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ABSTRACT

Generating molecular graphs with desired chemical properties

driven by deep graph generative models provides a very promising

way to accelerate drug discovery process. Such graph generative

models usually consist of two steps: learning latent representations

and generation of molecular graphs. However, to generate novel

and chemically-valid molecular graphs from latent representations

is very challenging because of the chemical constraints and combi-

natorial complexity of molecular graphs. In this paper, we propose

MoFlow, a flow-based graph generative model to learn invertible

mappings between molecular graphs and their latent representa-

tions. To generate molecular graphs, our MoFlow first generates

bonds (edges) through a Glow based model, then generates atoms

(nodes) given bonds by a novel graph conditional flow, and finally

assembles them into a chemically valid molecular graph with a

posthoc validity correction. Our MoFlow has merits including exact

and tractable likelihood training, efficient one-pass embedding and

generation, chemical validity guarantees, 100% reconstruction of

training data, and good generalization ability.We validate ourmodel

by four tasks: molecular graph generation and reconstruction, vi-

sualization of the continuous latent space, property optimization,

and constrained property optimization. Our MoFlow achieves state-

of-the-art performance, which implies its potential efficiency and

effectiveness to explore large chemical space for drug discovery.
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1 INTRODUCTION

Drug discovery aims at finding candidate molecules with desired

chemical properties for clinical trials, which is a long (10-20 years)

and costly ($0.5-$2.6 billion) process with a high failure rate [1, 25].

Recently, deep graph generative models have demonstrated their

big potential to accelerate the drug discovery process by exploring

large chemical space in a data-driven manner [12, 35]. These mod-

els usually first learn a continuous latent space by encoding1 the

training molecular graphs and then generate novel and optimized

ones through decoding from the learned latent space guided by

targeted properties [9, 12]. However, it is still very challenging to

generate novel and chemically-valid molecular graphs with desired

properties since: a) the scale of the chemical space of drug-like com-

pounds is 1060 [22] but the scale of possibly generated molecular

graphs by existing methods are much smaller, and b) generating

molecular graphs that have both multi-type nodes and edges and

follow bond-valence constraints is a hard combinatorial task.

Prior works leverage different deep generative frameworks for

generating molecular SMILES codes [33] or molecular graphs, in-

cluding variational autoencoder (VAE)-based models [4, 5, 12, 16,

19, 20, 31], generative adversarial networks (GAN)-based models

[6, 34], and autoregressive (AR)-based models [26, 34]. In this pa-

per, we explore a different deep generative framework, namely the

normalizing flow [7, 14, 21] to generate molecular graphs. Com-

pared with above three frameworks, the flow-based models are

the only one which can memorize and exactly reconstruct all the

input data, and at the same time have the potential to generate

more novel, unique and valid molecules, which implies its poten-

tial capability of deeper exploration of the huge chemical space.

To our best knowledge, there have been three flow-based models

proposed for molecular graph generation. The GraphAF [30] model

is an autoregressive flow-based model that achieves state-of-the-art

performance in molecular graph generation. GraphAF generates

molecules in a sequential manner by adding each new atom or

bond followed by a validity check. GraphNVP [21] and GRF [10]

are proposed for molecular graph generation in a one-shot manner.

However, they cannot guarantee chemical validity and thus show

poor performance in generating valid and novel molecules.

In this paper, we propose a novel deep graph generative model

named MoFlow to generate molecular graphs. Our MoFlow is the

1In this paper, we use inference, embedding or encoding interchangeably to refer to
the transformation from molecular graphs to the learned latent space, and we use
decoding or generation for the reverse transformation.
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first of its kind which not only generates molecular graphs effi-

ciently by invertible mapping at one shot, but also has a chemical

validity guarantee. More specifically, to capture the combinatorial

atom-and-bond structures of molecular graphs, we propose a vari-

ant of the Glow model [14] to generate bonds (multi-type edges,

e.g., single, double and triple bonds), a novel graph conditional flow

to generate atoms (multi-type nodes, e.g. C, N etc.) given bonds

by leveraging graph convolutions, and finally assemble atoms and

bonds into a valid molecular graph which follows bond-valence

constraints. We illustrate our modelling framework in Figure 1. Our

MoFlow is trained by exact and tractable likelihood estimation, and

one-pass inference and generation can be efficiently utilized for

molecular graph optimization.

We validate our MoFlow through a wide range of experiments

from molecular graph generation, reconstruction, visualization to

optimization. As baselines, we compare the state-of-the-art VAE-

based model [12], autoregressive-based models [26, 34], and all

three flow-based models [10, 21, 30]. As for memorizing input data,

MoFlow achieves 100% reconstruction rate. As for exploring the un-

known chemical space, MoFlow outperforms above models by gen-

erating more novel, unique and valid molecules (as demonstrated

by the N.U.V. scores in Table 2 and 3). MoFlow generates 100%

chemically-valid molecules when sampling from prior distributions.

Furthermore, if without validity correction, MoFlow still generates

much more valid molecules than existing models (validity-without-

check scores in Table 2 and 3). For example, the state-of-the-art

autoregressive-flow-based model GraphAF [30] achieves 67% and

68% validity-without-check scores for two datasets while MoFlow

achieves 96% and 82% respectively, thanks to its capability of captur-

ing the chemical structures in a holistic way. As for chemical prop-

erty optimization, MoFlow can find much more novel molecules

with top drug-likeness scores than existing models (Table 4 and

Figure 5). As for constrained property optimization, MoFlow finds

novel and optimized molecules with the best similarity scores and

second best property improvement (Table 5).

It is worthwhile to highlight our contributions as follows:

• Novel MoFlow model: our MoFlow is one of the first flow-

based graph generative models which not only generates

molecular graphs at one shot by invertible mapping but

also has a validity guarantee. To capture the combinatorial

atom-and-bond structures of molecular graphs, we propose

a variant of Glow model for bonds (edges) and a novel graph

conditional flow for atoms (nodes) given bonds, and then

assemble them into valid molecular graphs.

• State-of-the-art performance: ourMoFlow achievesmany

state-of-the-art results w.r.t. molecular graph generation, re-

construction, optimization, etc., and at the same time our

one-shot inference and generation are very efficient, which

implies its potentials in deep exploration of huge chemical

space for drug discovery.

The outline of this paper is: survey (Sec. 2), proposed method

(Sec. 3 and 4), experiments (Sec. 5), and conclusions (Sec. 6). In order

to promote reproducibility, our codes and datasets are open-sourced

at https://github.com/calvin-zcx/moflow.

2 RELATED WORK

Molecular Generation.Different deep generative frameworks are

proposed for generating molecular SMILES or molecular graphs.

Among the variational autoencoder (VAE)-based models [4, 5, 12,

16, 19, 20, 31], the JT-VAE [12] generates valid tree-structured

molecules by first generating a tree-structured scaffold of chemical

substructures and then assembling substructures according to the

generated scaffold. The MolGAN [6] is a generative adversarial

networks (GAN)-based model but shows very limited performance

in generating valid and unique molecules. The autoregressive-based

models generate molecules in a sequential manner with validity

check at each generation step. For example, the MolecularRNN [26]

sequentially generates each character of SMILES and the GCPN

[34] sequentially generates each atom/bond in a molecular graphs.

In this paper, we explore a different deep generative framework,

namely the normalizing flowmodels [7, 14, 21], for molecular graph

generation, which have the potential to memorize and reconstruct

all the training data and generalize to generating more valid, novel

and unique molecules.

Flow-based Models. The (normalizing) flow-based models try to

learn mappings between complex distributions and simple prior

distributions through invertible neural networks and such a frame-

work has good merits of exact and tractable likelihood estimation

for training, efficient one-pass inference and sampling, invertible

mapping and thus reconstructing all the training data etc. Examples

include NICE[7], RealNVP[8], Glow[14] and GNF [18] which show

promising results in generating images or even graphs [18]. See

latest reviews in [15, 23] and more technical details in Section 3.

To our best knowledge, there are three flow-based models for

molecular graph generation. The GraphAF [30] is an autoregres-

sive flow-based model which achieves state-of-the-art performance

in molecular graph generation. The GraphAF generates molecular

graphs in a sequential manner with validity check when adding any

new atom or bond. The GraphNVP [21] and GRF [10] are proposed

for molecular graph generation in a one-shot manner. However,

they have no guarantee for chemical validity and thus show very

limited performance in generating valid and novel molecular graphs.

Our MoFlow is the first of its kind which not only generates molec-

ular graphs efficiently by invertible mapping at one shot but also

has a validity guarantee. In order to capture the atom-and-bond

composition of molecules, we propose a variant of Glow[14] model

for bonds and a novel graph conditional flow for atoms given bonds,

and then combining them with a post-hoc validity correction. Our

MoFlow achieves many state-of-the-art results thanks to capturing

the chemical structures in a holistic way, and our one-shot inference

and generation are more efficient than sequential models.

3 MODEL PRELIMINARY

The flow framework. The flow-based models aim to learn a se-

quence of invertible transformations fΘ = fL ◦ ... ◦ f1 between

complex high-dimensional data X ∼ PX(X ) and Z ∼ PZ(Z ) in a

latent space with the same number of dimensions where the latent

distribution PZ(Z ) is easy to model (e.g., strong independence as-

sumptions hold in such a latent space). The potentially complex data

in the original space can be modelled by the change of variable



formula where Z = fΘ(X ) and:

PX(X ) = PZ(Z ) | det(
∂Z

∂X
) | . (1)

To sample X̃ ∼ PX(X ) is achieved by sampling Z̃ ∼ PZ(Z ) and

then to transform X̃ = f −1
Θ

(Z̃ ) by the reverse mapping of fΘ.

Let Z = fΘ(X ) = fL ◦ ... ◦ f1(X ), Hl = fl (Hl−1) where fl
(l = 1, ...L ∈ N

+) are invertible mappings, H0 = X , HL = Z and

PZ(Z ) follows a standard isotropic Gaussian with independent

dimensions. Then we get the log-likelihood of X by the change of

variable formula as follows:

log PX(X ) = log PZ(Z ) + log | det(
∂Z

∂X
) |

=

∑

i

log PZi
(Zi ) +

L∑

l=1

log | det(
∂fl

∂Hl−1
) |

(2)

where PZi
(Zi ) is the probability of the ith dimension of Z and

fΘ = fL ◦ ... ◦ f1 is an invertible deep neural network to be learnt.

Thus, the exact-likelihood-based training is tractable.

Invertible affine coupling layers. However, how to design a.)

an invertible function fΘ with b.) expressive structures and c.) effi-

cient computation of the Jacobian determinant are nontrivial. The

NICE[7] and RealNVP [8] design an affine coupling transformation

Z = fΘ(X ) : Rn 7→ R
n :

Z1:d = X1:d

Zd+1:n = Xd+1:n ⊙ eSΘ(X1:d ) +TΘ(X1:d ),
(3)

by splitting X into two partitions X = (X1:d ,Xd+1:n ). Thus, a.) the

invertibility is guaranteed by:

X1:d = Z1:d

Xd+1:n = (Zd+1:n −TΘ(Z1:d ))/e
SΘ(Z1:d ),

(4)

b.) the expressive power depends on arbitrary neural structures of

the Scale function SΘ : R
d 7→ R

n−d and the Transformation

function TΘ : Rd 7→ R
n−d in the affine transformation of Xd+1:n ,

and c.) the Jacobian determiant can be computed efficiently by

det( ∂Z
∂X

) = exp (
∑
j SΘ(X1:d )j ).

Splitting Dimensions. The flow-based models, e.g., RealNVP

[8] and Glow [14], adopt squeeze operation which compresses

the spatial dimensionX c×n×n intoX (ch2)× n
h
× n
h to make more chan-

nels and then split channels into two halves for the coupling layer.

A deep flow model at a specific layer transforms unchanged di-

mensions in the previous layer to keep all the dimensions trans-

formed. In order to learn an optimal partition of X , Glow [14]

model introduces an invertible 1 × 1 convolution : R
c×n×n ×

R
c×c 7→ R

c×n×n with learnable convolution kernelW ∈ R
c×c

which is initialized as a random rotation matrix. After the transfor-

mation Y = invertible 1 × 1 convolution(X ,W ), a fixed partition

Y = (Y1: c2 , :, :
,Y c

2 +1:n, :, :
) over the channel c is used for the affine

coupling layers.

Numerical stability by actnorm. In order to ensure the nu-

merical stability of the flow-based models, actnorm layer is intro-

duced in Glow [14] which normalizes dimensions in each channel

over a batch by an affine transformation with learnable scale and

bias. The scale and the bias are initialized as the mean and the

inverse of the standard variation of the dimensions in each channel

over the batch.
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Figure 1: The outline of our MoFlow. A molecular graph M

(e.g. Metformin) is represented by a feature matrix A for

atoms and adjacency tensors B for bonds. Inference: the

graph conditional flow (GCF) fA|B for atoms (Sec. 4.2) trans-

forms A given B into conditional latent vector ZA |B , and the

Glow fB for bonds (Sec. 4.3) transform B into latent vector

ZB . The latent space follows a spherical Gaussian distribu-

tion. Generation: the generation process is the reverse trans-

formations of previous operations, followed by a validity

correction (Sec. 4.4) procedure which ensures the chemical

validity. We summarize MoFlow in Sec. 4.5. Regression and

optimization: the mapping y(Z ) between latent space and

molecular properties are used formolecular graph optimiza-

tion and property prediction (Sec. 5.3, Sec. 5.4).

4 PROPOSED MOFLOWMODEL

In this section, we first define the problem and then introduce our

Molecular Flow (MoFlow) model in detail. We show the outline of

our MoFlow in Figure 1 as a roadmap for this section.

4.1 Problem Definition: Learning a Probability
Model of Molecular Graphs

Let M = A × B ⊂ R
n×k × R

c×n×n denote the set of Molecules

which is the Cartesian product of the Atom set A with at most

n ∈ N
+ atoms belonging to k ∈ N

+ atom types and the Bond set

B with c ∈ N
+ bond types. A molecule M = (A,B) ∈ A × B is a

pair of an atom matrix A ∈ R
n×k and a bond tensor B ∈ R

c×n×n .

We use one-hot encoding for the empirical molecule data where

A(i,k) = 1 represents the atom i has atom type k , and B(c, i, j) =

B(c, j, i) = 1 represents a type c bond between atom i and atom j.

Thus, a molecule M can be viewed as an undirected graph with

multi-type nodes and multi-type edges.

Our primary goal is to learn a molecule generative model PM (M)

which is the probability of sampling any moleculeM from PM . In

order to capture the combinatorial atom-and-bond structures of

molecular graphs, we decompose the PM (M) into two parts:

PM (M ) = PM ((A, B)) ≈ PA|B (A |B; θA|B )PB (B; θB ) (5)

where PM is the distribution of molecular graphs, PB is the distribu-

tion of bonds (edges) in analogy to modelling multi-channel images

, and PA|B is the conditional distribution of atoms (nodes) given

the bonds by leveraging graph convolution operations. The θB and

θA|B are learnable modelling parameters. In contrast with VAE







Algorithm 1: Exact Likelihood Inference (Encoding) of Molec-

ular Graphs by MoFlow

Input: fA|B : graph conditional flow for atoms, fB : glow for bonds, A: atom
matrix, B : bond tensor, PZ∗ : isotropic Gaussian distributions.

Output: ZM :latent representation for atom M , log PM (M ): logarithmic
likelihood of molecule M .
ZB = fB (B)

log PB (B) = log PZB
(ZB ) + log | det(

∂fB
∂B ) |

B̂ = graphnorm(B)

ZA|B = fA|B (A |B̂)

log PA|B (A |B) = log PZA|B
(ZA|B ) + log | det(

∂fA|B
∂A ) |

ZM = (ZA |B, ZB )

log PM (M ) = log PB (B) + log PA|B (A |B)

Return: ZM , log PM (M )

Algorithm 2: Molecular Graph Generation (Decoding) by the

Reverse Transformation of MoFlow
Input: fA|B : graph conditional flow for atoms, fB : glow for bonds, ZM :latent

representation of molecule M or sampling from a prior Gaussian,
validity-correction: validity correction rules.

Output: M : a molecule
(ZA|B, ZB ) = ZM
B = f −1

B
(ZB )

B̂ = graphnorm(B)

A = f −1
A|B

(ZA|B |B̂)

M = validity-correction(A, B)
Return: M

• Constrained property optimization (Sec. 5.4): Can our

MoFlow generate novel molecular graphs with the optimized

properties and at the same time keep the chemical similarity

as much as possible?

Baselines. We compare our MoFlow with: a) the state-of-the-

art VAE-based method JT-VAE [12] which captures the chemical

validity by encoding and decoding a tree-structured scaffold of

molecular graphs; b) the state-of-the-art autoregressive models

GCPN [34] and MolecularRNN (MRNN)[26] with reinforcement

learning for property optimization, which generate molecules in a

sequential manner; c) flow-based methods GraphNVP [21] and GRF

[10] which generate molecules at one shot and the state-of-the-art

autoregressive-flow-based model GraphAF [30] which generates

molecules in a sequential way.

Datasets.We use two datasets QM9 [27] and ZINC250K [11] for

our experiments and summarize them in Table 1. The QM9 contains

133, 885 molecules with maximum 9 atoms in 4 different types, and

the ZINC250K has 249, 455 drug-like molecules with maximum

38 atoms in 9 different types. The molecules are kekulized by the

chemical software RDKit [17] and the hydrogen atoms are removed.

There are three types of edges, namely single, double, and triple

bonds, for all molecules. Following the pre-processing procedure in

[21], we encode each atom and bond by one-hot encoding, pad the

molecules which have less than themaximumnumber of atomswith

an virtual atom, augment the adjacency tensor of each molecule

by a virtual edge channel representing no bonds between atoms,

and dequantize [8, 21] the discrete one-hot-encoded data by adding

uniform random noise U [0, 0.6] for each dimension, leading to

atom matrix A ∈ R
9×5 and bond tensor B ∈ R

4×9×9 for QM9, and

A ∈ R
38×10 and B ∈ R

4×38×38 for ZINC250k.

Table 1: Statistics of the datasets.

#Mol.

Graphs

Max.

#Nodes

#Node

Types

#Edge

Types

QM9 133,885 9 4+1 3+1

ZINC250K 249,455 38 9+1 3+1

MoFlow Setup. To be comparable with one-shot-flow baseline

GraphNVP [21], for the ZINC250K, we adopt 10 coupling layers

and 38 graph coupling layers for the bonds’ Glow and the atoms’

graph conditional flow respectively. We use two 3 ∗ 3 convolution

layers with 512, 512 hidden dimensions in each coupling layer. For

each graph coupling layer, we set one relational graph convolu-

tion layer with 256 dimensions followed by a two-layer multilayer

perceptron with 512, 64 hidden dimensions. As for the QM9, we

adopt 10 coupling layers and 27 graph coupling layers for the bonds’

Glow and the atoms’ graph conditional flow respectively. There

are two 3*3 convolution layers with 128, 128 hidden dimensions

in each coupling layer, and one graph convolution layer with 64

dimensions followed by a two-layer multilayer perceptron with

128, 64 hidden dimensions in each graph coupling layer. As for the

optimization experiments, we further train a regression model to

map the latent embeddings to different property scalars (discussed

in Sec. 5.3 and 5.4) by a multi-layer perceptron with 18-dim linear

layer -> ReLu -> 1-dim linear layer structures. For each dataset, we

use the same trained model for all the following experiments.

Empirical Running Time. Following above setup, we imple-

mented our MoFlow by Pytorch-1.3.1 and trained it by Adam opti-

mizer [13] with learning rate 0.001, batch size 256, and 200 epochs

for both datasets on 1 GeForce RTX 2080 Ti GPU and 16 CPU

cores. Our MoFlow finished 200-epoch training within 22 hours (6.6

minutes/epoch) for ZINC250K and 3.3 hours (0.99 minutes/epoch)

for QM9. Thanks to efficient one-pass inference/embedding, our

MoFlow takes negligible 7 minutes to learn an additional regres-

sion layer trained in 3 epochs for optimization experiments on

ZINC250K. In comparison, as for the ZINC250K dataset, GraphNVP

[21] costs 38.4 hours (11.5 minutes/epoch) by our Pytorch imple-

mentation for training on ZINC250K with the same configurations,

and the estimated total running time of GraphAF [30] is 124 hours

(24 minutes/epoch) which consists of the reported 4 hours for a

generation model trained by 10 epochs and estimated 120 hours for

another optimization model trained by 300 epochs. The reported

running time of JT-VAE [12] is roughly 24 hours in [34].

5.1 Generation and Reconstruction

Setup. In this task, we evaluate our MoFlow ’s capability of gener-

ating novel, unique and valid molecular graphs, and if our MoFlow

can reconstruct input molecular graphs from their latent represen-

tations. We adopted the widely-used metrics, including: Validity

which is the percentage of chemically valid molecules in all the gen-

erated molecules, Uniqueness which is the percentage of unique

valid molecules in all the generated molecules, Novelty which is

the percentage of generated valid molecules which are not in the

training dataset, and Reconstruction rate which is the percentage

of molecules in the input dataset which can be reconstructed from

their latent representations. Besides, because the novelty score also

accounts for the potentially duplicated novel molecules, we propose



Table 2: Generation and reconstruction performance on QM9 dataset.

% Validity % Validity w/o check % Uniqueness % Novelty % N.U.V. % Reconstruct

GraphNVP [21] 83.1 ± 0.5 n/a 99.2 ± 0.3 58.2 ± 1.9 47.97 100

GRF [10] 84.5 ± 0.70 n/a 66.0 ± 1.15 58.6 ± 0.82 32.68 100

GraphAF [30] 100 67 94.51 88.83 83.95 100

MoFlow 100.00 ± 0.00 96.17 ± 0.18 99.20 ± 0.12 98.03 ± 0.14 97.24 ± 0.21 100.00 ± 0.00

Table 3: Generation and reconstruction performance on ZINC250K dataset.

% Validity % Validity w/o check % Uniqueness % Novelty % N.U.V. % Reconstruct

JT-VAE [12] 100 n/a 100 100 100 76.7

GCPN [34] 100 20 99.97 100 99.97 n/a

MRNN [26] 100 65 99.89 100 99.89 n/a

GraphNVP [21] 42.6 ± 1.6 n/a 94.8 ± 0.6 100 40.38 100

GRF [10] 73.4 ± 0.62 n/a 53.7 ± 2.13 100 39.42 100

GraphAF [30] 100 68 99.10 100 99.10 100

MoFlow 100.00 ± 0.00 81.76 ± 0.21 99.99 ± 0.01 100.00 ± 0.00 99.99 ± 0.01 100.00 ± 0.00

a new metric N.U.V. which is the percentage of Novel, Unique, and

Valid molecules in all the generated molecules. We also compare

the validity of ablation models if not using validity check or validity

correction, denoted as Validity w/o check in [30].

The prior distribution of latent space follows a spherical multi-

variate Gaussian distribution N(0, (tσ )2I) where σ is the learned

standard deviation and the hyper-parameter t is the temperature

for the reduced-temperature generative model [14, 21, 24]. We use

t = 0.85 in the generation for both QM9 and ZINC250K datasets,

and t = 0.6 for the ablation study without validity correction. To

be comparable with the state-of-the-art baseline GraphAF[30], we

generate 10, 000molecules, i.e., sampling 10, 000 latent vectors from

the prior and then decode them by the reverse transformation of

our MoFlow. We report the the mean and standard deviation of

results over 5 runs. As for the reconstruction, we encode all the

molecules from the training dataset into latent vectors by the en-

coding transformation of our MoFlow and then reconstruct input

molecules from these latent vectors by the reverse transformation

of MoFlow.

Results. Table 2 and Table 3 show that our MoFlow outperfoms

the state-of-the-art models on all the six metrics for both QM9 and

ZINC250k datasets. Thanks to the invertible characteristic of the

flow-based models, our MoFlow builds an one-to-one mapping from

the input moleculeM to its corresponding latent vector Z , enabling

100% reconstruction rate as shown in Table 2 and Table 3. In con-

trast, the VAE-based method JT-VAE and the autoregressive-based

method GCPN and MRNN can’t reconstruct all the input molecules.

Compared with the one-shot flow-based model GraphNVP and

GRF, by incorporating validity correction mechanism, our MoFlow

achieves 100% validity, leading to significant improvements of the

validity score and N.U.V. score for both datasets. Specifically, the

N.U.V. score of MoFlow are 2 and 3 times as large as the N.U.V.

scores of GraphNVP and GRF respectively in Table 2. Even with-

out validity correction, our MoFlow still outperforms the validity

scores of GraphNVP and GRF by a large margin. Compared with

the autoregressive flow-based model GraphAF, we find our MoFlow

outperforms GraphAF by additional 16% and 0.8% with respect to

N.U.V scores for QM9 and ZINC respectively, indicating that our

MoFlow generates more novel, unique and valid molecules. Indeed,

MoFlow achieves better uniqueness score and novelty score com-

pared with GraphAF for both datasets. What’s more, our MoFlow

without validity correction still outperforms GraphAF without the

validity check by a large margin w.r.t. the validity score (validity

w/o check in Table 2 and Table 3) for both datasets, implying the

superiority of capturing the molecular structures in a holistic way

by our MoFlow over autoregressive ones in a sequential way.

In conclusion, our MoFlow not only memorizes and reconstructs

all the training molecular graphs, but also generates more novel,

unique and valid molecular graphs than existing models, indicating

that our MoFlow learns a strict superset of the training data and

explores the unknown chemical space better.

5.2 Visualizing Continuous Latent Space

Setup. We examine the learned latent space of our MoFlow , de-

noted as f , by visualizing the decoded molecular graphs from a

neighborhood of a latent vector in the latent space. Similar to

[12, 16], we encode a seed moleculeM into Z = f (M) and then grid

search two random orthogonal directions with unit vector X and Y

based onZ , then we get new latent vector byZ ′
= Z+λX ∗X+λY ∗Y

where λX and λY are the searching steps. Different from VAE-

based models, our MoFlow gets decoded molecules efficiently by

the one-pass inverse transformation M ′
= f −1(Z ′). In contrast,

the VAE-based models such as JT-VAE need to decode each latent

vectors 10− 100 times and autoregressive-based models like GCPN,

MRNN and GraphAF need to generate a molecule sequentially.

Further more, we measure the chemical similarity between each

neighboring molecule and the centering molecule. We choose Tani-

moto index [2] as the chemical similarity metrics and indicate their

similarity values by a heatmap. We further visualize a linear inter-

polation between two molecules to show their changing trajectory

similar to the interpolation case between images [14].

Results.We show the visualization of latent space in Figure 4.

We find the latent space is very smooth and the interpolations be-

tween two latent points only change a molecule graph a little bit.
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Figure 4: Visualization of learned latent space by our MoFlow. Top: Visualization of the grid neighbors of a seed molecule in

the center, which serves as the baseline for measuring similarity. Bottom: Interpolation between two seed molecular graphs

and the left one is the baseline molecule for measuring similarity. Seed molecules are highlighted in red boxs and they are

randomly selected from ZINC250K.

Quantitatively, we find the chemical similarity between molecules

majorly correspond to their Euclidean distance between their la-

tent vectors, implying that our MoFlow embeds similar molecular

graph structures into similar latent embeddings. Searching in such

a continuous latent space learnt by our MoFlow is the basis for

molecular property optimization and constraint optimization as

discussed in the following sections.

5.3 Property Optimization

Setup. The property optimization task aims at generating novel

molecules with the best Quantitative Estimate of Druglikeness

(QED) scores [3] which measures the drug-likeness of generated

molecules. Following the previous works [26, 34], we report the

best property scores of novel molecules discovered by each method.

We use the pre-trained MoFlow, denoted as f , in the genera-

tion experiment to encode a molecule M and get the molecular

embedding Z = f (M), and further train a multilayer perceptron to

regress the embeddingZ of the molecules to their property valuesy.

We then search the best molecules by the gradient ascend method,

namely Z ′
= Z + λ ∗

dy
dZ

where the λ is the length of the search

step. We conduct above gradient ascend method by K steps. We

decode the new embedding Z ′ in the latent space to the discovered

molecule by reverse mapping M ′
= f −1(Z ′). The molecule M ′ is

novel ifM ′ doesn’t exist in the training dataset.

Results. We report the discovered novel molecules sorted by

their QED scores in Table 4. We find previous methods can only find

Table 4: Discovered novel molecules with the best QED

scores. OurMoFlow findsmoremolecules with the best QED

scores. More results in Figure 5.

Method 1st 2nd 3rd 4th

ZINC (Dataset) 0.948 0.948 0.948 0.948

JT-VAE 0.925 0.911 0.910 -
GCPN 0.948 0.947 0.946 -
MRNN 0.948 0.948 0.947 -
GraphAF 0.948 0.948 0.947 0.946

MoFlow 0.948 0.948 0.948 0.948

very few molecules with the best QED score (= 0.948). In contrast,

our MoFlow finds much more novel molecules which have the

best QED values than all the baselines. We show more molecular

structures with top QED values in Figure 5.

5.4 Constrained Property Optimization

Setup. The constrained property optimization aims at finding a

new moleculeM ′ with the largest similarity score sim(M,M ′) and

the largest improvement of a targeted property value y(M ′) −y(M)

given a molecule M . Following the similar experimental setup of

[12, 34], we choose Tanimoto similarity of Morgan fingerprint [28]

as the similarity metrics, the penalized logP (plogp) as the target

property, and M from the 800 molecules with the lowest plogp

scores in the training dataset of ZINC250K. We use similar gradient

ascend method as discussed in the previous subsetion to search for

optimized molecules. An optimization succeeds if we find a novel

moleculeM ′ which is different fromM and y(M ′) − y(M) ≥ 0 and
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