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Private Information Retrieval Through Wiretap
Channel II: Privacy Meets Security
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Abstract— We consider the problem of private informa-
tion retrieval through wiretap channel II (PIR-WTC-II).
In PIR-WTC-II, a user wants to retrieve a single message (file)
privately out of M messages, which are stored in N replicated
and non-communicating databases. An external eavesdropper
observes a fraction μn (of its choice) of the traffic exchanged
between the nth database and the user. In addition to the privacy
constraint, the databases should encode the returned answer
strings such that the eavesdropper learns absolutely nothing
about the contents of the databases. We aim at characterizing
the capacity of the PIR-WTC-II under the combined privacy and
security constraints. We obtain a general upper bound for the
problem in the form of a max-min optimization problem, which
extends the converse proof of the PIR problem under asymmetric
traffic constraints. We propose an achievability scheme that
satisfies the security constraint by encoding a secret key, which
is generated securely at each database, into an artificial noise
vector using an MDS code. The user and the databases operate
at one of the corner points of the achievable scheme for the PIR
under asymmetric traffic constraints such that the retrieval rate
is maximized under the imposed security constraint. The upper
bound and the lower bound match for the case of M = 2 and
M = 3 messages, for any N, and any μ = (μ1, · · · , μN).

Index Terms— Private information retrieval (PIR), wiretap
channel II, asymmetric traffic, MDS codes, capacity.

I. INTRODUCTION

PRIVATE information retrieval (PIR) is a canonical
problem which considers the privacy of the content down-

loaded from public databases. The problem was introduced
by Chor et al. [1], and attracted considerable interest within
the computer science community [1]–[5]. In the classical PIR
model, there are N replicated and non-colluding databases,
each storing the same set of M messages. A user requests to
download a single file from the databases privately, i.e., no
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database can know the identity of the user’s desired file.
To that end, the user submits a query to each database that
does not leak any information about the identity of the file.
Each database responds with an answering string. From all
answering strings, the user should be able to decode the
desired file reliably. PIR schemes are designed to be more
efficient than the trivial scheme of downloading all the files
stored in the databases. The efficiency is measured by the
retrieval rate, which is the ratio between the number of
desired message symbols to the total number of downloaded
symbols. PIR is important from a practical point of view as
many privacy threats exist in modern networks, in particular,
when advanced learning algorithms are employed within social
networks and online shopping websites. From a technical
standpoint, PIR lies at the intersection of computer science,
information theory, coding theory, network coding, and signal
processing.

There has been a growing interest in the PIR problem in
the information-theory society, with early examples [6]–[11].
In [12], Sun and Jafar investigate the fundamental limits of
the classical PIR problem by introducing the notion of PIR
capacity. The PIR capacity is defined as the supremum of
PIR rates over all achievable retrieval schemes. Reference [12]
determines the exact PIR capacity of the classical model to be
C = (1+ 1

N + 1
N2 +· · ·+ 1

NM−1 )−1. Following [12], the funda-
mental limits of many interesting variants of the classical PIR
problem have been considered, such as: PIR from colluding
databases, robust PIR, symmetric PIR, PIR from MDS-coded
databases, PIR for arbitrary message lengths, multi-round PIR,
multi-message PIR, PIR from Byzantine databases, secure
symmetric PIR with adversaries, cache-aided PIR, PIR with
private side information (PSI), PIR for functions, storage
constrained PIR, PIR with asymmetric traffic constraints and
their several combinations [13]–[40].

The sole requirement of most of these previous works is
to protect the identity of the desired message from the public
databases in addition to satisfying the reliability constraint.
We ensure this protection via imposing the privacy constraint
on the submitted queries. Another interesting dimension to the
PIR problem is when the content of the requested message
needs to be protected against an external eavesdropper (wire-
tapper), who wishes to learn about the contents of the data-
bases by observing the queries and answer strings exchanged
between the user and the databases. In this paper, we tackle the
problem of secure PIR. We impose an extra constraint to the
PIR problem, namely, the secrecy constraint in addition to the
usual privacy constraint. The secrecy constraint ensures that
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the queries and the answer strings do not leak any information
about the contents of the databases to the eavesdropper. Such
systems are relevant in practice, for example, in the stock
market, investors need to keep the identity of the records
that they are interested in private from the public databases
as revealing such interest in a specific record may change its
value. This is a classical PIR application. Now, consider the
case when the contents of the records themselves are confi-
dential except for a small subset of authorized investors. Thus,
the queries and the answer strings should be designed such that
unauthorized entities who wiretap the retrieval process learn
absolutely nothing about the contents of these confidential
records.

Although there is a vast literature on PIR, only a few
works exist on secure PIR: [41] considers the more general
problem of information storage and retrieval, guaranteeing
that also the process of storing the information is secure in
the presence of failing servers. Reference [38] considers a
symmetric PIR setting where there is a passive eavesdropper
who can tap in on the incoming and outgoing transmissions
of any E servers. Reference [38] derives the PIR capacity
in this setting. Interestingly, the secret key needed for the
symmetric retrieval process is used as an encryption key to
secure the contents of the databases from the eavesdrop-
per. This requires, as in the underlying symmetric PIR, that
databases exchange a secret key of at least a certain size.
This problem is investigated further in [39] for the clas-
sical PIR problem under T -privacy constraint for the case
of E ≤ T . Reference [39] derives inner and outer bounds
for this problem in addition to the minimum amount of
common randomness required, which is shared between the
databases.

We study the secure PIR problem from a different angle
than [38], [39], [41]. We consider a classical PIR setting,
where there are N replicated databases storing M messages.
We assume that the contents of the databases are fixed and
cannot be coded to satisfy the security constraint during
the storage phase, unlike [41]. There are no shared keys in
place required for symmetric PIR unlike [38], as we consider
classical PIR, not symmetric PIR. We further assume that the
eavesdropper observes the queries and the answer strings of all
databases through wiretap channels in contrast to observing the
noiseless transmission from any E of the databases as in [39].
In this work, we investigate the PIR problem through wiretap
channel II (PIR-WTC-II). Ozarow and Wyner [42] introduced
the wiretap channel II (WTC-II) model, which considers a
noiseless main channel and a binary erasure channel to the
wiretapper, where the wiretapper is able to select the positions
of erasures.1 In PIR-WTC-II (see Fig. 1), the user observes
the tn-length answer strings through a noiseless channel from
the nth database. The eavesdropper can observe a fraction μn

1Reference [43] generalizes the WTC-II model of Ozarow and Wyner to
more general settings. Specifically, [43] allows the main channel to be noisy
in addition to allowing the eavesdropper to observe a noisy version of the
codeword in code positions other than the set Sn. In this work, we only
consider the basic setting of Ozarow and Wyner, which assumes noiseless
channel for the main channel and complete erasure of the codeword outside
of the subset Sn.

from the nth answer string. More specifically, the eavesdropper
chooses any set of positions Sn ⊂ {1, · · · , tn} to observe
from the nth answer string, such that |Sn| = μntn. The
databases should encode the answer strings such that the
eavesdropper learns nothing from observing any μn fraction
of the traffic from the nth database. This is in addition to
normal privacy and reliability constraints. Naturally, the nth
database dedicates μntn portion of the answer string to
confuse the eavesdropper, constraining the meaningful portion
of the answer to be (1 − μn)tn. This fundamentally relates
PIR-WTC-II to the PIR problem under asymmetric traffic
constraints [40], as lengths of answer strings can no longer
be symmetric. This poses the following questions: How can
we design a retrieval code that satisfies the combined pri-
vacy and security constraints for the PIR-WTC-II problem?
Does PIR-WTC-II problem necessitate the existence of com-
mon randomness between the databases as in [39]? Should
the databases share any common randomness with the user
(retriever)?

In this paper, we obtain a general upper bound for the
PIR-WTC-II problem, when the eavesdropper can wiretap
μ = (μ1, · · · , μN ) fractions from the traffic outgoing from
every database. We note first that this problem is the first
concrete example of a PIR problem under asymmetric traffic
constraints in the sense of [40]. We show that this upper
bound can be expressed as a max-min problem. The inner
minimization problem extends the converse techniques of the
PIR problem under asymmetric traffic constraints in [40] to
the PIR-WTC-II problem. The outer problem maximizes the
retrieval rate over all possible traffic ratio vectors. For the
achievability, we extend the achievable scheme used in [40]
to achieve the corner points for the meaningful portions of
the queries. In the extension, to satisfy the security constraint,
each database generates a secret key with μntn length and
encodes it into an artificial noise vector using a (tn, μntn)
MDS code and encrypts the returned answer strings with
the artificial noise vector. Interestingly, our achievable rate
does not need any shared randomness among the databases
or between the databases and the user. The keys used by
the databases are unknown to the user, but are decodable
and canceled at the retriever; however, the same keys are not
extractable at the wiretapper due to the MDS code used and
the existence of WTC-II. We express the achievable retrieval
rate in terms of the output of a system of difference equations.
We present an explicit achievable rate for the problem for the
case of N = 2 databases and any arbitrary M . Our upper
and lower bounds match for M = 2 and M = 3 messages,
for any N , and any μ, which conforms with the results
of [40].

II. SYSTEM MODEL

Consider a classical PIR model, in which there are N
non-colluding and replicated databases, each storing the same
content of M messages (or files). The message Wm is
represented as a vector of length L, whose elements are
picked from a finite field F

L
q with a sufficiently large alphabet.

The messages W1:M = {W1, · · · , WM} are independent and
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Fig. 1. Secure PIR problem through wiretap channel II.

identically distributed, hence,2

H(Wm) = L, m ∈ {1, · · · , M} (1)

H(W1:M ) = ML, (q-ary bits) (2)

We assume that the messages are uncoded and fixed, i.e., we
assume that the contents of the databases cannot be coded to
satisfy the security constraint during the storage phase.

In classical PIR, a user wants to retrieve a message Wi

from the N databases without revealing the identity of the
message i to any individual database. The user prepares
N queries, one for each database. The user sends Q

[i]
n to

the nth database. Since the user has no knowledge about
the realization of W1:M , the queries and the messages are
statistically independent, i.e.,

I(Q[i]
1:N ; W1:M ) = 0, i ∈ {1, · · · , M} (3)

where Q
[i]
1:N = {Q[i]

1 , · · · , Q
[i]
N}. Furthermore, to ensure the

privacy of Wi, the user should constrain the query intended
to retrieve Wi to be indistinguishable from the query intended
to retrieve any other message Wj at any individual database.
Thus, the privacy constraint is formalized as,

(Q[i]
n , A[i]

n , W1:M ) ∼ (Q[j]
n , A[j]

n , W1:M ), ∀j ∈ {1, · · · , M}
(4)

where ∼ denotes statistical equivalence.
The nth database, after receiving the query Q

[i]
n , responds

with a tn-length answering string A
[i]
n . Note that we allow

2Throughout the paper, we use the notation Xi1:i2 to denote the set of
variables {Xi1 , Xi1+1, · · · , Xi2}.

the user and the databases to choose arbitrary lengths for
the answer strings such that they maximize the retrieval rate.
The answer string is generally a stochastic3 mapping of the
messages W1:M and the received query Q

[i]
n , hence,

H(A[i]
n |Q[i]

n , W1:M ,Gn) = 0, n ∈ {1, · · · , N} (5)

where Gn is a random variable independent of all other
random variables, whose realization is known at the nth
database only and not shared with any other database or
the user a priori of the transmission. We denote the traffic
ratio vector by τ = (τ1, · · · , τN ). The traffic ratio at the nth
database τn is given by,

τn =
tn∑N
i=1 ti

(6)

We assume that the answer strings are transmitted through
a WTC-II (see Fig. 1). In this case, an external eaves-
dropper (wiretapper) wishes to learn about the contents of
the databases by observing the queries and answer strings
exchanged by the user and the databases. In PIR-WTC-II,
the user observes the tn-length answer string A

[i]
n from the

nth database through a noiseless channel. On the other hand,
the eavesdropper can observe a fraction μn from the nth

3We note that the model can be strengthened to include the case of databases
sharing a common randomness. In this case, the constraint (5) will be
H(A

[i]
n |Q[i]

n , W1:M ,G) = 0 for some common randomness G. One can
show that this common randomness cannot increase the retrieval rate as the
converse proof is still true in the case of having shared randomness. We choose
to present this work in the worst case of having no cooperation (no common
randomness) across databases.
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answer string. More specifically, the eavesdropper arbitrarily4

chooses any set of positions Sn ⊂ {1, · · · , tn} to observe from
the nth answer string, such that |Sn| = μntn, i.e., the output
of the eavesdropper channel is given by,

Z [i]
n = A[i]

n (Sn), n ∈ {1, · · · , N} (7)

We denote the unobserved portion of the answer string by
Y

[i]
n = A

[i]
n (S̄n), where S̄n = {1, · · · , N} \ Sn, thus, A

[i]
n =

(Y [i]
n , Z

[i]
n ). We write the eavesdropping ratios as a vector μ =

(μ1, · · · , μN ). Without loss of generality, we assume that the
databases are arranged ascendingly in μn, i.e., μ1 ≤ μ2 ≤
· · · ≤ μN , i.e., the first database is the least threatened (most
secure) and the N th database is the most threatened (least
secure).

Upon preparing the answer string, the databases should
encode the answer strings such that the eavesdropper learns
nothing from observing any μn fraction5 from the traffic from
the nth database even with observing the queries submitted by
the user. Consequently, we write the security constraint as,

I(W1:M ; Z [i]
1:N , Q

[i]
1:N) = 0 (8)

Additionally, the user should be able to reconstruct the
desired message Wi from the collected answer strings with
arbitrarily small probability of error. Using Fano’s inequality,
we write the reliability constraint as,

H(Wi|Q[i]
1:N , A

[i]
1:N ) = o(L) (9)

where o(L)
L → 0 as L → ∞.

For a fixed N , M , traffic ratio vector τ , and eavesdropping
ratio vector μ, a retrieval rate R(τ , μ) is achievable if there
exists a PIR scheme which satisfies the privacy constraint
(4), security constraint (8), and the reliability constraint (9)
for some message length L(τ , μ) and answer strings of
lengths {tn(τ , μ)}N

n=1 such that τn = tn(τ ,μ)
�N

i=1 ti(τ ,μ)
, where

the retrieval rate is therefore given by,

R(τ , μ) =
L(τ , μ)∑N

n=1 tn(τ , μ)
(10)

We note that in this problem, the user and the databases can
agree on a traffic ratio vector τ to maximize the retrieval
rate, thus, we can express the secure retrieval rate under
eavesdropping capabilities μ, R(μ), as,

R(μ) = max
τ

R(τ , μ) (11)

Note that the message lengths can grow arbitrarily large to
conform with standard information-theoretic arguments. The
capacity of the PIR-WTC-II problem C(μ) is defined as the
supremum of all achievable retrieval rates over all achievable
schemes, i.e., C(μ) = sup R(μ).

4We note that in our model, we consider the worst-case scenario where
the eavesdropper can observe any subset of positions Sn of his/her choice,
such that |Sn| = µntn and not just a random choice of these positions. This
implies that the achievable scheme must satisfy the security constraint for any
set of positions even for carefully designed security attacks.

5We note that, in this model, the user and the databases know only the
eavesdropping ratio vector μ and not the positions where the eavesdropper
chooses to observe.

III. MAIN RESULTS AND DISCUSSIONS

In this section, we present the main results of this paper.
Our first result characterizes a general upper bound for the
PIR-WTC-II problem for fixed M , N , and an arbitrary μ.

Theorem 1 (Upper Bound): For the PIR-WTC-II prob-
lem under eavesdropping capabilities μ = (μ1, · · · , μN ),
the capacity is upper bounded by,

C(μ) ≤ C̄(μ)

= max
τ∈T

min
ni∈[N ]

φ(0) + φ(n1)
n1

+ φ(n2)
n1n2

+ · · · + φ(nM−1)�M−1
i=1 ni

1 + 1
n1

+ 1
n1n2

+ · · · + 1�M−1
i=1 ni

(12)

where φ(�) =
∑N

n=�+1(1 − μn)τn corresponds to
the sum of the unobserved traffic ratios by the
eavesdropper from databases [� + 1 : N ], T ={
τ : τn ≥ 0 ∀n ∈ [1 : N ],

∑N
n=1 τn = 1

}
, ni ∈ [N ] =

{1, · · · , N} for i ∈ {1, · · · , M − 1}.
The proof of this upper bound is given in Section IV.

We have the following remarks.
Remark 1: When μ = (0, · · · , 0), i.e., without any security

constraints, the upper bound reduces to:

C̄(μ)

= max
τ∈T

min
ni∈[N ]

∑N
n=1 τn+

�N
n=n1+1 τn

n1
+· · ·+

�N
n=nM−1+1 τn

�M−1
i=1 ni

1+ 1
n1

+· · ·+ 1�M−1
i=1 ni

(13)

= max
τ∈T

min
ni∈[N ]

1 +
�N

n=n1+1 τn

n1
+ · · · +

�N
n=nM−1+1 τn

�M−1
i=1 ni

1 + 1
n1

+ · · · + 1�M−1
i=1 ni

(14)

= max
τ

C̃(τ ) (15)

=
1

1 + 1
N + · · · + 1

NM−1

(16)

where the inner problem in (14) is precisely the upper bound of
the PIR problem under asymmetric traffic τ [40]. From [40],
we know that C̃(τ ) is maximized by adopting symmetric
schemes, i.e., τn = 1

N , which achieves the PIR capacity C
in [12].

Remark 2: If the PIR-WTC-II problem is further con-
strained by the asymmetric traffic constraints τ , the corre-
sponding upper bound C̄(μ, τ ) is given by the inner problem
of (12), i.e.,

C̄(μ, τ ) = min
ni∈[N ]

φ(0) + φ(n1)
n1

+ φ(n2)
n1n2

+ · · · + φ(nM−1)�M−1
i=1 ni

1 + 1
n1

+ 1
n1n2

+ · · · + 1�M−1
i=1 ni

(17)

where φ(�) =
∑N

n=�+1(1 − μn)τn. Hence, without the
asymmetric traffic constraints, the user and the databases can
agree on τ that maximizes the retrieval rate, which results
in the outer maximization over τ . This is reminiscent of
the classical converse proof for the channel coding theorem,
where a converse argument is constructed for an arbitrary
input distribution of the transmission codebook, and then the
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converse proof is concluded with a maximization step over all
the input distributions.

Remark 3: The upper bound C̄(μ) in Theorem 1 can be
written as the following linear programming problem:

C̄(μ) = max
τ ,R

R

s.t. R ≤
φ(0) + φ(n1)

n1
+ · · · + φ(nM−1)�M−1

i=1 ni

1 + 1
n1

+ · · · + 1�M−1
i=1 ni

, ∀n

τn ≥ 0, n = 1, · · · , N
N∑

n=1

τn = 1 (18)

where n = (n1, · · · , nM−1) ⊂ {1, · · · , N}M−1, i.e., the num-
ber of constraints are finite (at most NM−1 + 2 constraints).
Hence, the optimal solution of this optimization problem is
attained at one of the corner points of the feasible set.

Next, we present a general lower bound on C(μ) for fixed
M , N .

Theorem 2 (Lower Bound): For PIR-WTC-II, for a
monotone non-decreasing sequence n = {ni}M−1

i=0 ⊂
{1, · · · , N}M , let n−1 = 0, and S = {i ≥ 0 : ni−ni−1 > 0}.
Denote y�[k] to be the number of stages of the achievable
scheme that downloads k-sums from the nth database in one
repetition of the scheme, such that n�−1 ≤ n ≤ n�, and
� ∈ S. Let ξ� =

∏
s∈S\{�}

(
M−2
s−1

)
. The number of stages

y�[k] is characterized by the following system of difference
equations:

y0[k] = (n0−1)y0[k−1] +
∑

j∈S\{0}
(nj−nj−1)yj [k−1]

y1[k] = (n1−n0−1)y1[k−1] +
∑

j∈S\{1}
(nj−nj−1)yj [k−1]

y�[k] = n0ξ�δ[k−�−1] + (n�−n�−1−1)y�[k − 1]

+
∑

j∈S\{�}
(nj−nj−1)yj [k−1], � ≥ 2 (19)

where δ[·] denotes the Kronecker delta function. The initial
conditions of (19) are y0[1] =

∏
s∈S

(
M−2
s−1

)
, and yj[k] = 0

for k ≤ j. Consequently, the traffic ratio vector τ (n) =
(τ1(n), · · · , τN (n)) corresponding to the sequence n =
{ni}M−1

i=0 is given by: for nj−1 + 1 ≤ n ≤ nj ,

τn(n) =
∑M

k=1

(
M
k

)
yj [k]∑

�∈S
∑M

k=1

(
M
k

)
y�[k](n� − n�−1)

(20)

Then, the achievable rate corresponding to n is given by:

R(n, μ) =

∑
�∈S

∑M
k=1

(
M−1
k−1

)
y�[k](n� − n�−1)∑

�∈S
∑n�

n=n�−1+1

�M
k=1 (M

k )y�[k]

1−μn

(21)

Consequently, the capacity C(μ) is lower bounded by:

C(μ) ≥ R(μ)
= max

n0≤···≤nM−1∈[N ]
R(n, μ) (22)

= max
n0≤···≤nM−1∈[N ]

∑
�∈S

M∑
k=1

(
M − 1
k − 1

)
y�[k](n� − n�−1)

∑
�∈S

n�∑
n=n�−1+1

∑M
k=1

(
M
k

)
y�[k]

1 − μn

(23)

The proof of Theorem 2 can be found in Section V. We have
the following remarks.

Remark 4: For fixed M , N , the number of the achievable
rates R(n, μ) in Theorem 2 corresponds to the number of
monotone non-decreasing sequences n = {ni}M−1

i=0 , which is
equal to

(
M+N−1

M

)
.

Remark 5: After achieving the corner points in Theorem 2,
which achieve R(n, μ), one can perform time-sharing between
the corner points to obtain an achievable R(τ , μ) for any τ .
The highest possible achievable rate can be obtained by max-
imizing over τ . However, this is not needed as time-sharing
results in a piece-wise affine function in τ . Hence, maximizing
over τ would result in operating directly at one of the corner
points.

Remark 6: We note that the core of the achievability
scheme is the PIR scheme under asymmetric traffic constraints
in [40]. Hence, the recursive structure described by (19) is
directly inherited from [40]. Nevertheless, two main differ-
ences appear in the final rate expression. First, the answer
string length from every database belonging to the same group
is different in contrast to [40]. This is due to the fact that every
database experiences a different eavesdropping capability μn

in general, hence the nth database encrypts its responses with
a key, whose length depends on μn, thus the key lengths are
different in general. Second, there is no need for time-sharing
over the corner points as shown in Remark 5.

In the following corollary, we settle the capacity C(μ) for
M = 2, M = 3, and arbitrary N .

Corollary 1 (Exact Capacity for M = 2 and M = 3
Messages): For PIR-WTC-II, the capacity C(μ) for M = 2,
and an arbitrary N is given by:

C(μ) = max
ni∈[N ]

n0n1∑n0
n=1

n0+1
1−μn

+
∑n1

n=n0+1
n0

1−μn

(24)

and for M = 3 and arbitrary N is:

C(μ) =max
ni∈[N ]

n0n1n2
n0∑

n=1

n0n1+n0+1
1−μn

+
n1∑

n=n0+1

n0n1+n0

1−μn
+

n2∑
n=n1+1

n0n1

1−μn

(25)

The proof of Corollary 1 can be found in Section V-D.
Remark 7: The explicit capacity expressions in Corollary 1

can be interpreted using basic circuit theory. To see that for
M = 2 for a given (n0, n1), consider the circuit in Fig. 2.
The circuit has a current source of n0 n1 units. The circuit
consists of n0 + n1 parallel resistors. The nth resistor has the
value of Rn = 1−μn

n0+1 if 1 ≤ n ≤ n0, and Rn = 1−μn

n0
if

n0 + 1 ≤ n ≤ n1. Hence, the capacity C(μ) is the voltage
across the current source. A similar interpretation can be
inferred from Fig. 3 for the case of M = 3. Interestingly, this
interpretation implies that in order to maximize the retrieval
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Fig. 2. Circuit interpretation of C(μ) for M = 2.

Fig. 3. Circuit interpretation of C(μ) for M = 3.

rate (the voltage across the equivalent resistance of the circuit),
one should pick n0, n1, n2 such that the resistance of each
parallel branch is as symmetric as possible. This is due to the
fact that the equivalent resistance of parallel resistors is less
than the resistance of the least resistor.

Finally, in the next corollary, we present an explicit achiev-
able rate for R(μ) when N = 2, and an arbitrary M . The
proof of the corollary can be found in Section V-E

Corollary 2 (Achievable Retrieval Rate for N = 2): For
PIR-WTC-II with N = 2 and an arbitrary M , let s2 =
{1, · · · , M − 1}, then the secure PIR capacity C(μ) is lower
bounded by R(μ) in (26), shown at the bottom of the next
page.

Remark 8: We note the strong connection between the
PIR-WTC-II problem and the PIR problem under asymmetric
traffic constraints in [40]. In PIR-WTC-II problem, the nth
database uses a secret key of length μntn to span the entire
space of the eavesdropper. This in turn leaves (1 − μn)tn
symbols for meaningful queries. Since the eavesdropping vul-
nerabilities of the databases are different in general (different
μn), the meaningful queries are naturally constrained, e.g.,
we expect the first database (the most secure) to support
more meaningful queries than the remaining databases. How-
ever, the main difference between the two problems is that
in the PIR problem under asymmetric traffic constraints [40],
the traffic ratio vector τ is fixed (by the problem formulation)
in contrast to the PIR-WTC-II problem, where the user and
the databases can agree on a traffic ratio vector τ to maximize
the retrieval rate under the fixed eavesdropping capabilities μ.

Remark 9: We now compare our model with the PIR model
in [38], [39]. In [38], [39], there is an eavesdropper, which
observes all communication of E out of N databases, whose
identities are unknown to the user. We restrict the comparison
to the case T = 1 (i.e., no collusion between the databases).
In this case, the capacity of the secure PIR problem in [39]
(abbreviated as T-EPIR problem) is 1 − E

N . This requires a

common randomness, which is shared between the databases
and unknown to the user, of length E

N−E [39, Theorem 1].
We note that the capacity expression is independent of the
number of messages in [39]. For the symmetric version of the
problem in [38], the capacity expression is also 1− E

N . Inter-
estingly, in the symmetric version of the problem, the common
randomness among the databases is used to satisfy both the
database privacy and the security constraints simultaneously.

On the other hand, in our model, the eavesdropper wiretaps
all N databases according to the given μ = (μ1, · · · , μN ). The
user knows the ratio of the traffic which is observed by the
eavesdropper from each database, i.e., μ = (μ1, · · · , μN ), but
does not know which positions are being observed. Surpris-
ingly, our model does not need any shared randomness among
the databases or with the user, i.e., here we are able to achieve
nontrivial PIR rates with zero shared randomness rates.

As a concrete example, let M = 3, and for a fair compar-
ison, let μn = E

N for all n ∈ {1, · · · , N} in our model. The
rationale for this choice of μn is that in [39], the eavesdropper
has access to a total of E ·t observations, where t is the length
of the answer string from any database in [39]. Now, for
symmetric μn = E

N in our model, all answer string lengths
need to be symmetric, i.e., tn = t for all n, and therefore,
the eavesdropper accesses a total of E

N ·N ·t = E·t observations
here as it does in [39]. The capacity for this case in our
model, from Corollary 1, is 1− E

N

1+ 1
N + 1

N2
, which is attained with

n0 = n1 = n2 = N in the corollary. This rate is strictly less
than the rate in [39], which is 1− E

N , however, [39] requires a
shared randomness between the databases at a rate of at least

E
N−E , while in our case no shared randomness is required.

IV. CONVERSE PROOF

In this section, we derive a general upper bound for the
retrieval rate under the privacy and security constraints (4),
(8) for the PIR-WTC-II problem. Our converse proof extends
the techniques of [12] to incorporate the security constraint.
In addition, since the eavesdropper observes a different frac-
tion of the traffic from each database, we do not expect that
the answer strings (and consequently the traffic ratios) from
each database to be symmetric in length. Thus, we modify the
converse proof in [12] to account for this prospected traffic
asymmetry along the lines of [40]. However, different from
[40], traffic ratios are not given, and must be chosen; the
eavesdropping ratios μ = (μ1, · · · , μN ) are given here. Our
converse proof extends the proof in [40] to account for the
imposed security constraint.

In the next lemma, we discuss some consequences of the
security constraint in (8). The security constraint introduces
some interesting conditional independence properties which
simplify the converse proof.

Lemma 1 (Security Consequences): In the PIR-WTC-II
problem, the following implications are true due to the
security constraint (8):

1) Messages are conditionally independent given the
observed part of the answer strings at the eavesdropper
Z

[i]
1:N , i.e.,

I(Wm; W[1:M ]\{m}|Z [i]
1:N) = 0, i, m ∈ [M ] (27)
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2) There is no leakage of Wm from all the queries Q
[i]
1:N ,

the eavesdropper observations Z
[i]
1:N , and any subset of

messages WS = {Wi : i ∈ S} such that m /∈ S,

I(Wm; WS , Z
[i]
1:N , Q

[i]
1:N ) = 0, i, m ∈ [M ] (28)

In particular,

I(Wm; Wm:M |W1:m−1, Z
[i]
1:N) = L, i, m ∈ [M ] (29)

3) The eavesdropper’s observations Z
[i]
1:N and the messages

are conditionally independent given the queries Q
[i]
1:N ,

i.e., for sets S1, S2, such that S1 ∩ S2 = ∅,

I(WS1 ; Z
[i]
1:N |Q[i]

1:N , WS2) = 0, i ∈ [M ] (30)

In particular,

I(Wm:M ; Z [m−1]
1:N |W1:m−1) = 0, m ∈{2,· · ·, M} (31)

4) The messages and the queries are conditionally indepen-
dent given the eavesdropper’s observations, i.e., for sets
S1, S2, such that S1 ∩ S2 = ∅,

I(WS1 ; Q
[i]
1:N |WS2 , Z

[i]
1:N ) = 0, i ∈ [M ] (32)

5) The messages Wm:M and the queries Q
[m]
k+1:N for any

k ∈ {1, · · · , N} are conditionally independent given(
W1:m−1, Z

[m]
1:N , Q

[m]
1:k , Y

[m]
1:k

)
, i.e.,

I(Wm:M ; Q[m]
k+1:N |W1:m−1, Z

[m]
1:N , Q

[m]
1:k , Y

[m]
1:k ) = 0

(33)

Proof:

1) From the security constraint (8), we have
I(W1:M ; Z [i]

1:N , Q
[i]
1:N) = 0, which further implies

that I(W1:M ; Z [i]
1:N) = 0. This can be expanded as:

0 = I(Wm, W[1:M ]\{m}; Z
[i]
1:N) (34)

= I(Wm; Z [i]
1:N ) + I(W[1:M ]\{m}; Z

[i]
1:N |Wm) (35)

= I(W[1:M ]\{m}; Z
[i]
1:N ) + I(Wm; Z [i]

1:N |W[1:M ]\{m})
(36)

which implies that all four terms in (35), (36) are zero.
Then, consider

I(Wm; W[1:M ]\{m}, Z
[i]
1:n)

= I(Wm; Z [i]
1:N)+I(Wm; W[1:M ]\{m}|Z [i]

1:N ) (37)

= I(Wm; W[1:M ]\{m})

+ I(Wm; Z [i]
1:N |W[1:M ]\{m}) (38)

which together with (35), (36) and the independence of
the messages imply (27).

2) From the security constraint (8), we have
I(Wm, WS ; Q[i]

1:N , Z
[i]
1:N ) = 0 by the non-negativity

of mutual information. This can be further expanded as

0 = I(Wm, WS ; Q[i]
1:N , Z

[i]
1:N )

= I(WS ; Q[i]
1:N , Z

[i]
1:N )+I(Wm; Q[i]

1:N , Z
[i]
1:N |WS) (39)

From the second term on the right hand side,
we have I(Wm; Q[i]

1:N , Z
[i]
1:N |WS) = 0, which

implies (28) by the independence of the messages,
as I(Wm; WS , Z

[i]
1:N , Q

[i]
1:N) = I(Wm; WS) +

I(Wm; Z [i]
1:N , Q

[i]
1:N |WS).

For (29), we note that (28) implies that
I(Wm; W1:m−1, Z

[i]
1:N) = 0 by the non-negativity

of mutual information, which further implies that
I(Wm; Z [i]

1:N |W1:m−1) = 0. Now,

I(Wm; Wm:M |W1:m−1, Z
[i]
1:N )

=H(Wm|W1:m−1, Z
[i]
1:N ) (40)

=H(Wm|W1:m−1) − I(Wm; Z [i]
1:N |W1:m−1) (41)

=L (42)

where the last equality follows from the independence of
the messages.

3) From the security constraint (8) and the
non-negativity of mutual information, we have
I(WS1 , WS2 ; Z

[i]
1:N , Q

[i]
1:N) = 0, which can be expanded

as I(WS2 ; Z
[i]
1:N , Q

[i]
1:N) + I(WS1 ; Z

[i]
1:N , Q

[i]
1:N |WS2) = 0,

which implies that I(WS1 ; Z
[i]
1:N , Q

[i]
1:N |WS2) = 0.

We futher expand it as:

0 = I(WS1 ; Q
[i]
1:N |WS2) + I(WS1 ; Z

[i]
1:N |Q[i]

1:N , WS2)
(43)

which leads to (30) by the non-negativity of mutual
information.
For (31), we note from (30) that
I(Wm:M ; Z [m−1]

1:N |Q[m−1]
1:N , W1:m−1) = 0, hence

0 = I(Wm:M ;Z [m−1]
1:N , Q

[m−1]
1:N |W1:m−1)

− I(Wm:M ; Q[m−1]
1:N |W1:m−1) (44)

Now, I(Wm:M ; Q[m−1]
1:N |W1:m−1) = 0 by the indepen-

dence of the messages and the queries in (3), and this
implies (31) by the non-negativity of mutual information.

4) Using the same argument as in item 3 above and reversing
the order of the chain rule in (43) leads to (32).

C(μ)≥R(μ) = max

⎧⎪⎪⎨
⎪⎪⎩

1 − μ1

M
, max
s2∈{0,··· ,M−1}

(
M−2
s2−1

)
+
∑M−s2−1

k=0

(
M−1
s2+k

)
1

1−μ1

[
M
(
M−2
s2−1

)
+
∑�M−s2

2 

k=1

(
M

s2+2k

)]
+ 1

1−μ2

[∑�M−s2−1
2 


k=0

(
M

s2+2k+1

)]
⎫⎪⎪⎬
⎪⎪⎭ (26)
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5) We have

I(Wm:M ; Q[m]
k+1:N |W1:m−1, Z

[m]
1:N , Q

[m]
1:k , Y

[m]
1:k )

=I(Wm:M ; Q[m]
k+1:N , Y

[m]
1:k |W1:m−1, Z

[m]
1:N , Q

[m]
1:k )

− I(Wm:M ; Y [m]
1:k |W1:m−1, Z

[m]
1:N , Q

[m]
1:k ) (45)

=I(Wm:M ; Q[m]
k+1:N |W1:m−1, Z

[m]
1:N , Q

[m]
1:k )

+ I(Wm:M ; Y [m]
1:k |W1:m−1, Z

[m]
1:N , Q

[m]
1:N)

− I(Wm:M ; Y [m]
1:k |W1:m−1, Z

[m]
1:N , Q

[m]
1:k ) (46)

=0 (47)

where I(Wm:M ; Q[m]
k+1:N |W1:m−1, Z

[m]
1:N , Q

[m]
1:k ) = 0 from

(32) and the non-negativity of mutual information,
and since Q

[m]
1:N → Q

[m]
1:k → Y

[m]
1:k is a Markov

chain, we have I(Wm:M ; Y [m]
1:k |W1:m−1, Z

[m]
1:N , Q

[m]
1:N) =

I(Wm:M ;Y [m]
1:k |W1:m−1, Z

[m]
1:N , Q

[m]
1:k ).

�
We will need the following lemma, which characterizes a

lower bound on the interference from the undesired messages
within the portion of answers that is unobserved by the eaves-
dropper (and hence secure). Since the user must download at
least L symbols to retrieve the desired message, the difference∑N

n=1(1 − μn)tn − L denotes the interference terms within
the unobserved (by the eavesdropper) portion of the answers.

Lemma 2 (Interference Lower Bound): For the PIR-WTC-
II problem, the interference from undesired messages within
the unobserved portion of the answer strings by the eavesdrop-
per

∑N
n=1(1 − μn)tn − L is lower bounded by,

N∑
n=1

(1 − μn)tn − L + o(L)

≥ I
(
W2:M ; Q[1]

1:N , Y
[1]
1:N |W1, Z

[1]
1:N

)
(48)

We note that Lemma 2 is a generalization of [12, Lemma 5]
to the problem of PIR-WTC-II. If μn = 0 for all n ∈ [1 :
N ], then Lemma 2 reduces to [12, Lemma 5] as Z

[1]
1:N (the

eavesdropper observations) is absent and Y
[1]
1:N = A

[i]
1:N in that

case.
Proof: We start with the right hand side of (48),

I(W 2:M ; Q[1]
1:N , Y

[1]
1:N |W1, Z

[1]
1:N)

(27)= I
(
W2:M ; W1, Q

[1]
1:N , Y

[1]
1:N |Z [1]

1:N

)
(49)

=I
(
W2:M ; Q[1]

1:N , Y
[1]
1:N |Z [1]

1:N

)
+ I

(
W2:M ; W1|A[1]

1:N , Q
[1]
1:N

)
(50)

(9)=I
(
W2:M ; Q[1]

1:N , Y
[1]
1:N |Z [1]

1:N

)
+ o(L) (51)

(32)= I
(
W2:M ; Y [1]

1:N |Q[1]
1:N , Z

[1]
1:N

)
+ o(L) (52)

=H
(
Y

[1]
1:N |Q[1]

1:N , Z
[1]
1:N

)
−H

(
Y

[1]
1:N |Q[1]

1:N , Z
[1]
1:N , W2:M

)
+ o(L) (53)

≤
N∑

n=1

(1 − μn)tn−H
(
W1, Y

[1]
1:N |Q[1]

1:N ,Z
[1]
1:N ,W2:M

)

+H
(
W1|A[1]

1:N ,Q
[1]
1:N ,W2:M

)
+o(L) (54)

(9)=
N∑

n=1

(1 − μn)tn − H
(
W1, Y

[1]
1:N |Q[1]

1:N , Z
[1]
1:N , W2:M

)
+ o(L) (55)

=
N∑

n=1

(1 − μn)tn−H
(
W1|Q[1]

1:N , Z
[1]
1:N , W2:M

)

− H
(
Y

[1]
1:N |Q[1]

1:N , Z
[1]
1:N , W1:M

)
+o(L) (56)

≤
N∑

n=1

(1−μn)tn−H
(
W1|Q[1]

1:N , Z
[1]
1:N , W2:M

)
+o(L) (57)

(28)=
N∑

n=1

(1 − μn)tn − L + o(L) (58)

where (49) follows from the conditional independence of
messages in Lemma 1, (51), (55) follow from the decodability
of W1 given (Q[1]

1:N , A
[1]
1:N ), (52) follows from the conditional

independence of the messages and the queries in Lemma 1,
(54) follows from conditioning reduces entropy and the fact
that H(Y [1]

1:N ) ≤ ∑N
n=1(1 − μn)tn from the WTC-II model,

(57) follows from the non-negativity of the entropy function,
and (58) follows from zero leakage property of W1 from (28)
which implies H(W1|Q[1]

1:N , Z
[1]
1:N , W2:M ) = H(W1) = L. �

In the following lemma, we derive an induction relation
for the right hand side of the expression in (48). This
lemma extends [12, Lemma 6] in two major ways. First,
we incorporate the security constraint in the proof by observ-
ing that (W1:M , Z

[m]
1:N) are independent. Second, and more

significantly, the main difference between this lemma and [12,
Lemma 6] is the fact that not all databases can use a symmetric
scheme due to the asymmetry of the fraction that the eaves-
dropper can observe. Consequently, we denote nm−1 to be the
number of databases that can apply a symmetric scheme when
the retrieval problem is reduced to retrieving message Wm−1

from the set of Wm−1:M messages. For the remaining answer
strings, we directly bound them by their corresponding length
of the unobserved portion

∑N
n=nm−1+1(1 − μn)tn.

Lemma 3 (Induction Lemma): For all m ∈ {2, . . . , M} and
for an arbitrary nm−1 ∈ {1, · · · , N}, the mutual information
term in Lemma 2 can be inductively lower bounded as,

I
(
Wm:M ; Q[m−1]

1:N , Y
[m−1]
1:N |W1:m−1, Z

[m−1]
1:N

)
≥ 1

nm−1

[
I
(
Wm+1:M ; Q[m]

1:N , Y
[m]
1:N |W1:m, Z

[m]
1:N

)

+

⎛
⎝L −

N∑
n=nm−1+1

(1 − μn)tn

⎞
⎠− o(L)

⎤
⎦ (59)

Proof: We start with the left hand side of (59), after
multiplying by nm−1,

nm−1 I
(
Wm:M ; Q[m−1]

1:N , Y
[m−1]
1:N |W1:m−1, Z

[m−1]
1:N

)
(31)= nm−1 I

(
Wm:M ; Q[m−1]

1:N , A
[m−1]
1:N |W1:m−1

)
(60)

≥ nm−1 I
(
Wm:M ; Q[m−1]

1:nm−1
, A

[m−1]
1:nm−1

|W1:m−1

)
(61)

≥
nm−1∑
n=1

I
(
Wm:M ; Q[m−1]

n , A[m−1]
n |W1:m−1

)
(62)
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(4)
=

nm−1∑
n=1

I
(
Wm:M ; Q[m]

n , A[m]
n |W1:m−1

)
(63)

(3)=
nm−1∑
n=1

I
(
Wm:M ; A[m]

n |Q[m]
n , W1:m−1

)
(64)

(30)=
nm−1∑
n=1

I
(
Wm:M ; Y [m]

n |Q[m]
n , W1:m−1, Z

[m]
n

)
(65)

=
nm−1∑
n=1

H
(
Y [m]

n |Q[m]
n , W1:m−1, Z

[m]
n

)
− H

(
Y [m]

n |Q[m]
n , W1:M , Z [m]

n

)
(66)

≥
nm−1∑
n=1

H
(
Y [m]

n |Y [m]
1:n−1, Q

[m]
1:nm−1

, W1:m−1, Z
[m]
1:N

)
− H

(
Y [m]

n |Y [m]
1:n−1, Q

[m]
1:nm−1

, W1:M , Z
[m]
1:N

)
(67)

=
nm−1∑
n=1

I
(
Wm:M ; Y [m]

n |Y [m]
1:n−1, Q

[m]
1:nm−1

, W1:m−1, Z
[m]
1:N

)
(68)

= I
(
Wm:M ; Y [m]

1:nm−1
|Q[m]

1:nm−1
, W1:m−1, Z

[m]
1:N

)
(69)

(32)= I
(
Wm:M ; Q[m]

1:nm−1
, Y

[m]
1:nm−1

|W1:m−1, Z
[m]
1:N

)
(70)

(33)= I
(
Wm:M ; Q[m]

1:N , Y
[m]
1:N |W1:m−1, Z

[m]
1:N

)
− I

(
Wm:M ; Y [m]

nm−1+1:N |Q[m]
1:N , Y

[m]
1:nm−1

, W1:m−1, Z
[m]
1:N

)
(71)

≥ I
(
Wm:M ; Q[m]

1:N , Y
[m]
1:N |W1:m−1, Z

[m]
1:N

)
− H

(
Y

[m]
nm−1+1:N

)
(72)

≥ I
(
Wm:M ; Q[m]

1:N , Y
[m]
1:N |W1:m−1, Z

[m]
1:N

)
−

N∑
n=nm−1+1

(1 − μn)tn

(73)

= I
(
Wm:M ; Wm, Q

[m]
1:N , Y

[m]
1:N |W1:m−1, Z

[m]
1:N

)

− I
(
Wm:M ; Wm|W1:m−1, Q

[m]
1:N , A

[m]
1:N

)
−

N∑
n=nm−1+1

(1 − μn)tn

(74)
(9)= I

(
Wm:M ; Wm, Q

[m]
1:N , Y

[m]
1:N |W1:m−1, Z

[m]
1:N

)

−
N∑

n=nm−1+1

(1 − μn)tn − o(L) (75)

= I
(
Wm:M ; Wm|W1:m−1, Z

[m]
1:N

)
−

N∑
n=nm−1+1

(1 − μn)tn− o(L)

+ I
(
Wm:M ; Q[m]

1:N , Y
[m]
1:N |W1:m, Z

[m]
1:N

)
(76)

(29)= I
(
Wm+1:M ; Q[m]

1:N , Y
[m]
1:N |W1:m, Z

[m]
1:N

)

+

⎛
⎝L −

N∑
n=nm−1+1

(1 − μn)tn

⎞
⎠− o(L) (77)

where (60) follows from the conditional independence of
the messages and Z

[m−1]
1:N in (31) as a consequence of the

security constraint, (61), (62) follow from the non-negativity of

mutual information, (63) follows from the privacy constraint,
(64) follows from the independence of the queries and the
messages, (65) follows from the conditional independence
of the messages and Z

[m]
n in (30) and the non-negativity

of mutual information, (67) follows from conditioning
reduces entropy and

(
Q

[m]
1:nm−1

, Z
[m]
1:N , W1:M , Y

[m]
1:n−1

)
→(

Q
[m]
n , W1:M , Z

[n]
n

)
→ Y

[m]
n , (70) follows from (32)

and the non-negativity of mutual information, (71) follows
from the chain rule and (33), (72) follows from the fact
that I

(
Wm:M ; Y [m]

nm−1+1:N |Q[m]
1:N , Y

[m]
1:nm−1

, W1:m−1, Z
[m]
1:N

)
≤

H
(
Y

[m]
1:nm−1

)
, (73) follows from the fact that conditioning

reduces entropy and H(Y [m]
nm−1+1:N ) ≤ ∑N

n=nm−1+1(1 −
μn)tn in the WTC-II model, (75) follows from the reliability
constraint, (77) follows from the no leakage property of Wm

from (29) as a consequence of the security constraint. Finally,
dividing both sides by nm−1 leads to (59). �

Now, we are ready to prove an explicit upper bound for the
retrieval rate in the PIR-WTC-II problem R(μ) by applying
Lemma 2 and Lemma 3 successively. For a pre-specified
answer string lengths {tn}N

n=1, and an arbitrary sequence
{ni}M−1

i=1 , we can write

N∑
n=1

(1 − μn)tn − L + õ(L)

(48)
≥ I

(
W2:M ; Q[1]

1:N , Y
[1]
1:N |W1, Z

[1]
1:N

)
(78)

(59)≥ 1
n1

(
L −

N∑
n=n1+1

(1−μn)tn

)

+
1
n1

I
(
W3:M ; Q[2]

1:N , Y
[2]
1:N |W1:2, Z

[2]
1:N

)
(79)

(59)
≥
(
L −

N∑
n=n1+1

(1−μn)tn

)
+

1
n1n2

(
L −

N∑
n=n2+1

(1 − μn)tn

)

+
1

n1n2
I
(
W4:M ; Q[3]

1:N , Y
[3]
1:N |W1:3, Z

[3]
1:N

)
(80)

(59)≥ . . .

(59)≥
(
L −

N∑
n=n1+1

(1−μn)tn

)
+

1
n1n2

(
L −

N∑
n=n2+1

(1 − μn)tn

)

+ · · ·+ 1∏M−1
i=1 ni

⎛
⎝L −

N∑
n=nM−1+1

(1 − μn)tn

⎞
⎠ (81)

where õ(L) =
(
1 + 1

n1
+ 1

n1n2
+ · · · + 1�M−1

i=1 ni

)
o(L), (78)

follows from Lemma 2, and the remaining bounding steps
follow from successive application of Lemma 3.

Ordering terms and letting τn = tn�N
i=1 ti

, we have,

(
1 +

1
n1

+
1

n1n2
+· · ·+ 1∏M−1

i=1 ni

)
L

≤
(

φ(0) +
φ(n1)

n1
+· · ·+ φ(nM−1)∏M−1

i=1 ni

)
N∑

n=1

tn+õ(L) (82)
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where φ(�) =
∑N

n=�+1(1 − μn)τn corresponds to the sum
of the unobserved traffic ratios by the eavesdropper from
databases [� + 1 : N ].

We conclude the proof by taking L → ∞. Thus, for an
arbitrary sequence {ni}M−1

i=1 we have

R(τ , μ) =
L∑N

n=1 tn

≤
φ(0) + φ(n1)

n1
+ φ(n2)

n1n2
+ · · · + φ(nM−1)

�M−1
i=1 ni

1 + 1
n1

+ 1
n1n2

+ · · · + 1�M−1
i=1 ni

(83)

The bound in (83) for R(τ , μ) is valid for any arbitrary
sequence {ni}M−1

i=1 . Hence, we obtain the tightest upper bound
for R(τ , μ) by minimizing over the sequence {ni}M−1

i=1 over
the set {1, · · · , N} to get

R(τ , μ) ≤ min
ni∈[N ]

φ(0) + φ(n1)
n1

+ φ(n2)
n1n2

+ · · · + φ(nM−1)
�M−1

i=1 ni

1 + 1
n1

+ 1
n1n2

+ · · · + 1�M−1
i=1 ni

(84)

Finally, since the user and the databases can choose any
suitable traffic ratio vector τ in the set T such that:

T =

{
τ : τn ≥ 0 ∀n ∈ [1 : N ],

N∑
n=1

τn = 1

}
(85)

by maximizing over τ = (τ1, τ2, · · · , τN ) in the set T,
we obtain the following upper bound for R(μ),

R(μ) ≤ max
τ∈T

min
ni∈[N ]

φ(0) + φ(n1)
n1

+ φ(n2)
n1n2

+ · · · + φ(nM−1)�M−1
i=1 ni

1 + 1
n1

+ 1
n1n2

+ · · · + 1�M−1
i=1 ni

(86)

V. ACHIEVABLE SCHEME

In this section, we present a general achievable scheme for
PIR-WTC-II. The scheme builds on the achievable scheme
in [40]. The main idea of the achievable scheme is that since
the databases are eavesdropped by varying eavesdropping
capabilities μ, then it would be beneficial for the user to
query the databases using the PIR scheme under asymmetric
traffic constraints. Furthermore, the databases should encrypt
the answers such that the user can decode the meaningful
transmission by observing the entire answer string, while the
encryption keys span the eavesdropper’s entire observation
space, ensuring the security of downloaded content. The user
and the databases agree on the traffic ratio vector τ that
maximizes the achievable secure PIR rate.

In the following, we illustrate the main ingredients of the
achievable scheme by presenting the case of M = 3 messages
and N = 2 databases for an arbitrary μ.

A. Motivating Example: M = 3 Messages, N = 2 Databases

In this section, we first show an explicit upper bound
for the capacity expression C̄(μ). Then, we show the
capacity-achieving scheme for the concrete example of μ =
(1
4 , 1

2 ). We conclude this section by showing how to extend
the achievable scheme for arbitrary μ.

1) Explicit Upper Bound for M = 3 Messages, N = 2
Databases: From Theorem 1, the upper bound of C̄(μ) is
given by (87), shown at the bottom of the next page.

By observing that τ1 = 1−τ2, this can be explicitly written
as the following linear program:

max
τ2,R

R

s.t. R ≤ 1
3
(1 − μ1) +

[
(1 − μ2) − 1

3
(1 − μ1)

]
τ2

R ≤ 2
5
(1 − μ1) +

[
4
5
(1 − μ2) − 2

5
(1 − μ1)

]
τ2

R ≤ 4
7
(1 − μ1) +

[
4
7
(1 − μ2) − 4

7
(1 − μ1)

]
τ2

0 ≤ τ2 ≤ 1 (88)

Note that the bound corresponding to n1 = 2, n2 = 1 is not
included in (88) as it would be inactive for any μ. Since (88) is
a linear program, the optimal solution exists among the corner
points of the feasible region. The first corner point, is τ

(1)
2 = 0,

which leads to the bound C̄(μ) ≤ 1−μ1
3 . The second corner

point occurs at the intersection of the first two constraints,
i.e., τ

(2)
2 satisfies:

1
3
(1−μ1) +

[
(1 − μ2) − 1

3
(1 − μ1)

]
τ

(2)
2

=
2
5
(1 − μ1) +

[
4
5
(1 − μ2) − 2

5
(1 − μ1)

]
τ

(2)
2 (89)

which leads to,

τ
(2)
2 =

(1 − μ1)
3(1 − μ2) + (1 − μ1)

(90)

with a corresponding bound of C̄(μ) ≤ 2(1−μ1)(1−μ2)
3(1−μ2)+(1−μ1)

.

Similarly, the third corner point τ
(3)
2 occurs at the inter-

section of the second and third constraints, hence τ
(3)
2 =

3(1−μ1)
4(1−μ2)+3(1−μ1)

with the corresponding bound of C̄(μ) ≤
4(1−μ1)(1−μ2)

4(1−μ2)+3(1−μ1)
. Finally, at τ2 = 1, we have the bound

C̄(μ) ≤ 4(1−μ2)
7 which is no larger than 4(1−μ1)(1−μ2)

4(1−μ2)+3(1−μ1) by

the monotonicity of μ, hence it can be ignored.
Consequently, the explicit upper bound for M = 3, N = 2

is given by

C̄(μ) =max
{

1 − μ1

3
,

2(1 − μ1)(1 − μ2)
3(1 − μ2) + (1 − μ1)

,

4(1 − μ1)(1 − μ2)
4(1 − μ2) + 3(1 − μ1)

}
(91)

2) Concrete Example: μ1 = 1
4 , μ2 = 1

2 : Before the retrieval
process, the user permutes the indices of the symbols of
W1, W2, W3 independently, uniformly, and privately. Assume
without loss of generality that W1 is the desired message.
Let ai, bi, ci be the permuted symbols from W1, W2, W3,
respectively. In the case of μ1 = 1

4 , μ2 = 1
2 , the explicit upper

bound in (91) is C̄(μ) = 4(1−μ1)(1−μ2)
4(1−μ2)+3(1−μ1) = 6

17 . To achieve
this bound, we focus first on the meaningful queries, i.e., the
queries without the randomness that is added to satisfy the
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security constraint. From the first database, the user asks
for an individual symbol from every message, i.e., asks for
a1, b1, c1. From database 2, the user does not ask for new
individual symbols but rather exploits the side information
that is generated from database 1 to query for 2-sums from
database 2, i.e., the user asks for a2 + b1, a3 + c1, b2 + c2

from database 2. Then, the user exploits b2 + c2 as side
information to ask for a4 + b2 + c2 from database 1. To get
an integer number of downloads for the meaningful queries,
which covers (1− μn)tn from the downloaded symbols from
the nth database, the scheme is repeated ν times. Since this
scheme gets 4 symbols from database 1 and 3 symbols from
database 2, we choose the repetition factor of the scheme ν
such that:

(1 − μ1)t1 = 4ν ⇒ t1 =
16ν

3
(92)

(1 − μ2)t2 = 3ν ⇒ t2 = 6ν (93)

Then, the minimal ν is ν = 3. Database 1 generates the
independent keys K1 =

(
k

(1)
1 , · · · , k

(1)
4

)
, such that K1 is

picked uniformly from F
4
q . Database 1 encodes these random

keys using a (16, 4) MDS code, to get u[1:16], i.e.,

u[1:16] = MDS16×4K1 (94)

Similarly, database 2 generates K2 =
(
k

(2)
1 , · · · , k

(2)
9

)
uniformly from F

9
q . Database 2 encodes the keys using an

(18, 9) MDS code, to get v[1:16], i.e.,

v[1:18] = MDS18×9K2 (95)

Now, all the meaningful downloads are encrypted by the
coded keys. Furthermore, the user downloads u[13:16] sepa-
rately from database 1, and v[10:18] from database 2. The query
table is shown in Table. I.

For the decodability, since database 1 encodes its keys K1

using a (16, 4) MDS code, by the MDS property, any 4 sym-
bols suffice to reconstruct u[1:16]. The user downloads u[13:16]

separately, hence u[1:12] can be reconstructed and canceled
from the downloads to get the meaningful information only.
Similarly, database 2 encodes the keys K2 using an (18, 9)
MDS code, hence v[10:18] suffice to reconstruct v[1:9] and can
be canceled from the meaningful downloads. Furthermore,
since the side information at any database is obtained from
the undesired symbols downloaded from the second database,
all undesired symbols can be canceled and the user is left only
with a[1:12], which are the desired symbols.

For the security, since μ1 = 1
4 and μ2 = 1

2 , the eavesdropper
can obtain any 4 symbols out of total 16 downloaded symbols
from database 1, and any 9 symbols out of total 18 down-
loaded symbols from database 2. Since K1, K2 are generated
uniformly and independently from F

4
q , F

9
q , respectively, any

4 symbols (ui1 , · · · , ui4) from u[1:16] are independent and

TABLE I

THE QUERY TABLE FOR M = 3, N = 2, µ1 = 1
4

, µ2 = 1
2

uniformly distributed over Fq, and similarly for any 9 symbols
(vj1 , · · · , vj9) from v[1:18]. Consequently, the leakage at the
eavesdropper is upper bounded by:

I(W1:3; Z
[1]
1:2) = H(Z1:2) − H(Z1:2|W1:3) (96)

≤ logq 13 − H

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ui1
...

ui4

vj1
...

vj9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 (97)

For the privacy, as all combinations of the sums are included
in the queries and the indices of the message symbols are
uniformly and independently permuted, the privacy constraint
is satisfied. Hence, the user downloads t1 = 16 symbols from
database 1, and t2 = 18 symbols from database 2. From these
downloads, the user can decode L = 12 symbols from W1.
Hence, R = 12

34 = 6
17 , which matches the upper bound.

3) Achieving the Upper Bound for Arbitrary μ: Now,
we show how to achieve the upper bound in (91) for general
μ. As shown in the example of μ1 = 1

4 , μ2 = 1
2 , the user

downloads μ1 t1 as individual symbols from the coded keys
from database 1, and μ2 t2 as individual symbols from
the coded keys from database 2. This leaves (1 − μ1)t1,
(1−μ2)t2, respectively for meaningful symbols. Furthermore,
each scheme should be repeated ν times to ensure that t1, t2 ∈
N. In the following, we focus on the meaningful symbols
without the coded keys. We show only one repetition of the
scheme.

a) For R(μ) = 1−μ1
3 : To achieve this rate, the user

applies the trivial retrieval scheme [1], and downloads all

C̄(μ) = max
τ∈T

min
ni∈{1,2}

∑2
n=1(1 − μn)τn +

�2
n=n1+1(1−μn)τn

n1
+
�2

n=n2+1(1−μn)τn

n1n2

1 + 1
n1

+ 1
n1n2

(87)
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TABLE II

THE MEANINGFUL SYMBOLS FOR M = 3, N = 2

TO ACHIEVE
2(1−µ1)(1−µ2)

3(1−µ2)+(1−µ1)

messages from database 1, i.e., the user downloads a1, b1, c1

from database 1. Hence, t2 = 0 and

(1 − μ1)t1 = 3ν ⇒ t1 =
3ν

1 − μ1
(98)

where ν is chosen such that t1 ∈ N. From every repetition,
the user gets 1 symbol from W1. Hence, L = ν. The user
asks for μ1 t1 = 3μ1ν

1−μ1
individual coded symbols from the

keys, and the database encrypts the downloads with coded keys
constructed from a ( 3ν

1−μ1
, 3μ1ν

1−μ1
) MDS code. This ensures the

security. The achievable rate in this case is

R =
L

t1 + t2
=

ν
3ν

1−μ1

=
1 − μ1

3
(99)

b) For R(μ) = 2(1−μ1)(1−μ2)
3(1−μ2)+(1−μ1) : To achieve this rate,

the user downloads individual symbols from all messages from
database 1, i.e., the user downloads a1, b1, c1 from database 1.
The user combines the two undesired symbols b1, c1 into a
2-sum b1 + c1 and uses it as a side information in database
2. The query table for one repetition of the scheme for the
meaningful symbols (without showing the keys) is shown
in Table II.

In this case, the scheme is repeated ν times such that
t1, t2 ∈ N,

(1 − μ1)t1 = 3ν ⇒ t1 =
3ν

1 − μ1
(100)

(1 − μ2)t2 = 1ν ⇒ t2 =
ν

1 − μ2
(101)

Database 1 encodes μ1t1 = 3νμ1
1−μ1

independent and uni-

formly distributed keys using a ( 3ν
1−μ1

, 3νμ1
1−μ1

) MDS code to
obtain the coded keys that are added to each download.
Similarly, database 2 encodes μ2t2 = νμ2

1−μ2
keys using a

( ν
1−μ2

, νμ2
1−μ2

) MDS code to obtain the coded symbols. Using
this scheme, the user decodes L = 2ν from the desired
messages. Consequently,

R =
L

t1 + t2
=

2ν
3ν

1−μ1
+ ν

1−μ2

=
2(1 − μ1)(1 − μ2)

3(1 − μ2) + (1 − μ1)

(102)

c) For R(μ) = 4(1−μ1)(1−μ2)
4(1−μ2)+3(1−μ1) : An instance for this

scheme is the μ1 = 1
4 , μ2 = 1

2 example. To avoid rep-
etition, we give only the general rate. As shown in the
example, t1 = 4ν

1−μ1
, and t2 = 3ν

1−μ2
. From every rep-

etition, the user can decode 4 symbols, hence L = 4ν.
Thus,

R =
L

t1 + t2
=

4ν
4ν

1−μ1
+ 3ν

1−μ2

=
4(1 − μ1)(1 − μ2)

4(1 − μ2) + 3(1 − μ1)

(103)

Fig. 4. Capacity for M = 3, N = 2 as a function of µ1 and µ2.

Fig. 5. Partitions of μ space according to the active capacity expression for
M = 3, N = 2.

This completes the description of the capacity-achieving
scheme for PIR-WTC-II for M = 3, N = 2, and arbitrary
μ. The capacity region C(μ) is shown in Fig. 4. In Fig. 5,
we illustrate the partitioning of the μ space in terms of the
active capacity expression; note by convention μ2 ≥ μ1.

B. General Achievable Scheme

In this section, we present the general achievable scheme
for PIR-WTC-II that achieves the retrieval rate in Theorem 2.
The core of the achievable scheme is the achievable scheme
of the corner points in the PIR problem under asymmetric
traffic constraints in [40]. A new ingredient is needed to satisfy
the security constraint, namely, encrypting the answer strings
by random keys. The nth database uses a random key Kn

of length μntn that is sufficient to span the space of the
eavesdropper’s observations. The nth database encodes Kn

using a (tn, μntn) MDS code and uses the resulting codeword
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to encrypt each downloaded symbol from the meaningful
downloads in addition to μntn individual symbols of coded
key symbols only. For completeness, we include all related
details of the scheme in [40] in addition to the new ingredients.

We use the same terminology as in [40]. Let sn ∈
{0, 1, · · · , M − 1} denote the number of side information
symbols that are used simultaneously in the initial round of
downloads at the nth database. For a given non-decreasing
sequence {ni}M−1

i=0 ⊂ {1, · · · , N}M , the databases are divided
into groups, such that group 0 contains database 1 through
database n0, group 1 contains n1−n0 databases starting from
database n0 + 1, and so on.

Hence, let sn = i for all ni−1 + 1 ≤ n ≤ ni with n−1 =
0 by convention. Denote S = {i : sn = i for some n ∈
{1, · · · , N}}. We follow the round and stage definitions in
[22]. The kth round is the download queries that admit a sum
of k different messages (k-sum in [12]). A stage of the kth
round is a query block of the kth round that exhausts all

(
M
k

)
combinations of the k-sum. Denote y�[k] to be the number
of stages in round k downloaded from the nth database, such
that n�−1 +1 ≤ n ≤ n�. The details of the achievable scheme
are as follows:

1) Calculation of the number of repetitions: The user and
the databases agree on appropriate answer string lengths
tn(n, μ), n = 1, · · · , N . To that end, the scheme associ-
ated with n = {ni}M−1

i=0 is repeated ν times such that:

tn(n, μ) =
νDn(n)
1 − μn

∈ N, ∀n ∈ {1, · · · , N} (104)

where Dn(n) is the number of meaningful downloads
corresponding to one repetition of the achievable scheme
associated with the monotone non-decreasing sequence
n = {ni}M−1

i=0 .
2) Preparation of the keys: The nth database generates a

random key Kn. The random key Kn is of length μntn,
such that elements of Kn are independent and uniformly
distributed over Fq . The nth database encodes Kn to
an artificial noise vector u

(n)
[1:tn] using a (tn, μntn) MDS

code, i.e.,

u
(n)
[1:tn] = MDStn×μntnKn (105)

3) Initialization at the user side: The user permutes each
message independently and uniformly using a random
interleaver, i.e.,

xm(i) = Wm(πm(i)), i ∈ {1, · · · , L} (106)

where xm(i) is the ith symbol of the permuted Wm,
πm(·) is a random interleaver for the mth message that
is chosen independently, uniformly, and privately at the
user’s side.

4) Initial download: From the nth database where 1 ≤ n ≤
n0, the user downloads

∏
s∈S

(
M−2
s−1

)
symbols from the

desired message. The user sets the round index k = 1.
I.e., the user starts downloading the desired symbols from
y0[1] =

∏
s∈S

(
M−2
s−1

)
different stages.

5) Message symmetry: To satisfy the privacy constraint,
for each stage initiated in the previous step, the user

completes the stage by downloading the remaining
(
M−1
k−1

)
k-sum combinations that do not include the desired
symbols, in particular, if k = 1, the user downloads∏

s∈S
(
M−2
s−1

)
individual symbols from each undesired

message.
6) Database symmetry: We divide the databases into groups.

Group � ∈ S corresponds to databases n�−1 + 1 to
n�. Database symmetry is applied within each group
only. Consequently, the user repeats step 2 over each
group of databases, in particular, if k = 1, the user
downloads

∏
s∈S

(
M−2
s−1

)
individual symbols from each

message from the first n0 databases (group 1).
7) Exploitation of side information: The initial exploitation

of side information is group-dependent as well. Specif-
ically, the undesired symbols downloaded within the
kth round (the k-sums that do not include the desired
message) are used as side information in the (k + 1)th
round. This exploitation of side information is performed
by downloading (k + 1)-sum consisting of 1 desired
symbol and a k-sum of undesired symbols only that were
generated in the kth round. However, the main difference
from [12] is that, for the nth database, if sn > k, then
this database does not exploit the side information gen-
erated in the kth round. Consequently, the nth database
belonging to the �th group exploits the side information
generated in the kth round from all databases except itself
if sn ≤ k. Moreover, for sn = k, extra side information
can be used in the nth database. This is due to the fact that
the user can form n0

∏
s∈S\{sn}

(
M−2
s−1

)
extra stages of

side information by constructing k-sums of the undesired
symbols in round 1 from the databases in group 0.

8) Repeat steps 5, 6, 7 after setting k = k +1 until k = M .
9) Repetition of the scheme: Repeat steps 4, · · · , 8 for a total

of ν repetitions.
10) Shuffling the order of the queries: By shuffling the order

of the queries uniformly, all possible queries can be
made equally likely regardless of the message index. This
guarantees the privacy.

11) Encryption of the downloads: The database encrypts
each meaningful download by adding one symbol
from u

(n)
[1:(1−μn)tn]. Furthermore, the user downloads

u
(n)
[(1−μn)tn+1:tn] coded key symbols individually. This

guarantees the security.

C. Decodability, Privacy, Security, and Achievable Rate

1) Decodability: To see the decodability, we note that
the user receives μntn individual artificial noise symbols
u

(n)
[(1−μn)tn+1:tn] from the nth database. From the MDS prop-

erty of the (tn, μntn) MDS code, any μntn coded symbols
suffice to reconstruct the entire tn coded symbols. Hence,
the user can reconstruct and cancel u

(n)
[1:tn] by the knowledge

of u
(n)
[(1−μn)tn+1:tn]. Consequently, after canceling the artificial

noise symbols, the user is left with only the meaningful
symbols in the answer strings.

Now, by construction, in the (k+1)th round at the nth data-
base, the user exploits the side information generated in the kth
round in the remaining active databases by adding 1 symbol of
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the desired message with k-sum of undesired messages which
was downloaded previously in the kth round. Moreover, for
the nth database belonging to the �th group at the (� + 1)th
round, the user adds every � symbols of the undesired symbols
downloaded from group 0 to make one side information
symbol. Since the user downloads

∏
�∈S

(
M−2
�−1

)
from every

database in the first n0 databases (group 0), the user can exploit
such side information to initiate n0

∏
�∈S\{�}

(
M−2
�−1

)
stages in

the (� + 1)th round from every database in group �. Since
all side information symbols used in the (k + 1)th round is
decodable in the kth round or from round 1, the user cancels
out these side information and is left with symbols from the
desired message.

2) Privacy: The privacy of the scheme follows from the
privacy of the inherent PIR scheme under asymmetric traffic
constraints. Specifically, for every stage of the kth round
initiated in the exploitation of the side information step, all(
M
k

)
combinations of the k-sum are included at each round.

Thus, the structure of the queries is the same for any desired
message. The privacy constraint in (4) is satisfied by the
random and independent permutation of each message and
the random shuffling of the order of the queries. This ensures
that all queries are equally likely independent of the desired
message index.

3) Security: From the nth database key Kn is of length
μntn. The elements of Kn are independent and uniformly dis-
tributed in Fq. The nth database encodes Kn into the artificial
noise vector u

(n)
[1:tn] using a (tn, μntn) MDS code. Since any

μntn columns of the generator matrix of the MDS code are
full rank, the mapping from Kn to any μntn symbols from the
artificial noise vector Un = [u(n)

i1
, · · · , u

(n)
iμntn

] is a bijection,
and consequently, Un ∼ Kn, where ∼ denotes statistical
equivalence. Moreover, since there is no shared randomness
between databases, the elements of (K1, · · · , KN), and con-
sequently the elements of (U1, · · · , UN) are independent and
uniformly distributed in Fq .

Now, the eavesdropper chooses to observe μntn symbols
from the nth answer string A

[i]
n . Denote the eavesdropper

observations by Z
[i]
n ∈ F

μntn
q . Since all downloaded sym-

bols are encrypted using u
(n)
[1:tn] (counting the downloads

that contain solely the artificial noise). Denote the artificial
noise symbols within Z

[i]
n by Un. Hence, the leakage at the

eavesdropper can be upper bounded by:

I(W1:M ; Z [i]
1:N) = H(Z [i]

1:N ) − H(Z [i]
1:N |W1:M ) (107)

≤
N∑

n=1

μntn − H

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

U1

U2

...
UN

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ (108)

=
N∑

n=1

μntn −
N∑

n=1

μntn = 0 (109)

where (109) follows from the fact that any μntn artificial noise
symbols are independent. Note that the units of calculation is
q-ary symbols.

4) Achievable Rate: For the calculation of the achievable
rate, we focus first on one repetition of the scheme. Without
adding the artificial noise symbols, the structure of one repe-
tition of our scheme is exactly as [40]. The recursive structure
of the achievable scheme can be described using the following
system of difference equations that relate the number of stages
in the databases belonging to a specific group as shown in
[40, Theorem 2]:

y0[k] = (n0−1)y0[k−1] +
∑

j∈S\{0}
(nj−nj−1)yj [k−1]

y1[k] = (n1−n0−1)y1[k−1] +
∑

j∈S\{1}
(nj−nj−1)yj [k−1]

y�[k] = n0ξ�δ[k−�−1] + (n�−n�−1−1)y�[k − 1]

+
∑

j∈S\{�}
(nj−nj−1)yj [k−1], � ≥ 2 (110)

where y�[k] is the number of stages in the kth round in a
database belonging to the �th group, i.e., for the nth database,
such that n�−1 + 1 ≤ n ≤ n�.

Hence, to calculate Dn(n) such that n�−1 ≤ n ≤ n�,
which is the number of meaningful downloads from the
nth database belonging to the �th group, corresponding to
one repetition of the achievable scheme associated with the
sequence n = {ni}M−1

i=0 , we note that for any stage in the
kth round, the user downloads

(
M−1
k−1

)
desired symbols from

a total of
(
M
k

)
downloads. Therefore,

Dn(n) =
M∑

k=1

(
M

k

)
y�[k], n�−1 ≤ n ≤ n� (111)

Consequently, the total download
∑N

n=1 tn(n) from all
databases from all repetitions is calculated by observing (104),

N∑
n=1

tn(n, μ)

=
N∑

n=1

νDn(n)
1 − μn

(112)

= ν

[
n0∑

n=1

∑M
k=1

(
M
k

)
y0[k]

1 − μn
+

n1∑
n=n0+1

∑M
k=1

(
M
k

)
y1[k]

1 − μn
+ · · ·

]

(113)

= ν
∑
�∈S

n�∑
n=n�−1+1

∑M
k=1

(
M
k

)
y�[k]

1 − μn
(114)

Furthermore, the total desired symbols from all databases from
all repetitions is given by,

L(n) = ν
∑
�∈S

M∑
k=1

(
M − 1
k − 1

)
y�[k](n� − n�−1) (115)

Thus, the following rate is achievable corresponding to the
sequence n,

R(n, μ) =

∑
�∈S

∑M
k=1

(
M−1
k−1

)
y�[k](n� − n�−1)∑

�∈S
∑n�

n=n�−1+1

�M
k=1 (M

k )y�[k]

1−μn

(116)
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Since this scheme is achievable for every monotone
non-decreasing sequence n = {ni}M−1

i=0 , the following rate
is achievable,

R(μ) = max
n0≤···≤nM−1∈[N ]

∑
�∈S

∑M
k=1

(
M−1
k−1

)
y�[k](n�−n�−1)∑

�∈S
∑n�

n=n�−1+1

�M
k=1 (M

k )y�[k]

1−μn

(117)

D. Optimality for M = 2 and M = 3 Messages

In this section, we prove the optimality of our scheme for
M = 2 and M = 3. The proof relies on relating the upper
bound for the PIR-WTC-II problem with the upper bound
for the PIR problem under asymmetric traffic constraints.
From the settled optimality of the achievable scheme of the
meaningful symbols for M = 2, M = 3 for the PIR
problem under asymmetric traffic constraints, we conclude the
optimality of our scheme for PIR-WTC-II.6

We return to the upper bound in Theorem 1, as
in (118)-(121), shown at the bottom of the next page, hence,

C̄(μ) = max
τ∈T

N∑
n=1

(1 − μn)τn · C̃(τ̃ ) (122)

where τ̃n is obtained by the change of variable τ̃n =
(1−μn)τn�
N
i=1(1−μi)τi

and the inner problem C̃(τ̃ ) is defined as:

C̃(τ̃ ) = min
ni∈[N ]

1 +
1
n1

N∑
n=n1+1

τ̃n + · · · + 1∏M−1
i=1 ni

N∑
n=nM−1+1

τ̃n

1 + 1
n1

+ · · · + 1�M−1
i=1 ni

(123)

The inner problem is precisely the upper bound for the
PIR problem under asymmetric traffic constraints τ̃ in
[40, Theorem 1].

In the following lemma, we show that the solution of C̄(μ)
exists at one of the corner points of C̃(τ̃ ).

Lemma 4: The solution of C̄(μ) exists at one of the
corner points of C̃(τ̃ ) after the change of variables τn =
�N

i=1(1−μi)τi

(1−μn) .

Proof: To show this, we note that the upper bound in
Theorem 1 can be written as the following linear program as
discussed in Remark 3:

max
τ ,R

R

s.t. R ≤
φ(0) + φ(n1)

n1
+ · · · + φ(nM−1)

�M−1
i=1 ni

1 + 1
n1

+ · · · + 1�M−1
i=1 ni

, ∀n

N∑
n=1

τn = 1, τn ≥ 0, n = 1, · · · , N (124)

6Alternatively, for a specified N , μ, we can prove the optimality by showing
that the KKT conditions of the upper bound optimization problem are satisfied
by our achievable scheme.

Equivalently, from (120), we can write the optimization
problem corresponding to the upper bound as:

max
τ∈T,R̃,τ̃

N∑
n=1

(1 − μn)τn · R̃

s.t. R̃≤
1 +

1
n1

N∑
n=n1+1

τ̃n + · · · + 1∏M−1
i=1 ni

N∑
n=nM−1+1

τ̃n

1 + 1
n1

+ · · · + 1
�M−1

i=1 ni

, ∀n

N∑
n=1

τ̃n = 1, τ̃n ≥ 0, n = 1, · · · , N

τ̃n =
(1 − μn)τn∑

i(1 − μi)τi
, n = 1, · · · , N (125)

We note that the constraints of this equivalent problem is the
same as constraints of the upper bounds of the PIR problem
under the asymmetric traffic constraints τ̃ .

Since there are a finite number of constraints (NM−1 + 2
constraints), the feasible region is a polyhedron, thus, the solu-
tion for C̄(μ) resides at a corner point of this polyhedron.

For any corner point of this optimization problem, (N + 1)
constraints are active (i.e., met with equality) and linearly
independent.

Since these constraints take the form of

R =
φ(0) + φ(n1)

n1
+ · · · + φ(nM−1)�M−1

i=1 ni

1 + 1
n1

+ · · · + 1�M−1
i=1 ni

(126)

by dividing both sides by
∑N

i=1(1− μi)τi > 0, the constraint
become

R̃ =
R∑N

i=1(1 − μi)τi

=
1 + 1

n1

∑N
n=n1+1̃τn + · · · + 1�M−1

i=1 ni

∑N
n=nM−1+1̃τn

1 + 1
n1

+ · · · + 1�M−1
i=1 ni

(127)

Hence, the condition of intersection of the active constraints of
the C̄(μ) is the same as the condition of the intersection of the
bounds of C̃(τ̃ ) after the change of variables. Thus, it suffices
to consider the corner points of the inner problem and map the
solution using the change of variables τn =

�N
i=1(1−μi)τi

(1−μn) . �
Consequently, for a corner point of the inner problem

(τ̃ ∗, C̃(τ̃ ∗)), we have the reverse change of variables

τ∗
n = τ̃∗

n ·
∑N

i=1(1 − μi)τ∗
i

1 − μn
(128)

Now, since
∑N

n=1 τ∗
n = 1,

∑N
n=1 τ̃∗

n ·
�N

i=1(1−μi)τ
∗
i

1−μn
= 1,

which leads to

N∑
i=1

(1 − μi)τi =
1∑N

n=1
τ̃n

1−μn

(129)

Denote C̄(τ̃ ∗, μ) to be the upper bound of the PIR-WTC-II
problem corresponding to the corner point (τ̃ ∗, C̃(τ̃ ∗)) of the
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inner problem, hence from (121), we have

C̄(τ̃ ∗, μ) =
N∑

i=1

(1 − μi)τi · C̃(τ̃ ∗) (130)

=
C̃(τ̃ ∗)∑N
n=1

τ̃n

1−μn

(131)

Thus, the upper bound can be written in terms of the corner
points of the inner problem {τ̃ (i)}θ

i=1, where θ is the total
number of corner points as

C̄(μ) = max
i∈{1,··· ,θ}

C̃(τ̃ (i))∑N
n=1

τ̃ (i)

1−μn

(132)

1) M = 2 Messages: From [40], we know that for M = 2,
all the corner points of the inner problem are in fact optimal.
For an increasing sequence (n0, n1), the corner points are
characterized by:

τ̃n =

⎧⎨
⎩

n0+1
n0(n1+1) , 1 ≤ n ≤ n0

1
n1+1 , n0 + 1 ≤ n ≤ n1

0, n1 + 1 ≤ n ≤ N

⇒ C̃(τ̃ ) =
n1

n1 + 1
(133)

Hence, the upper bound for M = 2 can be explicitly written
as:

C̄(μ)

= max
n0,n1∈[N ]

n1

n1 + 1
n0∑

n=1

n0+1
n0(n1+1)(1−μn)

+
n1∑

n=n0+1

1
(n1+1)(1−μn)

(134)

= max
n0,n1∈[N ]

n0n1∑n0
n=1

n0+1
1−μn

+
∑n1

n=n0+1
n0

1−μn

(135)

From the achievability side, for a sequence (n0, n1), the sys-
tem of difference equations in Theorem 2 reduces to

y0[k] = (n0 − 1)y0[k − 1] (136)

y1[k] = n0y0[k − 1] (137)

for k = 1, 2, where y0[1] = 1, and y1[1] = 0. Hence, y0[2] =
n0 − 1, and y1[2] = n0. Consequently, the achievable rate in
Theorem 2 is explicitly evaluated for M = 2 as:

R(μ) = max
n0,n1∈[N ]

∑
�∈S

∑M
k=1

(
M−1
k−1

)
y�[k](n�−n�−1)∑

�∈S
∑n�

n=n�−1+1

�
M
k=1 (M

k )y�[k]

1−μn

(138)

= max
n0,n1∈[N ]

n0n1∑n0
n=1

n0+1
1−μn

+
∑n1

n=n0+1
n0

1−μn

(139)

which matches the upper bound and concludes the optimality
for M = 2.

2) M = 3 Messages: Similarly, from [40], the corner
points of the inner problem occur for an increasing sequence
(n0, n1, n2). The corner points are characterized by:

τ̃n =

⎧⎪⎪⎨
⎪⎪⎩

n0n1+n0+1
n0(n2n1+n1+1) , 1 ≤ n ≤ n0

n1+1
n2n1+n1+1 , n0 + 1 ≤ n ≤ n1

n1
n2n1+n1+1 n1 + 1 ≤ n ≤ n2

0, n2 + 1 ≤ n ≤ N

⇒ C̃(τ̃ ) =
n1n2

n1n2 + n1 + 1
(140)

Hence, the upper bound in (132) is explicitly written as:

C̄(μ) =max
ni∈[N ]

n0n1n2
n0∑

n=1

n0n1+n0+1
1−μn

+
n1∑

n=n0+1

n0n1+n0

1−μn
+

n2∑
n=n1+1

n0n1

1−μn

(141)

From the achievability side, we have the following system
of difference equations for k = 1, 2, 3:

y0[k] = (n0 − 1)y0[k − 1] + (n1 − n0)y1[k − 1]
+ (n2 − n1)y2[k − 1] (142)

y1[k] = n0y0[k − 1] + (n1 − n0 − 1)y1[k − 1]
+ (n2 − n1)y2[k − 1] (143)

y2[k] = n0δ[k − 3] + n0y0[k − 1] + (n1 − n0)y1[k − 1]
+ (n2 − n1 − 1)y2[k − 1] (144)

with the initial conditions y0[1] = 1, y1[1] = 0, and y2[1] =
y2[2] = 0. Evaluating y�[k], for � = 0, 1, 2, and k = 1, 2, 3
recursively leads to y0[2] = n0 − 1, y1[2] = n0, y0[3] =

C̄(μ) = max
τ∈T

min
ni∈{1,··· ,N}

∑N
n=1(1 − μn)τn +

�N
n=n1+1(1−μn)τn

n1
+ · · · +

�N
n=nM−1+1(1−μn)τn

�M−1
i=1 ni

1 + 1
n1

+ · · · + 1
�M−1

i=1 ni

(118)

= max
τ∈T

N∑
n=1

(1 − μn)τn · min
ni∈{1,··· ,N}

1 +
�N

n=n1+1(1−μn)τn

n1·
�N

n=1(1−μn)τn
+ · · · +

�N
n=nM−1+1(1−μn)τn

�M−1
i=1 ni·

�N
n=1(1−μn)τn

1 + 1
n1

+ · · · + 1�M−1
i=1 ni

(119)

= max
τ∈T

N∑
n=1

(1 − μn)τn · min
ni∈{1,··· ,N}

1 + 1
n1

∑N
n=n1+1̃τn + · · · + 1�M−1

i=1 ni

∑N
n=nM−1+1̃τn

1 + 1
n1

+ · · · + 1�M−1
i=1 ni

(120)

= max
τ∈T

N∑
n=1

(1 − μn)τn · C̃(τ̃ ) (121)
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n1n0 − 2n0 + 1, y1[3] = n1n0 − 2n0, and y2[3] = n1n0.
Consequently, the achievable rate from Theorem 2 is explicitly
expressed as:

R(μ) = max
n0,n1∈[N ]

∑
�∈S

∑M
k=1

(
M−1
k−1

)
y�[k](n� − n�−1)∑

�∈S
∑n�

n=n�−1+1

�M
k=1 (M

k )y�[k]

1−μn

(145)

=max
ni∈[N ]

n0n1n2
n0∑

n=1

n0n1+n0+1
1−μn

+
n1∑

n=n0+1

n0n1+n0

1−μn
+

n2∑
n=n1+1

n0n1

1−μn

(146)

which matches the upper bound and concludes the optimality
for M = 3.

Remark 10: We note that the meaningful portion of the
answer strings follows the combinatorial water-filling shown
in [40] for M = 2 and M = 3. This means that the
less threatened (more secure) databases are returning more
meaningful symbols than the less secure ones, hence, τ̃n ≥ τ̃k,
if n < k. However, the length of the entire answer string
including the artificial noise symbols may not follow the same
structure, e.g., in the example in Section V-A.2, we see that
t1 = 16 and t2 = 18, i.e., τ2 > τ1, while τ̃2 < τ̃1.

E. Achievable Rate for N = 2 and Arbitrary M

Following the analysis of this case in [40], let s2 ∈
{0, · · · , M − 1} be the number of side information symbols
that are used simultaneously in the initial round download in
the second database.

Hence, the user starts with downloading
(
M−2
s2−1

)
stages of

individual symbols (i.e., the user downloads M
(
M−2
s2−1

)
symbols

from round 1 from all messages) from the first database to
create 1 stage of side information in the (s2+1)th round. After
the initial exploitation of side information, the two databases
exchange side information. More specifically, from database
1 in the (s2 + 2k)th round, where k = 1, · · · ,

⌊
M−s2

2

⌋
,

the user exploits the side information generated in database
2 in the (s2 +2k−1)th round to download

(
M−1

s2+2k−1

)
desired

symbols from total download in the (s2 + 2k)th round of(
M

s2+2k

)
. Similarly from database 2, in the (s2 + 2k + 1)th

round, where k = 0, · · · ,
⌊

M−s2−1
2

⌋
, the user exploits the

side information generated in database 1 in the (s2 + 2k)th
round, and downloads

(
M−1
s2+2k

)
desired symbols from total of(

M
s2+2k+1

)
downloads in the (s2+2k+1)th round. Thus, using

the calculation in [40], we have

D1(s2) = M

(
M − 2
s2 − 1

)
+
�M−s2

2 
∑
k=1

(
M

s2 + 2k

)
(147)

D2(s2) =
�M−s2−1

2 
∑
k=0

(
M

s2 + 2k + 1

)
(148)

where Dn(s2) corresponds to the length of the meaningful
downloads within the nth database from one repetition of the

scheme, therefore, the total download of the scheme is given
by:

t1(s2)+t2(s2)

=
D1(s2)
1 − μ1

+
D2(s2)
1 − μ2

(149)

=
1

1 − μ1

⎡
⎢⎣M

(
M − 2
s2 − 1

)
+
�M−s2

2 
∑
k=1

(
M

s2 + 2k

)⎤⎥⎦

+
1

1 − μ2

⎡
⎢⎣
�M−s2−1

2 
∑
k=0

(
M

s2 + 2k + 1

)⎤⎥⎦ (150)

The message length does not change due to the security
constraint, hence, directly from [40], we have

L(s2) =
(

M − 2
s2 − 1

)
+

M−s2−1∑
k=0

(
M − 1
s2 + k

)
(151)

Consequently, the achievable rate is explicitly given as:

R(μ) = max
s2∈{0,··· ,M−1}

L(s2)
t1(s2) + t2(s2)

(152)

including the corner point corresponding to the trivial rate,
i.e., when the user deactivates the retrieval process from
the second database, leading to (26).

F. Further Examples

In this section, we present further examples to clarify the
achievable scheme for additional tractable values of M , N .

1) M = 4 Messages, N = 2 Databases: In this example,
we show the achievable scheme for M = 4, N = 2,
and arbitrary μ. This example helps us to show that our
achievable scheme does not achieve the capacity for all μ.
For M = 4, we have M +1 = 5 possible achievable schemes,
corresponding to s2 = {0, 1, · · · , 3} and one other achievable
scheme corresponding to the trivial scheme of downloading the
contents of database 1. Let ai, bi, ci, di denote the randomly
permuted symbols from W1, W2, W3, W4, respectively. In all
achievable schemes, the nth database generates a key Kn

with length μntn and encodes it to generate an artificial noise
vector u

(n)
[1:tn] using a (tn, μntn) MDS code. The nth database

provides μntn individual symbols of artificial noise. In all
cases, the scheme is repeated ν times such that:

tn(n, μ) =
νDn(n)
1 − μn

∈ N, ∀n ∈ {1, 2} (153)

Now, we focus on one repetition of the achievable scheme.
We further concentrate on the meaningful queries, i.e., before
adding the artificial noise vector.

a) The Trivial Scheme Corresponding to n = (1, 1, 1, 1):
In one repetition of the scheme, the user downloads
a1, b1, c1, d1 from database 1. Hence, D1(n) = 4. Conse-
quently, t1(n, μ) = 4ν

1−μ1
. As the user decodes 1 symbol from

W1 in each repetition, L1(n) = ν. Hence, R(n, μ) = 1−μ1
4

is achievable.
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TABLE III

MEANINGFUL QUERIES FOR M = 4, N = 2, s2 = 3

TABLE IV

MEANINGFUL QUERIES FOR M = 4, N = 2, s2 = 2

b) The Scheme Corresponding to n = (1, 1, 1, 2): In this
case, s2 = 3, i.e., the user exploits 3 side-information symbols
simultaneously in database 2, i.e., focusing on one repetition of
the scheme, from database 1, the user downloads a1, b1, c1, d1.
The user combines b1+c1+d1 and uses this side information to
get a2 from database 2, i.e., the user downloads a2 +b1+c1 +
d1. Hence, D1(n) = 4, D2(n) = 1. Consequently, t1(n, μ) =

4ν
1−μ1

, and t2(n, μ) = ν
1−μ2

. As the user decodes 2 symbols
from W1 in each repetition, L1(n) = 2ν. Hence, R(n, μ) =

2
4

1−μ1
+ 1

1−μ2

is achievable. The query table of the meaningful

queries (without the artificial noise) for one repetition of the
scheme is shown in Table III.

c) The Scheme Corresponding to n = (1, 1, 2, 2): In this
case s2 = 2, hence the user combines every 2 undesired
symbols from database 1 to form one side information symbol.
To that end, the user downloads

(
M−2
s2−1

)
= 2 stages of individ-

ual symbols (1-sum) from database 1, so that the user forms
2-sums that can be used in database 2 as side information to
start round 3 directly. More specifically, the user downloads
a3 + b1 + c1, a4 + b2 + d1, a5 + c2 + d2 from database
2 taking into considerations that all these undesired symbols
are decodable from database 1. The user completes the stage
by downloading b3 + c3 + d3 that can be further exploited
in database 1 by downloading a6 + b3 + c3 + d3. Hence,
D1(n) = 9, D2(n) = 4. Consequently, t1(n, μ) = 9ν

1−μ1
and

t2(n, μ) = 4ν
1−μ2

. As the user decodes 6 symbols from W1 in
each repetition, L(n) = 6ν. Hence, R(n, μ) = 6

9
1−μ1

+ 4
1−μ2

is

achievable. The query table of the meaningful queries (without
the artificial noise) for one repetition of the scheme is shown
in Table IV.

d) The Scheme Corresponding to n = (1, 2, 2, 2): In
this case s2 = 1, hence the user exploits the individual
undesired symbols downloaded from database 1 directly as a
side information in database 2. To that end, the user exploits
the side information generated in round 1 by downloading
a2 + b1, a3 + c1, and a4 + d1. The user completes the stage
by downloading undesired symbols consisting of 2-sums that
do not include ai, hence the user downloads b2 + c2, b3 + d2,
c3 + d3. The undesired symbols are exploited in database 1,

TABLE V

THE QUERY TABLE FOR M = 4, N = 2, s2 = 1

thus the user downloads a5 + b2 + c2, a6 + b3 + d2, and
a7 + c3 + d3. The user completes the stage by downloading
b4 + c4 + d4, which can be exploited in database 2 by
downloading a8+b4+c4+d4. Hence, D1(n) = 8, D2(n) = 7.
Consequently, t1(n, μ) = 8ν

1−μ1
, and t2(n, μ) = 7ν

1−μ2
. As the

user decodes 8 symbols from W1 in each repetition, L(n) =
8ν. Hence, R(n, μ) = 8

8
1−μ1

+ 7
1−μ2

is achievable. The query

table of the meaningful queries (without the artificial noise)
for one repetition of the scheme is shown in Table V.

As in the case of M = 3, under the assumption that μ1 ≤
μ2, the symmetric scheme in [12] does not achieve any larger
retrieval rates at any μ. Hence, the following rate is achievable,

R(μ)=max

{
1−μ1

4
,

2
4

1−μ1
+ 1

1−μ2

,
6

9
1−μ1

+ 4
1−μ2

,
8

8
1−μ1

+ 7
1−μ2

}

(154)

In Fig. 6, we illustrate the partitioning of the μ space in
terms of the active achievable scheme. In Fig. 7, we plot the
gap versus μ for M = 4, N = 2. We note that the gap is
upper bounded by 0.0051 and this gap exists only for specific
regimes of μ.

2) M = 2 Messages, N = 3 Databases: In this example,
we show the achievable scheme for M = 2, N = 3, and
arbitrary μ. Again we focus on the meaningful queries in our
exposition to avoid repetition. The artificial noise incorporation
is exactly as in the previous examples. Let ai, bi denote the
randomly permuted symbols from W1, W2, respectively.

a) The Trivial Scheme Corresponding to (n0, n1) = (1, 1):
In this case, the user deactivates the retrieval from database
2. Hence, in one repetition, the user downloads a1, b1 from
database 1 only. Therefore, D1(1, 1) = 2 which leads to
t1(1, 1, μ) = 2ν

1−μ1
. From one repetition of the scheme,

the user decodes 1 symbol from W1, hence L = ν symbols.
This gives the rate R(1, 1, μ) = 1−μ1

2 .
b) The Scheme Corresponding to (n0, n1) = (1, 2): In this

case, the user exploits the undesired symbols in database 1 as a
side information in database 2 only and deactivates database 3.
Hence, in one repetition, the user downloads a1, b1 from
database 1, and uses b1 as side information in database 2 by
downloading a2 + b1. Therefore, D1(1, 2) = 2, D2(1, 2) = 1
which leads to t1(1, 2, μ) = 2ν

1−μ1
, and t2(1, 2, μ) = ν

1−μ2
.
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Fig. 6. Partitions of μ space according to retrieval rate expression for M = 4,
N = 2.

Fig. 7. Capacity gap for the case of M = 4, N = 2.

TABLE VI

MEANINGFUL QUERIES FOR M = 2, N = 3, n = (1, 2)

From one repetition of the scheme, the user decodes 2 symbols
from W1, hence L = 2ν symbols. This gives the rate
R(1, 2, μ) = 2

2
1−μ1

+ 1
1−μ2

. The query table of the meaningful

queries (without the artificial noise) for one repetition of the
scheme is shown in Table VI.

c) The Scheme Corresponding to (n0, n1) = (1, 3):
Since n1 = 3, the user exploits the side information in
database 2 and database 3. Hence, in one repetition, the user
downloads a1, b1 from database 1. The user downloads a2+b1

from database 2, and a3 + b1 from database 3. Therefore,

TABLE VII

MEANINGFUL QUERIES FOR M = 2, N = 3, n = (1, 3)

TABLE VIII

MEANINGFUL QUERIES FOR M = 2, N = 3, n = (2, 2)

TABLE IX

MEANINGFUL QUERIES FOR M = 2, N = 3, n = (2, 3)

D1(1, 3) = 2, D2(1, 3) = 1, D3(1, 3) = 1 which leads to
t1(1, 3, μ) = 2ν

1−μ1
, t2(1, 3, μ) = ν

1−μ2
, t3(1, 3, μ) = ν

1−μ3
.

From one repetition of the scheme, the user decodes 3 symbols
from W1, hence L = 3ν symbols. This corresponds to
the rate R(1, 3, μ) = 3

2
1−μ1

+ 1
1−μ2

+ 1
1−μ3

. The query table of

the meaningful queries (without the artificial noise) for one
repetition of the scheme is shown in Table VII.

d) The Scheme Corresponding to (n0, n1) = (2, 2): In
this case, the user applies the symmetric scheme at databases
1 and 2, and deactivates database 3. Consequently, the user
downloads a1, b1 from database 1. From database 2, the user
downloads new symbols a2, b2. The user exploits the side
information generated in the first round of download by
downloading a3 + b2, and a4 + b1. Therefore, D1(2, 2) = 3,
D2(2, 2) = 3 which leads to t1(2, 2, μ) = 3ν

1−μ1
, t2(2, 2, μ) =

3ν
1−μ2

. From one repetition of the scheme, the user decodes 4
symbols from W1, hence L = 4ν symbols. This gives the rate
R(2, 2, μ) = 4

3
1−μ1

+ 3
1−μ2

. The query table of the meaningful

queries (without the artificial noise) for one repetition of the
scheme is shown in Table VIII.

e) The Scheme Corresponding to (n0, n1) = (2, 3): In this
case, the user further exploits the side information generated
in databases 1 and 2 in database 3. Hence, the user downloads
a3 + b1, a4 + b2 from database 3. Therefore, D1(2, 3) = 3,
D2(2, 3) = 3, D3(2, 3) = 2 which leads to t1(2, 3, μ) =

3ν
1−μ1

, t2(2, 3, μ) = 3ν
1−μ2

, t3(2, 3, μ) = 2ν
1−μ3

. From one
repetition of the scheme, the user decodes 6 symbols from
W1, hence L = 6ν symbols. This gives the rate R(2, 3, μ) =

6
3

1−μ1
+ 3

1−μ2
+ 2

1−μ3

. The query table of the meaningful queries

(without the artificial noise) for one repetition of the scheme
is shown in Table IX.

f) The Scheme Corresponding to (n0, n1) = (3, 3): In
this case, the user applies the symmetric scheme in [12].
Therefore, Dn(3, 3) = 4, where n = 1, 2, 3 which leads
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TABLE X

MEANINGFUL QUERIES FOR M = 2, N = 3, n = (3, 3)

to tn(3, 3, μ) = 4ν
1−μn

. From one repetition of the scheme,
the user decodes 9 symbols from W1, hence L = 9ν symbols.
This gives the rate R(3, 3, μ) = 9

4
1−μ1

+ 4
1−μ2

+ 4
1−μ3

. The query

table of the meaningful queries (without the artificial noise)
for one repetition of the scheme is shown in Table X.

Consequently, the following rate is achievable:

R(μ)=max

{
1−μ1

2
,

2
2

1−μ1
+ 1

1−μ2

,
3

2
1−μ1

+ 1
1−μ2

+ 1
1−μ3

,

4
3

1−μ1
+ 3

1−μ2

,
6

3
1−μ1

+ 3
1−μ2

+ 2
1−μ3

,

9
4

1−μ1
+ 4

1−μ2
+ 4

1−μ3

}
(155)

VI. CONCLUSION

In this paper, we investigated the PIR-WTC-II problem.
We have shown that the problem is a concrete example of the
PIR problem under asymmetric traffic constraints. We obtained
a general upper bound that extends the converse techniques
in [40]. The converse proof takes the form of a max-min
optimization problem. The inner minimization problem derives
the tightest upper bound for the retrieval rate for an arbitrary
traffic ratio vector τ , while the outer maximization problem
optimizes over τ . The core of the achievability proof is the
achievability proof of the corner points of the PIR problem
under asymmetric traffic constraints. The security constraint is
satisfied by encrypting each returned answering string by an
artificial noise vector. To generate the artificial noise vector,
the nth database generates a secret key and encodes it into
artificial noise by a (tn, μntn) MDS code. The upper and
lower bounds match for M = 2 and M = 3, for any N , and
for every eavesdropping capability vector μ = (μ1, · · · , μN ).
As a future direction, one can investigate the PIR-WTC-II
problem in the presence of adversaries, e.g., Byzantine adver-
saries [38]. It would be interesting to see the interplay between
the MDS code needed to satisfy the security constraint and the
MDS code needed to correct the errors that arise due to the
Byzantine adversaries.
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