A.3 Case Study 3: large arena, non-convex signal dis-
tribution

x—er?, 1

120 HE

Ix—ef®

xp(— 30

f = exp(— ) as)

Here, x = (x1,x2), where 0 < x; < 24, ¢; = (10,23), and
¢y = (15,5). The initial feasible direction, A8 is set at 90.



A.4 Case Study 4: Large arena, highly multi-modal sig-
nal distribution

2 7
) + g ‘:2exp(—

l

||X_Ci||2

40

x— e

130 )

f=exp(— (16)

(21,19), ¢ = (21,-19), ¢35 = (0,—15), ¢4 = (0,15), ¢s5 =
(—19,10), ¢ = (21,19), ¢7 = (—15,—15). The initial feasi-
ble direction, AO is set at 360.

Here, x = (x1,x2), where —24 < x; < 24. Moreover, ¢| =

A.5 Case Study 5: Multi-modal source
We use the first example given in [35], which is a multi-
modal function, and defined as follows:

flnx) =3(1—x1)?exp(—(x]) = (2 +1)%) (17
—10(x1 /5 —x3 —x3) exp(—x7 —x3) (18)
— (1/3)exp(—(x1 +1)* —x3) (19)

Here, —3 < x; < 3. A set of 50 robots are randomly deployed
in a two-dimensional region such that to —3 < x; < —1.2 and
—3 < x; < 3. The function consists of a set of three peaks
at locations (-0.0093, 1.5814), (1.2857, -0.0048), and (-0.46,
-0.6292). The source with maximum strength is located at
(-0.0093, 1.5814).

B Bayes-Swarm and Glowworm Algorithm Settings

Table 4 summarizes all settings that have been used for
Bayes-Swarm for all experiments and case studies. Table 5
lists the settings that have been used for the Glowworm al-
gorithm in Experiment-4.

Table 4. The settings of the Bayes-Swarm algorithm.

Experiment  Case Study N, V [m/s] T [s] o

1 2 4 0.1 4 [0-1]

1 4 10 0.1 4 [0-1]

2 4 [2-100] 0.1 4 0.4

3 1-4 5 0.1 4 0.4

3 5 5 0.1 4 0.99

4 5 50 1 o1 00
02,04

N,: Number of robots; V: Velocity of robots; T: Decision-horizon length;
and o Exploitation coefficient.
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Table 5. The settings of the Glowworm algorithm (experiment 4).
B

0.08

Neoopy As [m]

Is

50 04 0.6 3 0.03

N,: Number of robots; p: Luciferin decay constant; y: Luciferin
enhancement constant; 3: Decision range gain; ry: Sensor range of robots;
and As: Distance moved by each Glowworm when a decision is taken.
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