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The Capacity of Private Information Retrieval From
Heterogeneous Uncoded Caching Databases

Karim Banawan
Yi-Peng Wei

Abstract— We consider private information retrieval (PIR) of
a single file out of K files from N non-colluding databases with
heterogeneous storage constraints m = (mi,--- ,my). The aim
of this work is to jointly design the content placement phase
and the information retrieval phase in order to minimize the
download cost in the PIR phase. We characterize the optimal PIR
download cost as a linear program. By analyzing the structure
of the optimal solution of this linear program, we show that,
surprisingly, the optimal download cost in our heterogeneous
case matches its homogeneous counterpart where all databases
have the same average storage constraint u — %Z,I,V: 1 M.
Thus, we show that there is no loss in the PIR capacity due
to heterogeneity of storage spaces of the databases. We provide
the optimum content placement explicitly for N = 3.

Index Terms—Private information retrieval (PIR), uncoded
caching, heterogeneous cache sizes, capacity.

I. INTRODUCTION
HE problem of private information retrieval (PIR), intro-
duced in [1], has attracted much interest in the infor-
mation theory community with leading efforts [2]-[6]. In the
classical setting of PIR, a user wants to retrieve a file out of
K files from N databases, each storing the same content of
entire K files, such that no individual database can identify
the identity of the desired file. Sun and Jafar [7] characterized
the optimal normalized download cost of the classical setting
tobe D* =1+ % 4+ ﬁ Fundamental limits of many
interesting variants of the PIR problem have been investigated
in [8]-[53].
A common assumption in most of these works is that
the databases have sufficiently large storage space that can
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accommodate all K files in a replicated manner. This may not
be the case for peer-to-peer (P2P) and device-to-device (D2D)
networks, where information retrieval takes place directly
between the users. Here, the user devices (databases) will
have limited and heterogeneous sizes. This motivates the
investigation of PIR from databases with heterogeneous stor-
age constraints. In this work, we aim to jointly design the
storage mechanism (content placement) and the information
retrieval scheme such that the normalized PIR download cost
is minimized in the retrieval phase.

Reference [36] studies PIR from homogeneous storage-
limited databases. In [36], each database has the same limited
storage space of K L bits with 0 < p < 1, where L is the
message size (note, perfect replication would have required
u = 1). The goal of [36] is to find the optimal centralized
uncoded caching scheme (content placement) that minimizes
the PIR download cost. [36] shows that symmetric batch
caching scheme of [54] for content placement together with
Sun-Jafar scheme in [7] for information retrieval result in
the lowest normalized download cost. [36] characterizes the
optimal storage-download cost trade-off as the lower convex
hull of N pairs (&,1+ ¢+ + =r), t =1,--- , N.

Meanwhile, the content assignment problem for heteroge-
neous databases (caches) is investigated in the context of coded
caching in [55]. In the coded caching problem [54], the aim
is to jointly design the placement and delivery phases in order
to minimize the traffic load in the delivery phase during peak
hours. Reference [55] proposes an optimization framework
where placement and delivery schemes are optimized by solv-
ing a linear program. Using this optimization framework, [55]
investigates the effects of heterogeneity in cache sizes on the
delivery load memory trade-off with uncoded placement.

In this paper, we investigate PIR from databases with
heterogeneous storage sizes (see Fig. 1). The nth database
can accommodate m, KL bits, i.e., the storage system is
constrained by the storage size vector m = (mq, -+ ,my).
We aim to characterize the optimal normalized PIR download
cost of this problem, and the corresponding optimal place-
ment and optimal retrieval schemes. We focus on uncoded
placement as in [36] and [55].

Motivated by [55], we first show that the optimal normalized
download cost is characterized by a linear program. For the
achievability, each message is partitioned into 2V —1 partitions
(the size of the power set of [N], denoted P([N])). For
every partition, we apply the Sun-Jafar scheme [7]. The linear
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Fig. 1. PIR from databases with heterogeneous storage sizes.

program arises as a consequence of optimizing the achievable
download cost with respect to the partition sizes subject to
the storage constraints. For the converse, we slightly modify
the converse in [36] to be valid for the heterogeneous case.
These achievability and converse proofs result in exactly the
same linear program, yielding the exact capacity for this PIR
problem for all K, N, m. Interestingly, this is unlike the
caching problem in [55] with no privacy requirements, where
the linear program is only an achievability, and is shown to
be the exact capacity only in special cases.

By studying the properties of the solution of the linear
program, we show that, surprisingly, the optimal normalized
download cost for the heterogeneous problem is identical to
the optimal normalized download cost for the corresponding
homogeneous problem where the homogeneous storage con-
straint is p = N Z _1 My, for all databases. This implies that
there is no loss in the PIR capacity due to heterogeneity of stor-
age spaces of the databases. In fact, the PIR capacity depends
only on the sum of the storage spaces and does not depend on
how the storage spaces are distributed among the databases.
The general proof for this intriguing result is a consequence
of an existence proof for a positive linear combination using
the theory of positive linear dependence in [56] (and using
Farkas’ lemma [57] as a special case) for the constraint set of
the linear program. As a byproduct of the structural results,
we show that, for the optimal content assignment, at most two
consecutive types of message partitioning exist, i.e., message
W}, should be partitioned such that there are repeated partitions
over ¢ databases and at most one more repeated partitions
over i + 1 databases for some i, where i € {1,---,N}.
While for general N we show the existence of an optimal
content placement that attains the homogeneous PIR capacity,
for N = 3, we provide an explicit (parametric in 1) optimal
content placement.

II. SYSTEM MODEL
We consider PIR from databases with heterogeneous sizes;
see Fig. 1. We consider a storage system with K i.i.d.
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messages (files). The kth message is of length L bits, i.e.,

The storage system consists of /N non-colluding databases.
The storage size of the nth database is limited to m,, K L bits,
for some 0 < m,, < 1. Specifically, we denote the contents of
the nth database by Z,,, such that,

H(Zn) <m,KL, ne¢ [N] (2)

The system operates in two phases': In the placement phase,
the data center (content generator) stores the message set in
the N databases, in such a way to minimize the download cost
in the retrieval phase subject to the heterogeneous storage con-
straints. The placement is done in a centralized fashion [54].
The user (retriever) has no access to the data center. Here,
we focus on uncoded placement as in [36], [55], i.e., file W}
can be partitioned as,

U Wis 3)

where W, s is the set of W, bits that appear in the database
set S € P([N]), where P(-) is the power set. H(Wj s) =
|Wi.s|L, where 0 < |Wj, s| < 1. Under an uncoded place-
ment, we have the following message size constraint,

K

1
- R A -3 T O - 3
k=1 k=1SC[N SC[N]
4)
where as = %Zle |[Wk.s|. In addition, we have the

individual database storage constraints,

>

SC[N],nes

My > —H(Z,) = as, n€[N]

1
KL

In the retrieval phase, the user is interested in retrieving Wy,
0 € [K] privately. The user submits a query Q[ne I to the nth

database. Since the user has no information about the files,
the messages and queries are statistically independent, i.e.,

I(Whg; QYN ) =0 (6)

The nth database responds with an answer string, which is a
function of the received query and the stored content, i.e.,

H(APQY 7,) =0, ne[N] )

IWe differentiate between two types of communication in this model: First,
the joint content placement: This occurs in the initial prefetching phase, where
the data center stores parts of the messages in the databases. This interaction
occurs before the PIR phase and is done in the downlink direction (from the
data center to the databases). After completing the prefetching phase, the role
of the data center ceases to exist. The second communication occurs in the PIR
phase, where the user communicates solely with the databases (via submitting
queries) to privately retrieve the desired message. In this phase, the user and
the databases do not contact the data center. Note that we assume that the
N databases are privacy-believing entities in that they are trustworthy in the
sense they do not exchange the queries among themselves or with the data
center. Hence, it is implicitly assumed that there is no uplink communication
between the databases and the data center. Consequently, although there is
joint coordination between the data center and the databases, this coordination
does not imply that these databases are necessarily colluding.
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To ensure privacy, the query submitted to the nth database
when intended to retrieve Wy should be statistically indistin-
guishable from the one when intended to retrieve Wy, i.e.,

QWL AT W) ~ QY AT Wik), 0.0 € [K] (8)

where ~ denotes statistical equivalence.
The user needs to decode the desired message Wy reliably
from the received answer strings, consequently,

H(Wo|QYy o(L) ©)
o(L)

where = — 0 as L — oo.

An achievable PIR scheme satisfies constraints (8) and (9)
for some file size L. The download cost D is the size of the
total downloaded bits from all databases,

N
D=>" H(A
n=1

For a given storage constraint vector m, we aim to jointly
design the placement phase (i.e., Z,, n € [IN]) and the retrieval
scheme to minimize the normalized download cost D* = 2

L
in the retrieval phase.

lN)

(10)

III. MAIN RESULTS

Theorem 1 characterizes the optimal download cost under
heterogeneous storage constraints in terms of a linear program.
The main ingredients of the proof of Theorem 1 are introduced
in Section IV for N = 3, and the complete proof is given in
Section V for general N.

Theorem 1: For PIR from databases with heterogeneous
storage sizes m = (mq,--- ,my), the optimal normalized
download cost is the solution of the following linear program,

ZZas(l—l- + R )

min
OL$>
(=1 5:|S|=¢
S.t. Z as =1
S:|S|>1
Z as <my, n€[N] (11)
S:neS

where S € P([N]).

Theorem 2 shows the equivalence between the optimum
download costs of the heterogeneous and homogeneous prob-
lems. The proof of Theorem 2 is given in Section VI.

Theorem 2: The normalized download cost of the PIR prob-
lem with heterogeneous storage sizes m = (mq,--- ,my) is
equal to the normalized download cost of the PIR problem
with homogeneous storage sizes p = % Egzl m,, for all
databases, i.e., D*(m) = D*(m), where m is such that
my =, forn=1,--- ,N.

Remark 1: Theorem 2 implies that the storage size asym-
metry does not hurt the PIR capacity, so long as the placement
phase is optimized. This is unlike, for instance, access asym-
metry in the case of replicated databases [37]. This is also
unlike, as another instance, non-optimized content placement
even for symmetric database sizes [53].

Remark 2: Stronger than what is stated, i.e., the equiva-
lence between heterogeneous and homogeneous storage cases,
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Theorem 2 in fact implies that the optimal download cost
in (11) depends only on the sum storage space ZnN:1 M.
Thus, any distribution of storage space within the given sum
storage space yields the same PIR capacity. In particular,
a uniform distribution (the corresponding homogeneous case)
has the same PIR capacity. Hence, there is no loss in the
PIR capacity due to heterogeneity of storage spaces of the
databases.

IV. REPRESENTATIVE EXAMPLE: N = 3

We introduce the main ingredients of the achievability and
converse proofs using the example of N = 3 databases.
Without loss of generality, we take K = 3 in this section.

A. Converse Proof

We note that [36, Theorem 1] can be applied to any
storage constrained PIR problem with arbitrary storage
Z1.n. Hence, specializing to the case of N = 3 (and
K = 3) with ii.d. messages and uncoded content leads
to [36, eqn. (39)],

3 3
D>L+—ZH W) + 11—018221{ (Wi|Z:)

i=1 k=1

—

3

3
1_4 Z Z H(Wy|Zz)\;) 4 o(L)

=1 k=1

(12)

Using the uncoded storage assumption in (3), we can further
lower bound (12) as,

4 3 3 3
D2t 3 S Wislitgge > Y D IWislE

SC[1:3] k=1 i=1 SC[1:3]\ik=1
|SI>1 S|>1
17 3 3
+ 5. > Wiy | L+ o(L) (13)
i=1 k=1
3
2
T DS Sl ST
SC[1:3] k=1 SC[1:3] k=1
|S|=1 |5\ 2
4 3
+ 5 > WislL+o(L) (14)
SC[1:3] k=1
|S|=3

Normalizing with L, taking the limit L — oo, and using the
definition as = - Zszl |Wi.s| lead to the following lower
bound on the normalized download cost D*,

D*>1+22a5+ Zag—i— > as  (15)
sc[3] sc[3]
\SI |S|= |S|=
_32043—1— Za3+— Zas (16)
sc[3] SC[3]
|S|= \SI |S|=

where (16) follows from the message size constraint (4).
We further lower bound (16) by minimizing the right hand
side with respect to {s } sc[3) under storage constraints. Thus,
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the solution of the following linear program serves as a lower
bound (converse) for the normalized download cost,
. 7 13
min  3(a; + a2 + az) + = (@12 + @13 + a23) + —a123
as ZO 4 9
S.t. a1 4+ ag + a3+ a1a + a3 + o3 + o3 = 1
a1 + a2 + 13 + i3 <My
Qg + a1 + oz + 123 < Mo

o3+ a13 + a3 + a3 <mg (17)

where variables {as}|s|=1 are {a1, a2, a3}, which represent
the content stored in databases 1, 2 and 3 exclusively; variables
{as}|s|=2 are {a12, 13, a3}, which represent the content
stored in databases 1 and 2, 1 and 3, and 2 and 3, respec-
tively; and variable {as}sj—3 is {ai23}, which represents
the content stored in all three databases simultaneously.

Next, we show that the lower bound expressed as a linear
program in (17) can be achieved.

B. Achievability Proof

In the placement phase, let |[Wj s| = as for all k € [K].
Assign the partition W}, s to the set S of the databases for all
k € [K]. To retrieve Wy privately, § € [K], the user applies
the Sun-Jafar scheme [7] over the partitions of the files.

The partitions Wy, 1, Wy 2, Wy 3 are placed in a single
database each. Thus, we apply [7] with N = 1, and download

K(|Wk71| + |Wk,2| + |Wk’3|)L = 3(041 —+ oo + Oé?,)L (18)

The partitions Wy 12, Wi, 13, Wy 23 are placed in two data-
bases each. Thus, we apply [7] with N = 2, and download

1 1
(1 + 3 + ?) (IWk 12|+ |Wi,as| + |Wk 23]) L

7
= —(aq2 + 13+ ag3)L  (19)

4
Finally, the partition W}, 123 is placed in all three databases.
Thus, we apply [7] with N = 3, and download

20
3 (20)
Concatenating the downloads, file Wy is reliably decodable.
Hence, by summing up the download costs in (18), (19) and
(20), we have the following normalized download cost,
D

7 13
- 3(ar +az+asz) + 1(0412 + a1z + ag3) + 504123
2D

1 1 13
(1 + -+ §> |[Wi123|L = 504123L

which matches the lower bound in (17) and is subject to the
same constraints. Hence, the solution to the linear program in
(17) is achievable, and gives the exact PIR capacity.

C. Explicit Storage Assignment

In this section, we solve the linear program in (17) to find
the optimal storage assignment explicitly for N = 3. To that
end, we denote (3, = Zs:w:é ags, 1.e.,

B =a1+ar+ a3 (22)
B2 = a12 + 13 + a3 (23)
B3 = o123 (24)
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We first construct a relaxed optimization problem by sum-
ming up the three individual storage constraints in (17) into a
single constraint. The relaxed problem is,

, 7 13
woin 301 + Zﬁz + 553

st. Bi+Pa+pP3=1
B1 4202 + 303 < my

where we define the sum storage space ms; = mq + ms +ms.
Plugging 5 = 1 — 32 — (33,

5 14
) g D5, 14
oI, 3= g =5 hs
st. Ba+ P <1
B2 4203 <ms —1

Since (26) is a linear program, the solution lies at the
boundary of the feasible set. We have three cases depending
on the sum storage space .

a) Regime I: When m, < 1: In this case, the second
constraint in (26) requires s + 233 < 0, while we must have
B2, B3 > 0. Hence, there is no feasible solution for the relaxed
problem and thus the original problem (17) is infeasible as
well.

b) Regime 2: When 1 < mg < 2: In this case, the con-
straint 324 B3 < 1 is not binding. Hence, the solution satisfies
the second constraint with equality, 02 +203 = ms— 1, which
is non-negative in this regime. Thus, (26) can be written in an
unconstrained manner as,

(25)

(26)

5 14
min 3 — Z(ms —1-203) + 353

.17 5 17

= min o= gt 1853
The optimal solution for (27) is 55 = 0 and therefore 85 =
ms— 1. From the equality constraint 81+ 2+ (33 = 1, we have
87 = 2—m,. Next, we map the solution of the relaxed problem
in (26) to a feasible solution in the original problem in (17).
From (24), ajy3 = (5 = 0. Thus, at the boundary of the

inequality set of (17), we have,

27)

o1 4 B2 — gz =My

= a1+ms—1—as3=m

= a3 — a3 =1—(ma+ms) (28)
ag + o — a3z = My

= az+ms—1—aj3=me

= as—aiz3=1—(my+ ms) (29)
az + 2 — a1z = mg

= azt+ms—1—aix=m3

= az3—aia=1—(mg+ms) (30)

Depending on the sign of 1—(m;+my,), where j, k € {1,2, 3},
we have different content assignments. The common structure
of (28)-(30) is a; — i = 1 — (m; + my). We assign
a = ajp +1— (m; +my) if mj +my <1 and ajp =
a; — 1+ (m; + my,) otherwise. This ensures that as > 0
for all § C [1 : 3]. Using these assignments, we have sub-
cases depending on the sign of 1 — (m; +my). We summarize
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TABLE I

EXPLICIT CONTENT ASSIGNMENT FOR N = 3 (m1 > ma2

WITHOUT LOSS OF GENERALITY)

m1+m221
ml—i—ngl
me +ms3 > 1

Case Assignment
a; =2 —mg
1§m3§2 042201320

a12:m1+m271
a13:m1—|—m3—1
a23:1—m1

ai23 =0

1<mg<2
mi1+meo > 1
my+mgz > 1
mg +m3 <1

o] =2 —my
042204320

a1 =m1 +mg —1
a3 =m1+mg—1
0523:1—777,1

o123 =0

1<mg <2
m1+m221
m1+m3§1
mo +ms3 <1

alzl—(mg—l-mg)
052:1—(m1+m3)
a3 = 13
Oélgzms—].
a3 = a3 =0

a3 =0

1<mg<2
mi+meo <1
mi1+m3 <1
mg +m3 <1

Oélilf(m2+m3)
042:1—(M1+m3)
Q3 =1Mm3
Oélgzms—l

a3 = a3 =0

o123 =0
a1:a2:a3:0
ajp =1—mg3
a3 =1—mg
o3 =1—my
Q123 = Mg — 2

2<mys<3

explicit content assignment for these cases in Table I, where
we take m1 > mgy > mg without loss of generality, to reduce
the number of cases to enumerate. With these solutions,
the optimal normalized download cost in this regime is,
_17r 5 17— 15p
—a ™ T T
where ;1 = m1+ﬂ;’2+m3 — 77:;5
storage size.

c) Regime 3: When 2 < mgy < 3: In this case, the solu-
tion of (26) is at the intersection of the constraints o+ 33 = 1
and (32 + 2033 = ms — 1. Hence, we have 5 = 3 — m, and
B3 = ms—2, which are both non-negative in this regime. From
the equality constraint 31 + 02 + (53 = 1, we have g7 = 0.
Next, we map the solution of the relaxed problem in (26) to
a feasible solution in the original problem in (17). From (22),
B7 = 0 implies af = aj = af = 0. From (24), 85 = ms — 2
implies ajq3 = ms — 2. At the boundary of the feasible set of
(17), we have,

D~ 3D

corresponds to the average

a1 + Q12 + @13 + Qi3 =My

= a1 —au+ o+ fs=m (32)
Q2 + a2 + Qo3 + (ip23 = Mo
= az— a3+ fo+ Pz =mo (33)
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Qg + 13 + Qo3 + Q123 = M3
= az—aip+ fo+ 3 =m3 (34)

Plugging 85 + 05 = 1 and of = 0 for i € {1, 2,3} leads to
the following content assignment,

ass=1—mq, ajs=1—ma, ajs=1—ms (335)

With these solutions, the optimal normalized download cost
in this regime is,
5 14 8 11 85 —33u
D"=3—-0——03=———mg=——""— (36
T g T ™ 36 O

This solution is also shown in Table I.

V. OPTIMAL DOWNLOAD COST FOR THE
GENERAL PROBLEM

In this section, we give the proof of Theorem 1, i.e., show
the achievability and the converse proofs for the PIR problem
with heterogeneous databases, for general N, K, m.

A. General Achievability Proof

In this section, we show the achievability for general N
databases and K messages. Let D, denote the optimal nor-
malized download cost for the PIR problem with ¢ replicated
databases [7] storing the same K messages, which is achieved
using Sun-Jafar scheme [7],

~ 1 1
Dy=1+45+-+

7 R S

We partition the messages over all subsets of [1 : N], such
that [Wj s| = as for all k € [1: K]. Using this partitioning,
the subsets S such that |S| = 1 correspond to a PIR problem
with 1 database and K messages. Hence, by applying the
trivial scheme of downloading all these partitions, we down-
load D1|Wk15|L = KaglL bits. For the subsets S such that
|S| = 2, we have a PIR problem with 2 databases and
K messages. Therefore, by applying Sun-Jafar scheme [7],
we download Do| Wy s|L = (1 + % + -+ + 5= )asL bits,
and so on. This results in total normalized download cost
of Zé\;l 25:|5| = asDy. The optimal content assignment
is obtained by optimizing over {as}s.s|>1 subject to the
message size constraint (4), and the individual storage con-
straints (5). Thus, the achievable normalized download can be
written as the following linear program,

N
. 1 1
min Y- S as(1+ 7ot )

=1 5:|8|=¢
S.t Z as =1
S:|S|>1
Z as <my, n€[N] (38)
S:neS

where S € P([1: NJ).
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B. General Converse Proof

In this section, we show the converse for general N data-
bases and K messages. The result in [36, Theorem 1] gives a
general lower bound for a PIR system with /N databases and
K messages and arbitrary storage contents 2.y as

nl; _nla )
D* >1
+ Z Z E_I —
ni=1 ni=1n2=n1
N N
AN —ni, K —1)
et - 39
z_: z_: ning - -NK-1 (39)
ni=1 NK-1=NK-2
where A(n, k) is given by,
Z Yo D> H(W|Zn,Wi) (40

K(k)(

For uncoded placement, we have,

[K|=k |N]=nje[K]\K

H(W;|Zn, Wi) = HW;|Zy) = > [WslL (41

S:|8|>1

The simplifications in [36], which are intended to deal with
the nested harmonic sum, can be applied to the heterogeneous
storage as well. Thus, the following lower bound in [36, (77)]
is a valid lower bound for the normalized download cost for
the heterogeneous problem,

N N )
—I—Z<€)<D4—1)£Bg (42)
=1
where
K
Z Wi.s| 43)
k=1 |=¢
Substituting (43) in (42) leads to,
N K
N . 1
D*>1+Z<€>(Dz—1)—NZ Wi,s|
-1 (z) k=18:|S|=¢
(44)
N ~
1+ (De — 1) as (45)
=1 8:|§|=¢
N . N
:1+Z ang—Z Z as (46)
(=1 8:|S|=¢ (=1 8:|8|=¢
N 1 1
:Z 4045 1+Z+' +£K1 47)

where the last step follows from the message size constraint.

This settles Theorem 1 by having shown that both achiev-
ability and converse proofs result in the same linear program
which is given in (11).
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VI. EQUIVALENCE TO THE HOMOGENEOUS PROBLEM

We prove Theorem 2, which implies an equivalence between
the solution of (11) with heterogeneous storage constraints 1m
and the solution of (11) with homogeneous storage constraint
nw = % 25:1 m,, for all databases. To that end, let 3, =
> S:|S|=n S S before. By adding the individual storage size
constraints in (11), we write the following relaxed problem,

N
nin ; BnDn,
N
s.t. Z Gn =1
n=1
N
Z nB, < my (48)
n=1

where m, = 25:1 my, as before, is the sum storage space
and D,, is defined in (37). The solution of the relaxed problem
is potentially lower than (11), since the optimal solution
of (11) is feasible in (48). Note that the relaxed problem
(48) depends only on the sum storage space mgs and the
number of databases IN. Therefore, the corresponding relaxed
problem is the same for all distributions of the storage space
among databases under the same mg, including the uniform
distribution which results in the homogeneous problem. Thus,
in order to show the equivalence of the heterogeneous and
homogeneous problems, it suffices to prove that the optimal
solution of (48) can be mapped back to a feasible solution
of (11).

We write the Lagrangian function corresponding to (48) as,

N N N N
L= Zﬁn[)n _’YZBn“‘/\Znﬁn - Zﬂnﬁn (49)
n=1 n=1 n=1 n=1
The optimality conditions are,
Dy =y +n\—pn =0, nel[N] (50)

We have the following structural insights about the relaxed
problem. The first lemma states that, in the optimal solution,
there are at most two non-zero [3s.

Lemma I: There does not exist a subset \V, such that |A/| >
3 and 3, > 0 for all n € V.

Proof: Assume for sake of contradiction that there exists
N such that [N| > 3. Hence, p,, = 0 for all n € N. From
the optimality conditions in (50), we have,

y=D,+n\ neN (51)
This results in |[A] independent equations in 2 unknowns (v
and )), which is an inconsistent linear system if |N| > 3.
Thus, we have a contradiction, and |[A/| can be at most 2. W
The second lemma states that if two (s are positive, then
they must be consecutive.
Lemma 2: 1f 8, > 0, and 3,, > 0, then ng = ny + 1.
Proof: Assume for sake of contradiction that 3,, > 0,

OBn, > 0, such that no = nq + 2, and that 3,, = 0 where
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no = n1 + 1. Then, from the optimality conditions, we have,

Dp, —y+mA=0 (52)
Dpy — v+ (n1 + DX = pin, =0 (53)
Dpy — v+ (n1+2)A=0 (54)
Solving for py, leads to,
- 1 - -
/j‘noano_E(‘Dnl +Dn2) (55)

Since D,, is convex in n, we have D,,, < %(Dnl + D,,),
which implies p,, < 0, which is impossible since Lagrange
multiplier p,, > 0, and from Lemma 1, u,, # 0. Thus,
we have a contradiction, and we cannot have a zero /3 between
two non-zero [3s. [ |

The third lemma states that having mg an integer leads to
activating a single /3 only.

Lemma 3: 3; =1 and (3, = 0 for all n # j if and only if
ms =7j < N, where j € N.

Proof: From the optimality conditions, we have,

Dj—v+jA=0 (56)
Dp—v4+n\—jn=0, n#j (57)

Substituting v from (56) into (57) leads to,
(Dn_Dj)“F(n_j)A:MnZO (58)

Since j < N, we can choose an n > j. Then, (58) implies,

D:—D
N> L = (59

n—y
Since Dn is monotonically decreasing in n, we have A >
¢ > 0 for some positive constant ¢ = Dﬁl :?". Since A >

0, the inequality EnN:1 nfB, < ms must be satisfied with
equality. To have a feasible solution for the two equations
Zﬁle B, =1 and Zﬁle nf, = mg, we must have my = j
and g; = 1. [ |

The fourth lemma gives the solution of the relaxed problem
for non-integer m.

Lemma 4: For the relaxed problem (48), if j—1 < mg4 < j,
then 3;_; = j —ms and 87 =ms — (j — 1).

Proof: From Lemma 1, at most two s should be positive.
From Lemma 3, exactly two (3s should be positive, as my is
not an integer here. From Lemma 2, the positive § should be
consecutive, and because of continuity, we must have 3;_1 >
0 and 3; > 0. Thus, on the boundary, we have,

Bi—1+ 65 =1
(7 —1)Bj—1 +708; = ms

Solving these equations simultaneously results in 3;_; = j —
msandﬁ;‘:ms—(j—l). [ ]

Thus, Lemmas 1-4 establish the structure of the relaxed
problem: First, since 0 < m,, < 1 for all n, we have 0 <
ms < N.If 0 < mg < 1, then there is no PIR possible. If m
is an integer between 1 and IV, then only one (3 is positive and
it is equal to 1. For instance, if m, = j, then 3; = 1. In this
case, only one type of o with j subscripts is positive. If m is
a non-integer between 1 and NNV, then two (s are positive. For

(60)
(61)
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instance, if j —1 < mg < j, then $;_; and 3; are positive
and equal to j —mg, and ms+ 1 — 7, respectively. In this case,
two types of as with 7 — 1 and j subscripts are positive.

Finally, to show the equivalence of the original linear pro-
gram in (11) and the relaxed linear problem in (48), we need
to show that a feasible (non-negative) solution of (11) exists
for every optimal solution of (48). That is, the optimal s
found in solving (48) can be mapped to a set of feasible as
in (11). We note that, we have shown this by finding an explicit
solution for the case of N = 3 in Section IV-C. We give
an alternative proof for the case of N = 4 using Farkas’
lemma [57] in Appendix A. In the following lemma, we give
the proof for general N by using the theory of positive linear
dependence in [56].

Lemma 5: There exists a feasible (non-negative) solution
of (11) corresponding to the optimal solution of the relaxed
problem in (48).

Proof: Since the inequality in the constraint set of the
relaxed problem (48) is satisfied with equality, the N inequal-
ities in the constraint set of the original problem (11) should
be satisfied with equality as well. We know from Lemmas 1-4
that only two (s will be positive, therefore, their expressions
in terms of the corresponding as will give two more equations.
Assuming that ¢ < ms < i+ 1, we have 8 =i+ 1—m;,
and 3}, | = ms —i; (3; is a sum of (]j) as and ;41 is a sum
of (zfl) as. Thus, we have (N + 2) equations in (]j) + (lfl)
variables; and, we need to show that a feasible solution to
these linear equations exists.

We denote this linear system of equations as Aa = b where
a is the vector of ag, i.e., content assignments, and b is
the vector of m; and [3;, i.e., storage constraints and relaxed
problem coefficients, i.e.,

T
a=[st est ey as s e
(62)
where
. N
. N
gl — s ;
Sl =i+1, Je{m, ,<i+1>} (64)
and
b= [m1 my my B ﬁi+1}T (65)

Now, A, an (N + 2) x ((7) + (ﬁl)) matrix of zeros and
ones, has the following properties:

1) Every column of the matrix is unique.

2) First (12’ ) columns have i 1s and N — i Os in their first
N rows. Last two elements of these columns are all 1s
and all Os, respectively.

3) The remaining (zfl) columns have 7+ 1 Is and N —i —
1 Os in their first N rows. Last two elements of these
columns are all Os and all 1s, respectively.

4) First three properties imply that, in the first N rows of
the matrix, every permutation of ¢ 1s and N — ¢ Os exist
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in the first () columns; and every permutation of i + 1
Is and N —i — 1 Os exist in the next (ifl) columns.
To clarify the setting with an example, consider N = 4 and
1 < mg < 2. In this case, we have i = 2 — m, and (35 =
ms — 1. Corresponding to /31, we have (‘11) =4 as, which are
a1, g, g, ay which sum to 51 = 2 — my. Corresponding to
(B2, we have (‘21) = 6 as, which are a2, 13, a4, (a3, ag, i34

which sum to 3 = ms — 1. Thus, we have the « vector:

a=la1 oy a3 o4 12 on3 Qs (o3 (g Qs

(66)
the b vector:
T
b= [ml Mo M3 My 2—Mmg Mg — 1] (67)
and the A matrix:
10001 1 1 000
01 001 O0O0OT1TT1TOPO
001 001 O0T1TO0T1
A= 0001 0O0OT1TUO0OT1T1 (68)
1111000000
000O0OT1T1T1T1T1:1

Note, in the first 4 rows of A, in the first 4 columns we have
all possible vectors with only one 1, and in the remaining
6 columns we have all possible vectors with two 1s.

To prove the existence of a feasible solution for Ao = b,
we show that b is always a positive linear combination of
columns of A. From the first statement of [56, Theorem 3.3],
we note that if we can find a column of A, for instance wu,
such that for all v that satisfy bTv > 0, we have uTv > 0;
then b is a positive linear combination of the columns of A.
Note that, from the last property of A, if we can find such a
column, then we can find an S C {1,--- , N} that satisfy one
of the following inequalities and vice versa:

> vitong >0 (69)

JES,|S|=i
> vituns2 >0 (70)

JES,|S|=i+1

where
T

v = [1}1 (%) UN+2} (71)
First, we order the variables v; and m;, i € {1,---,N}

among themselves in the decreasing order and we define m;
and v}, 1 € {1,2,..., N} such that,

(72)
(73)
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Then, we have the following series of inequalities for all v
that satisfy b”v > 0:

N
0< ijvj + (i +1—ms)ont1 + (ms —i)onga  (74)
j=1

N
< Do miul + (i + L= my)unss + (mg — oz (75)
j=1

i

< Z'U;‘i‘(ms

Jj=1

— i)V + (I +1—mg)un g

+ (ms — )vNto (76)
< Z 1};- + max{vj ; + VN2, UNf1} (77)
j=1

where in (74), we use Lemma 4 and insert the values of 3; and
Bi+1, and in (75) we use the rearrangement inequality [58].
We have (76) by using the fact that mgy = Z;VZI m; is between
7 and ¢ 41, where each mj is a real number between 0 and 1,
and by redistributing the m; values where we maximize the
ones that are the coefficients of the largest v, values. Next,
we observe that, (mg —i)vjy + (i + 1 —ms)oni1 + (ms —
i)un 42 is the convex combination of vj, | +vy42 and vy 41,
which results in (77). Hence, we have,
i
Zv; + max{vj , + vnt2,0n41} >0
j=1

(78)

for all v that satisfy b7 v > 0. Finally, (78) shows that we can
always find S C {1,---, N} that satisfies either (69) or (70),
concluding the proof. |

VII. CONCLUSIONS

We considered a PIR system where a data center places
available content into N heterogeneous sized databases, from
which a user retrieves a file privately. We determined the exact
PIR capacity (i.e., the minimum download cost) under arbi-
trary storage constraints. By showing the achievability of the
solution of a relaxed problem where all available storage space
is pooled into a sum storage space, by the original problem
with individual storage constraints, we showed the equivalence
of the heterogeneous PIR capacity to the corresponding homo-
geneous PIR capacity. Therefore, we showed that there is no
loss in PIR capacity due to database storage size heterogeneity,
so long as the placement phase is optimized.

APPENDIX A
ALTERNATIVE PROOF FOR LEMMA 5 FOR N =4
Here, we give an alternative proof of Lemma 5 for N =4
using Farkas’ lemma. We illustrate the general idea using the
example case 1 < my < 2. Using Lemma 4, we have g =
2 —mg and 35 = m, — 1. We want to show the existence of
a; > 0 and o5 > 0 for all 4, j such that,

a1 + g+ o3+ g =my (79)
Q2 + (12 + Q23 + Qiag = M2 (80)
ag + a3 + o3 + 34 = mg (81)
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Qg + Qg + Qg4 + a3y = My (82)
o+ t+ag+ag =2—myg (83)
12 + 13 + Q1 + g3 + g +azg =mg — 1 (84)

This is a linear system with 10 unknowns and 6 equations in
the form of Aa = b, where A is the coefficients matrix.
To show the existence of a non-negative solution, we use
Farkas’ lemma, which states that there exists a non-negative
solution a@ > 0 that satisfies Aa = b if and only if for all
y for which ATy > 0, we have b’y > 0. We transform the
system of equations into the reduced-echelon form with:

1000 O O O -1 -1 -1
B o100 O -1 -1 O 0o -1
A=1/0 01 0 -1 0 -1 0 -1 0 (85)
oo0oo0o1 -1 -1 0 -1 0 0
00 0O0 1 1 1 1 1 1
with
T
=lar ay a3 o4 oz 13 i o3 Qos o)
(86)
and
b=[1—-ms+mi 1—ms+my
l—ms+mz 1—ms+my ms—1T  (87)
Hence, for any v, ATy > 0 implies,
y1 >0 (88)
y2 > 0 (89)
y3 >0 (90)
ys >0 ©On
Ys 2> Yz + ya (92)
Ys 2> Y2 + ya (93)
Ys = Y2 T Y3 94)
Ys > Y1+ Y4 95)
Ys > Y1+ Y3 (96)
Ys > Y1+ Y2 O7)

Now, we need to show I;Ty > 0. We have the following for
b < 0 (the worst case):

by
=(1=ms+m1)y1+(1 —ms + ma)y2+ (1 — ms + m3)ys
+ (1 —mg+ma)ys + (ms — L)ys (98)
>myy1+maye+(1—ms+m3)ys+(1 —ms +ma)ys (99)
>myy2+maye+(1—mg+ma)ys+(1 — mg + myq)ys (100)
>myyz2+maye+(1—ms+m3)y2+(1 — ms + my)y2 (101)
:(2 — ms)yg (102)
>0 (103)

where (101) follows from (88)-(97) taking into consideration
that 1 — mgs+mg <0 and 1 — mg + my < 0.
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