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This paper mathematically characterizes the tiny feasible regions within the vast
6D rotation—translation space in a full molecular replacement (MR) search. The
capability to a priori isolate such regions is potentially important for enhancing
robustness and efficiency in computational phasing in macromolecular crystal-
lography (MX). The previous four papers in this series have concentrated on the
properties of the full configuration space of rigid bodies that move relative to
each other with crystallographic symmetry constraints. In particular, it was
shown that the configuration space of interest in this problem is the right-coset
space I'\G, where T' is the space group of the chiral macromolecular crystal and
G is the group of rigid-body motions, and that fundamental domains Fs can be
realized in many ways that have interesting algebraic and geometric properties.
The cost function in MR methods can be viewed as a function on these
fundamental domains. This, the fifth and final paper in this series, articulates the
constraints that bodies packed with crystallographic symmetry must obey. It is
shown that these constraints define a thin feasible set inside a motion space and
that they fall into two categories: (i) the bodies must not interpenetrate, thereby
excluding so-called ‘collision zones’ from consideration in MR searches; (ii) the
bodies must be in contact with a sufficient number of neighbors so as to form a
rigid network leading to a physically realizable crystal. In this paper, these
constraints are applied using ellipsoidal proxies for proteins to bound the
feasible regions. It is shown that the volume of these feasible regions is small
relative to the total volume of the motion space, which justifies the use of
ellipsoids as proxies for complex proteins in MR searches, and this is
demonstrated with P1 (the simplest space group) and with P2,2,2; (the most
common space group in MX).

1. Introduction and brief review of molecular
replacement

Molecular replacement (MR) is an important computational
method for addressing the phase problem in macromolecular
crystallography. The method originated in the early 1960s
(Rossmann & Blow, 1962), and has been refined over the years
with many successful software packages including AMORE
(Navaza, 1994), Phaser (McCoy et al., 2007) etc. For a more
complete review of the history of MR see Rossmann (2001).
In these methods the search for the correct orientation
and position of a candidate molecular shape is separated into
a rotation search followed by a translation search. This
separation works when one molecule at a time is placed in the
crystallographic unit cell.

The previous papers in this series developed the concept of
a motion space as the coupled 6D translation—rotation search
space in MR by simultaneously placing one copy of a molecule
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per asymmetric unit (Chirikjian, 2011; Chirikjian & Yan, 2012;
Chirikjian, Sajjadi et al., 2015; Chirikjian et al., 2017). The
present paper is the final one in this series, and studies the
spaces of motions relevant for MR searches. These so-called
‘motion spaces’ can be viewed as regions (or fundamental
domains) in the group G = SE(3) of rigid-body motions, or as
the orbit space corresponding to the left action of a Sohncke
space group I' on G. This fundamental domain contains one
point drawn from each right coset I'g, where I is the space
group of the macromolecular crystal and g € G. From the
perspective of an MR search, the closed fundamental domain,
denoted here as Fp;, therefore is equivalent (up to an
inconsequential set of measure zero resulting from taking the
closure) to the right-coset space I'\G. In some contexts it is
useful to think of Fp; (rather than I'\G) as the motion space.

Previous papers in this series have characterized the alge-
braic (Chirikjian, 2011), geometric (Chirikjian & Yan, 2012)
and measure-theoretic (Chirikjian et al., 2017) properties of
these spaces. These properties are related to the underlying
structure of the crystallographic symmetry group in which the
macromolecule of interest crystallizes. As such, new ways to
characterize and decompose space groups have been under-
taken in relation to this work (Chirikjian, Ratnayake et al.,
2015). Also relevant to the present discussion is the observa-
tion that macromolecular crystals predominantly prefer
Bieberbach (torsion-free) space groups (Chirikjian, Sajjadi et
al., 2015), with almost one quarter of all protein crystals
having P2,2,2, symmetry. Other papers not in the series also
shed light on the problems addressed here, including Chir-
ikjian & Shiffman (2016) and Chirikjian (2015).

This paper makes the following contributions:

(i) The portion of the joint rotation-translation search
space that results in collision when placing arbitrary bodies
with crystallographic symmetry is characterized mathemati-
cally, building on our previous work in Chirikjian & Shiffman
(2016).

(ii) The condition that a macromolecular crystal is a solid
object is formulated in terms of semigroup generators, and is
used to further reduce the size of the feasible search space in
which collisions are avoided.

(iii) It is observed that the critical factor is not the exact
shape of the body (or macromolecule) B itself, but rather the
Minkowski sums [see equation (27)] of B with its reflected
rotated versions —R - B, R € SO(3). And these Minkowski
sums can be approximated using the Minkowski sums of
equivalent-moment-of-inertia ellipsoids derived from the
original body.

(iv) It is shown that, when taken in combination, the above
factors lead to small feasible regions in rotation—translation
space where computational resources can be focused. Using
ellipsoidal proxies approximating the bodies, one obtains
descriptions of the approximate feasible regions in terms of
Minkowski sums of ellipsoids, which are easily parameterized,
thereby making high-dimensional searches more tractable.

(v) Because of roto-reflection symmetries of ellipsoids and
of the Laue groups of the diffraction patterns, only a fraction
of the feasible regions need to be explored.

(vi) Examples are provided to demonstrate this theory in
the planar case with ellipses in p2 symmetry and in 3D with
triaxial ellipsoids in the case of P2,2,2, symmetry.

The discussion in this paper concerns only the case
where there is one protein molecule per asymmetric unit in
the crystal. However, the general approach used here can
be applied to the articulated case and multi-protein-per-
asymmetric-unit case, where the dimension of the motion
space is higher, but the percentage of feasible motions is much
smaller.

1.1. Mathematics review

Let I' < G=SE(3) denote the orientation-preserving (or
Sohncke) space group of a macromolecular crystal, and let
T <« T denote the translational symmetry group of the finest
translational lattice L. The group G of continuous rigid-body
motions consists of rotation—translation pairs of the form
g = (R,t) € SOB)xR’* = G acting on points x € X =R> by
g-X = Rx +t, and with the group law"

218 = (R, t))(R,, t,) = (R R,, Rit, + t)).

The translation group 7 of the primitive lattice, L, acts on
Euclidean space X without fixed points, and the resulting orbit
space T\X is the 3-torus. The realizations of the crystal-
lographic unit cell and asymmetric units are the fundamental
domains Fjpy and Fpy, respectively. Previous papers in this
series examined the relationships between Fr;, Fpy and Fpy.

The configuration space of all possible ways to place a rigid
body with symmetry I is the right-coset space I'\G. Within this
context, the main goal of MR can be stated as the search for
the rigid-body motion g € F; C G that places a model of a
macromolecular structure in the asymmetric unit at the same
position and orientation as the true molecule in the crystal.
The search for these placements is based on information
obtained directly from the diffraction pattern.

If f(x) is the density of an individual macromolecule, then
the density p(x; g) in the crystal with the molecule placed at its
true position and orientation g is given by

p(x;8) =Y f((ve) ™" %) 1

yel
where
y-x=Rx+t, +Vv(R,).

Here R, € SO(3) is an element of the concrete point group P
of I', and t, € L. [whereas (I, t,) € T]. For symmorphic space
groups the function v:[P — F,, can always be set to
v(R,) = 0 for all R, € P by an appropriate choice of origin,
whereas for nonsymmorphic space groups v(R,) # 0 for at
least one R, € P no matter how the origin is chosen. Using the
terminology from Chirikjian, Ratnayake et al. (2015), T\I" is
the abstract point group of a space group I', and a non-unique
finite set of representatives of this quotient group can be
constructed as

! We use the symbol = to denote a definition. In previous papers in this series,
the product g, g, was denoted as g; o g,.
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Fnr={(R,.v(R))IR, € P}.
Then p(x; g) can be expressed as a Fourier series of the form

o(x;8) = Y pk; g)exp(2mik - x)
kel*

where IL* is the reciprocal (or dual) lattice of I and the Fourier
coefficients of p are of the form

plig)= [ 3 fl(re)" -x)exp(-2mik -x)dx.  (2)
X yeFpr
Since f(x) takes values of zero outside the macromolecule, it is
compactly supported and so the integrand in the above inte-
gral only has contributions from a bounded domain. This
domain may not fit in the standard unit cell, but there is a
choice of unit cell which contains it.
The diffraction pattern consists of intensities of the form

1(k; g) = 15(k; g)I” = P(k; g),
where P(x; g) is the Patterson correlation function given by

P(x; g) = Ff o(y: g)p(y + x; g) dy

=Y [f((ve " -y+RIRIX)p(y; 9 dy. (3)

veFnr X
It follows that
P(£R,x; g) = P(x; g) VR, € . 4)

Let P* denote the group of rotational symmetries of the
reciprocal lattice, consisting of elements of the form Rj.
Then I(k, g) = P(k; g) is invariant under the Laue group
P* U (—DP* < O(3); i.e.

I(£R}k; g) = I(k; 8) VR, € P*.
We shall use this Laue class symmetry to reduce the size of the
search space in Section 4.2.

A ‘strong” MR cost function for determining correct
placements is of the form

Cost (g) = Z }Imodel(k; g) - Iactual(k; gactual)
kel*

2
)

®)

wherein the model diffraction intensity mimics the actual one.
The computational drawback of this in comparison with
classical MR is that it requires a search over the 6D space
Fr. For this reason, in classical MR, a ‘weaker’ cost function
is used in which I ,.,(k; g) in equation (5) is replaced by

|f‘modcl(k; g)lzs where
fmodel(k; g) = jf(g_l ' X) EXP(—ZJle . X) dx
X

= exp(—27ik - t) [ f(R"x) exp(—2nik - x)dx,  (6)

where g=(R,t). The reason for doing so is that
| exp(—2mik - t)] = 1 and hence the resulting cost function is
independent of t and depends only on R € SO(3). This is not
the case for equation (5). Hence, in the classical MR method, a
pure rotation search is conducted first, followed by a trans-
lational search. This separation of the dimensions leads to

reduced computational burden, but the search has less speci-
ficity than when using the stronger cost function.

However, in our method, the cost function (5) will have a
value of zero when an exact proxy for the unknown molecule
is placed at the correct position and orientation, and it would
be reasonable to expect that small changes in the shape of the
proxy would not lead to radically different values of the
optimal pose. In contrast, it is well known that when using
classical MR, even when using a good proxy, the highest peak
in the rotation function may not be the one to use, and
sometimes many peaks (on the order of 100 or more) may
need to be investigated. This is because the rotation function is
designed to examine the correlation between the diffraction
pattern of a single proxy molecule (in a unit cell) against the
actual diffraction pattern. The latter has built in it the ‘cross
talk’ between symmetry mates, which are often thought of as
‘noise’ in the context of classical MR. That is, unlike in our
cost function, global optimality of the rotation function need
not correspond to the correct rotation. And if the correct
rotation is not obtained in the first stage of a classical MR
search, then there is no way to obtain the correct translation in
the second stage.

Building on developments in previous papers in this series,
this paper provides the mathematical underpinnings for effi-
cient searches in the joint rotational-translational space. The
key features that make our approach efficient rely on two
observations: (i) large parts of the search space are infeasible
because they correspond to symmetry mates being placed in
collision; (ii) since a crystal is a solid physical object, symmetry
mates must be in contact in such a way that there are no
isolated islands. With these constraints, MR searches in prin-
ciple could be limited to boundaries of collision zones, thereby
reducing the dimensionality of the search. But in practice
these boundaries are difficult to parameterize exactly due to
the complicated geometry of proteins. Instead we apply these
constraints using ellipsoidal proxies for proteins to bound the
feasible regions, and we see that the volume of these feasible
regions can be quite small relative to the total volume of the
motion space. Constraint (i) has been previously addressed by
the authors in the case of planar motions of circular bodies
and chiral wallpaper group symmetry (Chirikjian & Shiffman,
2016), and the theory is extended here to general shapes and
3D space groups. Constraint (ii) is related to topological
crystallography, the literature of which is reviewed below.

1.2. Literature review

The literature on packing bodies subject to crystallographic
symmetry is immense. At one extreme of this literature lie
works on tilings with wallpaper symmetry in the plane or with
crystallographic symmetry in 3D (Griinbaum & Shephard,
1987). Closed tiles that fill space under the action of a crys-
tallographic group can all be viewed as realizations of the
fundamental domain Fpy, i.e. the closure of the crystal-
lographic asymmetric unit. At another extreme lie ‘crystal
nets’ of sparsely separated points (Wells, 1977). In the middle
lies the study of dense sphere packings (which in the 3D case
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has been studied at least from the time of Kepler, and in
higher dimensions has important implications for coding
theory) (Conway & Sloane, 1999; Thompson, 1983). Dense
irregular packings have also been studied extensively in recent
years. A much smaller literature exists on packing ellipses and
ellipsoids subject to symmetry constraints (Matsumoto &
Nowacki, 1966; Matsumoto, 1968).

A less-studied area is that of packing irregular bodies (such
as biological macromolecules) subject to crystallographic
symmetry constraints. Such works are usually motivated by
the chemical physics behind these macromolecular inter-
actions (Kitaigorodskii, 1973; Brock & Dunitz, 1994; Dunitz,
1996). However, our motivation in studying packing
constraints in the context of MR is somewhat different
because the exact structure of the macromolecules under
consideration is not known a priori. Rather, we have only an
estimate of the shape obtained from a homolog, and seek to
limit searches in MR using both the fact that collisions
between symmetry mates must not occur and surface contacts
between them must occur.

Works in the area of so-called ‘topological crystallography’
include Johnson et al. (1996), Thimm (2009), Peresypkina &
Blatov (2000), O’Keeffe (1995), Sunada (2013), and provide
some tools that are useful for our problem. Namely, quotient
graph structures convert the discussion of a given infinite
graph (or net) of vertices with crystallographic symmetry to
that of a finite graph structure in the space of orbits of vertices.
In recent work, Eon (2016a,b) used quotient graph method-
ologies to study crystallographic topology. Such works
presuppose a given graph. In our work, the graph is not known
a priori and we express all possible graphs as an enumeration
problem using the language of semigroup generators.

2. The feasible space

We first give a general description of the feasible space for a
crystal formed by a body B and its symmetry mates under a
chiral (or Sohncke) space group I'<SE(3) [and, more
generally, an orientation-preserving crystallographic group
I' <SE(n)].

We shall state our main results in arbitrary dimension #,
which allows us to illustrate some of our concepts in
dimension 2. So we now let X=R" and G=SE(n) =
SO(n)x X. To simplify notation, we make the identification
SO(n) = SO(n) x {0} <G.

By a body B we mean a bounded, connected, open subset of
X, which in the case n = 3 can represent one of the molecules
forming a crystal. We denote the closure of B by B, which we
call a closed body, and we let

C=g-B

denote the closed body as it is placed in the crystal by a motion
g € G. We say that the conglomeration of closed bodies®

r-c= Uy.C:Uyg.E

yel yel

2 We write (yg) - B as yg - B, and correspondingly for similar expressions.

is connected if every symmetry mate y - C is connected to C by
a finite chain of symmetry mates; i.e. there is a sequence
Yo=¢6€VYVs---» Ve =y of elements of I, such that
Vo1 cn Y C#@forl<j< k3 A necessary condition for
a body g - B and its ['-symmetry mates to form a crystal is that
g - B does not intersect any of its symmetry mates yg - B and
that I' - C is connected. The first condition guarantees that
there are no steric clashes between the bodies, since if
& -BNy,g-B+# 0, theng- BNy ly,g- B # (. The second
condition is necessary for the crystal to be solid, since other-
wise one chain of symmetry mates would be free to move
relative to the others.

We fix a fundamental domain F, for I''G and we let
A(T", B) C Fp; denote the set of motions g € F; such that
the sets {yg- B : y € I'} are pairwise disjoint and the closure
of their union, I" - C, is connected. We call A(T", B) the feasible
space for B. When g € A(T, B), the bodies yg- B (for all
y € I') form a solid crystal without steric clashes. As discussed
in Section 1, the MR method involves the evaluation of a cost
function for each candidate pose g - B of the body B. One way
to make this search efficient is to restrict the search to a small
region in the search space F|,,; containing the feasible space
A(T, B). If g € A(T, B), then each symmetry mate yg - B of
the closed body g - B is either disjoint from g - B or has only
boundary points in common with g - B. When the intersection
of two closed bodies B,, B, contains only common boundary
points of the bodies and is non-empty, then we say that B; and
B, kiss. Thus the feasible space consists of those g € A(T", B)
such that the sets yg - B are pairwise disjoint and enough of
them kiss g- B to form a crystal. The precise mathematical
description of A(T", B) is given by equation (12) below [and
equivalently by equations (13) or (14)] and is based on an
algebraic criterion for a macromolecular crystal to be solid
(Lemma 2.1).

For a subset Y C X, we write

Z(y.Y)={g e Frg:(g-Y)N(yg-Y) # 0}
={g€ Frg: YN (g 'vg-Y) # 0}, )

for y € I'\{e}. We note that Z(y~!,Y) = Z(y, Y) since g- Y
collides with yg - Y if and only if y~'g - Y collides with g - Y.
In the case where Y is the open body B, then Z(y, B) is the
space consisting of motions g which cause g - B to intersect its
symmetry mate yg - B and is called a collision zone.

Our first condition on the feasible space of a body B states
that we need to avoid those motions g € G = SE(n) which
cause symmetry mates {yg-B:y €I} to intersect. In a
previous paper (Chirikjian & Shiffman, 2016), we described
the space of motions where g - B intersects at least one of its
symmetry mates. This space is the collision space S(T', B) given
by

3 Since C is a compact connected set and I' is a properly discontinuous action
on R”, this condition is equivalent to connectedness of I" - C in the topological
sense. See Section 3.1 of Chirikjian et al. (2017) for a review of properly
discontinuous actions.
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sr.B)= | J z(.B)

yel\{e}

= {geFr\ci [Bﬁ U (g‘lyg-B)} #(/5}- (®)

vel\{e}
We then have our first outer estimate for the feasible region:
A(T, B) C Frg\S(T', B)

= ﬂ {g€Frg:BNg 'yg- B=10}. ©)
yel\{e}

The MR search can be limited to the region given by the right-
hand side of equation (9), as was discussed by Chirikjian &
Shiffman (2016). However, the search can be limited to a
much smaller region by applying our second condition, which
we shall describe more precisely. To do this, we begin with
some mathematical preliminaries.

We recall that a semigroup is a set closed under a binary
associative operation. We say that a subset A of a semigroup
IT generates the semigroup Il if every element of I is a finite
product of elements of A. Every group is a semigroup and, in
particular, I' is a semigroup as well as a group. For example, if
I’ <SE(3) is a space group of type P1 and y,, y,, y; € I are
translations such that y;(0), 3,(0), ¥5(0) generate the lattice in
R®, then {y;,y,,y;} generates the group I', but does not
generate the semigroup I. Instead {y;, ¥5, ¥5. ¥i''» ¥5 5 V3 1}
generates the semigroup I'. In general, if A generates the
group I, then A U A~! generates the semigroup I'.

Lemma 2.1. Let C be a bounded connected closed subset of
X, and let A be the set of y € I" such that CN y - C # @. Then
['- C= {J,er v - Cis connected if and only if A generates the
semigroup I'.

Proof. Suppose that I' - C is connected, and let S € I be
arbitrary. Then there exists a finite sequence y, = e, ¥, ...,
Viers Ve = BinTsuch that y,_; - CNy; - C# P, for 1 <j <k
Therefore CN A, - C # @ where A; = yj‘_llyj and hence %; € A
forl <j<k,and B =A,...A;. Since B € I'is arbitrary, Aisa
set of semigroup generators of I

Conversely, suppose that A generates the semigroup I', and
let B €' be arbitrary. Then 8 =A,...2, with the A; € A.
ThenCNA - CH#B, A -CNAA-C=x, - (CNA,-C)#Y,
and it follows by induction that

Mok -CNAL A -C#D, for j=1,... k

Figure 1
One ellipse kissing five neighbors with p2 symmetry.

Table 1

Values of A; in Example 1.
M Ay A3 Ay As
1R R Y (Y AR 2Y I 2%

Therefore, C is connectedto f- C = A, ... A, - C by a chain of
symmetry mates. ml

In a molecular crystal, the number of symmetry mates
yg - B Kkissing g-B is called the molecular coordination
number, or ligancy (Peresypkina & Blatov, 2000). Since the
molecular coordination number of a crystal composed of
symmetry mates of a molecule B with position g- B is the
cardinality of the set of y € T'\{e} such thatg - BN yg- B # @,
we obtain the following consequence of Lemma 2.1:

Theorem 2.2. The molecular coordination number in a
crystal is equal to or greater than the minimum number of
semigroup generators of I

In the following, two examples are shown to illustrate
Theorem 2.2 in dimension 2. In both of the examples, I' is in
the class p2, which is made up of both translations and 180°
rotations. (The 180° rotation is referred to as a half-turn.) The
unit cell is a parallelogram.

In our first example illustrated in Fig. 1, each body is kissing
exactly five of its neighbors, so its 2D molecular coordination
number is 5. The figure shows four unit cells outlined by
dotted lines, and the origin is indicated by a dot. As before, we
let C =g - B denote the reference body; C is indicated in the
figures below as bounded by a red ellipse, and its symmetry
mates are blue.

We denote the translation along the horizontal axis of the
lattice as y; and the translation along the other axis as y,.
The 180° rotation about the origin is described as y;. The
five symmetry mates kissing C can be expressed by A;-C
(=1,...,5), where the values of the A, are given in Table 1
and appear inside the corresponding ellipses in the figure.

We note that the set A ={X\,, X,, A5, A4, A5} generates the
semigroup I' as Lemma 2.1 tells us, but it is not a minimal
generating set since, for example, {A, A,, A,} is a (minimal)
generating set (A; = A A A Ay, As = A,A4,).

In our second example with molecular coordination number
3, each elliptical body kisses exactly three of its neighboring
symmetry mates, as we can see in Fig. 2.

The three symmetry mates kissing C in Fig. 2 can be
expressed by A, - C, A, - C, A5 - C, where the X]- are given in
Table 2.

Here, {A,, A,, A5} is a minimal generating set for the semi-
group I'. Since no set of two elements can generate I, the
minimal molecular coordination number for 2D crystals with
p2 symmetry is 3.

We now give some mathematical descriptions of the feasible
space A(T, B). First, we define the ‘collision-causing symme-
tries” A(Y) C I" associated with a set Y C X given by
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Figure 2
One ellipse kissing three neighbors with p2 symmetry.

AY)={yeTlfe}: YNy Y #0}, (10)
so that
yeAlg Y)<= geZy,Y). (11)

We note that y € A(Y) if and only if y~! € A(Y), since the
condition that Y intersects y - Y is equivalent to the condition
that y~! - Y intersects Y. The following algebraic description
of the feasible space is a consequence of Lemma 2.1.

Theorem 2.3. Let I < G be a crystallographic group, and let
B be a bounded connected open set in X. Then

A, B) = {g € Fr : A(g- B) =0, A(g- B) generates T'}
={g € Frg:Al(g-B) =0, A(g-9B) generates I'}.
(12)

Proof. Since A(Y) = A(Y)™' for any set Y,A(g-B)
generates the group I' if and only if it generates the semigroup
I". Equation (12) then follows from Lemma 2.1 with C=g - B
and from the fact that A(g - B) = A(g - 9B). O

Equation (12) says that a motion g € Fp.; is in the feasible
space A(T, B) if and only if g & S([, B) and there exist
Yis .-, ¥, generating I' such that g‘lyig - OB intersects 0B for
1<j=<m

Let M denote the collection of minimal generating subsets
of the group I'; i.e. a generating subset A is in M if it does not
properly contain another subset that generates the group I
Using equation (11), we have an equivalent formulation of
equation (12) in terms of intersections and unions of collision
sets:

Ar, B = | [ﬂzo/, B):|\ U zo.B. 13

AeM | yeA vel\{e}

Equivalently,

Table 2
Values of A; in Example 2.
A A A3
73 Y30 Ys

A, B) = U[ﬂ Z(y. aB)}\ U z.». 4

AeM | yeA yel\ {e}

3. Use of ellipsoidal models of proteins

A protein consists of many atoms which are bonded together
and can be modeled as an articulated multi-rigid-body. Here
we consider the simplest model of a single rigid-body protein.
Packing of proteins indicates that the position and orientation
of each protein, in a specific lattice under certain symmetry,
are fixed. This results in the constraint [equation (12)] that the
surface of each protein should be in contact with (or ‘kiss’)
certain of its neighbors. Since proteins have irregular shapes,
either checking or setting kissing constraints between each
pair of proteins is considerably difficult. A reasonable method
is to use an envelope with regular shape to approximate and
replace the protein for further calculation.

The use of ellipsoidal models of proteins has a long history.
Richards (1977), Lesk & Rose (1981), Zehfus et al. (1985),
Thornton et al. (1986), Prabhakaran & Ponnuswamy (1982) all
used equivalent inertia ellipsoids to analyze the surface
properties of proteins. In works spanning decades, Taylor and
coworkers (Taylor et al., 1983, 2001; Taylor & Aszddi, 2005)
made arguments for the efficacy of ellipsoidal models in
various contexts in the study of globular proteins. Ellipsoidal
models have long been used to approximate the hydro-
dynamic effects in rotational diffusion experiments (Ryabov et
al., 2006). As such, it should be noted that when a homolog is
not available for use in MR, an ellipsoidal approximation
nevertheless may be obtained from the protein of interest
itself from anisotropy spectroscopy experiments. Ellipsoidal
models have also been used previously in the context of
crystallographic and other crowded environments (Miiller &
Schrauber, 1992; Qin & Zhou, 2013).

The novelty of our analysis lies in the observation that even
when an ellipsoidal model does not fit the protein so well, it is
nevertheless the case that the Minkowski sum of a protein
with rotated reflected copies of itself matches well with the
Minkowski sum of ellipsoids with equivalent moments of
inertia. We then utilize a recent finding that the boundary of
the Minkowski sum of two ellipsoidal bodies can be para-
meterized in closed form (Yan & Chirikjian, 2015).

By an ellipsoidal body we mean an open (solid) ellipsoid, i.e.
a set of the form

{xeR": x"Mx <1},

where M is a positive definite symmetric # X n matrix.

Now, let us suppose that we have inscribed and circum-
scribed ellipsoidal bodies E, € B C E,. Because ellipses/
ellipsoids are relatively simple compared with polygons/poly-
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hedra, they are widely applied in collision checking in robotics.
Ellipsoids can serve as the boundary for humanoids in motion
planning and are also used as the bounding volume for links in
serial manipulators. Those applications support ellipsoids as
good candidates for the bounding bodies E,, E,, as well as for
the replacement of a real protein in packing calculations.

Let E;, C B C E,. (Although our motivation involves the
use of ellipsoids, the bodies E;, E, can be arbitrary bounded
connected open sets in the following discussion.) We note that
S(T, E;) € S(T', B) when E; C B, since if a motion g causes
g+ E, to collide with yg - E;, then the larger region g - B will
collide with yg - B. Thus we have, by equation (9),

A(T, B) C Frg\S(T', B) C Fr\S(T', E,)

= () 20 E)S, (15)
relfe}
where
Z(y, E1)CiFr\G\Z(Vv E)={geFn;:E mgilyg - E, =0}
(16)

denotes the complement of Z(y, E;) in the fundamental
domain Fp.

Furthermore, for every feasible g, the closed body g - E,
must collide with at least one of its I'-symmetry mates. Thus
for bodies E; € B C E,, we also have

A, B) C
| (s€Frg:EiNg'yvg E, =0.E,Ng 'vg - E, #0).

vel\{e}

(17)

Hence the search can be restricted to the space given by the
right side of equation (17). A much smaller search space, as
illustrated in Fig. 4 below, is the space

I(T,E,E,)

= {g € Frg: Al(g- E)) =9, A(g - E,) generates F}. (18)

Note that Z(I', E,, E,) can be described in terms of inter-
sections and unions as

I(T, By, Ey) = U[ﬂzw,b})}\ U z0.E). 9

AeM | yeA yel\{e}

Thus, a motion g € Fn is in Z(I', E|, E,) if and only if
g € S(T', E,) and there exist y,, ..., ¥, generating I such that
¢ 'v;g - E, intersects E, for 1 <j < m.

It follows from equation (12) that

A, B)=Z(T, B, B) (20)
and
E,CBCE,= A(T,B)CI(T,EE,). (21)

We call Z(T', E,, E,) the informed search space for bodies
E, € B C E, since the resulting search is ‘informed’ by the
lack of collisions of symmetry mates of g- E, and required
collisions of symmetry mates of g-E, Furthermore, if
E, C B C E, is a tight encapsulation, then Z(T", E,, E,) will be

Figure 3
Configurations with p2 symmetry. (a) The orientation angle 6 = 0, (b) 6 =
7l6, (c) 0 = m/2, (d) 6 = 27/3.

a good approximation to the feasible space A(I", B) and thus
may provide an efficient search space for MR.

Figs. 3—4 illustrate the informed search space in 2D for the
case of p2 symmetry. Fig. 3 shows four configurations of a 2D
irregular body B (in red) with inscribed and circumscribed
concentric ellipses E;, E, together with their p2 symmetry
mates; only Fig. 3(a) is a configuration in the informed search
space Z(I', E,, E,).

The translational parts of the search spaces of equation (17)
for four rotations of the body (corresponding to the orienta-
tions in Fig. 3) are unions of concentric rings, each ring
representing one of the sets in the union in equation (17), as
illustrated in Fig. 4. The translational parts of the corre-
sponding informed search space Z(T', E,, E,) consist of the
points in Fig. 4 where three or more of the rings intersect;
these points represent motions g where g - E, intersects at
least three symmetry mates. (Recall that the minimal mol-
ecular coordination number for 2D crystals with p2 symmetry
is 3.) The regions consisting of these points are dark green in
the figure. Note that the informed search space in Fig. 4(c) is
empty. In Fig. 4(a), the points in the central part of the ‘X’
correspond to translations where E, intersects four of its
symmetry mates, as shown in Fig. 3(a). The circled black dots*
in Figs. 4(a)-4(d) correspond to the respective configurations

4 These dots are more visible when the figures are enlarged. The dot in Fig.
4(b) is slightly outside of the dark green region since inner ellipses in Fig. 3(b)
intersect.
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Figure 4
Search space for p2 symmetry: only the small green regions are in the
informed search space. (a) 0 = 0, (b) 0 = 7/6, (¢) 0 = 7/2, (d) 6 = 27/3.

in Figs. 3(a)-3(d). The symmetries in Fig. 4 enable a reduction
of the search space, as explained in Section 4.2.

Although I and M are infinite sets, one only needs to check
a finite number of conditions in equation (18) [or equivalently
in equation (13)] since a bounded body Y will not intersect
y - Y if the translational part of y is large. To quantify this
observation, for a bounded set D C X we let

rp =sup{|x| : x € D}. (22)

For a fundamental domain for I'\G of the form Fp, =
SO(n) x Fry, we have

sup{|g~x| :geFF\G,xeB} =rg+rg.,- (23)

By translating B, we can choose 7 to equal the circumradius
of B. Then Jung’s theorem tells us that r; < (2n'3rz)l/ ?diam(B); if
B = —B (e.g. if B is a centered ellipsoid), then ry = 1 diam(B).

Recall that

y=(@R,t,+v(R)) €T,

where t,, is an element of the maximal lattice L corresponding
to translations in I', and v(R,) is a fraction of an element of L.
Since

g-BNyg-B=g-BN((R,g-B+t,+Vv(R))#0
=t ,+v(R)eg-B+(-Rg-B),

it follows from equation (23) that

| Ag-B)c @(T.B)

and hence to determine which symmetries y € I' are in
A(g- E;) and A(g- E,) in equation (18), one needs only to
consider symmetries in the finite sets ®(T", E;) and ®(T, E,),
respectively. Correspondingly, by defining

M, B)={A € M: A < &, B)}, (25)

equation (13) can be written using only finite unions and
intersections as

I(T,E,E,)
- U |:m Z()/, Fz):| N |: ﬂ Z(V’ El)c:| ) (26)
AeM(T,Ey) |_yeA ye®(I',E)

where Z(y, E,)¢ denotes the complement of Z(y, E,) [as in
equation (16)].

Thus the informed search space Z(T', E,, E,) is given by a
finite number of conditions. In the case where E, and E, are
ellipsoids, it is given by a finite number of polynomial
inequalities;’ ie. it is the intersection of Fp with a semi-
algebraic variety in X. If E;, = B = E,, then equation (20)
implies that A(I", B) = Z(T", E,, E,) has zero volume in Fp;.
(This follows from the fact that, in a crystal, some symmetry
mates must kiss, which lowers the dimension of the search
space.) Thus if we can find good approximating ellipsoids, we
can restrict the search of motion space to regions of small
volume in F that are amenable to computation.

4. General description of the collision space

We now review the general formulas from Chirikjian &
Shiffman (2016) for the collision space S(I', B) and give
specific details involving cylinders over slices of Minkowski
sums in the 3D case.

We let P < SO(n) denote the ‘concrete’ point group corre-
sponding to I', and we let T < I" denote the maximal lattice
translation (normal) subgroup of I, i.e. the one for which the
index [I": T] is minimal. Then P = T\I" (the abstract point
group), and we let

Fpr={(R,,v(R)))IR, e P} CT.

We let L = T - 0 C X denote the lattice of rank n in X = R",
which we can identify with the translation subgroup 7. As
above, we consider fundamental domains for I'\G of the form
Frg =SO(n) x Frx. For descriptions of some other funda-
mental domains, see Chirikjian ez al. (2017). The formulas for
the collision space from Chirikjian & Shiffman (2016) involve
the Minkowski sum,

B+B ={x+y:xeB, yeB), 27)

of two bodies B, B’ € X. Fig. 5 gives two simple examples of
the Minkowski sum of two elliptical 2D bodies. Minkowski
sums of sample protein bodies are illustrated in Section 6.2.

8€FnG For a general body B, we write
={(R,,t,+Vv(R)) e\{e}:|t, +Vv(R)| <2(rp+r , —
{( v ( y)) Med - 14 ( y)| - ( B F‘"U‘)} 5 The condition that two ellipsoids intersect can be given by polynomial
(24) inequalities in the coefficients of the defining equations of the ellipsoids; see
Theorem 3.10 in Jia et al. (2011).
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Figure 5
Minkowski sums of elliptical bodies.

By=R-B={Rx:xeB}, for ReSOQ).

We also write —B=(—1I)- B, where I denotes the identity
matrix in SO(3), and thus —B; = (—R) - B. We recall from
Proposition 2.3 of Chirikjian & Shiffman (2016) that

Z(y, B) = {(R, 1) € SO(n) x Fry :
(I—R)te(R,-Bp)+(—Bp)+t,+v(R)}.  (28)
To describe the collision zones Z(y, B), we let Z,(y, B) denote

the set of translations t € Fp, for which (R, t) € Z(y, B) for a
fixed rotation R € SO(n):

Zp(y, B)={t € Fry : (R, t) € Z(y, B)}. (29)
Note that it follows from equation (28) that
ZR(V? B) = Z]I(y’ BR)’ (30)

and thus Zg(y, B) depends only on y and By.
In cases where y is a translation, i.e. when R, = I, we have

Z((L,t,), B)
={(R,t) € SO(n) x Fpy : 0 € By + (—Bg) + .}
={Re€SO(M):t, € R-[B+ (—B)]} x Fy, (31)

and thus

it t, € Bg+(—Bg)

it ¢Be+(—By) Y

Zp((L t,), B) = { g”

4.1. The collision space in 3D

We now restrict our discussion to our case of interest, n = 3.
As noted in equation (32) above, if R, =1, then Zy(y, B) is
either empty or all of Fpy, for each R € SO(3). We now
describe Zg(y, B) for symmetries y with R, # I. Suppose that
R, is the (counterclockwise) rotation about the unit vector

¥
n, = [ng,n,, n;]" € S? by the angle 6, € (0, ]. Then

0 —n; n
R,=exp(0,N,), N,=| ny 0 —n|. (33
—n, n 0

The skew-symmetric matrix N, satisfies N,a =mn, x a for all
acR’. The 3D case is fundamentally different from the
planar case studied by Chirikjian & Shiffman (2016), since in
the 3D case (I — R,) is never invertible.

To illustrate our approach, suppose that n, = e,. (In fact,
one can always choose coordinates so that this is the case.)
Then

1 0 0
Ry =10 cos Qy —sin Gy
0 sin Gy cos Gy

A key ingredient is the (translated) Minkowski sum from
equation (28):

M(y, Bg) =(R, - Bg) + (=Bp) +t,+v(R)).  (34)
By equations (28)—(29),
Zp(y.B)={x€ Fry : (I—R)x € M(y, Bp)}

0 0 0 X
= {x €Fny:]0 1—cosb, sin6, X,
0 —sinf, 1-—cos6,) X;
€ M(% BR)}
1 0 0 0
= {x €Fny:]0 1—cosb, sin 6, X,
0 —sinf, 1-—cos6,) X5
e M(y, BR)}. (35)

To give a geometric description of Zy(y, B), we let
I, ={xeX:x, =0} ={0) x R?

denote the x,x; plane in R*. Thus Z4(y, B) = D N Fpy, where
D is the cylinder in R with axis = n, = e; and with base®

1 0 0
0 1 —sinf,
2 =26, | - [M(y, Bp) N 1T, (36)
sin 6.
0 2—2cuZ€V %

We see from equation (34) that the base equation (36) of the
cylinder D is a planar slice of a Minkowski sum.

A coordinate-free approach to equations (35)—(36) is as
follows: let P, = nan denote the orthogonal projection to the
line generated by n,, and let IT, =ker P, denote the planar
subspace of R’ orthogonal to n,. Then Pji]l — P, is the
orthogonal projection to IT,.

Now suppose that x € Zg(y, B). Since (I — R,)P x =0, we
have

L
(I-R)x=I—-R,)P,x
=(P,+1—R)P,x € M(y,Bg)NTI,.
Hence,
Pixe(P,+1—R)™ -[M(y,By) NTL)], (37)

and P x is arbitrary. In fact, x € Zg(y, B) if and only if
X € Fry and equation (37) holds; i.e. Zg(y, B) = D, N Fr,
where D, is the cylinder with axis m, and base given by
equation (37). Note that equation (37) reduces to equation
(36) when n,, = e,.

¢ The first columns of the matrices in the last line of equation (35) and in
equation (36) are arbitrary; the choice [1 0 0]" is to simplify the inverse in
equation (36) of the matrix in equation (35).
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It then follows from equation (17) that the translational part
of the feasible space for a given rotation R is contained in a
finite union of cylindrical shells. Using equation (26), we can
write the translational part (for a rotation R) of the informed
search space Z(I', E,, E,) as a finite union of finite inter-
sections of cylinders.

4.2. Reducing the search space

When B C R is described well as an ellipsoid (centered
and aligned with the coordinate axes), we have the symmetries
B = k - B where k is any of the proper transformations taking
e X =x=(xg, X, x3) into k; - X = (x1, —X2, —X3), k, - X = (—xy,
X2, —x3), k5 - X = (—x1, —Xx3, x3), which compose the Klein-four
group,

K={e ki, ky, ki} =27, ®Z,.
Consequently, the collision zones have the symmetries
Z(y, B) = Z(y, k; - B) = Z(y, B)k;,

so the size of the search space F can be reduced by a factor
of four because of this effect alone; that is, the search space
can be reduced to Frg k-

The search space can be reduced further, even if B does not
have rotational symmetries (as is usually the case with
biomolecular structures). For example, if I is of type P1, then
the feasible space is invariant under translation as can be seen
from equation (31), and the intensity function, being the
squared magnitude of p, is also translation invariant. Thus in
the P1 case, the feasible space and intensity depend only on
the rotational part R € SO(3) of g = (R, t) € G, and hence the
search space is 3D, as is well known. Also, for a space group
with cyclic point group (i.e. all rotations and screw motions are
about the same unit vector n), which is the case for approxi-
mately 38% of all protein crystals [see Table 5 in Chirikjian,
Sajjadi et al. (2015)], the feasible space and intensity are
independent of translations along m, and hence the search
space is 5D in this case. Another way that the dimension of the
search space can be reduced is if B is axisymmetric. Combining
these two effects gives a 4D search space.

4.2.1. Reducing the search space using discrete symme-
tries. For any Sohncke space group I', we show in equation
(45) below that [for Fp; as in equation (39)]

YZ(y,By=Z(y,B) v =pyy ",

for all orientation-preserving y in the Euclidean normalizer r
of I', which leads to invariance of the search space under left
multiplication by I'NG. If the point group of I" is not cyclic,
then I' is a (not necessarily Sohncke) crystallographic group,
which is described by Hirshfeld (1968) and Koch et al. (2002)
and in the Bilbao server (Aroyo et al, 2006), and this
symmetry leads to a potential reduction in the size of the
search space by a factor of [f‘ N G : T']. If B is an ellipsoid, by
combining these two factors, one can thus reduce the search
space t0 Fpngy g k-

Moreover, an ellipsoidal body B has the additional reflec-
tion symmetries ¢, - X = (—x;, X, X3), ¢, - X = (X}, —X,, X3),

qs - X = (X1, X5, —X3), ¢4 -X=(—x;,—x,, —x3), and so the
symmetry group of B is the full orthorhombic point group

KU{q, 95,95, 9.} = KU (=)K < O(3) (38)

of order eight, assuming that the semiaxes of B are distinct.
(Though macromolecular structures are chiral and hence do
not have these reflection symmetries, if they can be bounded
by ellipsoids, then these reflection symmetries become
applicable to the bounding bodies.) If T" is not Sohncke, the
search space can then be reduced by an additional factor of
two due to symmetries of the form $Z(y, B)q; = Z(y/, B) for
orientation-reversing y € I.In fact, it is even possible for B to
have a symmetry group with more symmetry elements. For
example, B could be a hexagonal ring structure consisting of
additional dihedral symmetry operations. Or it might be a viral
capsid with icosahedral symmetry. Then the above reductions
occur with equation (38) replaced by the symmetry group of B.

For example, if I' is in the most common biomolecular
crystal class P2,2,2,, then [I" : I'] = 16 (see Section 7.2), which
results in a reduction by a factor of [f‘ NG:T'1=8. If in
addition the body B is ellipsoidal, then the combination of
these effects leads to a reduction in the size of the search space
by a factor of 64. The reason for the factor of 64 rather than
32 = |K|[' N G : T'] is the additional twofold symmetry of G
under conjugation by (-1, 0).

We state our reduction result for crystals of any dimension:

Theorem 4.1. Let ' <G = SE(n) be a crystallographic
group, and let B be a bounded connected open set in X = R".
Suppose there exist a finite group Q <O(n) and a crystal-
lographic group I'< E(n) such that

(i)g-B=B VqeQ;

(i) T «T. A

Let Fp; be a fundamental set for I'\I'. Then there exists a
set F* C G such that

Frg=|J{?F'a:9€ 0.7 € Fp. 99 G} (39)
is a fundamental domain for I'\G,

AT, B) = U{)?[FO NAT, B)]q :
q € 0.7 € Fnp, vq € G, (40)
and

vol(Frg) { IQIT:T], if ['<G,Q<SO(n)

vol(F?) — |LIQIIT:T], if T £G or Q £S0(n) (41)

where ‘vol’ denotes invariant volume in G.

Equation (40) tells us that to determine the points of the
feasible space A(T", B), one needs only to search F°. Thus by
equation (41), the volume of the motion space to be searched
to find the points of A(T", B) is reduced by a factor of
|Q|[f‘ : I'] if both Q and r preserve orientation, and by half
this factor otherwise.

We define F* in the proof below as a fundamental domain of
an action on E(n) [or as the component in SE(n) of the
fundamental domain]. These fundamental domains are easy to
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construct in 2D and 3D; an example for the case of a crys-
tallographic group of type P2,2,2, is given in Section 7.2. If
both O and I' contain orientation-reversing elements, then
allowing for these elements provides an additional reduction
by a factor of two, as can be seen from equation (41). [The
condition pyq € G in equations (39)—(40) is satisfied when
and g both preserve orientation or both reverse orientation.]

The symmetry of equation (40) in the case of a wallpaper
group I' < SE(2) of type p2 with a rectangular unit cell can be
seen in Fig. 4. Let L denote the (orthogonal) lattice of I'. One
can easily check that its normalizer [ is of type pmm with the
finer lattice 1 IL, and thus [f‘ : I'] = 8. Since the symmetry of an
ellipse is the dihedral group D, = K,

VOI(FF\SE(Z))/VOI(FO) = %|D2|[f :IT=16.

But the only left-right (7, ¢) actions on g = (R, t) € SE(2) that
leave R invariant are left actions by rn SE(2). Since
[f‘ NSE(2) : Il =[L: L] = 4, we obtain the fourfold trans-
lation symmetry in the unit cell visible in Fig. 4.

The proof of Theorem 4.1 makes use of the elementary
general lemma below. We recall that when a discrete group A
acts properly discontinuously on a manifold M such that the
fixed point set of each action g € A\ {e} has measure zero,® we
can find a fundamental domain whose images under the action
of the group cover M with overlaps of measure zero [see, for
example, Section 3.1 of Chirikjian ez al. (2017)].

Lemma 4.2. Let A be a discrete group acting properly
discontinuously on a manifold M with fixed point sets of
measure zero. Let A < A and let A = F, 4 be a fundamental
set for A\A. If F; Ay 1s a fundamental domain for A acting on
M, then the sets {aF,,,, : a € A} have pairwise intersections of
measure zero, and their union is a fundamental domain for A
acting on M.

Proof. Since each element € Ahasa unique decomposi-
tion as a product of § € A and a € A, we have

= Uit =Us(Uosn)

SeA seA  \aeA

where the above unions are pairwise disjoint outside a set of
measure zero. o

Proof of Theorem 4.1. We shall apply Lemma 4.2 with
M =E(n) and
A=Tx{I} «A=Tx0Q
acting on g € E(n) by

A

(V@) eg=vgq", pel,
(R, t), we have

q¢€Q.
Writing g =

7 Figs. 4(a) and 4(c) exhibit additional mirror symmetries (resulting in a 16-

7. @) e g=((Ry.1;),(q.0)) o (R, t) = (RyRq™", Ryt + t,).
(42)

It follows from equation (42) that the A action is properly
discontinuous with fixed point sets of measure 0. Hence we
can choose a fundamental domain Fj; Frgm = FF\E(n) /0 for A
acting on E(n). If Q «# SO(n) or r < G, we can choose
F; Mgy C G (since in this case every orbit intersects G) and we
let F = FA\E(n) On the other hand, if I' < G and 0 <SO(n),
we let F” = Fi,, N G so that Fip = FOU (=) F.

We choose a fundamental set for A\A of the form
Fprp x Q. Then, by Lemma 4.2,

Fragm = U{J;FA\E(n)q_l 2 (¥, q) € Frp X Q} (43)

Foa=

is a fundamental domain for A\E(n) (where the above union is
disjoint outside a set of measure zero). Then

Frg= Frgm N G= Fagm N G

is a fundamental domain for '\G and satisfies equation (39).
Since Fag(,y = Frg U (=D - Fr, we have

vol(Fr) = zVOI(F A\E(n))

By equation (43),

vol(F A\E(n)) A

oy = &1 A1=1F: IO (44)

Formula (41) follows from equation (44) since vol(F°) =
Ivol(F A i I<a, 0 <SO(n), and F°* = Fig( otherwise.
To complete the proof, we must verify equation (40). Let
yeTl,q €0 such that g € G. Since ¢-' -B=B and T is
normal in f‘,

geZ(y,B) < g-BNyg-B#Y

< ygqg ' -BNpyy 'PgqT B+
> ygq ' € Z(Y,B),y =yyp ' €T
Therefore,
VZ(y.B)g ' € Z(Y,B), y =pyytel. (45

It follows from equation (45) with B replaced by B that

PA(g By =Ag-B). §=@F.qeg (46
Let
:l(F, B) = {g € G: A(g- B) =0, A(g - B) generates F},
(47)
so that

AT, B) = AT, B) N Fry..

Since A(g - B) generates I' if and only if pA(g - B)y~! gener-
ates I, it follows from equations (18), (20) and (46) that
A(T, B) is invariant under the (y, g) action. Equation (40)
then follows from equation (39) and the invariance of A(T", B).

fold symmetry in the unit cell), since the ellipses are positioned in these figures O
to be invariant under the mirror reflections.

8 This is always the case when the action is effective and real-analytic.
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4.2.2. Search space reduction and Laue symmetry.
Theorem 4.1 together with the Laue symmetry of the
diffraction pattern (4) shows that the volume of the space
needed to compute the cost function [equation (5)] can like-
wise be reduced, as a consequence of the following result:”

Theorem 4.3. Let T < T be crystallographic groups, and let P
denote the point group of I'. Suppose that the point group of I"
is either P or PU (—P). Then the Patterson function and
intensity function of a crystal with symmetry group I' satisfy
the group invariance properties

P(x; ygq) = P(x; g), I(k; pgq) = 1(k; g),
VgeQ.pel. (48)

Proof. Let 7 € T be given and write y~'aj =y € T for
a € T'. Recalling equation (1), we have

p(x; g) = er (r79) " x)
=Y Ao -G X)) =p( " x58).  (49)

y'el’
Therefore,
Px;ye)= [ p(y™"-y;@p(7™" -y + Ry -x; g)dy
Frx
= [ pzpE+R;' - x;g)dz
Frx

=P(R;" - x;8) = P(x: g),

where Fjy =97'-Fpy. The final equality follows from
equation (4) and the hypothesis that R;, € P U (—P).
Invariance of the Patterson function under right multi-
plication by g € O is an immediate consequence of the Q
symmetry of B. By taking the Fourier transform of the
Patterson function, one then obtains the stated invariance of
the intensity. ]

When equations (40) of Theorem 4.1 and (48) of Theorem
4.3 hold, one only needs to consider motions g in the domain
F in order to compute the cost function [equation (5)] as well
as to determine the feasible space [equation (12)]. When this
occurs, we say that the motion space search can be reduced by a
factor of vol(Fp;)/vol(F°).

The five most common space groups for biomolecular
crystals are P2,2,2,, P2,, C2, P2,2,2 and C222, (Chirikjian,
Sajjadi et al, 2015). For these groups, Theorem 4.1 yields
substantial reductions. For groups I' in the classes P2,2,2,,
P2,2,2 and C222,, we take I" to be the normalizer of I in E(3).
For T of type P2,2,2, or P2,2,2 with ellipsoidal bodies,
[f‘ : I'l = 16 and the motion space search can be reduced by a
factor of 64; for I' of type C222,, the reduction factor is 32. The
5D search spaces for P2, and C2 can be reduced by a factor of
32 and 16, respectively (for ellipsoidal bodies).

? See Hirshfeld (1968) and Koch ef al. (2002). The Euclidean normalizer [is
also called the Cheshire group of T.

We note that the argument in Theorem 4.1 also yields the
following result:

Theorem 4.4. Suppose that E;, C B C E,. Assume the
hypotheses of Theorem 4.1 with (i) replaced by

q-E,=E.q-E,=E, VqeQ.

Then the conclusions of Theorem 4.1 hold with A(T, B)
replaced by Z(T, E,, E,).

Thus, if an irregular molecule B is sandwiched between
ellipsoids E, and E,, the informed search space Z(I', E,, E,)
will have the (right) O symmetries as well as the (left) r
symmetries, and the cost function for the molecule B will have
r symmetries. Both symmetries will allow reductions of the
computations in the 6D search.

5. The crystallographic group P1

We now consider the case where I' is in the class P1, which is
the symmetry group made up only of translations by elements
of the lattice L.

In this case, ' =T, P = {Il}, v(I) = 0 and Fy = Fpy is a
unit cell. Then

M((I[, t )v BR) =B + (_BR) + ty» (50)

A(Bg) ={(I,t,) € T\{e} : By N (Bg +t,) # 0}
={[} x {t, e L\ {0} : t, € Bx + (=Bg)}, (51)

Z[(Lt), B] = {R € SO(n) : 0 € M((L, t.), Bp)} X Fry
={Re€SO(Mn):t, € R-[B+(—B)l} x Fry. (52)

Thus the collision space is given by

sr.B) = |J z@.t,).B)
t, €L\ {0}
={R eSO@): [L\{0}]NR-[B+ (—B)] # ¥}
X Fpy.

The condition above means that for collision at least one non-
zero lattice point must be inside By + (—Bp).

The informed search space for approximating sets
E, C BCE, (where E|, E, are ellipsoids, for example) is
given by

I, E, E,) = {R € SOB3) : [LUONR - [E, + (—E,)] = 4,
LNR-[E, + (—E,)] generates ]L} X Fpy. (53)
It follows from equation (51) that

A(g-B) S BT, B)={t, € T\{e} : It,| < 2y}, (54)

which is sharper than equation (24) [in fact, we can replace 2rg
with rp _p . Thus, to verify equation (53), one only needs to
check lattice points t,, of norm |t | < 2r, for the first condition
and |t,| < 2rg, for the second condition.
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Figure 6
Ellipsoids for the PDB entry laky. (¢) Moment-of-inertia ellipsoid; (b)
minimum-volume ellipsoid.

We note that if £, and E, are (centered) ellipsoids, then
E, + (—E,) =2E, and E, + (—E,) = 2E,. Furthermore, one
sees from equation (53) that equation (21) holds in the P1 case
if £, and E, are ellipsoids that satisfy the weaker Minkowski-
sum inclusion relations:

2E, € B+(—B) C 2E,. (55)

This observation allows us to choose better approximating
ellipsoids, as illustrated in the next section.

6. Detailed examples with P1 symmetry

In Section 3, we discussed how ellipsoids can be used to
replace protein molecules in the feasible region analysis. In
this section we give examples of proteins that crystallize with
P1 symmetry and their approximating ellipsoids. In these
examples, ellipsoids are seen to give better approximations for
the Minkowski sum B+ (—B) in Section 5 than for the
protein.

6.1. Ellipsoidal proxies

Here we consider two proxy ellipsoids: the moment-of-
inertia ellipsoid, which has the same moment of inertia as the
protein,' and the minimum-volume ellipsoid (Todd, 2016),
which is the ellipsoid of least volume that contains all the
atoms of the protein.

Fig. 6(a) shows the atoms of the Protein Data Bank (PDB,
http://www.rcsb.org/pdb/) entry laky (Abele & Schulz, 1995)
(an adenylate kinase), which crystallizes with P1 symmetry,
and its moment-of-inertia ellipsoid. As can be seen from the
figure, the moment-of-inertia ellipsoid coincides with the
protein in a high proportion, though there is empty space
inside the ellipsoid and some atoms are outside of the ellip-
soid. The minimum-volume ellipsoid of laky is shown in Fig.
6(b). It can be seen that the minimum ellipsoid is significantly

1 The moment-of-inertia ellipsoid is assumed to have the same total mass as
the protein and to have uniform mass density.

, ®)
Figure 7

Placement of ellipsoids for the PDB entry laky. (¢) Moment-of-inertia
ellipsoid; (b) minimum-volume ellipsoid.

larger than the moment-of-inertia ellipsoid since it must
contain all atoms of the protein.

Figs. 7(a) and 7(b) show the placements of the moment-of-
inertia ellipsoids and the minimum-volume ellipsoids,
respectively, of four symmetry mates of laky intersecting a
unit cell (outlined). It can be seen from Fig. 7(a) that the
moment-of-inertia ellipsoids can be placed with only minor
collisions with their neighbors in the lattice, whereas the larger
minimum-volume ellipsoids in Fig. 7(b) collide more. There-
fore, compared with the minimum-volume ellipsoid, the
moment-of-inertia ellipsoid may provide a better choice for
replacing the protein in further analysis.

6.2. Minkowski sums

The Minkowski sum determines the collision zone of two
bodies. Comparisons between three proteins with P1
symmetry [laky (Abele & Schulz, 1995), 1tt8 (Smith et al.,
2006), SmOe (Keune et al., 2017)] and their moment-of-inertia
ellipsoids are given in Table 3. Similar comparisons are given
in Table 4 for the corresponding Minkowski sums B + (—B),
where B C R® represents the protein body. One sees from
Tables 3-4 that the ellipsoidal approximation of the
Minkowski sum B+ (—B) is better than the ellipsoidal
approximation of the protein body B in these cases.

To describe the notation in the tables, we let E denote the
moment-of-inertia ellipsoid, and we note that the Minkowski
sum E 4 (—F) = 2E.

P, — the fraction of atoms of the protein that are outside of
the ellipsoid E.

P,, — the fraction of the volume of E occupied by protein
atoms (the total volume of ‘boxes’ occupied by atoms, the
edge dimensions of the box being the average distance
between adjacent alpha carbons) inside E.

Acta Cryst. (2020). A76, 145—-162
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Table 3 Table 4

Sample proteins in P1. Minkowski sums for sample proteins in P1.

Protein P, Py, P, Protein M, M, M.,

laky 0.1038 0.6490 0.0733 laky 0.0023 0.9212 0.0911

1tt8 0.0933 0.8253 0.1049 1t8 0.0019 0.9676 0.1262

SmOe 0.1212 0.4651 0.0670 SmOe 0.0083 0.9384 0.1633
P, - the volume of the space occupied by protein atoms 7. The crystallographic group P2,2,2,

outside F, divided by the volume of E.

M, — the fraction of the volume of the Minkowski sum
B + (—B) that is outside of 2F.

M;, — the volume of the portion of the Minkowski sum
B + (—B) inside 2E, divided by the volume of 2E.

M., — the volume of the portion of the Minkowski sum
B + (—B) outside of 2E, divided by the volume of 2E.

The Minkowski sum B+ (—B) for the body B corre-
sponding to the PDB entry laky is displayed in Fig. 8. The
ellipsoids in the figure are the ellipsoid 2E (where E is the
moment-of-inertia ellipsoid of B) and its further scaling by a
factor of 1.25.

Slices of the Minkowski sum of Fig. 8 are shown in Fig. 9.
The dotted ellipses, the outer ellipses and the inner ellipses
delineate the slices of 2F and its further scaling by factors of
1.25 and 0.75, respectively.

Fig. 10 shows the atoms of the PDB entry 5m0e and its
moment-of-inertia ellipsoid. The corresponding Minkowski
sum, ellipsoids and slices for SmQe are displayed in Figs.
11-12.

Figure 8
Minkowski sum for the PDB entry laky.

(a) (®) (0
Figure 9
Slices of the Minkowski sum for the PDB entry laky. (@) Slice with the
x1x, plane; (b) slice with the x,x3 plane; (c¢) slice with the x,x; plane.

We now consider the case where I' is in the class P2,2,2,,
which is the most common type of crystallographic group
formed by proteins. In this case, we can choose coordinates so
that the lattice L is generated by (a, 0, 0), (0, a,, 0), (0, 0, a;),
where we make the identification

X1

(1, X, x3) = (xl’x27x3)T =1 *
X3

e R3.

We choose the (centered) unit cell

Fmi{(xl,xz,x3)eR3 : —%Sxi<%,l 51’53}

Figure 10
The PDB entry 5Sm0Oe and its moment-of-inertia ellipsoid.

Figure 11
Minkowski sum for the PDB entry SmOe.

®) (©

Figure 12
Slices of the Minkowski sum for the PDB entry SmOe. (a) Slice with the
XX, plane; (b) slice with the x,x; plane; (c¢) slice with the x,x; plane.
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and fundamental domain Fpn; = SO(3) X Fpy, with (cen-
tered) asymmetric unit

Fry =14 (x, %, x3) € R?:

O W S
2 2 4
(56)

Then the point group 7\I" is isomorphic to Z, @ Z, (the Klein
group), and we can write Fnr = {Yo, V1, V2, Y3} Where each
element of Fp acts on X = R? as yq - (x1, X2, x3) = (X1, X2, X3);
Y1 (X1, Xo, X3) = (X + @12, —x5 + an/2, —X3); Yo - (X1, X2, X3) =
(—x1, X3 + ax/2, —x3 + a3/2); y3 - (X1, X2, X3) = (—x1 + a1/2, —x,
X3 + az/2).

In terms of homogeneous transformation matrices, these
operators are

1 0 0 O 0 2
01 00 -1 2
T o 01 oM 1 o
00 0 1 0 1
-1 0 0 O -1 0 0 %
0 1 2 ) 0 -1 0 O
710 0o 12’ o o0 14
0 0 0 1 0 0 0 1
In this case n, = e, for i =1,2,3, where {e, e,, e;} is the
standard orthonormal basis for R?. Furthermore
VR, =Te + 26 VR,)=Ze+ e,
V(R,) = e3 + —e1

Let 7, € T<I' denote translation by the Ilattice
(kya,, kya,, kyas)", where k = (k,, k,, k;) € Z*. Then

={gny :keZ, i=01,23}.

point

We now construct the (translational) collision zones
Zi(tv:, B). For i = 0, we have 1, , = 13, and thus by equation
(52), we have

Zp(t, B) = Fry for (kiay, kya,, k3‘13)1 € By + (_BR).
Z for (kya,, kya,, ksas) ¢ Bg + (—Bg)

(57)
Next we let i = 1; in this case, we have n, =e and
1 0 0 0 0 0
R, =10 -1 0 |, ]I—Ryl: 02 0
0o 0 -1 0 0 2
We let
X =N
M (Bg)=R, - Bg +(—Bg) = —X, =Y, | 1X, ¥ € By
X33
(58)

Recalling equation (34), we have

(ky + %)al
M(ty,, Bg) = M(Bg) + | (k, + %)az . (59)
ksya,
By equation (35),
o
Zr(uy, B) = { X € Fry : | 2x, | € M(nyyy, Bg)
_2)(3
_ ﬁ 4)a1
= X€Fpryxi| x— (kz +3a, | € EMl(BR)
L x5
(60)

Thus the translational collision zones Zg(7,y;, B) are planar
slices of translates of the Minkowski sum M,(By), given as

follows. We define the planes
k1
=—<E+Z)a]},keZ. (61)

Then Zy(z7,¥y, B) is the cylinder in Fy with axis in the x,
direction and base given by the planar slice

0

I, (k) = {x eR:x

1
Se=(MBo+ | G+ | | NLKk).  (62)
k kg,
Similarly we let
X =M
M,(Bg) =R, -Bp+ (=Bg) = X, = Y2 IX,Y € B¢,
X33
(63)
and we obtain
K
x1k_ 7 ay 1
Zp(tys B) = { X € Fry : -3 Zk P € EMZ(BR) )
x5 — (3 +Pas
(64)

which is a cylinder in Fy with axis in the x, direction and base
obtained by slicing a translate of 3 M,(By).
Finally, let

N
M;(Bg) =R, -Bp+ (=Bg) = —X, =Y, | !X,y € By
-3
(65)
Then
Xy — %1 +Pay 1
Zp(tyys, B) = {X € Fry : X, —Fa, € - M;(Bg) ¢,
ks 1 2
—(F+a;
(66)

which is similarly a cylinder in Fp., with axis in the x; direction
and base obtained by slicing a translate of 1 M;(By). Note that
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Figure 13
Symmetry mates for 1lfg and their moment-of-inertia ellipsoids in one
unit cell.

equations (63)/(64) and (65)/(66) can be obtained from
equations (58)/(60) by cyclic permutations of the formulas for
the coordinates.

7.1. Example with P2,2,2; symmetry

Here we illustrate protein packing in a P2,2,2, crystal. In
each unit cell of a biomolecular crystal with P2,2,2, symmetry,
there are four asymmetric units, each corresponding to a
symmetry mate. Fig. 13 shows symmetry mates for the PDB
entry 1lfg (Haridas et al, 1995) and their moment-of-inertia
ellipsoids in a unit cell.

Fig. 14 shows the Minkowski-sum slice Sy given by equation
(62) for the PDB entry 1lfg (and k;, = —1, k, = k; = 0), with
the dotted line delineating the slice Sy obtained by replacing
the protein body B by its moment-of-inertia ellipsoid in
equation (62). The outer and inner lines delineate the slices
obtained by scaling the moment-of-inertia ellipsoid by factors
of 1.25 and 0.75, respectively. The area occupied by the
Minkowski-sum slice Sy outside of the slice S is 6.12% of the
area of the Sg. And 92.66% of the area of Sy is contained in
S8

7.2. Determining the collision-causing symmetry sets

In this section we apply equations (57), (60), (64) and (66)
to improve the upper estimate [equation (24)] for the
collision-causing symmetry sets A(g - E,).

Suppose that we have ellipsoids E;, E, with E;, C B C E,.
We order the unit-cell dimensions so that a; < a, < a;, and we
let

0= rEz/ai, forj=1,2,3.

We write k' = (k;;, kyy, k;3) € Z°, for 0 < i < 3. First, suppose
that 70 € A(g - E,). Then by equation (57) with B replaced by
E, [and noting that 7, = e & A(g - E,) by definition], we have

0< Y kia} <4r.
Therefore
o1 ko + 03 ki + p3 ks < 4. (67)

Next, let 1,1y, € A(g- E,). Then by equation (60) with B
replaced by E,,

_—g:‘ T
R
A T

Figure 14
A slice of the Minkowski sum for the PDB entry 1lfg.

kyy +%|a1
|k12+%|a2
lki3las
3 a as
ely+ze® =2,z =0 nl = 21z < 2},

which consists of points of distance less than 2rg, from the
rectangle {0} x [—“72 , “72] X [—%’,%’] Therefore,
Pk +9° + 037k +31 =5 + 03[kl = 5, < 4,
(68)
where we use the notation a, = max(0, a).
Similarly, if 7,2y, € A(g - E,), then by equation (64)
ko lay
ky, + % |a;
ka3 + 5 las
a
€ {Y+Z eR’: lyl < 2"52, |zl < a1,2, =0, |z5] < 53}’

and therefore

o1 (kg | = 1), T 4 037 (kyy + 3 4 05%(lkys + 11 — 3> < 4.

(69)
If 7sy; € A(g - E,), then by equation (66)
o1 (ks + 31 = DLF + 2% [(kso| — )T
+ 05 (ks +3)° < 4. (70)

In the P1 case discussed in Section 5, we observed that one
only needs to check which symmetries (I, t) € I" with [t| < 2rp
cause symmetry mates of g-E, to collide, since collisions
cannot occur if [t|>2r;. We now give a description of the
symmetries that we need to evaluate for collisions in the
P2,2,2, case. Let ®*(p,, p,, p;) denote the set of symmetries
K'y; € I' satisfying equations (67)~(70), so that A(g- E,) C
D*(p;, Py, p3)- We then let O(p;, p,, p;) be a set consisting of
one element from each pair {y, y~'} in ®*(p,, p,, p3), so that

Ag - Ez) C ®(py, 0y, P3) U D0y, 03, /03)71' (71)

Thus, to determine whether a motion g € Fj; satisfies
equation (18), it is sufficient to check which symmetries
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y € 5(,01, 0,, p3) cause collisions of g-E, and which cause
collisions of g - E,.

From an analysis of over 7000 protein molecules in the PDB
that crystallize with P2,2,2, symmetry (with four copies in
each unit cell), we observed that over 96% of these molecules
have circumradius

rp < min{1.2a;, 0.9a,, 0.6a;}. (72)

For these molecules satisfying equation (72), one needs only to
consider symmetries in the finite set (1.2, 0.9, 0.6) in order to
determine which symmetries y € ' are in A(g-E;) and
A(g - E,) in equation (18). N

We now list the elements of ®(1.2,0.9, 0.6). Let us write

3
®(1.2,0.9,0.6) = | J{muy, 1k € A},

i=0

where A; € 7 for 0 < i < 3. Substituting p, = 1.2, p, = 0.9, p; =
0.6 in equations (67)—(70), we find that

A, =1{(0,0,1),(0,1,0), (1, -1,0), (1,0, 1), (1,0,0),
(1,0,1),(1,1,0), (2,0,0)}.

The points of A, A,, A3~are given in Figs. 15, 16 and 17,
respectively. Altogether, ®(1.2, 0.9, 0.6) contains 92 elements
(the sum of the cardinalities of the sets A, A, A,, A;) of the
crystallographic group, although for proteins with a bound on
the circumradius that is sharper than equation (72), the
number could be smaller.

We now construct a reduced search space F° of Theorem 4.1
for the group I' of type P2,2,2, and a centered ellipsoidal
body B with axes aligned with the unit-cell directions: we
recall that the symmetry group of B is the group K U (=I)K of
order 8 given in equation (38); the normalizer I' < E(3) of I' is
the symmorphic group of type Pmmm with lattice L generated
by {(#,0,0),(0,%,0), (0,0,%)} [see Hirshfeld (1968), Koch et
al. (2002) or the Bilbao server (Aroyo et al., 2006)]. Then
NG is of type P222 with lattice . We now choose the
reduced search space

0 - +
F" = Fyo5)x X F(fmG)\Xv

where

Figure 15
Points of A;.

Figure 16
Points of A,.

Figure 17
Points of A;.

. a; .
F(JEQG)\X:{(XD%’%) eR:0<x < 1 1<i 53},

Fsomyx ={R € SO(3) : R;; > 0, R, > 0}.

We note that vol(F”) = L vol(SO(3) x Fy), where Fpy is
given by equation (56), consistent with Theorem 4.1.

8. Conclusions

In this paper we derive conditions for reducing the volume of a
full rotational-translational MR search with strong cost
function by using two opposing constraints: (i) symmetrically
arranged macromolecules in a crystal cannot interpenetrate
each other; and (ii) macromolecules in a crystal must contact a
sufficient number of neighbors to form a physical crystal.
These concepts are formalized mathematically and demon-
strated using ellipsoidal models. It is observed that the
Minkowski sum of proteins generally is more similar to the
Minkowski sum of ellipsoidal proxies of proteins than the
similarity of the protein and proxy. Since it is the Minkowski
sum of symmetry mates that enters our formulation rather
than the detailed shape properties of individual molecules, the
use of ellipsoidal proxies is justified. Consequently, the frac-
tion of volume of the motion space F|. that actually needs to
be searched in a MR problem can be extremely small.
Moreover, it is plausible (particularly for proteins that are
very prolate) that large regions in rotation space will not have
any feasible translations based on our packing formalism,
further reducing the computational effort. Additional effi-
ciencies can be gained using symmetry properties of ellipsoids
and of the crystallographic group itself. Future algorithmic
work that builds on the mathematical foundations presented
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in this series of papers will focus on explicit computer codes
for use by the macromolecular crystallography community.
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