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This paper mathematically characterizes the tiny feasible regions within the vast

6D rotation–translation space in a full molecular replacement (MR) search. The

capability to a priori isolate such regions is potentially important for enhancing

robustness and efficiency in computational phasing in macromolecular crystal-

lography (MX). The previous four papers in this series have concentrated on the

properties of the full configuration space of rigid bodies that move relative to

each other with crystallographic symmetry constraints. In particular, it was

shown that the configuration space of interest in this problem is the right-coset

space �\G, where � is the space group of the chiral macromolecular crystal and

G is the group of rigid-body motions, and that fundamental domains F�\G can be

realized in many ways that have interesting algebraic and geometric properties.

The cost function in MR methods can be viewed as a function on these

fundamental domains. This, the fifth and final paper in this series, articulates the

constraints that bodies packed with crystallographic symmetry must obey. It is

shown that these constraints define a thin feasible set inside a motion space and

that they fall into two categories: (i) the bodies must not interpenetrate, thereby

excluding so-called ‘collision zones’ from consideration in MR searches; (ii) the

bodies must be in contact with a sufficient number of neighbors so as to form a

rigid network leading to a physically realizable crystal. In this paper, these

constraints are applied using ellipsoidal proxies for proteins to bound the

feasible regions. It is shown that the volume of these feasible regions is small

relative to the total volume of the motion space, which justifies the use of

ellipsoids as proxies for complex proteins in MR searches, and this is

demonstrated with P1 (the simplest space group) and with P212121 (the most

common space group in MX).

1. Introduction and brief review of molecular
replacement

Molecular replacement (MR) is an important computational

method for addressing the phase problem in macromolecular

crystallography. The method originated in the early 1960s

(Rossmann & Blow, 1962), and has been refined over the years

with many successful software packages including AMORE

(Navaza, 1994), Phaser (McCoy et al., 2007) etc. For a more

complete review of the history of MR see Rossmann (2001).

In these methods the search for the correct orientation

and position of a candidate molecular shape is separated into

a rotation search followed by a translation search. This

separation works when one molecule at a time is placed in the

crystallographic unit cell.

The previous papers in this series developed the concept of

a motion space as the coupled 6D translation–rotation search

space in MR by simultaneously placing one copy of a molecule
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per asymmetric unit (Chirikjian, 2011; Chirikjian & Yan, 2012;

Chirikjian, Sajjadi et al., 2015; Chirikjian et al., 2017). The

present paper is the final one in this series, and studies the

spaces of motions relevant for MR searches. These so-called

‘motion spaces’ can be viewed as regions (or fundamental

domains) in the group G ¼ SEð3Þ of rigid-body motions, or as

the orbit space corresponding to the left action of a Sohncke

space group � on G. This fundamental domain contains one

point drawn from each right coset �g, where � is the space

group of the macromolecular crystal and g 2 G. From the

perspective of an MR search, the closed fundamental domain,

denoted here as F�\G, therefore is equivalent (up to an

inconsequential set of measure zero resulting from taking the

closure) to the right-coset space �\G. In some contexts it is

useful to think of F�\G (rather than �\G) as the motion space.

Previous papers in this series have characterized the alge-

braic (Chirikjian, 2011), geometric (Chirikjian & Yan, 2012)

and measure-theoretic (Chirikjian et al., 2017) properties of

these spaces. These properties are related to the underlying

structure of the crystallographic symmetry group in which the

macromolecule of interest crystallizes. As such, new ways to

characterize and decompose space groups have been under-

taken in relation to this work (Chirikjian, Ratnayake et al.,

2015). Also relevant to the present discussion is the observa-

tion that macromolecular crystals predominantly prefer

Bieberbach (torsion-free) space groups (Chirikjian, Sajjadi et

al., 2015), with almost one quarter of all protein crystals

having P212121 symmetry. Other papers not in the series also

shed light on the problems addressed here, including Chir-

ikjian & Shiffman (2016) and Chirikjian (2015).

This paper makes the following contributions:

(i) The portion of the joint rotation–translation search

space that results in collision when placing arbitrary bodies

with crystallographic symmetry is characterized mathemati-

cally, building on our previous work in Chirikjian & Shiffman

(2016).

(ii) The condition that a macromolecular crystal is a solid

object is formulated in terms of semigroup generators, and is

used to further reduce the size of the feasible search space in

which collisions are avoided.

(iii) It is observed that the critical factor is not the exact

shape of the body (or macromolecule) B itself, but rather the

Minkowski sums [see equation (27)] of B with its reflected

rotated versions �R � B;R 2 SOð3Þ. And these Minkowski

sums can be approximated using the Minkowski sums of

equivalent-moment-of-inertia ellipsoids derived from the

original body.

(iv) It is shown that, when taken in combination, the above

factors lead to small feasible regions in rotation–translation

space where computational resources can be focused. Using

ellipsoidal proxies approximating the bodies, one obtains

descriptions of the approximate feasible regions in terms of

Minkowski sums of ellipsoids, which are easily parameterized,

thereby making high-dimensional searches more tractable.

(v) Because of roto-reflection symmetries of ellipsoids and

of the Laue groups of the diffraction patterns, only a fraction

of the feasible regions need to be explored.

(vi) Examples are provided to demonstrate this theory in

the planar case with ellipses in p2 symmetry and in 3D with

triaxial ellipsoids in the case of P212121 symmetry.

The discussion in this paper concerns only the case

where there is one protein molecule per asymmetric unit in

the crystal. However, the general approach used here can

be applied to the articulated case and multi-protein-per-

asymmetric-unit case, where the dimension of the motion

space is higher, but the percentage of feasible motions is much

smaller.

1.1. Mathematics review

Let �<G¼: SEð3Þ denote the orientation-preserving (or

Sohncke) space group of a macromolecular crystal, and let

T / � denote the translational symmetry group of the finest

translational lattice L. The group G of continuous rigid-body

motions consists of rotation–translation pairs of the form

g ¼ ðR; tÞ 2 SOð3Þ�R
3 � G acting on points x 2 X ¼: R3 by

g � x ¼ Rxþ t, and with the group law1

g1g2 ¼ ðR1; t1ÞðR2; t2Þ ¼ ðR1R2;R1t2 þ t1Þ:
The translation group T of the primitive lattice, L, acts on

Euclidean space X without fixed points, and the resulting orbit

space T\X is the 3-torus. The realizations of the crystal-

lographic unit cell and asymmetric units are the fundamental

domains FT\X and F�\X , respectively. Previous papers in this

series examined the relationships between F�\G, FT\X and F�\X .

The configuration space of all possible ways to place a rigid

body with symmetry � is the right-coset space �\G. Within this

context, the main goal of MR can be stated as the search for

the rigid-body motion g 2 F�\G � G that places a model of a

macromolecular structure in the asymmetric unit at the same

position and orientation as the true molecule in the crystal.

The search for these placements is based on information

obtained directly from the diffraction pattern.

If f ðxÞ is the density of an individual macromolecule, then

the density �ðx; gÞ in the crystal with the molecule placed at its

true position and orientation g is given by

�ðx; gÞ ¼ P
�2�

f ðð�gÞ�1 � xÞ ð1Þ

where

� � x ¼ R�xþ t� þ vðR�Þ:
Here R� 2 SOð3Þ is an element of the concrete point group P

of �, and t� 2 L [whereas ðI; t�Þ 2 T]. For symmorphic space

groups the function v : P ! FT\X can always be set to

vðR�Þ ¼ 0 for all R� 2 P by an appropriate choice of origin,

whereas for nonsymmorphic space groups vðR�Þ 6¼ 0 for at

least one R� 2 P no matter how the origin is chosen. Using the

terminology from Chirikjian, Ratnayake et al. (2015), T\� is

the abstract point group of a space group �, and a non-unique

finite set of representatives of this quotient group can be

constructed as
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FT\� ¼: ðR�; vðR�ÞÞjR� 2 P
� �

:

Then �ðx; gÞ can be expressed as a Fourier series of the form

�ðx; gÞ ¼ P
k2L	

�̂�ðk; gÞ expð2�ik � xÞ

where L	 is the reciprocal (or dual) lattice of L and the Fourier

coefficients of � are of the form

�̂�ðk; gÞ ¼ R
X

P
�2FT\�

f ðð�gÞ�1 � xÞ expð�2�ik � xÞ dx: ð2Þ

Since f ðxÞ takes values of zero outside the macromolecule, it is

compactly supported and so the integrand in the above inte-

gral only has contributions from a bounded domain. This

domain may not fit in the standard unit cell, but there is a

choice of unit cell which contains it.

The diffraction pattern consists of intensities of the form

Iðk; gÞ ¼ j�̂�ðk; gÞj2 ¼ P̂Pðk; gÞ;
where Pðx; gÞ is the Patterson correlation function given by

Pðx; gÞ ¼: R
FT\X

�ðy; gÞ�ðyþ x; gÞ dy

¼ P
�2FT\�

R
X

f ð�gÞ�1 � yþ RT
g R

T
�x

� �
�ðy; gÞ dy: ð3Þ

It follows that

Pð
R�x; gÞ ¼ Pðx; gÞ 8R� 2 P: ð4Þ
Let P

	 denote the group of rotational symmetries of the

reciprocal lattice, consisting of elements of the form R	
� .

Then Iðk; gÞ ¼ P̂Pðk; gÞ is invariant under the Laue group

P
	 [ ð�IÞP	 <Oð3Þ; i.e.

Ið
R	
�k; gÞ ¼ Iðk; gÞ 8R	

� 2 P
	:

We shall use this Laue class symmetry to reduce the size of the

search space in Section 4.2.

A ‘strong’ MR cost function for determining correct

placements is of the form

Cost ðgÞ ¼ P
k2L	

Imodelðk; gÞ � Iactualðk; gactualÞ
�� ��2; ð5Þ

wherein the model diffraction intensity mimics the actual one.

The computational drawback of this in comparison with

classical MR is that it requires a search over the 6D space

F�\G. For this reason, in classical MR, a ‘weaker’ cost function

is used in which Imodelðk; gÞ in equation (5) is replaced by

jf̂fmodelðk; gÞj2, where
f̂fmodelðk; gÞ ¼

R
X

f ðg�1 � xÞ expð�2�ik � xÞ dx

¼ expð�2�ik � tÞ R
X

f ðRTxÞ expð�2�ik � xÞ dx; ð6Þ

where g ¼ ðR; tÞ. The reason for doing so is that

j expð�2�ik � tÞj ¼ 1 and hence the resulting cost function is

independent of t and depends only on R 2 SOð3Þ. This is not
the case for equation (5). Hence, in the classical MRmethod, a

pure rotation search is conducted first, followed by a trans-

lational search. This separation of the dimensions leads to

reduced computational burden, but the search has less speci-

ficity than when using the stronger cost function.

However, in our method, the cost function (5) will have a

value of zero when an exact proxy for the unknown molecule

is placed at the correct position and orientation, and it would

be reasonable to expect that small changes in the shape of the

proxy would not lead to radically different values of the

optimal pose. In contrast, it is well known that when using

classical MR, even when using a good proxy, the highest peak

in the rotation function may not be the one to use, and

sometimes many peaks (on the order of 100 or more) may

need to be investigated. This is because the rotation function is

designed to examine the correlation between the diffraction

pattern of a single proxy molecule (in a unit cell) against the

actual diffraction pattern. The latter has built in it the ‘cross

talk’ between symmetry mates, which are often thought of as

‘noise’ in the context of classical MR. That is, unlike in our

cost function, global optimality of the rotation function need

not correspond to the correct rotation. And if the correct

rotation is not obtained in the first stage of a classical MR

search, then there is no way to obtain the correct translation in

the second stage.

Building on developments in previous papers in this series,

this paper provides the mathematical underpinnings for effi-

cient searches in the joint rotational–translational space. The

key features that make our approach efficient rely on two

observations: (i) large parts of the search space are infeasible

because they correspond to symmetry mates being placed in

collision; (ii) since a crystal is a solid physical object, symmetry

mates must be in contact in such a way that there are no

isolated islands. With these constraints, MR searches in prin-

ciple could be limited to boundaries of collision zones, thereby

reducing the dimensionality of the search. But in practice

these boundaries are difficult to parameterize exactly due to

the complicated geometry of proteins. Instead we apply these

constraints using ellipsoidal proxies for proteins to bound the

feasible regions, and we see that the volume of these feasible

regions can be quite small relative to the total volume of the

motion space. Constraint (i) has been previously addressed by

the authors in the case of planar motions of circular bodies

and chiral wallpaper group symmetry (Chirikjian & Shiffman,

2016), and the theory is extended here to general shapes and

3D space groups. Constraint (ii) is related to topological

crystallography, the literature of which is reviewed below.

1.2. Literature review

The literature on packing bodies subject to crystallographic

symmetry is immense. At one extreme of this literature lie

works on tilings with wallpaper symmetry in the plane or with

crystallographic symmetry in 3D (Grünbaum & Shephard,

1987). Closed tiles that fill space under the action of a crys-

tallographic group can all be viewed as realizations of the

fundamental domain F�\X , i.e. the closure of the crystal-

lographic asymmetric unit. At another extreme lie ‘crystal

nets’ of sparsely separated points (Wells, 1977). In the middle

lies the study of dense sphere packings (which in the 3D case

research papers
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has been studied at least from the time of Kepler, and in

higher dimensions has important implications for coding

theory) (Conway & Sloane, 1999; Thompson, 1983). Dense

irregular packings have also been studied extensively in recent

years. A much smaller literature exists on packing ellipses and

ellipsoids subject to symmetry constraints (Matsumoto &

Nowacki, 1966; Matsumoto, 1968).

A less-studied area is that of packing irregular bodies (such

as biological macromolecules) subject to crystallographic

symmetry constraints. Such works are usually motivated by

the chemical physics behind these macromolecular inter-

actions (Kitaigorodskii, 1973; Brock & Dunitz, 1994; Dunitz,

1996). However, our motivation in studying packing

constraints in the context of MR is somewhat different

because the exact structure of the macromolecules under

consideration is not known a priori. Rather, we have only an

estimate of the shape obtained from a homolog, and seek to

limit searches in MR using both the fact that collisions

between symmetry mates must not occur and surface contacts

between them must occur.

Works in the area of so-called ‘topological crystallography’

include Johnson et al. (1996), Thimm (2009), Peresypkina &

Blatov (2000), O’Keeffe (1995), Sunada (2013), and provide

some tools that are useful for our problem. Namely, quotient

graph structures convert the discussion of a given infinite

graph (or net) of vertices with crystallographic symmetry to

that of a finite graph structure in the space of orbits of vertices.

In recent work, Eon (2016a,b) used quotient graph method-

ologies to study crystallographic topology. Such works

presuppose a given graph. In our work, the graph is not known

a priori and we express all possible graphs as an enumeration

problem using the language of semigroup generators.

2. The feasible space

We first give a general description of the feasible space for a

crystal formed by a body B and its symmetry mates under a

chiral (or Sohncke) space group �< SEð3Þ [and, more

generally, an orientation-preserving crystallographic group

�< SEðnÞ].
We shall state our main results in arbitrary dimension n,

which allows us to illustrate some of our concepts in

dimension 2. So we now let X ¼: Rn and G¼: SEðnÞ �
SOðnÞ�X . To simplify notation, we make the identification

SOðnÞ � SOðnÞ � f0g<G.

By a body B we mean a bounded, connected, open subset of

X, which in the case n ¼ 3 can represent one of the molecules

forming a crystal. We denote the closure of B by B, which we

call a closed body, and we let

C¼: g � B
denote the closed body as it is placed in the crystal by a motion

g 2 G. We say that the conglomeration of closed bodies2

� � C¼:
[
�2�

� � C ¼
[
�2�

�g � B

is connected if every symmetry mate � � C is connected to C by

a finite chain of symmetry mates; i.e. there is a sequence

�0 ¼ e; �1; �2 . . . ; �k ¼ � of elements of �, such that

�j�1 � C \ �j � C 6¼ ; for 1 � j � k.3 A necessary condition for

a body g � B and its �-symmetry mates to form a crystal is that

g � B does not intersect any of its symmetry mates �g � B and

that � � C is connected. The first condition guarantees that

there are no steric clashes between the bodies, since if

�1g � B \ �2g � B 6¼ ;, then g � B \ ��1
1 �2g � B 6¼ ;. The second

condition is necessary for the crystal to be solid, since other-

wise one chain of symmetry mates would be free to move

relative to the others.

We fix a fundamental domain F�\G for �\G and we let

Að�;BÞ � F�\G denote the set of motions g 2 F�\G such that

the sets f�g � B : � 2 �g are pairwise disjoint and the closure

of their union, � � C, is connected. We callAð�;BÞ the feasible
space for B. When g 2 Að�;BÞ, the bodies �g � B (for all

� 2 �) form a solid crystal without steric clashes. As discussed

in Section 1, the MR method involves the evaluation of a cost

function for each candidate pose g � B of the body B. One way

to make this search efficient is to restrict the search to a small

region in the search space F�\G containing the feasible space

Að�;BÞ. If g 2 Að�;BÞ, then each symmetry mate �g � B of

the closed body g � B is either disjoint from g � B or has only

boundary points in common with g � B. When the intersection

of two closed bodies B1;B2 contains only common boundary

points of the bodies and is non-empty, then we say that B1 and

B2 kiss. Thus the feasible space consists of those g 2 Að�;BÞ
such that the sets �g � B are pairwise disjoint and enough of

them kiss g � B to form a crystal. The precise mathematical

description of Að�;BÞ is given by equation (12) below [and

equivalently by equations (13) or (14)] and is based on an

algebraic criterion for a macromolecular crystal to be solid

(Lemma 2.1).

For a subset Y � X , we write

Zð�;YÞ ¼: g 2 F�\G : ðg � YÞ \ ð�g � YÞ 6¼ ;� �
¼ g 2 F�\G : Y \ ðg�1�g � YÞ 6¼ ;� �

; ð7Þ

for � 2 � n feg. We note that Zð��1;YÞ ¼ Zð�;YÞ since g � Y
collides with �g � Y if and only if ��1g � Y collides with g � Y .
In the case where Y is the open body B, then Zð�;BÞ is the
space consisting of motions g which cause g � B to intersect its

symmetry mate �g � B and is called a collision zone.

Our first condition on the feasible space of a body B states

that we need to avoid those motions g 2 G ¼ SEðnÞ which

cause symmetry mates f�g � B : � 2 �g to intersect. In a

previous paper (Chirikjian & Shiffman, 2016), we described

the space of motions where g � B intersects at least one of its

symmetry mates. This space is the collision space Sð�;BÞ given
by
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Sð�;BÞ ¼:
[

�2� n feg
Zð�;BÞ

¼ g 2 F�\G : B \
[

�2� n feg
ðg�1�g � BÞ

" #
6¼ ;

( )
: ð8Þ

We then have our first outer estimate for the feasible region:

Að�;BÞ � F�\G nSð�;BÞ
¼

\
�2� n feg

fg 2 F�\G : B \ g�1�g � B ¼ ;g: ð9Þ

The MR search can be limited to the region given by the right-

hand side of equation (9), as was discussed by Chirikjian &

Shiffman (2016). However, the search can be limited to a

much smaller region by applying our second condition, which

we shall describe more precisely. To do this, we begin with

some mathematical preliminaries.

We recall that a semigroup is a set closed under a binary

associative operation. We say that a subset � of a semigroup

� generates the semigroup � if every element of � is a finite

product of elements of �. Every group is a semigroup and, in

particular, � is a semigroup as well as a group. For example, if

�< SEð3Þ is a space group of type P1 and �1; �2; �3 2 � are

translations such that �1ð0Þ; �2ð0Þ; �3ð0Þ generate the lattice in
R

3, then f�1; �2; �3g generates the group �, but does not

generate the semigroup �. Instead f�1; �2; �3; ��1
1 ; ��1

2 ; ��1
3 g

generates the semigroup �. In general, if � generates the

group �, then � [��1 generates the semigroup �.

Lemma 2.1. Let C be a bounded connected closed subset of

X, and let� be the set of � 2 � such that C \ � � C 6¼ ;. Then
� � C¼: S�2� � � C is connected if and only if � generates the

semigroup �.

Proof. Suppose that � � C is connected, and let � 2 � be

arbitrary. Then there exists a finite sequence �0 = e, �1; . . . ;
�k�1, �k = � in � such that �j�1 � C \ �j � C 6¼ ;, for 1 � j � k.

Therefore C \ �j � C 6¼ ; where �j ¼ ��1
j�1�j and hence �j 2 �

for 1 � j � k, and � ¼ �1 . . . �k. Since � 2 � is arbitrary,� is a

set of semigroup generators of �.
Conversely, suppose that � generates the semigroup �, and

let � 2 � be arbitrary. Then � ¼ �1 . . . �k with the �j 2 �.

Then C \ �1 � C 6¼ ;, �1 � C \ �1�2 � C ¼ �1 � ðC \ �2 � CÞ 6¼ ;,
and it follows by induction that

�1 . . . �j�1 � C \ �1 . . . �j � C 6¼ ;; for j ¼ 1; . . . ; k:

Therefore, C is connected to � � C ¼ �1 . . . �k � C by a chain of

symmetry mates. &

In a molecular crystal, the number of symmetry mates

�g � B kissing g � B is called the molecular coordination

number, or ligancy (Peresypkina & Blatov, 2000). Since the

molecular coordination number of a crystal composed of

symmetry mates of a molecule B with position g � B is the

cardinality of the set of � 2 � n feg such that g � B \ �g � B 6¼ ;,
we obtain the following consequence of Lemma 2.1:

Theorem 2.2. The molecular coordination number in a

crystal is equal to or greater than the minimum number of

semigroup generators of �.

In the following, two examples are shown to illustrate

Theorem 2.2 in dimension 2. In both of the examples, � is in

the class p2, which is made up of both translations and 180�

rotations. (The 180� rotation is referred to as a half-turn.) The

unit cell is a parallelogram.

In our first example illustrated in Fig. 1, each body is kissing

exactly five of its neighbors, so its 2D molecular coordination

number is 5. The figure shows four unit cells outlined by

dotted lines, and the origin is indicated by a dot. As before, we

let C¼: g � B denote the reference body; C is indicated in the

figures below as bounded by a red ellipse, and its symmetry

mates are blue.

We denote the translation along the horizontal axis of the

lattice as �1 and the translation along the other axis as �2.
The 180� rotation about the origin is described as �3. The
five symmetry mates kissing C can be expressed by �j � C
(j ¼ 1; . . . ; 5), where the values of the �j are given in Table 1

and appear inside the corresponding ellipses in the figure.

We note that the set �¼: f�1; �2; �3; �4; �5g generates the
semigroup � as Lemma 2.1 tells us, but it is not a minimal

generating set since, for example, f�1; �2; �4g is a (minimal)

generating set (�3 ¼ �4�2�1�2, �5 ¼ �2�1�2).

In our second example with molecular coordination number

3, each elliptical body kisses exactly three of its neighboring

symmetry mates, as we can see in Fig. 2.

The three symmetry mates kissing C in Fig. 2 can be

expressed by �1 � C, �2 � C, �3 � C, where the �j are given in

Table 2.

Here, f�1; �2; �3g is a minimal generating set for the semi-

group �. Since no set of two elements can generate �, the
minimal molecular coordination number for 2D crystals with

p2 symmetry is 3.

We now give some mathematical descriptions of the feasible

space Að�;BÞ. First, we define the ‘collision-causing symme-

tries’ �ðYÞ � � associated with a set Y � X given by
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Figure 1
One ellipse kissing five neighbors with p2 symmetry.

Table 1
Values of �j in Example 1.

�1 �2 �3 �4 �5

�2 �3 �3�1�
�1
2 �3�1 ��1

2
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�ðYÞ ¼: � 2 � nfeg : Y \ � � Y 6¼ ;� �
; ð10Þ

so that

� 2 �ðg � YÞ () g 2 Zð�;YÞ: ð11Þ
We note that � 2 �ðYÞ if and only if ��1 2 �ðYÞ, since the

condition that Y intersects � � Y is equivalent to the condition

that ��1 � Y intersects Y. The following algebraic description

of the feasible space is a consequence of Lemma 2.1.

Theorem 2.3. Let �<G be a crystallographic group, and let

B be a bounded connected open set in X. Then

Að�;BÞ ¼ fg 2 F�\G : �ðg � BÞ ¼ ;; �ðg � BÞ generates �g
¼ fg 2 F�\G : �ðg � BÞ ¼ ;; �ðg � @BÞ generates �g:

ð12Þ

Proof. Since �ðYÞ ¼ �ðYÞ�1 for any set Y;�ðg � BÞ
generates the group � if and only if it generates the semigroup

�. Equation (12) then follows from Lemma 2.1 with C ¼ g � B
and from the fact that �ðg � BÞ ¼ �ðg � @BÞ. &

Equation (12) says that a motion g 2 F�\G is in the feasible

space Að�;BÞ if and only if g 62 Sð�;BÞ and there exist

�1; . . . ; �m generating � such that g�1�jg � @B intersects @B for

1 � j � m.

Let M denote the collection of minimal generating subsets

of the group �; i.e. a generating subset � is inM if it does not

properly contain another subset that generates the group �.
Using equation (11), we have an equivalent formulation of

equation (12) in terms of intersections and unions of collision

sets:

Að�;BÞ ¼
[
�2M

\
�2�

Zð�;BÞ
" #

n
[

�2� n feg
Zð�;BÞ: ð13Þ

Equivalently,

Að�;BÞ ¼
[
�2M

\
�2�

Zð�; @BÞ
" #

n
[

�2� n feg
Zð�;BÞ: ð14Þ

3. Use of ellipsoidal models of proteins

A protein consists of many atoms which are bonded together

and can be modeled as an articulated multi-rigid-body. Here

we consider the simplest model of a single rigid-body protein.

Packing of proteins indicates that the position and orientation

of each protein, in a specific lattice under certain symmetry,

are fixed. This results in the constraint [equation (12)] that the

surface of each protein should be in contact with (or ‘kiss’)

certain of its neighbors. Since proteins have irregular shapes,

either checking or setting kissing constraints between each

pair of proteins is considerably difficult. A reasonable method

is to use an envelope with regular shape to approximate and

replace the protein for further calculation.

The use of ellipsoidal models of proteins has a long history.

Richards (1977), Lesk & Rose (1981), Zehfus et al. (1985),

Thornton et al. (1986), Prabhakaran & Ponnuswamy (1982) all

used equivalent inertia ellipsoids to analyze the surface

properties of proteins. In works spanning decades, Taylor and

coworkers (Taylor et al., 1983, 2001; Taylor & Aszódi, 2005)

made arguments for the efficacy of ellipsoidal models in

various contexts in the study of globular proteins. Ellipsoidal

models have long been used to approximate the hydro-

dynamic effects in rotational diffusion experiments (Ryabov et

al., 2006). As such, it should be noted that when a homolog is

not available for use in MR, an ellipsoidal approximation

nevertheless may be obtained from the protein of interest

itself from anisotropy spectroscopy experiments. Ellipsoidal

models have also been used previously in the context of

crystallographic and other crowded environments (Müller &

Schrauber, 1992; Qin & Zhou, 2013).

The novelty of our analysis lies in the observation that even

when an ellipsoidal model does not fit the protein so well, it is

nevertheless the case that the Minkowski sum of a protein

with rotated reflected copies of itself matches well with the

Minkowski sum of ellipsoids with equivalent moments of

inertia. We then utilize a recent finding that the boundary of

the Minkowski sum of two ellipsoidal bodies can be para-

meterized in closed form (Yan & Chirikjian, 2015).

By an ellipsoidal body we mean an open (solid) ellipsoid, i.e.

a set of the form

fx 2 R
n : xTMx< 1g;

where M is a positive definite symmetric n� n matrix.

Now, let us suppose that we have inscribed and circum-

scribed ellipsoidal bodies E1 � B � E2. Because ellipses/

ellipsoids are relatively simple compared with polygons/poly-
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Table 2
Values of �j in Example 2.

�1 �2 �3

�3 �3�1 �3�1�2

Figure 2
One ellipse kissing three neighbors with p2 symmetry.
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hedra, they are widely applied in collision checking in robotics.

Ellipsoids can serve as the boundary for humanoids in motion

planning and are also used as the bounding volume for links in

serial manipulators. Those applications support ellipsoids as

good candidates for the bounding bodies E1;E2, as well as for

the replacement of a real protein in packing calculations.

Let E1 � B � E2. (Although our motivation involves the

use of ellipsoids, the bodies E1;E2 can be arbitrary bounded

connected open sets in the following discussion.) We note that

Sð�;E1Þ � Sð�;BÞ when E1 � B, since if a motion g causes

g � E1 to collide with �g � E1, then the larger region g � B will

collide with �g � B. Thus we have, by equation (9),

Að�;BÞ � F�\G nSð�;BÞ � F�\G nSð�;E1Þ
¼

\
�2� n feg

Zð�;E1ÞC; ð15Þ

where

Zð�;E1ÞC ¼: F�\G nZð�;E1Þ ¼ fg 2 F�\G : E1 \ g�1�g � E1¼;g
ð16Þ

denotes the complement of Zð�;E1Þ in the fundamental

domain F�\G.

Furthermore, for every feasible g, the closed body g � E2

must collide with at least one of its �-symmetry mates. Thus

for bodies E1 � B � E2, we also have

Að�;BÞ �[
�2� n feg

fg 2 F�\G : E1 \ g�1�g � E1 ¼ ;;E2 \ g�1�g � E2 6¼ ;g:

ð17Þ
Hence the search can be restricted to the space given by the

right side of equation (17). A much smaller search space, as

illustrated in Fig. 4 below, is the space

Ið�;E1;E2Þ
¼: g 2 F�\G : �ðg � E1Þ ¼ ;;�ðg � E2Þ generates �
� �

: ð18Þ
Note that Ið�;E1;E2Þ can be described in terms of inter-

sections and unions as

Ið�;E1;E2Þ ¼
[
�2M

\
�2�

Zð�;E2Þ
" #

n
[

�2� n feg
Zð�;E1Þ: ð19Þ

Thus, a motion g 2 F�\G is in Ið�;E1;E2Þ if and only if

g 62 Sð�;E1Þ and there exist �1; . . . ; �m generating � such that

g�1�jg � E2 intersects E2 for 1 � j � m.

It follows from equation (12) that

Að�;BÞ ¼ Ið�;B;BÞ ð20Þ
and

E1 � B � E2 ) Að�;BÞ � Ið�;E1;E2Þ: ð21Þ
We call Ið�;E1;E2Þ the informed search space for bodies

E1 � B � E2 since the resulting search is ‘informed’ by the

lack of collisions of symmetry mates of g � E1 and required

collisions of symmetry mates of g � E2. Furthermore, if

E1 � B � E2 is a tight encapsulation, then Ið�;E1;E2Þ will be

a good approximation to the feasible space Að�;BÞ and thus

may provide an efficient search space for MR.

Figs. 3–4 illustrate the informed search space in 2D for the

case of p2 symmetry. Fig. 3 shows four configurations of a 2D

irregular body B (in red) with inscribed and circumscribed

concentric ellipses E1;E2 together with their p2 symmetry

mates; only Fig. 3(a) is a configuration in the informed search

space Ið�;E1;E2Þ.
The translational parts of the search spaces of equation (17)

for four rotations of the body (corresponding to the orienta-

tions in Fig. 3) are unions of concentric rings, each ring

representing one of the sets in the union in equation (17), as

illustrated in Fig. 4. The translational parts of the corre-

sponding informed search space Ið�;E1;E2Þ consist of the

points in Fig. 4 where three or more of the rings intersect;

these points represent motions g where g � E2 intersects at

least three symmetry mates. (Recall that the minimal mol-

ecular coordination number for 2D crystals with p2 symmetry

is 3.) The regions consisting of these points are dark green in

the figure. Note that the informed search space in Fig. 4(c) is

empty. In Fig. 4(a), the points in the central part of the ‘X’

correspond to translations where E2 intersects four of its

symmetry mates, as shown in Fig. 3(a). The circled black dots4

in Figs. 4(a)–4(d) correspond to the respective configurations
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Figure 3
Configurations with p2 symmetry. (a) The orientation angle � = 0, (b) � =
�/6, (c) � = �/2, (d) � = 2�/3.

4 These dots are more visible when the figures are enlarged. The dot in Fig.
4(b) is slightly outside of the dark green region since inner ellipses in Fig. 3(b)
intersect.
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in Figs. 3(a)–3(d). The symmetries in Fig. 4 enable a reduction

of the search space, as explained in Section 4.2.

Although � andM are infinite sets, one only needs to check

a finite number of conditions in equation (18) [or equivalently

in equation (13)] since a bounded body Y will not intersect

� � Y if the translational part of � is large. To quantify this

observation, for a bounded set D � X we let

rD ¼: supfjxj : x 2 Dg: ð22Þ
For a fundamental domain for �\G of the form F�\G ¼
SOðnÞ � F�\X , we have

sup jg � xj : g 2 F�\G; x 2 B
� � ¼ rB þ rF�\X : ð23Þ

By translating B, we can choose rB to equal the circumradius

of B. Then Jung’s theorem tells us that rB � ð n
2nþ2Þ1=2diamðBÞ; if

B = �B (e.g. if B is a centered ellipsoid), then rB = 1
2 diamðBÞ.

Recall that

� ¼ ðR�; t� þ vðR�ÞÞ 2 �;

where t� is an element of the maximal lattice L corresponding

to translations in �, and vðR�Þ is a fraction of an element of L.

Since

g � B \ �g � B ¼ g � B \ ððR�g � Bþ t� þ vðR�ÞÞ 6¼ ;
¼) t� þ vðR�Þ 2 g � Bþ ð�R�g � BÞ;

it follows from equation (23) that[
g2F�\G

�ðg � BÞ � �ð�;BÞ

¼: fðR�; t� þ vðR�ÞÞ 2 � n feg : jt� þ vðR�Þj � 2ðrB þ rF�\X Þg;
ð24Þ

and hence to determine which symmetries � 2 � are in

�ðg � E1Þ and �ðg � E2Þ in equation (18), one needs only to

consider symmetries in the finite sets �ð�;E1Þ and �ð�;E2Þ,
respectively. Correspondingly, by defining

Mð�;BÞ ¼: f� 2 M : � � �ð�;BÞg; ð25Þ
equation (13) can be written using only finite unions and

intersections as

Ið�;E1;E2Þ

¼
[

�2Mð�;E2Þ

\
�2�

Zð�;E2Þ
" #

\
\

�2�ð�;E1Þ
Zð�;E1ÞC

" #
; ð26Þ

where Zð�;E1ÞC denotes the complement of Zð�;E1Þ [as in
equation (16)].

Thus the informed search space Ið�;E1;E2Þ is given by a

finite number of conditions. In the case where E1 and E2 are

ellipsoids, it is given by a finite number of polynomial

inequalities;5 i.e. it is the intersection of F�\G with a semi-

algebraic variety in X. If E1 = B = E2, then equation (20)

implies that Að�;BÞ = Ið�;E1;E2Þ has zero volume in F�\G.

(This follows from the fact that, in a crystal, some symmetry

mates must kiss, which lowers the dimension of the search

space.) Thus if we can find good approximating ellipsoids, we

can restrict the search of motion space to regions of small

volume in F�\G that are amenable to computation.

4. General description of the collision space

We now review the general formulas from Chirikjian &

Shiffman (2016) for the collision space Sð�;BÞ and give

specific details involving cylinders over slices of Minkowski

sums in the 3D case.

We let P< SOðnÞ denote the ‘concrete’ point group corre-

sponding to �, and we let T / � denote the maximal lattice

translation (normal) subgroup of �, i.e. the one for which the

index ½� : T
 is minimal. Then P ffi T\� (the abstract point

group), and we let

FT\� ¼: fðR�; vðR�ÞÞjR� 2 Pg � �:

We let L ¼ T � 0 � X denote the lattice of rank n in X ¼ R
n,

which we can identify with the translation subgroup T. As

above, we consider fundamental domains for �\G of the form

F�\G ¼ SOðnÞ � F�\X . For descriptions of some other funda-

mental domains, see Chirikjian et al. (2017). The formulas for

the collision space from Chirikjian & Shiffman (2016) involve

the Minkowski sum,

Bþ B0 ¼: fxþ y : x 2 B; y 2 B0g; ð27Þ
of two bodies B;B0 2 X. Fig. 5 gives two simple examples of

the Minkowski sum of two elliptical 2D bodies. Minkowski

sums of sample protein bodies are illustrated in Section 6.2.

For a general body B, we write
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Figure 4
Search space for p2 symmetry: only the small green regions are in the
informed search space. (a) � = 0, (b) � = �/6, (c) � = �/2, (d) � = 2�/3.

5 The condition that two ellipsoids intersect can be given by polynomial
inequalities in the coefficients of the defining equations of the ellipsoids; see
Theorem 3.10 in Jia et al. (2011).
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BR ¼: R � B ¼ fRx : x 2 Bg; for R 2 SOð3Þ:
We also write �B¼: ð�IÞ � B, where I denotes the identity

matrix in SOð3Þ, and thus �BR ¼ ð�RÞ � B. We recall from

Proposition 2.3 of Chirikjian & Shiffman (2016) that

Zð�;BÞ ¼ �ðR; tÞ 2 SOðnÞ � F�\X :

ðI� R�Þt 2 ðR� � BRÞ þ ð�BRÞ þ t� þ vðR�Þ
�
: ð28Þ

To describe the collision zones Zð�;BÞ, we let ZRð�;BÞ denote
the set of translations t 2 F�\X for which ðR; tÞ 2 Zð�;BÞ for a
fixed rotation R 2 SOðnÞ:

ZRð�;BÞ ¼: ft 2 F�\X : ðR; tÞ 2 Zð�;BÞg: ð29Þ
Note that it follows from equation (28) that

ZRð�;BÞ ¼ ZIð�;BRÞ; ð30Þ
and thus ZRð�;BÞ depends only on � and BR.

In cases where � is a translation, i.e. when R� ¼ I, we have

Z ðI; t�Þ;B
� �
¼ fðR; tÞ 2 SOðnÞ � F�\X : 0 2 BR þ ð�BRÞ þ t�g
¼ fR 2 SOðnÞ : t� 2 R � ½Bþ ð�BÞ
g � F�\X ; ð31Þ

and thus

ZR ðI; t�Þ;B
� � ¼ F�\X if t� 2 BR þ ð�BRÞ

; if t� =2BR þ ð�BRÞ
�

: ð32Þ

4.1. The collision space in 3D

We now restrict our discussion to our case of interest, n ¼ 3.

As noted in equation (32) above, if R� ¼ I, then ZRð�;BÞ is
either empty or all of F�\X, for each R 2 SOð3Þ. We now

describe ZRð�;BÞ for symmetries � with R� 6¼ I. Suppose that

R� is the (counterclockwise) rotation about the unit vector

n� ¼ ½n1; n2; n3
T 2 S
2 by the angle �� 2 ð0; �
. Then

R� ¼ exp ��N�

� �
; N� ¼

0 �n3 n2
n3 0 �n1
�n2 n1 0

0@ 1A: ð33Þ

The skew-symmetric matrix N� satisfies N�a ¼ n� � a for all

a 2 R
3. The 3D case is fundamentally different from the

planar case studied by Chirikjian & Shiffman (2016), since in

the 3D case ðI� R�Þ is never invertible.
To illustrate our approach, suppose that n� ¼ e1. (In fact,

one can always choose coordinates so that this is the case.)

Then

R� ¼
1 0 0

0 cos �� � sin ��
0 sin �� cos ��

0@ 1A:
A key ingredient is the (translated) Minkowski sum from

equation (28):

Mð�;BRÞ ¼: ðR� � BRÞ þ ð�BRÞ þ t� þ vðR�Þ: ð34Þ
By equations (28)–(29),

ZRð�;BÞ ¼ x 2 F�\X : ðI� R�Þx 2 Mð�;BRÞ
� �

¼
(
x 2 F�\X :

0 0 0

0 1� cos �� sin ��

0 � sin �� 1� cos ��Þ

0B@
1CA x1

x2

x3

264
375

2 Mð�;BRÞ
)

¼
(
x 2 F�\X :

1 0 0

0 1� cos �� sin ��

0 � sin �� 1� cos ��Þ

0B@
1CA 0

x2

x3

264
375

2 Mð�;BRÞ
)
: ð35Þ

To give a geometric description of ZRð�;BÞ, we let

�1 ¼: fx 2 X : x1 ¼ 0g ¼ f0g � R
2

denote the x2x3 plane in R
3. Thus ZRð�;BÞ ¼ D \ F�\X, where

D is the cylinder in R
3 with axis ¼ n� ¼ e1 and with base6

1 0 0

0 1
2

� sin ��
2�2 cos ��

0
sin ��

2�2 cos ��
1
2

0B@
1CA � Mð�;BRÞ \�1

� 	
: ð36Þ

We see from equation (34) that the base equation (36) of the

cylinder D is a planar slice of a Minkowski sum.

A coordinate-free approach to equations (35)–(36) is as

follows: let P� ¼: n�nT� denote the orthogonal projection to the

line generated by n�, and let �� ¼: kerP� denote the planar

subspace of R
3 orthogonal to n�. Then P?

� ¼: I� P� is the

orthogonal projection to ��.

Now suppose that x 2 ZRð�;BÞ. Since ðI� R�ÞP�x ¼ 0, we

have

ðI� R�Þx ¼ ðI� R�ÞP?
� x

¼ ðP� þ I� R�ÞP?
� x 2 Mð�;BRÞ \�� :

Hence,

P?
� x 2 ðP� þ I� R�Þ�1 � ½Mð�;BRÞ \�� 
; ð37Þ

and P�x is arbitrary. In fact, x 2 ZRð�;BÞ if and only if

x 2 F�\X and equation (37) holds; i.e. ZRð�;BÞ ¼ D� \ F�\X ,

where D� is the cylinder with axis n� and base given by

equation (37). Note that equation (37) reduces to equation

(36) when n� ¼ e1.
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Figure 5
Minkowski sums of elliptical bodies.

6 The first columns of the matrices in the last line of equation (35) and in
equation (36) are arbitrary; the choice ½1 0 0
T is to simplify the inverse in
equation (36) of the matrix in equation (35).
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It then follows from equation (17) that the translational part

of the feasible space for a given rotation R is contained in a

finite union of cylindrical shells. Using equation (26), we can

write the translational part (for a rotation R) of the informed

search space Ið�;E1;E2Þ as a finite union of finite inter-

sections of cylinders.

4.2. Reducing the search space

When B � R
3 is described well as an ellipsoid (centered

and aligned with the coordinate axes), we have the symmetries

B = k � B where k is any of the proper transformations taking

e � x = x = (x1, x2, x3) into k1 � x ¼: (x1, �x2, �x3), k2 � x ¼: (�x1,

x2,�x3), k3 � x¼: (�x1,�x2, x3), which compose the Klein-four

group,

K¼: fe; k1; k2; k3g ffi Z2 � Z2:

Consequently, the collision zones have the symmetries

Zð�;BÞ ¼ Zð�; ki � BÞ ¼ Zð�;BÞki;
so the size of the search space F�\G can be reduced by a factor

of four because of this effect alone; that is, the search space

can be reduced to F�\G=K.

The search space can be reduced further, even if B does not

have rotational symmetries (as is usually the case with

biomolecular structures). For example, if � is of type P1, then

the feasible space is invariant under translation as can be seen

from equation (31), and the intensity function, being the

squared magnitude of �̂�, is also translation invariant. Thus in

the P1 case, the feasible space and intensity depend only on

the rotational part R 2 SOð3Þ of g ¼ ðR; tÞ 2 G, and hence the

search space is 3D, as is well known. Also, for a space group

with cyclic point group (i.e. all rotations and screw motions are

about the same unit vector n), which is the case for approxi-

mately 38% of all protein crystals [see Table 5 in Chirikjian,

Sajjadi et al. (2015)], the feasible space and intensity are

independent of translations along n, and hence the search

space is 5D in this case. Another way that the dimension of the

search space can be reduced is if B is axisymmetric. Combining

these two effects gives a 4D search space.

4.2.1. Reducing the search space using discrete symme-
tries. For any Sohncke space group �, we show in equation

(45) below that [for F�\G as in equation (39)]

�̂�Zð�;BÞ ¼ Zð� 0;BÞ � 0 ¼ �̂���̂��1;

for all orientation-preserving �̂� in the Euclidean normalizer �̂�
of �, which leads to invariance of the search space under left

multiplication by �̂� \G. If the point group of � is not cyclic,

then �̂� is a (not necessarily Sohncke) crystallographic group,

which is described by Hirshfeld (1968) and Koch et al. (2002)

and in the Bilbao server (Aroyo et al., 2006), and this

symmetry leads to a potential reduction in the size of the

search space by a factor of ½�̂� \G : �
. If B is an ellipsoid, by

combining these two factors, one can thus reduce the search

space to Fð�̂�\GÞ\G=K.

Moreover, an ellipsoidal body B has the additional reflec-

tion symmetries q1 � x ¼ ð�x1; x2; x3Þ, q2 � x ¼ ðx1;�x2; x3Þ,

q3 � x ¼ ðx1; x2;�x3Þ, q4 � x ¼ ð�x1;�x2;�x3Þ, and so the

symmetry group of B is the full orthorhombic point group

K [ fq1; q2; q3; q4g ¼ K [ ð�IÞK<Oð3Þ ð38Þ
of order eight, assuming that the semiaxes of B are distinct.

(Though macromolecular structures are chiral and hence do

not have these reflection symmetries, if they can be bounded

by ellipsoids, then these reflection symmetries become

applicable to the bounding bodies.) If �̂� is not Sohncke, the

search space can then be reduced by an additional factor of

two due to symmetries of the form �̂�Zð�;BÞqi ¼ Zð� 0;BÞ for
orientation-reversing �̂� 2 �̂�. In fact, it is even possible for B to

have a symmetry group with more symmetry elements. For

example, B could be a hexagonal ring structure consisting of

additional dihedral symmetry operations. Or it might be a viral

capsid with icosahedral symmetry. Then the above reductions

occur with equation (38) replaced by the symmetry group of B.

For example, if � is in the most common biomolecular

crystal class P212121, then ½�̂� : �
 ¼ 16 (see Section 7.2), which

results in a reduction by a factor of ½�̂� \G : �
 ¼ 8. If in

addition the body B is ellipsoidal, then the combination of

these effects leads to a reduction in the size of the search space

by a factor of 64. The reason for the factor of 64 rather than

32 ¼ jKj½�̂� \G : �
 is the additional twofold symmetry of G

under conjugation by ð�I; 0Þ.
We state our reduction result for crystals of any dimension:

Theorem 4.1. Let �<G ¼ SEðnÞ be a crystallographic

group, and let B be a bounded connected open set in X ¼ R
n.

Suppose there exist a finite group Q<OðnÞ and a crystal-

lographic group �̂�<EðnÞ such that

(i) q � B ¼ B 8q 2 Q;

(ii) � / �̂�.
Let F�\�̂� be a fundamental set for �\�̂�. Then there exists a

set F0 � G such that

F�\G ¼:
[

�̂�F0q : q 2 Q; �̂� 2 F�\�̂�; �̂�q 2 G
� � ð39Þ

is a fundamental domain for �\G,

Að�;BÞ ¼
[�

�̂� F0 \ Að�;BÞ� 	
q :

q 2 Q; �̂� 2 F�\�̂�; �̂�q 2 G
�
; ð40Þ

and

volðF�\GÞ
volðF0Þ ¼ jQj½�̂� : �
; if �̂�<G;Q< SOðnÞ

1
2 jQj½�̂� : �
; if �̂� 6<G or Q 6<SOðnÞ

�
ð41Þ

where ‘vol’ denotes invariant volume in G.

Equation (40) tells us that to determine the points of the

feasible space Að�;BÞ, one needs only to search F0. Thus by

equation (41), the volume of the motion space to be searched

to find the points of Að�;BÞ is reduced by a factor of

jQj½�̂� : �
 if both Q and �̂� preserve orientation, and by half

this factor otherwise.

We define F0 in the proof below as a fundamental domain of

an action on EðnÞ [or as the component in SEðnÞ of the

fundamental domain]. These fundamental domains are easy to
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construct in 2D and 3D; an example for the case of a crys-

tallographic group of type P212121 is given in Section 7.2. If

both Q and �̂� contain orientation-reversing elements, then

allowing for these elements provides an additional reduction

by a factor of two, as can be seen from equation (41). [The

condition �̂�q 2 G in equations (39)–(40) is satisfied when �̂�
and g both preserve orientation or both reverse orientation.]

The symmetry of equation (40) in the case of a wallpaper

group �< SEð2Þ of type p2 with a rectangular unit cell can be

seen in Fig. 4. Let L denote the (orthogonal) lattice of �. One

can easily check that its normalizer �̂� is of type pmm with the

finer lattice 1
2L, and thus ½�̂� : �
 ¼ 8. Since the symmetry of an

ellipse is the dihedral group D2 ffi K,

volðF�\SEð2ÞÞ=volðF0Þ ¼ 1
2 jD2j½�̂� : �
 ¼ 16:

But the only left–right ð�̂�; qÞ actions on g ¼ ðR; tÞ 2 SEð2Þ that
leave R invariant are left actions by �̂� \ SEð2Þ. Since

½�̂� \ SEð2Þ : �
 ¼ ½12L : L
 ¼ 4, we obtain the fourfold trans-

lation symmetry in the unit cell visible in Fig. 4.7

The proof of Theorem 4.1 makes use of the elementary

general lemma below. We recall that when a discrete group �
acts properly discontinuously on a manifold M such that the

fixed point set of each action g 2 � n feg has measure zero,8 we

can find a fundamental domain whose images under the action

of the group cover M with overlaps of measure zero [see, for

example, Section 3.1 of Chirikjian et al. (2017)].

Lemma 4.2. Let �̂� be a discrete group acting properly

discontinuously on a manifold M with fixed point sets of

measure zero. Let �< �̂� and let A¼: F�\�̂� be a fundamental

set for �\�̂�. If F�̂�\M is a fundamental domain for �̂� acting on

M, then the sets faF�̂�\M : a 2 Ag have pairwise intersections of
measure zero, and their union is a fundamental domain for �
acting on M.

Proof. Since each element �̂� 2 �̂� has a unique decomposi-

tion as a product of � 2 � and a 2 A, we have

M ¼
[
�̂�2�̂�

�̂�F�̂�\M ¼
[
�2�

�
[
a2A

aF�̂�\M

 !
;

where the above unions are pairwise disjoint outside a set of

measure zero. &

Proof of Theorem 4.1. We shall apply Lemma 4.2 with

M¼: EðnÞ and

�¼: �� fIg / �̂�¼: �̂��Q

acting on g 2 EðnÞ by
ð�̂�; qÞ � g¼: �̂�gq�1; �̂� 2 �̂�; q 2 Q:

Writing g ¼ ðR; tÞ, we have

ð�̂�; qÞ � g ¼ ðR�̂� ; t�̂�Þ; ðq; 0Þ
� � � ðR; tÞ ¼ ðR�̂�Rq

�1;R�̂�tþ t�̂�Þ:
ð42Þ

It follows from equation (42) that the �̂� action is properly

discontinuous with fixed point sets of measure 0. Hence we

can choose a fundamental domain F�̂�\EðnÞ ¼ F�̂�\EðnÞ=Q for �̂�
acting on EðnÞ. If Q 6< SOðnÞ or �̂� 6< G, we can choose

F�̂�\EðnÞ � G (since in this case every orbit intersects G) and we

let F0 ¼ F�̂�\EðnÞ. On the other hand, if �̂�<G and Q< SOðnÞ,
we let F0 ¼ F�̂�\EðnÞ \G so that F�̂�\EðnÞ ¼ F0 [ ð�IÞ � F0.

We choose a fundamental set for �\�̂� of the form

F�\�̂� ¼: F�\�̂� �Q. Then, by Lemma 4.2,

F�\EðnÞ ¼:
[

�̂�F�̂�\EðnÞq
�1 : ð�̂�; qÞ 2 F�\�̂� �Q

n o
ð43Þ

is a fundamental domain for�\EðnÞ (where the above union is
disjoint outside a set of measure zero). Then

F�\G ¼: F�\EðnÞ \G ¼ F�\EðnÞ \G

is a fundamental domain for �\G and satisfies equation (39).

Since F�\EðnÞ ¼ F�\G [ ð�IÞ � F�\G, we have

volðF�\GÞ ¼ 1
2 volðF�\EðnÞÞ:

By equation (43),

volðF�\EðnÞÞ
volðF�̂�\EðnÞÞ

¼ ½�̂� : �
 ¼ ½�̂� : �
jQj: ð44Þ

Formula (41) follows from equation (44), since volðF0Þ ¼
1
2 volðF�̂�\EðnÞÞ if �̂�<G;Q< SOðnÞ, and F0 ¼ F�̂�\EðnÞ otherwise.

To complete the proof, we must verify equation (40). Let

�̂� 2 �̂�; q 2 Q such that �̂�q 2 G. Since q�1 � B ¼ B and � is

normal in �̂�,

g 2 Zð�;BÞ () g � B \ �g � B 6¼ ;
() �̂�gq�1 � B \ �̂���̂��1�̂�gq�1 � B 6¼ ;
() �̂�gq�1 2 Zð� 0;BÞ; � 0 ¼ �̂���̂��1 2 �:

Therefore,

�̂�Zð�;BÞq�1 2 Zð� 0;BÞ; � 0 ¼ �̂���̂��1 2 �: ð45Þ
It follows from equation (45) with B replaced by B that

�̂��ðg � BÞ�̂��1 ¼ �ðg0 � BÞ; g0 ¼ ð�̂�; qÞ � g: ð46Þ
LetbAAð�;BÞ ¼ g 2 G : �ðg � BÞ ¼ ;;�ðg � BÞ generates �� �

;

ð47Þ
so that

Að�;BÞ ¼ bAAð�;BÞ \ F�\G:

Since �ðg � BÞ generates � if and only if �̂��ðg � BÞ�̂��1 gener-

ates �, it follows from equations (18), (20) and (46) thatbAAð�;BÞ is invariant under the ð�̂�; qÞ action. Equation (40)

then follows from equation (39) and the invariance of bAAð�;BÞ.
&
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7 Figs. 4(a) and 4(c) exhibit additional mirror symmetries (resulting in a 16-
fold symmetry in the unit cell), since the ellipses are positioned in these figures
to be invariant under the mirror reflections.
8 This is always the case when the action is effective and real-analytic.
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4.2.2. Search space reduction and Laue symmetry.
Theorem 4.1 together with the Laue symmetry of the

diffraction pattern (4) shows that the volume of the space

needed to compute the cost function [equation (5)] can like-

wise be reduced, as a consequence of the following result:9

Theorem 4.3. Let � / �̂� be crystallographic groups, and let P

denote the point group of �. Suppose that the point group of �̂�
is either P or P [ ð�PÞ. Then the Patterson function and

intensity function of a crystal with symmetry group � satisfy

the group invariance properties

Pðx; �̂�gqÞ ¼ Pðx; gÞ; Iðk; �̂�gqÞ ¼ Iðk; gÞ;
8 q 2 Q; �̂� 2 �̂�: ð48Þ

Proof. Let �̂� 2 �̂� be given and write �̂��1	�̂� ¼ � 0 2 � for

	 2 �. Recalling equation (1), we have

�ðx; �̂�gÞ ¼ P
�2�

f ð��̂�gÞ�1 � x� �
¼ P

� 02�
f ð� 0gÞ�1 � ð�̂��1 � xÞ� � ¼ �ð�̂��1 � x; gÞ: ð49Þ

Therefore,

Pðx; �̂�gÞ ¼ R
FT\X

�ð�̂��1 � y; gÞ�ð�̂��1 � yþ R�1
�̂� � x; gÞ dy

¼ R
F 0
T\X

�ðz; gÞ�ðzþ R�1
�̂� � x; gÞ dz

¼ PðR�1
�̂� � x; gÞ ¼ Pðx; gÞ;

where F 0
T\X ¼ �̂��1 � FT\X. The final equality follows from

equation (4) and the hypothesis that R�̂� 2 P [ ð�PÞ.
Invariance of the Patterson function under right multi-

plication by q 2 Q is an immediate consequence of the Q

symmetry of B. By taking the Fourier transform of the

Patterson function, one then obtains the stated invariance of

the intensity. &

When equations (40) of Theorem 4.1 and (48) of Theorem

4.3 hold, one only needs to consider motions g in the domain

F0 in order to compute the cost function [equation (5)] as well

as to determine the feasible space [equation (12)]. When this

occurs, we say that the motion space search can be reduced by a

factor of volðF�\GÞ=volðF0Þ.
The five most common space groups for biomolecular

crystals are P212121, P21, C2, P21212 and C2221 (Chirikjian,

Sajjadi et al., 2015). For these groups, Theorem 4.1 yields

substantial reductions. For groups � in the classes P212121,

P21212 and C2221, we take �̂� to be the normalizer of � in Eð3Þ.
For � of type P212121 or P21212 with ellipsoidal bodies,

½�̂� : �
 ¼ 16 and the motion space search can be reduced by a

factor of 64; for � of type C2221, the reduction factor is 32. The

5D search spaces for P21 and C2 can be reduced by a factor of

32 and 16, respectively (for ellipsoidal bodies).

We note that the argument in Theorem 4.1 also yields the

following result:

Theorem 4.4. Suppose that E1 � B � E2. Assume the

hypotheses of Theorem 4.1 with (i) replaced by

q � E1 ¼ E1; q � E2 ¼ E2 8q 2 Q:

Then the conclusions of Theorem 4.1 hold with Að�;BÞ
replaced by Ið�;E1;E2Þ.

Thus, if an irregular molecule B is sandwiched between

ellipsoids E1 and E2, the informed search space Ið�;E1;E2Þ
will have the (right) Q symmetries as well as the (left) �̂�
symmetries, and the cost function for the molecule B will have

�̂� symmetries. Both symmetries will allow reductions of the

computations in the 6D search.

5. The crystallographic group P1

We now consider the case where � is in the class P1, which is

the symmetry group made up only of translations by elements

of the lattice L.

In this case, � ¼ T, P ¼ fIg, vðIÞ ¼ 0 and F�\X ¼ FT\X is a

unit cell. Then

MððI; t�Þ;BRÞ ¼ BR þ ð�BRÞ þ t�; ð50Þ

�ðBRÞ ¼ fðI; t�Þ 2 T n feg : BR \ ðBR þ t�Þ 6¼ ;g
¼ fIg � ft� 2 L n f0g : t� 2 BR þ ð�BRÞg; ð51Þ

Z½ðI; t�Þ;B
 ¼ fR 2 SOðnÞ : 0 2 MððI; t�Þ;BRÞg � F�\X

¼ fR 2 SOðnÞ : t� 2 R � ½Bþ ð�BÞ
g � F�\X : ð52Þ
Thus the collision space is given by

Sð�;BÞ ¼
[

t�2L n f0g
ZððI; t�Þ;BÞ

¼ R 2 SOð3Þ : �L n f0g	 \ R � ½Bþ ð�BÞ
 6¼ ;� �
� F�\X :

The condition above means that for collision at least one non-

zero lattice point must be inside BR þ ð�BRÞ.
The informed search space for approximating sets

E1 � B � E2 (where E1;E2 are ellipsoids, for example) is

given by

Ið�;E1;E2Þ ¼
n
R 2 SOð3Þ : ½L n f0g
 \ R � ½E1 þ ð�E1Þ
 ¼ ;;

L \ R � ½E2 þ ð�E2Þ
 generates L
o
� FT\X : ð53Þ

It follows from equation (51) that

�ðg � BÞ � e��ð�;BÞ ¼: ft� 2 � n feg : jt� j � 2rBg; ð54Þ
which is sharper than equation (24) [in fact, we can replace 2rB
with rBþð�BÞ]. Thus, to verify equation (53), one only needs to

check lattice points t� of norm jt� j< 2rE1
for the first condition

and jt� j � 2rE2
for the second condition.
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We note that if E1 and E2 are (centered) ellipsoids, then

E1 þ ð�E1Þ ¼ 2E1 and E2 þ ð�E2Þ ¼ 2E2. Furthermore, one

sees from equation (53) that equation (21) holds in the P1 case

if E1 and E2 are ellipsoids that satisfy the weaker Minkowski-

sum inclusion relations:

2E1 � Bþð�BÞ � 2E2: ð55Þ

This observation allows us to choose better approximating

ellipsoids, as illustrated in the next section.

6. Detailed examples with P1 symmetry

In Section 3, we discussed how ellipsoids can be used to

replace protein molecules in the feasible region analysis. In

this section we give examples of proteins that crystallize with

P1 symmetry and their approximating ellipsoids. In these

examples, ellipsoids are seen to give better approximations for

the Minkowski sum Bþ ð�BÞ in Section 5 than for the

protein.

6.1. Ellipsoidal proxies

Here we consider two proxy ellipsoids: the moment-of-

inertia ellipsoid, which has the same moment of inertia as the

protein,10 and the minimum-volume ellipsoid (Todd, 2016),

which is the ellipsoid of least volume that contains all the

atoms of the protein.

Fig. 6(a) shows the atoms of the Protein Data Bank (PDB,

http://www.rcsb.org/pdb/) entry 1aky (Abele & Schulz, 1995)

(an adenylate kinase), which crystallizes with P1 symmetry,

and its moment-of-inertia ellipsoid. As can be seen from the

figure, the moment-of-inertia ellipsoid coincides with the

protein in a high proportion, though there is empty space

inside the ellipsoid and some atoms are outside of the ellip-

soid. The minimum-volume ellipsoid of 1aky is shown in Fig.

6(b). It can be seen that the minimum ellipsoid is significantly

larger than the moment-of-inertia ellipsoid since it must

contain all atoms of the protein.

Figs. 7(a) and 7(b) show the placements of the moment-of-

inertia ellipsoids and the minimum-volume ellipsoids,

respectively, of four symmetry mates of 1aky intersecting a

unit cell (outlined). It can be seen from Fig. 7(a) that the

moment-of-inertia ellipsoids can be placed with only minor

collisions with their neighbors in the lattice, whereas the larger

minimum-volume ellipsoids in Fig. 7(b) collide more. There-

fore, compared with the minimum-volume ellipsoid, the

moment-of-inertia ellipsoid may provide a better choice for

replacing the protein in further analysis.

6.2. Minkowski sums

The Minkowski sum determines the collision zone of two

bodies. Comparisons between three proteins with P1

symmetry [1aky (Abele & Schulz, 1995), 1tt8 (Smith et al.,

2006), 5m0e (Keune et al., 2017)] and their moment-of-inertia

ellipsoids are given in Table 3. Similar comparisons are given

in Table 4 for the corresponding Minkowski sums Bþ ð�BÞ,
where B � R

3 represents the protein body. One sees from

Tables 3–4 that the ellipsoidal approximation of the

Minkowski sum Bþ ð�BÞ is better than the ellipsoidal

approximation of the protein body B in these cases.

To describe the notation in the tables, we let E denote the

moment-of-inertia ellipsoid, and we note that the Minkowski

sum Eþ ð�EÞ ¼ 2E.

Pa – the fraction of atoms of the protein that are outside of

the ellipsoid E.

Pin – the fraction of the volume of E occupied by protein

atoms (the total volume of ‘boxes’ occupied by atoms, the

edge dimensions of the box being the average distance

between adjacent alpha carbons) inside E.
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Figure 6
Ellipsoids for the PDB entry 1aky. (a) Moment-of-inertia ellipsoid; (b)
minimum-volume ellipsoid.

Figure 7
Placement of ellipsoids for the PDB entry 1aky. (a) Moment-of-inertia
ellipsoid; (b) minimum-volume ellipsoid.

10 The moment-of-inertia ellipsoid is assumed to have the same total mass as
the protein and to have uniform mass density.
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Pout – the volume of the space occupied by protein atoms

outside E, divided by the volume of E.

Ma – the fraction of the volume of the Minkowski sum

Bþ ð�BÞ that is outside of 2E.

Min – the volume of the portion of the Minkowski sum

Bþ ð�BÞ inside 2E, divided by the volume of 2E.

Mout – the volume of the portion of the Minkowski sum

Bþ ð�BÞ outside of 2E, divided by the volume of 2E.

The Minkowski sum Bþ ð�BÞ for the body B corre-

sponding to the PDB entry 1aky is displayed in Fig. 8. The

ellipsoids in the figure are the ellipsoid 2E (where E is the

moment-of-inertia ellipsoid of B) and its further scaling by a

factor of 1.25.

Slices of the Minkowski sum of Fig. 8 are shown in Fig. 9.

The dotted ellipses, the outer ellipses and the inner ellipses

delineate the slices of 2E and its further scaling by factors of

1.25 and 0.75, respectively.

Fig. 10 shows the atoms of the PDB entry 5m0e and its

moment-of-inertia ellipsoid. The corresponding Minkowski

sum, ellipsoids and slices for 5m0e are displayed in Figs.

11–12.

7. The crystallographic group P212121

We now consider the case where � is in the class P212121,

which is the most common type of crystallographic group

formed by proteins. In this case, we can choose coordinates so

that the lattice L is generated by ða1; 0; 0Þ; ð0; a2; 0Þ; ð0; 0; a3Þ,
where we make the identification

ðx1; x2; x3Þ � ðx1; x2; x3ÞT ¼
x1
x2
x3

24 35 2 R
3:

We choose the (centered) unit cell

FT\X ¼: ðx1; x2; x3Þ 2 R
3 : � ai

2
� xi <

ai
2
; 1 � i � 3

n o
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Table 3
Sample proteins in P1.

Protein Pa Pin Pout

1aky 0.1038 0.6490 0.0733
1tt8 0.0933 0.8253 0.1049
5m0e 0.1212 0.4651 0.0670

Table 4
Minkowski sums for sample proteins in P1.

Protein Ma Min Mout

1aky 0.0023 0.9212 0.0911
1tt8 0.0019 0.9676 0.1262
5m0e 0.0083 0.9384 0.1633

Figure 9
Slices of the Minkowski sum for the PDB entry 1aky. (a) Slice with the
x1x2 plane; (b) slice with the x1x3 plane; (c) slice with the x2x3 plane.

Figure 12
Slices of the Minkowski sum for the PDB entry 5m0e. (a) Slice with the
x1x2 plane; (b) slice with the x1x3 plane; (c) slice with the x2x3 plane.

Figure 8
Minkowski sum for the PDB entry 1aky.

Figure 11
Minkowski sum for the PDB entry 5m0e.

Figure 10
The PDB entry 5m0e and its moment-of-inertia ellipsoid.
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and fundamental domain F�\G ¼ SOð3Þ � F�\X , with (cen-

tered) asymmetric unit

F�\X ¼:
(
ðx1; x2; x3Þ 2 R

3 :

� a1
2
� x1 <

a1
2
;� a2

4
� x2 <

a2
4
;� a3

4
� x3 <

a3
4

)
:

ð56Þ
Then the point group T\� is isomorphic to Z2 � Z2 (the Klein

group), and we can write FT\� = {�0, �1, �2, �3} where each

element of FT\� acts on X = R
3 as �0 � (x1, x2, x3) = (x1, x2, x3);

�1 � (x1, x2, x3) = (x1 + a1/2, �x2 + a2/2, �x3); �2 � (x1, x2, x3) =
(�x1, x2 + a2/2, �x3 + a3/2); �3 � (x1, x2, x3) = (�x1 + a1/2, �x2,

x3 + a3/2).

In terms of homogeneous transformation matrices, these

operators are

�0 ¼ e ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0BBB@
1CCCA; �1 ¼

1 0 0 a1
2

0 �1 0 a2
2

0 0 �1 0

0 0 0 1

0BBB@
1CCCA;

�2 ¼

�1 0 0 0

0 1 0 a2
2

0 0 �1 a3
2

0 0 0 1

0BBB@
1CCCA; �3 ¼

�1 0 0 a1
2

0 �1 0 0

0 0 1 a3
2

0 0 0 1

0BBB@
1CCCA:

In this case n�i ¼ ei, for i ¼ 1; 2; 3, where fe1; e2; e3g is the

standard orthonormal basis for R3. Furthermore

vðR�1
Þ ¼ a1

2
e1 þ

a2
2
e2; vðR�2

Þ ¼ a2
2
e2 þ

a3
2
e3;

vðR�3
Þ ¼ a3

2
e3 þ

a1
2
e1:

Let 
k 2 T / � denote translation by the lattice point

ðk1a1; k2a2; k3a3ÞT, where k ¼ ðk1; k2; k3Þ 2 Z
3. Then

� ¼ f
k�i : k 2 Z
3; i ¼ 0; 1; 2; 3g:

We now construct the (translational) collision zones

ZRð
k�i;BÞ. For i ¼ 0, we have 
k�0 ¼ 
k, and thus by equation
(52), we have

ZRð
k;BÞ ¼ F�\X for ðk1a1; k2a2; k3a3ÞT 2 BR þ ð�BRÞ
; for ðk1a1; k2a2; k3a3ÞT=2BR þ ð�BRÞ

�
:

ð57Þ
Next we let i ¼ 1; in this case, we have n�1 = e1 and

R�1
¼

1 0 0

0 �1 0

0 0 �1

0@ 1A; I� R�1
¼

0 0 0

0 2 0

0 0 2

0@ 1A:

We let

M1ðBRÞ ¼: R�1
� BR þ ð�BRÞ ¼

x1 � y1
�x2 � y2
�x3 � y3

24 35 : x; y 2 BR

8<:
9=;:
ð58Þ

Recalling equation (34), we have

Mð
k�1;BRÞ ¼ M1ðBRÞ þ
ðk1 þ 1

2Þa1
ðk2 þ 1

2Þa2
k3a3

24 35: ð59Þ

By equation (35),

ZRð
k�1;BÞ ¼ x 2 F�\X :

0

2x2

2x3

264
375 2 Mð
k�1;BRÞ

8><>:
9>=>;

¼ x 2 F�\X :

�ðk12 þ 1
4Þa1

x2 � ðk22 þ 1
4Þa2

x3 � k3
2 a3

264
375 2 1

2
M1ðBRÞ

8><>:
9>=>;:
ð60Þ

Thus the translational collision zones ZRð
k�1;BÞ are planar

slices of translates of the Minkowski sum M1ðBRÞ, given as

follows. We define the planes

�1ðkÞ¼: x 2 R
3 : x1 ¼ � k

2
þ 1

4


 �
a1

� �
; k 2 Z: ð61Þ

Then ZRð
k�1;BÞ is the cylinder in F�\X with axis in the x1
direction and base given by the planar slice

SR ¼:
1

2
M1ðBRÞ þ

0

ðk22 þ 1
4Þa2

k3
2 a3

24 350@ 1A \�1ðk1Þ: ð62Þ

Similarly we let

M2ðBRÞ ¼: R�2
� BR þ ð�BRÞ ¼

�x1 � y1
x2 � y2
�x3 � y3

24 35 : x; y 2 BR

8<:
9=;;
ð63Þ

and we obtain

ZRð
k�2;BÞ ¼ x 2 F�\X :
x1 � k1

2 a1
�ðk22 þ 1

4Þa2
x3 � ðk32 þ 1

4Þa3

24 35 2 1

2
M2ðBRÞ

8<:
9=;;
ð64Þ

which is a cylinder in F�\X with axis in the x2 direction and base

obtained by slicing a translate of 1
2M2ðBRÞ.

Finally, let

M3ðBRÞ ¼: R�3
� BR þ ð�BRÞ ¼

�x1 � y1
�x2 � y2
x3 � y3

24 35 : x; y 2 BR

8<:
9=;:

ð65Þ
Then

ZRð
k�3;BÞ ¼ x 2 F�\X :
x1 � ðk12 þ 1

4Þa1
x2 � k2

2 a2
�ðk32 þ 1

4Þa3

24 35 2 1

2
M3ðBRÞ

8<:
9=;;
ð66Þ

which is similarly a cylinder in F�\X with axis in the x3 direction

and base obtained by slicing a translate of 1
2M3ðBRÞ. Note that
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equations (63)/(64) and (65)/(66) can be obtained from

equations (58)/(60) by cyclic permutations of the formulas for

the coordinates.

7.1. Example with P212121 symmetry

Here we illustrate protein packing in a P212121 crystal. In

each unit cell of a biomolecular crystal with P212121 symmetry,

there are four asymmetric units, each corresponding to a

symmetry mate. Fig. 13 shows symmetry mates for the PDB

entry 1lfg (Haridas et al., 1995) and their moment-of-inertia

ellipsoids in a unit cell.

Fig. 14 shows the Minkowski-sum slice SR given by equation

(62) for the PDB entry 1lfg (and k1 ¼ �1; k2 ¼ k3 ¼ 0), with

the dotted line delineating the slice Se
R obtained by replacing

the protein body B by its moment-of-inertia ellipsoid in

equation (62). The outer and inner lines delineate the slices

obtained by scaling the moment-of-inertia ellipsoid by factors

of 1.25 and 0.75, respectively. The area occupied by the

Minkowski-sum slice SR outside of the slice Se
R is 6.12% of the

area of the Se
R. And 92.66% of the area of SR is contained in

Se
R.

7.2. Determining the collision-causing symmetry sets

In this section we apply equations (57), (60), (64) and (66)

to improve the upper estimate [equation (24)] for the

collision-causing symmetry sets �ðg � E2Þ.
Suppose that we have ellipsoids E1, E2 with E1 � B � E2.

We order the unit-cell dimensions so that a1 � a2 � a3, and we

let

�i ¼ rE2
=aj; for j ¼ 1; 2; 3:

We write ki ¼ ðki1; ki2; ki3Þ 2 Z
3, for 0 � i � 3. First, suppose

that 
k0 2 �ðg � E2Þ. Then by equation (57) with B replaced by

E2 [and noting that 
0 ¼ e 62 �ðg � E2Þ by definition], we have

0<
P

k20ja
2
j � 4r2E2

:

Therefore

��2
1 k201 þ ��2

2 k202 þ ��2
3 k203 � 4: ð67Þ

Next, let 
k1�1 2 �ðg � E2Þ. Then by equation (60) with B

replaced by E2,

jk11 þ 1
2 ja1

jk12 þ 1
2 ja2

jk13ja3

264
375

2 yþ z 2 R
3 : jyj � 2rE2

; z1 ¼ 0; jz2j �
a2
2
; jz3j �

a3
2

n o
;

which consists of points of distance less than 2rE2
from the

rectangle f0g � � a2
2 ;

a2
2

� 	� � a3
2 ;

a3
2

� 	
. Therefore,

��2
1 ðk11 þ 1

2Þ2 þ ��2
2 ðjk12 þ 1

2 j � 1
2Þ2 þ ��2

3 ½ðjk13j � 1
2Þþ
2 � 4;

ð68Þ
where we use the notation aþ ¼ maxð0; aÞ.

Similarly, if 
k2�2 2 �ðg � E2Þ, then by equation (64)

jk21ja1
jk22 þ 1

2 ja2
jk23 þ 1

2 ja3

264
375

2 yþ z 2 R
3 : jyj � 2rE2

; jz1j � a1; z2 ¼ 0; jz3j �
a3
2

n o
;

and therefore

��2
1 ½ðjk21j � 1Þþ
2 þ ��2

2 ðk22 þ 1
2Þ2 þ ��2

3 ðjk23 þ 1
2 j � 1

2Þ2 � 4:

ð69Þ
If 
k3�3 2 �ðg � E2Þ, then by equation (66)

��2
1 ½ðjk31 þ 1

2 j � 1Þþ
2 þ ��2
2 ½ðjk32j � 1

2Þþ
2
þ ��2

3 ðk33 þ 1
2Þ2 � 4: ð70Þ

In the P1 case discussed in Section 5, we observed that one

only needs to check which symmetries ðI; tÞ 2 � with jtj � 2rE2

cause symmetry mates of g � E2 to collide, since collisions

cannot occur if jtj> 2rE2
. We now give a description of the

symmetries that we need to evaluate for collisions in the

P212121 case. Let �
	ð�1; �2; �3Þ denote the set of symmetries

ki�i 2 � satisfying equations (67)–(70), so that �ðg � E2Þ �
�	ð�1; �2; �3Þ. We then let e��ð�1; �2; �3Þ be a set consisting of

one element from each pair f�; ��1g in �	ð�1; �2; �3Þ, so that

�ðg � E2Þ � e��ð�1; �2; �3Þ [ e��ð�1; �2; �3Þ�1: ð71Þ
Thus, to determine whether a motion g 2 F�\G satisfies

equation (18), it is sufficient to check which symmetries
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Figure 13
Symmetry mates for 1lfg and their moment-of-inertia ellipsoids in one
unit cell.

Figure 14
A slice of the Minkowski sum for the PDB entry 1lfg.
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� 2 e��ð�1; �2; �3Þ cause collisions of g � E2 and which cause

collisions of g � E1.

From an analysis of over 7000 protein molecules in the PDB

that crystallize with P212121 symmetry (with four copies in

each unit cell), we observed that over 96% of these molecules

have circumradius

rB < minf1:2a1; 0:9a2; 0:6a3g: ð72Þ

For these molecules satisfying equation (72), one needs only to

consider symmetries in the finite set e��ð1:2; 0:9; 0:6Þ in order to
determine which symmetries � 2 � are in �ðg � E1Þ and

�ðg � E2Þ in equation (18).

We now list the elements of e��ð1:2; 0:9; 0:6Þ. Let us write

e��ð1:2; 0:9; 0:6Þ ¼
[3
i¼0

f
ki�i : ki 2 Aig;

where Ai 2 Z
3 for 0� i� 3. Substituting �1 = 1.2, �2 = 0.9, �3 =

0.6 in equations (67)–(70), we find that

A0 ¼ fð0; 0; 1Þ; ð0; 1; 0Þ; ð1;�1; 0Þ; ð1; 0;�1Þ; ð1; 0; 0Þ;
ð1; 0; 1Þ; ð1; 1; 0Þ; ð2; 0; 0Þg:

The points of A1;A2;A3 are given in Figs. 15, 16 and 17,

respectively. Altogether, e��ð1:2; 0:9; 0:6Þ contains 92 elements

(the sum of the cardinalities of the sets A0;A1;A2;A3) of the

crystallographic group, although for proteins with a bound on

the circumradius that is sharper than equation (72), the

number could be smaller.

We now construct a reduced search space F0 of Theorem 4.1

for the group � of type P212121 and a centered ellipsoidal

body B with axes aligned with the unit-cell directions: we

recall that the symmetry group of B is the group K [ ð�IÞK of

order 8 given in equation (38); the normalizer �̂�<Eð3Þ of � is

the symmorphic group of type Pmmm with lattice L̂L generated

by fða12 ; 0; 0Þ; ð0; a22 ; 0Þ; ð0; 0; a32 Þg [see Hirshfeld (1968), Koch et

al. (2002) or the Bilbao server (Aroyo et al., 2006)]. Then

�̂� \G is of type P222 with lattice L̂L. We now choose the

reduced search space

F0 ¼: FSOð3Þ=K � Fþ
ð�̂�\GÞ\X ;

where

Fþ
ð�̂�\GÞ\X ¼: ðx1; x2; x3Þ 2 R

3 : 0 � xi <
ai
4
; 1 � i � 3

n o
;

FSOð3Þ=K ¼: R 2 SOð3Þ : R11 � 0;R21 � 0
� �

:

We note that volðF0Þ ¼ 1
64 volðSOð3Þ � F�\XÞ, where F�\X is

given by equation (56), consistent with Theorem 4.1.

8. Conclusions

In this paper we derive conditions for reducing the volume of a

full rotational–translational MR search with strong cost

function by using two opposing constraints: (i) symmetrically

arranged macromolecules in a crystal cannot interpenetrate

each other; and (ii) macromolecules in a crystal must contact a

sufficient number of neighbors to form a physical crystal.

These concepts are formalized mathematically and demon-

strated using ellipsoidal models. It is observed that the

Minkowski sum of proteins generally is more similar to the

Minkowski sum of ellipsoidal proxies of proteins than the

similarity of the protein and proxy. Since it is the Minkowski

sum of symmetry mates that enters our formulation rather

than the detailed shape properties of individual molecules, the

use of ellipsoidal proxies is justified. Consequently, the frac-

tion of volume of the motion space F�\G that actually needs to

be searched in a MR problem can be extremely small.

Moreover, it is plausible (particularly for proteins that are

very prolate) that large regions in rotation space will not have

any feasible translations based on our packing formalism,

further reducing the computational effort. Additional effi-

ciencies can be gained using symmetry properties of ellipsoids

and of the crystallographic group itself. Future algorithmic

work that builds on the mathematical foundations presented
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Figure 15
Points of A1.

Figure 16
Points of A2.

Figure 17
Points of A3.
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in this series of papers will focus on explicit computer codes

for use by the macromolecular crystallography community.
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