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ABSTRACT

Learning continuous-time dynamics on complex networks is cru-
cial for understanding, predicting and controlling complex systems
in science and engineering. However, this task is very challenging
due to the combinatorial complexities in the structures of high
dimensional systems, their elusive continuous-time nonlinear dy-
namics, and their structural-dynamic dependencies. To address
these challenges, we propose to combine Ordinary Differential
Equation Systems (ODEs) and Graph Neural Networks (GNNs) to
learn continuous-time dynamics on complex networks in a data-
driven manner. We model differential equation systems by GNNs.
Instead of mapping through a discrete number of neural layers in
the forward process, we integrate GNN layers over continuous time
numerically, leading to capturing continuous-time dynamics on
graphs. Our model can be interpreted as a Continuous-time GNN
model or a Graph Neural ODEs model. Our model can be utilized for
continuous-time network dynamics prediction, structured sequence
prediction (a regularly-sampled case), and node semi-supervised
classification tasks (a one-snapshot case) in a unified framework.
We validate our model by extensive experiments in the above three
scenarios. The promising experimental results demonstrate our
model’s capability of jointly capturing the structure and dynamics
of complex systems in a unified framework.
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1 INTRODUCTION

Real-world complex systems, such as brain [14], ecological systems
[13], gene regulation [2], human health [5], and social networks
[21, 24, 46ś49], etc., are usually modeled as complex networks and
their evolution are governed by some underlying nonlinear dynam-
ics [30]. Revealing these dynamics on complex networks modeled
by differential equation systems is crucial for understanding the
complex systems in nature. Effective analytical tools developed for
this goal can further help us predict and control these complex
systems. Although the theory of (nonlinear) dynamical systems
has been widely studied in different fields including applied math
[38],statistical physics [30], engineering [37], ecology [13] and bi-
ology [5], these developed models are typically based on a clear
knowledge of the network evolution mechanism which are thus
usually referred to as mechanistic models. Given the complexity of
the real world, there is still a large number of complex networks
whose underlying dynamics are unknown yet (e.g., they can be too
complex to be modeled by explicit mathematical functions). At the
same time, massive data are usually generated during the evolution
of these networks. Therefore, modern data-driven approaches are
promising and highly demanding in learning dynamics on complex
networks.

The development of a successful data-driven approach for mod-
eling continuous-time dynamics on complex networks is very chal-
lenging: the interaction structures of the nodes in real-world net-
works are complex and the number of nodes and edges is large,
which is referred to as the high-dimensionality of complex sys-
tems; the rules governing the dynamic change of nodes’ states in
complex networks are continuous-time and nonlinear; the struc-
tural and dynamic dependencies within the system are difficult
to model by explicit mathematical functions. Recently, there has
been an emerging trend in the data-driven discovery of ordinary
differential equations (ODE) or partial differential equations (PDE)
to capture the continuous-time dynamics, including sparse regres-
sion method [27, 34], residual network [31], feedforward neural
network [33], etc. However, these methods can only handle very
small ODE or PDE systems which consist of only a few interaction
terms. For example, the sparse-regression-based method [27] shows
that its combinatorial complexity grows with the number of agents
when building candidate interaction library. Effective learning of
continuous-time dynamics on large networks which consist of tens
of thousands of agents and interactions is still largely unknown.

In this paper, we propose to combine Ordinary Differential Equa-
tion Systems (ODEs) and Graph Neural Networks (GNNs) [43] to
learn non-linear, high-dimensional and continuous-time dynamics
on graphs 1. We model differential equation systems by GNNs to

1We use graph to avoid the ambiguity with neural network. Otherwise, we use graph
and network interchangeably to refer to linked objects.
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capture the instantaneous rate of change of nodes’ states. Instead
of mapping through a discrete number of layers in the forward
process of conventional neural network models [20], we integrate
[8] GNN layers over continuous time rather than discrete depths,
leading to a novel Continuous-time GNN model. In a dynamical sys-
tem view, the continuous depth can be interpreted as continuous
physical time, and the outputs of any hidden GNN layer at time t
are instantaneous network dynamics at that moment. Thus we can
also interpret our model as a Graph Neural ODEs in analogy to the
Neural ODEs [8]. Besides, we further enhance our algorithm by
learning the dynamics in a hidden space learned from the original
space of nodes’ states. We name our model Neural Dynamics on
Complex Networks (NDCN).

Our NDCN model can be used for following three tasks in a

unified framework: 1) (Continuous-time network dynamics predic-
tion): Can we predict the continuous-time dynamics on complex
networks at an arbitrary time? 2) (Structured sequence prediction
[36]): Can we predict next few steps of structured sequences? 3)
(Graph semi-supervised classification [19, 44]): Can we infer the
labels of each node given features for each node and some labels at
one snapshot? The experimental results show that our NDCN can
successfully finish above three tasks. As for the task 1, our NDCN
is first of its kind which learns continuous-time dynamics on large
complex networks modeled by differential equations systems. As
for the task 2, our NDCN achieves lower error in predicting future
steps of the structured sequence with much fewer parameters than
the temporal graph neural network models [17, 28, 36, 45]. As for
the task 3, our NDCN learns a continuous-time dynamics to spread
features and labels of nodes to predict unknown labels of nodes,
showing very competitive performance compared to many graph
neural networks [19, 39, 40]. Our framework potentially serves as
a unified framework to jointly capture the structure and dynamics
of complex systems in a data-driven manner.

It’s worthwhile to summarize our contributions as follows:
• A novel model:We propose a novel model NDCN, which
combines Ordinary Differential Equation Systems (ODEs)
and Graph Neural Networks (GNNs) to learn continuous-
time dynamics on graphs. Such amodel can tackle continuous-
time network dynamics prediction, structured sequence pre-
diction, and node semi-supervised classification on graphs
in a unified framework.

• Physical interpretations: Instead of mapping neural net-
works through a discrete number of layers, we integrate
differential equation systems modeled by GNN over continu-
ous time, which gives physical meaning of continuous-time
dynamics on graphs to GNNs. Our NDCN can be interpreted
as a Continuous-time GNN model or a Graph Neural ODEs.

• Good performance: Our experimental results show that
our NDCN learns continuous-time dynamics on various com-
plex networks accurately, achieves lower error in structured
sequence prediction with much fewer parameters than tem-
poral graph neural network models, and outperforms many
GNN models in node semi-supervised classification tasks.

Our codes and datasets are open-sourced at https://github.com/
calvin-zcx/ndcn .

2 RELATED WORK

Dynamics of complex networks. Real-world complex systems
are usually modeled as complex networks and driven by continuous-
time nonlinear dynamics: the dynamics of brain and human micro-
bial are examined in [14] and [5] respectively; [13] investigated the
resilience dynamics of complex systems. [4] gave a pipeline to con-
struct network dynamics. To the best of our knowledge, our NDCN
is the first neural network approach which learns continuous-time
dynamics on complex networks in a data-driven manner.

Data-driven discovery of differential equations. Recently,
some data-driven approaches are proposed to learn the ordinary/-
partial differential equations (ODEs or PDEs), including sparse
regression [27], residual network [31], feedforward neural network
[33], coupled neural networks [32] and so on. [27] tries to learn
continuous-time biological networks dynamics by sparse regression
over a large library of interaction terms. Building the interaction
terms are prohibitively for large systems with many interactions
due to its combinatorial complexity. In all, none of them can learn
the dynamics on complex systems with more than hundreds of
nodes and tens of thousands of interactions.

Neural ODEs and Optimal control. Inspired by residual net-
work [16] and ordinary differential equation (ODE) theory [25, 35],
seminal work neural ODE model [8] was proposed to re-write resid-
ual networks, normalizing flows, and recurrent neural network
in a dynamical system way. See improved Neural ODEs in [10].
However, our NDCN model deals with large differential equations
systems. Besides, our model solves different problems, namely learn-
ing continuous-time dynamics on graphs. Relationships between
back-propagation in deep learning and optimal control theory are
investigated in [6, 15]. We formulate our loss function by leveraging
the concept of running loss and terminal loss in optimal control.
We give novel constraints in optimal control which is modeled by
graph neural differential equations systems. Our model solves novel
tasks, e.g. learning the dynamics on complex networks and refer to
Sec.3.1.

Graph neural networks and temporal-GNNs. Graph neural
networks (GNNs) [43], e.g., Graph convolution network (GCN) [19],
attention-based GNN (AGNN) [39], graph attention networks (GAT)
[40], etc., achieved very good performance on node semi-supervised
learning on graphs. However, existing GNNs usually have integer
number of 1 or 2 layers [22, 43]. Our NDCN gives a dynamical
system view to GNNs: the continuous depth can be interpreted
as continuous physical time, and the outputs of any hidden layer
at time t are instantaneous rate of change of network dynamics
at that moment. By capturing continuous-time network dynamics
with real number of depth/time, our model gives very competitive
and even better results than above GNNs. By combining RNNs or
convolution operators with GNNs, temporal-GNNs [17, 28, 36, 45]
try to predict next few steps of the regularly-sampled structured
sequences. However, these models can not be applied to continuous-
time dynamics (observed at arbitrary physical times with different
time intervals). Our NDCN not only predicts the continuous-time
network dynamics at an arbitrary time, but also predicts the struc-
tured sequences very well with much fewer parameters.



3 GENERAL FRAMEWORK

3.1 Problem Definition
We can describe the continuous-time dynamics on a graph by a
differential equation system:

dX (t )
dt

= f
(

X , G,W , t
)

, (1)

where X (t) ∈ R
n×d represents the state (node feature values) of a

dynamic system consisting of n linked nodes at time t ∈ [0,∞), and
each node is characterized by d dimensional features.G = (V, E) is
the network structure capturing how nodes are interacted with each
other.W (t) are parameters which control how the system evolves
over time. X (0) = X0 is the initial states of this system at time t = 0.
The function f : R

n×d → R
n×d governs the instantaneous rate

of change of dynamics on the graph. In addition, nodes can have
various semantic labels encoded by one-hot encoding Y (X ,Θ) ∈
{0, 1}n×k , and Θ represents the parameters of this classification
function. The problems we are trying to solve are:

• (Continuous-time network dynamics prediction)How

to predict the continuous-time dynamics
dX (t )
dt

on a

graph at an arbitrary time?Mathematically, given a graph
G and nodes’ states of system { ˆX (t1), ˆX (t2), ..., ˆX (tT )|0 ≤
t1 < ... < tT } where t1 to tT are arbitrary physical times-

tamps, can we learn differential equation systems dX (t )
dt
=

f (X ,G,W , t) to predict continuous-time dynamics X (t) at
an arbitrary physical time t? The arbitrary physical times
mean that {t1, ..., tT } are irregularly sampled with different
observational time intervals. When t > tT , we call the pre-
diction task extrapolation prediction, while t < tT and
t , {t1, ..., tT } for interpolation prediction.

• (Structured sequence prediction). As a special case when
X (t) are sampled regularly with the same time intervals
{ ˆX [1], ˆX [2], ..., ˆX [T ]}, the above problem degenerates to a
structured sequence learning task with an emphasis on se-
quential order instead of arbitrary physical times. The goal is
to predict nextm steps’ structured sequenceX [T+1], ...,X [T+
m] .

• (Node semi-supervised classification on graphs) How

to predict the unknown nodes’ labels given features

for each node and some labels at one snapshot? As a
special case of above problem with an emphasis on a specific
moment, given a graphG , one-snapshot featuresX and some
labelsMask ⊙Y , can we learn a network dynamics to predict
unknown labels (1 −Mask) ⊙ Y by spreading given features
and labels on the graph?

We try to solve above three tasks on learning dynamics on graphs
in a unified framework.

3.2 A Unified Learning Framework
We formulate our basic framework as follows:

argmin
W (t ),Θ(T )

L =
∫ T

0
R
(

X , G,W , t
)

dt + S
(

Y (X (T ), Θ)
)

subject to
dX (t )
dt

= f
(

X , G,W , t
)

, X (0) = X0

(2)

where
∫ T

0
R
(

X ,G,W , t
)

dt is the "running" loss of the continuous-

time dynamics on graph from t = 0 to t = T , and S(Y (X (T ),Θ)) is

the "terminal" loss at time T . By integrating dX
dt
= f (X ,G,W , t)

over time t from initial state X0, a.k.a. solving the initial value
problem [7] for this differential equation system, we can get the

continuous-time network dynamicsX (t) = X (0)+
∫ T

0
f (X ,G,W ,τ )dτ

at arbitrary time moment t > 0.
Such a formulation can be seen as an optimal control prob-

lem so that the goal becomes to learn the best control param-
eters W (t) for differential equation system dX

dt
= f (X ,G,W , t)

and the best classification parameters Θ for semantic function
Y (X (t),Θ) by solving above optimization problem. Different from
traditional optimal control framework, we model the differential
equation systems dX

dt
= f (X ,G,W , t) by graph neural networks.

By integrating dX
dt
= f (X ,G,W , t) over continuous time, namely

X (t) = X (0) +
∫ t

0
f
(

X ,G,W ,τ
)

dτ , we get our graph neural ODE

model. In a dynamical system view, our graph neural ODE can be
a time-varying coefficient dynamical system whenW (t) changes
over time; or a constant coefficient dynamical system whenW is
constant over time for parameter sharing. It’s worthwhile to re-
call that the deep learning methods with L hidden neural layers
f∗ are X [L] = fL ◦ ... ◦ f2 ◦ f1(X [0]), which are iterated maps [38]
with an integer number of discrete layers and thus can not learn
continuous-time dynamics X (t) at arbitrary time. In contrast, our

graph neural ODE model X (t) = X (0) +
∫ t

0
f
(

X ,G,W ,τ
)

dτ can

have continuous layers with a real number t depth corresponding
to the continuous-time dynamics on graph G. Thus, we can also
interpret our graph neural ODE model as a continuous-time GNN.

Moreover, to further increase the express ability of our model,
we encode the network signal X (t) from the original space to Xh (t)
in a hidden space, and learn the dynamics in such a hidden space.
Then our model becomes:

argmin
W (t ),Θ(T )

L =
∫ T

0
R
(

X , G,W , t
)

dt + S
(

Y (X (T ), Θ)
)

subject to Xh (t ) = fe
(

X (t ),We

)

, X (0) = X0

dXh (t )
dt

= f
(

Xh, G,Wh, t
)

,

X (t ) = fd
(

Xh (t ),Wd

)

(3)

where the first constraint transforms X (t) into hidden space Xh (t)
through encoding function fe . The second constraint is the govern-
ing dynamics in the hidden space. The third constraint decodes the
hidden signal back to the original space with decoding function
fd . The design of fe , f , and fd are flexible to be any deep neural

structures. We name our graph neural ODE (or continuous-time
GNN) model as Neural Dynamics on Complex Networks (NDCN).

We solve the initial value problem (i.e., integrating the differen-
tial equation systems over time numerically) by numerical meth-
ods (e.g., 1st -order Euler method, high-order method Dormand-
Prince DOPRI5 [9], etc.). The numerical methods can approximate

continuous-time dynamics X (t) = X (0) +
∫ t

0
f
(

X ,G,W ,τ
)

dτ at

arbitrary time t accurately with guaranteed error. Thus, an equiv-
alent formulation of Eq.(3) by explicitly solving the initial value





• The gene regulatory dynamics governed byMichaelis-Menten

equation d
−−−→
xi (t )
dt
= −bi−→xi f +

∑n
j=1Ai, j

−→x j h
−→x j h+1

where the first

term models degradation when f = 1 or dimerization when
f = 2, and the second term captures genetic activation tuned
by the Hill coefficient h [2, 13].

Complex Networks.We consider following networks: (a) Grid
network, where each node is connected with 8 neighbors (as shown
in Fig. 2(a)) ; (b) Random network, generated by Erdós and Rényi
model [11] (as shown in Fig. 2(b)); (c) Power-law network, generated
by Albert-Barabási model [3] (as shown in Fig. 2(c)); (d) Small-
world network, generated by Watts-Strogatz model [41] (as shown
in Fig. 2(d)); and (e) Community network, generated by random
partition model [12] (as shown in Fig. 2(e)).

Visualization. To visualize dynamics on complex networks over
time is not trivial. We first generate a network with n nodes by
aforementioned network models. The nodes are re-ordered accord-
ing to the community detection method by Newman [29] and each
node has a unique label from 1 to n. We layout these nodes on a
2-dimensional

√
n ×

√
n grid and each grid point (r , c) ∈ N

2 rep-
resents the ith node where i = r

√
n + c + 1. Thus, nodes’ states

X (t) ∈ R
n×d at time t when d = 1 can be visualized as a scalar field

function X : N2 → R over the grid. Please refer to Appendix A for
the animations of these dynamics on different complex networks
over time.

Baselines. To the best of our knowledge, there are no baselines
for learning continuous-time dynamics on complex networks, and
thus we compare the ablation models of NDCN for this task. By in-
vestigating ablation models we show that our NDCN is a minimum
model for this task. We keep the loss function same and construct
following baselines:

• The model without encoding fe and fd and thus no hidden

space: dX (t )
dt

= ReLU(ΦX (t)W + b) , namely ordinary dif-
ferential equation GNN model (ODE-GNN), which learns
the dynamics in the original signal space X (t) as shown in
Fig. 1b;

• The model without graph diffusion operator Φ: dXh (t )
dt

=

ReLU(Xh (t)W +b), i.e., an neural ODE model [8], which can
be thought as a continuous-time version of forward residual
neural network (See Fig. 1a and Fig. 1b for the difference
between residual network and ODE network).

• The model without control parameters, namely weight layer

W : dXh (t )
dt

= ReLU(ΦXh (t)) which has no linear connection
layer between t and t+dt (wheredt → 0) and thus indicating
a determined dynamics to spread signals (See Fig. 1c without
a weight layer).

Experimental setup.We generate underlying networks with
400 nodes by network models in Sec.4.2 and the illustrations are
shown in Fig. 2,3 and 4. We set the initial valueX (0) the same for all
the experiments and thus different dynamics are only due to their
different dynamic rules and underlying networks (See Appendix A).

We irregularly sample 120 snapshots of the continuous-time
dynamics { ˆX (t1), ..., ˆX (t120)|0 ≤ t1 < ... < t120 ≤ T } where the
time intervals between t1, ..., t120 are different. We randomly choose
80 snapshots from ˆX (t1) to ˆX (t100) for training, the left 20 snapshots
from ˆX (t1) to ˆX (t100) for testing the interpolation prediction task.

We use the 20 snapshots from ˆX (t101) to ˆX (t120) for testing the
extrapolation prediction task.

We use Dormand-Prince method [9] to get the ground truth
dynamics, and use Euler method in the forward process of our
NDCN (More configurations in Appendix B).We evaluate the results
by ℓ1 loss and normalized ℓ1 loss (normalized by the mean element-
wise value of ˆX (t)), and they lead to the same conclusion (We report
normalized ℓ1 loss here and see Appendix C for ℓ1 loss). Results are
the mean and standard deviation of the loss over 20 independent
runs for 3 dynamic laws on 5 different networks by each method.

Table 1: Extrapolation of continuous-time network dynam-

ics. Our NDCN predicts different continuous-time network

dynamics accurately. Each result is the normalized ℓ1 error

with standard deviation (in percentage %) from 20 runs for 3

dynamics on 5 networks by each method.

Grid Random Power Law Small World Community

Heat
Diffusion

No-Encode 29.9 ± 7.3 27.8 ± 5.1 24.9 ± 5.2 24.8 ± 3.2 30.2 ± 4.4
No-Graph 30.5 ± 1.7 5.8 ± 1.3 6.8 ± 0.5 10.7 ± 0.6 24.3 ± 3.0
No-Control 73.4 ± 14.4 28.2 ± 4.0 25.2 ± 4.3 30.8 ± 4.7 37.1 ± 3.7
NDCN 4.1 ± 1.2 4.3 ± 1.6 4.9 ± 0.5 2.5 ± 0.4 4.8 ± 1.0

Mutualistic
Interaction

No-Encode 45.3 ± 3.7 9.1 ± 2.9 29.9 ± 8.8 54.5 ± 3.6 14.5 ± 5.0
No-Graph 56.4 ± 1.1 6.7 ± 2.8 14.8 ± 6.3 54.5 ± 1.0 9.5 ± 1.5
No-Control 140.7 ± 13.0 10.8 ± 4.3 106.2 ± 42.6 115.8 ± 12.9 16.9 ± 3.1
NDCN 26.7 ± 4.7 3.8 ± 1.8 7.4 ± 2.6 14.4 ± 3.3 3.6 ± 1.5

Gene
Regulation

No-Encode 31.7 ± 14.1 17.5 ± 13.0 33.7 ± 9.9 25.5 ± 7.0 26.3 ± 10.4
No-Graph 13.3 ± 0.9 12.2 ± 0.2 43.7 ± 0.3 15.4 ± 0.3 19.6 ± 0.5
No-Control 65.2 ± 14.2 68.2 ± 6.6 70.3 ± 7.7 58.6 ± 17.4 64.2 ± 7.0
NDCN 16.0 ± 7.2 1.8 ± 0.5 3.6 ± 0.9 4.3 ± 0.9 2.5 ± 0.6

Table 2: Interpolation of continuous-time network dynam-

ics. Our NDCN predicts different continuous-time network

dynamics accurately. Each result is the normalized ℓ1 error

with standard deviation (in percentage %) from 20 runs for 3

dynamics on 5 networks by each method.

Grid Random Power Law Small World Community

Heat
Diffusion

No-Encode 32.0 ± 12.7 26.7 ± 4.4 25.7 ± 3.8 27.9 ± 7.3 35.0 ± 6.3
No-Graph 41.9 ± 1.8 9.4 ± 0.6 18.2 ± 1.5 25.0 ± 2.1 25.0 ± 1.4
No-Control 56.8 ± 2.8 32.2 ± 7.0 33.5 ± 5.7 40.4 ± 3.4 39.1 ± 4.5
NDCN 3.2 ± 0.6 3.2 ± 0.4 5.6 ± 0.6 3.4 ± 0.4 4.3 ± 0.5

Mutualistic
Interaction

No-Encode 28.9 ± 2.0 19.9 ± 6.5 34.5 ± 13.4 27.6 ± 2.6 25.5 ± 8.7
No-Graph 28.7 ± 4.5 7.8 ± 2.4 23.2 ± 4.2 26.9 ± 3.8 14.1 ± 2.4
No-Control 72.2 ± 4.1 22.5 ± 10.2 63.8 ± 3.9 67.9 ± 2.9 33.9 ± 12.3
NDCN 7.6 ± 1.1 6.6 ± 2.4 6.5 ± 1.3 4.7 ± 0.7 7.9 ± 2.9

Gene
Regulation

No-Encode 39.2 ± 13.0 14.5 ± 12.4 33.6 ± 10.1 27.7 ± 9.4 21.2 ± 10.4
No-Graph 25.2 ± 2.3 11.9 ± 0.2 39.4 ± 1.3 15.7 ± 0.7 18.9 ± 0.3
No-Control 66.9 ± 8.8 31.7 ± 5.2 40.3 ± 6.6 49.0 ± 8.0 35.5 ± 5.3
NDCN 5.8 ± 1.0 1.5 ± 0.6 2.9 ± 0.5 4.2 ± 0.9 2.3 ± 0.6

Results.We visualize the ground-truth and learned dynamics
in Fig. 2,3 and 4, and please see the animations of these network
dynamics in Appendix A.We find that one dynamic lawmay behave
quite different on different networks: heat dynamics may gradually
die out to be stable but follow different dynamic patterns in Fig. 2.
Gene dynamics are asymptotically stable on grid in Fig. 4a but
unstable on random networks in Fig. 4b or community networks
in Fig. 4e. Both gene regulation dynamics in Fig. 4c and biological
mutualistic dynamics in Fig. 3c show very bursty patterns on power-
law networks. However, visually speaking, our NDCN learns all
these different network dynamics very well.

The quantitative results of extrapolation and interpolation pre-
diction are summarized in Table 1 and Table 2 respectively. We
observe that our NDCN captures different dynamics on various
complex networks accurately and outperforms all the continuous-
time baselines by a large margin, indicating that our NDCN po-
tentially serves as a minimum model in learning continuous-time
dynamics on complex networks.









7 CONCLUSION
We propose to combine differential equation systems and graph
neural networks to learn continuous-time dynamics on complex
networks. Our NDCN gives the meaning of physical time and the
continuous-time network dynamics to the depth and hidden out-
puts of GNNs respectively, predicts continuous-time dynamics on
complex network and regularly-sampled structured sequence ac-
curately, and outperforms many GNN models in the node semi-
supervised classification task (a one-snapshot case). Our model
potentially serves as a unified framework to capture the structure
and dynamics of complex systems in a data-driven manner. For
future work, we try to apply our model to other applications in-
cluding molecular dynamics and urban traffics. Codes and datasets
are open-sourced at https://github.com/calvin-zcx/ndcn.
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APPENDIX:

A ANIMATIONS OF THE REAL-WORLD
DYNAMICS ON DIFFERENT NETWORKS

Please view the animations of the three real-world dynamics on
five different networks learned by different models at: https://drive.
google.com/open?id=1KBl-6Oh7BRxcQNQrPeHuKPPI6lndDa5Y.

B MODEL CONFIGURATIONS

Model configurations of learning network dynamics in both continuous-
time and regularly-sampled settings. We train our NDCN model by
Adam [18]. We choose 20 as the hidden dimension of Xh ∈ R

n×20.
We train our model for a maximum of 2000 epochs using Adam [18]
with learning rate 0.01. We summarize our ℓ2 regularization param-
eter as in Table 6 and Table 7 for Section 4 learning continuous-time
network dynamics. We summarize our ℓ2 regularization parameter
as in Table 8 for Section 5 learning regularly-sampled dynamics.

Table 6: ℓ2 regularization parameter configurations in

continuous-time extrapolation prediction

Grid Random Power Law Small World Community

Heat
Diffusion

No-Encode 1e-3 1e-6 1e-3 1e-3 1e-5
No-Graph 1e-3 1e-6 1e-3 1e-3 1e-5
No-Control 1e-3 1e-6 1e-3 1e-3 1e-5
NDCN 1e-3 1e-6 1e-3 1e-3 1e-5

Mutualistic
Interaction

No-Encode 1e-2 1e-4 1e-4 1e-4 1e-4
No-Graph 1e-2 1e-4 1e-4 1e-4 1e-4
No-Control 1e-2 1e-4 1e-4 1e-4 1e-4
NDCN 1e-2 1e-4 1e-4 1e-4 1e-4

Gene
Regulation

No-Embed 1e-4 1e-4 1e-4 1e-4 1e-4
No-Graph 1e-4 1e-4 1e-4 1e-4 1e-4
No-Control 1e-4 1e-4 1e-4 1e-4 1e-4
NDCN 1e-4 1e-4 1e-4 1e-4 1e-4

Table 7: ℓ2 regularization parameter configurations in

continuous-time interpolation prediction

Grid Random Power Law Small World Community

Heat
Diffusion

No-Encode 1e-3 1e-6 1e-3 1e-3 1e-5
No-Graph 1e-3 1e-6 1e-3 1e-3 1e-5
No-Control 1e-3 1e-6 1e-3 1e-3 1e-5
NDCN 1e-3 1e-6 1e-3 1e-3 1e-5

Mutualistic
Interaction

No-Encode 1e-2 1e-4 1e-4 1e-4 1e-4
No-Graph 1e-2 1e-4 1e-4 1e-4 1e-4
No-Control 1e-2 1e-4 1e-4 1e-4 1e-4
NDCN 1e-2 1e-4 1e-4 1e-4 1e-4

Gene
Regulation

No-Embed 1e-4 1e-4 1e-4 1e-4 1e-4
No-Graph 1e-4 1e-4 1e-4 1e-4 1e-4
No-Control 1e-4 1e-4 1e-4 1e-4 1e-4
NDCN 1e-4 1e-4 1e-4 1e-4 1e-4

Table 8: ℓ2 regularization parameter configurations in

regularly-sampled extrapolation prediction

Grid Random Power Law Small World Community

Heat
Diffusion

LSTM-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
GRU-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
RNN-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
NDCN 1e-3 1e-6 1e-3 1e-3 1e-5

Mutualistic
Interaction

LSTM-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
GRU-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
RNN-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
NDCN 1e-2 1e-3 1e-4 1e-4 1e-4

Gene
Regulation

LSTM-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
GRU-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
RNN-Control 1e-3 1e-3 1e-3 1e-3 1e-3
NDCN 1e-4 1e-4 1e-4 1e-3 1e-3

C RESULTS IN ABSOLUTE ERROR.

We show corresponding ℓ1 loss error in Table 9,Table 10 and Ta-
ble 11 with respect to the normalized ℓ1 loss error in Section 4
learning continuous-time network dynamics and Section 5 learning
regularly-sampled dynamics. The same conclusions can be made
as in Table 1,Table 2 and Table 3.

Table 9: Continuous-time Extrapolation Prediction. Our

NDCN predicts different continuous-time network accu-

rately. Each result is the ℓ1 error with standard deviation

from 20 runs for 3 dynamics on 5 networks for eachmethod.

Grid Random Power Law Small World Community

Heat
Diffusion

No-Encode 1.143 ± 0.280 1.060 ± 0.195 0.950 ± 0.199 0.948 ± 0.122 1.154 ± 0.167
No-Graph 1.166 ± 0.066 0.223 ± 0.049 0.260 ± 0.020 0.410 ± 0.023 0.926 ± 0.116
No-Control 2.803 ± 0.549 1.076 ± 0.153 0.962 ± 0.163 1.176 ± 0.179 1.417 ± 0.140
NDCN 0.158 ± 0.047 0.163 ± 0.060 0.187 ± 0.020 0.097 ± 0.016 0.183 ± 0.039

Mutualistic
Interaction

No-Encode 1.755 ± 0.138 1.402 ± 0.456 2.632 ± 0.775 1.947 ± 0.106 2.007 ± 0.695
No-Graph 2.174 ± 0.089 1.038 ± 0.434 1.301 ± 0.551 1.936 ± 0.085 1.323 ± 0.204
No-Control 5.434 ± 0.473 1.669 ± 0.662 9.353 ± 3.751 4.111 ± 0.417 2.344 ± 0.424
NDCN 1.038 ± 0.181 0.584 ± 0.277 0.653 ± 0.230 0.521 ± 0.124 0.502 ± 0.210

Gene
Regulation

No-Encode 2.164 ± 0.957 6.954 ± 5.190 3.240 ± 0.954 1.445 ± 0.395 8.204 ± 3.240
No-Graph 0.907 ± 0.058 4.872 ± 0.078 4.206 ± 0.025 0.875 ± 0.016 6.112 ± 0.143
No-Control 4.458 ± 0.978 27.119 ± 2.608 6.768 ± 0.741 3.320 ± 0.982 20.002 ± 2.160
NDCN 1.089 ± 0.487 0.715 ± 0.210 0.342 ± 0.088 0.243 ± 0.051 0.782 ± 0.199

Table 10: Continuous-time Interpolation Prediction. Our

NDCN predicts different continuous-time network accu-

rately. Each result is the ℓ1 error with standard deviation

from 20 runs for 3 dynamics on 5 networks for eachmethod.

Grid Random Power Law Small World Community

Heat
Diffusion

No-Encode 1.222 ± 0.486 1.020 ± 0.168 0.982 ± 0.143 1.066 ± 0.280 1.336 ± 0.239
No-Graph 1.600 ± 0.068 0.361 ± 0.022 0.694 ± 0.058 0.956 ± 0.079 0.954 ± 0.053
No-Control 2.169 ± 0.108 1.230 ± 0.266 1.280 ± 0.216 1.544 ± 0.128 1.495 ± 0.171
NDCN 0.121 ± 0.024 0.121 ± 0.017 0.214 ± 0.024 0.129 ± 0.017 0.165 ± 0.019

Mutualistic
Interaction

No-Encode 0.620 ± 0.081 2.424 ± 0.598 1.755 ± 0.560 0.488 ± 0.077 2.777 ± 0.773
No-Graph 0.626 ± 0.143 0.967 ± 0.269 1.180 ± 0.171 0.497 ± 0.101 1.578 ± 0.244
No-Control 1.534 ± 0.158 2.836 ± 1.022 3.328 ± 0.314 1.212 ± 0.116 3.601 ± 0.940
NDCN 0.164 ± 0.031 0.843 ± 0.267 0.333 ± 0.055 0.085 ± 0.014 0.852 ± 0.247

Gene
Regulation

No-Encode 1.753 ± 0.555 4.278 ± 3.374 2.560 ± 0.765 1.180 ± 0.389 5.106 ± 2.420
No-Graph 1.140 ± 0.101 3.768 ± 0.316 3.137 ± 0.264 0.672 ± 0.050 4.639 ± 0.399
No-Control 3.010 ± 0.228 9.939 ± 1.185 3.139 ± 0.313 2.082 ± 0.293 8.659 ± 0.952
NDCN 0.262 ± 0.046 0.455 ± 0.174 0.222 ± 0.034 0.180 ± 0.032 0.562 ± 0.130

Table 11: Regularly-sampled Extrapolation Prediction. Our

NDCN predicts different structured sequences accurately.

Each result is the ℓ1 error with standard deviation from 20

runs for 3 dynamics on 5 networks for each method.

Grid Random Power Law Small World Community

Heat
Diffusion

LSTM-GNN 0.489 ± 0.081 0.824 ± 0.294 0.475 ± 0.196 0.442 ± 0.083 0.517 ± 0.162
GRU-GNN 0.428 ± 0.085 0.349 ± 0.090 0.337 ± 0.049 0.357 ± 0.065 0.302 ± 0.031
RNN-GNN 0.717 ± 0.227 0.957 ± 0.215 0.722 ± 0.247 0.833 ± 0.145 0.615 ± 0.000
NDCN 0.165 ± 0.027 0.180 ± 0.063 0.208 ± 0.015 0.103 ± 0.014 0.201 ± 0.029

Mutualistic
Interaction

LSTM-GNN 1.966 ± 0.126 3.749 ± 3.749 2.380 ± 0.626 2.044 ± 0.086 3.463 ± 3.095
GRU-GNN 1.905 ± 0.157 0.162 ± 0.564 1.077 ± 0.071 1.792 ± 0.165 0.510 ± 0.549

RNN-GNN 2.165 ± 0.004 1.303 ± 1.747 1.056 ± 0.034 2.012 ± 0.065 1.140 ± 0.887
NDCN 1.414 ± 0.060 0.734 ± 0.168 0.990 ± 0.442 0.557 ± 0.078 0.528 ± 0.122

Gene
Regulation

LSTM-GNN 1.883 ± 0.218 26.750 ± 5.634 3.733 ± 1.220 0.743 ± 0.112 16.534 ± 5.094
GRU-GNN 1.641 ± 0.191 20.240 ± 2.549 3.381 ± 1.455 0.626 ± 0.099 14.4 ± 2.358
RNN-GNN 1.906 ± 0.464 22.46 ± 2.276 4.036 ± 1.229 0.795 ± 0.300 14.496 ± 1.077
NDCN 1.267 ± 0.672 0.946 ± 0.357 0.397 ± 0.133 0.312 ± 0.043 0.901 ± 0.160

D ACCURACY OVER TERMINAL TIME AND α

By capturing the continuous-time network dynamics, our NDCN
gives better classification accuracy at terminal timeT ∈ R

+. Indeed,
when the terminal time is too small or too large, the accuracy
degenerates because the features of nodes are in under-diffusion
or over-diffusion states. We plot the mean accuracy of 100 runs of
our NDCN model over different terminal time T and α as shown
in the following heatmap plots. we find for all the three datasets
their accuracy curves follow rise and fall pattern around the best
terminal time.
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