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Abstract—With 5G networks on the rise, it becomes more and
more important to grant researchers access to tools that allow for
development and experimentation in the field of 5G transmission.
Healthcare can benefit greatly from these developments. In this
paper a real-time transmission technique is described and tested
that, if implemented, allows wearable devices to transmit multiple
streams of data on various frequencies. These tests will be used to
explain how this presented platform works, what drawbacks and
benefits exist with the proposed scheme, and how to further
develop the solution of real-time transmission of sensitive data,
such as substance-use data, at higher frequencies.
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1. Introduction

Hardware and software are both improving at steady rates with
5G networks on the rise, while faster machine learning
algorithms are being developed. This rapid development
increases interest in research and therefore the need for testing
platforms and software environments. There are hardly enough
tools, if any, that combine software and hardware, especially
in situations where real-time machine learning algorithms are
needed for examining data streams. This paper introduces a
new pipeline for real-time machine learning algorithms
coupled with emulating the transmission of multiple data
streams concerning substance use data. The data streams used
in this paper concerns substance use, such as surrogates of
sympathetic nervous system excitement, were collected by
multiple sensors recording data every 0.5 seconds [10].
Currently, these real-time data streams were collected by a
wristband with integrated biosensors, saved on the server, and
analyzed offline for detection of substance use events. The
proposed pipeline presented in this paper emulates a scenario
in which these data streams are collected, transmitted, and
analyzed all within real-time. This pipeline uses GNU Radio
and Universal Software Radio Peripherals (USRPs) for real
time transmission of multiple data streams and real time peak
detection algorithms for analysis and detection of events. This
pipeline is tested at different frequencies to emulate the
benefits of 5G networks and the effects of increasing frequency
of transmission on accuracy, speed and safety. Furthermore,

this paper explains the setup of this pipeline in order to make it
accessible to any researcher, even those unfamiliar with code
or transmission schemes. A major part of this pipeline is GNU
Radio which is a free, open source tool that is easy to install,
easily accessible to anyone, and allows for emulation and
simulation of transmission schemes. This tool combined with
peak detection algorithms allows researchers to then recover
and analyze multiple data streams without errors in real-time
at various frequencies and allows for further development in
either one of those fields of research, be it to improve existing
machine learning algorithms, develop new transmission
schemes at different frequencies, or test real-time detection of
substance use events in individuals.

II. An Overview of GNU Radio

The development tool GNU Radio is a free open-source
program that allows communication with a variety of Software
Defined Radios (SDRs) while allowing users to modify and
adjust SDR hardware. GNU Radio is based on “flowgraphs”
which contain “blocks”. The standard structure of any GNU
Radio program consists of a flowgraph with sink/source blocks
and manipulation blocks in between. As described below,
GNU Radio can be used by anyone, even those unfamiliar with
computer engineering and science. For medical researchers
analyzing data and developing new tools, this software is
incredibly useful as it allows for development of new schemes
without any prior knowledge of the field. It is therefore an
invaluable tool for researchers aiming to create real-time event
detection algorithms when considering single/multiple stream
data in substance use areas. On top of that, GNU Radio allows
for adjusting frequency in order to emulate 5G networks.

A. Basic GNU Radio Blocks

1) Source and Sink Blocks: Source blocks and Sink blocks are
the main way of loading and saving data with GNU Radio.
Sources are most often signals, waves or files that are read in
from a file. Sinks can save, graph, or transmit these files
depending on the type of block used. In the case of substance
use data, multiple streams may be combined as one .csv file
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that can be read as a Source File, transmitted, and saved as a
Sink file in .csv format.

2) Mod and Demod Blocks: To convert a file to a transmission
ready format, a wave, Mod blocks are used on to change a file,
which is read as a byte stream, to a complex modulated signal.
Each Mod block in GNU Radio has a corresponding Demod
block, to demodulate a received signal after a successful
transmission to recover the original file.

3) Variables: Variable Blocks are similar to variables in code;
reusable definitions and terms that are implemented in several
parts of a program, or in this case flowgraph. Variables have
an ID, by which they are referenced and a Value.

B. Using GNU Radio for Emulation

GNU Radio is highly recommended when simulating with
SDRs, but it may also be used as an emulation tool by running
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scripts virtually. To do this, the Sink and Source blocks can be
substituted by Virtual Sink and Virtual Source blocks
respectively. This will enable emulated communication
without purchasing any radio equipment. This is a powerful
alternative for researchers that would prefer to obtain hands-on
experience with this tool and potentially write scripts for it
before purchasing and testing on actual hardware.

II1. Set up an environment for transmitting multi-stream
substance use data in real time

There are three major components to this emulation study, the
GNU Radio transmission simulation on real USRP machines,
the file manipulator that splits input files into various smaller
input files, and the event detection algorithms.

GNURaaio 0 csv

wes | [=) ssapz | R H{ o v
V\ »

S~ GNURago pa—

USRF 1 USRFZ [ ot Y

GNURadio [ GNURado

Fig. 1. A diagram showcasing the path a CSV file undertakes in this workflow.

The second component is run prior to transmission in order to
split a file into chunks that are small enough to be transmitted
all at once on USRP machines. Once all chunks of the original
file are transmitted in series, another script is run to check for
errors and merge all pieces back together into a copy of the
original file. These scripts allow for errorless transmission of

multi-stream data. This workflow is depicted in Figure 1 above.

The following sections will describe the contents of each script
and the GNU Radio flowgraph, alongside information on how
to set up the USRP machines correctly.

A. GNU Radio Environment for multi-stream data

1) GNU Radio Flowgraph for errorless real-time transmission
of multi-stream data: Using USRP Hardware Drivers (UHD),
the Variable Blocks at the top of Figure 2 are used to modify
the UHD: USRP Source and UHD: USRP Sink blocks. They
modify the sample rate, frequency and gain on these blocks.
Stream chunks are read in the File Source block in .csv format.
The Packet Encoder and Packet Decoder Blocks then split and
merge the file into smaller chunks splitting one byte stream into
multiple. These are followed and preceded by the Differential
Phase Shift Keying (DPSK) blocks, DPSK Mod and DPSK
Demod, that work to modulate these chunks into and from
complex waves that can be transmitted. I[f no USRP devices are

available, utilizing Virtual Sink and Virtual Source blocks for
transmission (dark grey in Figure 2) allows for software-based
simulation. Once packets are transmitted, received, demoded,
and decoded they are sent to a File Sink for saving and analysis
and compared with the original File Source using a BER block
to allow Bit error rate analysis per transmission.

Excess BW: 350m
FLL Bandwidth: 62 i
Phas dwidth: 525

Fig. 2. The GNU Radio flowgraph diagram used for this paper

2) USRP setup to emulate transmission of multi-stream data
from sensors to a processing unit: For the purposes of this
paper 2 USRP N210 machines were used with one SBX
daughterboard onboard of each. which allows the USRP
devices to transmit within a frequency range of 400MHz —
4.4GHz. Coupled with one log periodic antenna per USRP with
a frequency range of 850MHz — 6.5GHz, the devices can

326

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on November 16,2020 at 15:32:13 UTC from IEEE Xplore. Restrictions apply.



transmit and receive at a range of 850MHz — 4.4GHz. Each
USRP is connected to a 1Gbps Gigabit ethernet switch to
communicate packets with a computer Packet flow is described
in Figure 3. Diagrams for this dataflow and physical setup can
be found in Figure 3 and Figure 4 below.

S B ¥
)

--RX Signal- |
Computer 'SP Gigabit Ethernet

<7 Signal switeh 1

Fig. 3. A diagram of the physical USRP setup and visualization of the
dataflow of a signal.
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Fig. 4. A picture of the physical USRP setup

B. CSV Packet Manipulation — Re-organizing multiple data-
streams into chunks for transmission

Due to GNU Radio packet size constraints, sending files larger
than a certain threshold w is nearly impossible to do at once.
For this paper, a packet splitting conversion and reverse
conversion workflow is introduced and explained below.

1) Conversion and Multiplication of data: Prior to executing
the GNU Radio programs for transmission, a script is run to
take an input file S, repeat every observation D times and create
chunks 7 for transmission. Increasing the rate of repetition D
increases the file size, but also increases accuracy as there are
more data to consider for validation and merging after
transmission. The algorithm takes mL-2p number of rows
(where mL is defined in Eq. (2) of all duplicates and orders
them in various chunks 7 which is padded with p amount of Os
at the start and end of each chunk. These Os are added to pad
the file as USRP machines may potentially omit certain lines
at the start or end of files during simulated and real
transmission. Each chunk 7'is sent to GNU Radio individually,
where it is transmitted by one USRP and received by another.
S\mLsi+j—p)s ifj=pandj < (mL—p)
S—>T|Tij={ =5
0, otherwise
Vi € [0...[D1:2L”,j € [0...mL] (1)

Symbol Description

Source file

Fragment/Chunk file

Recovered file

Maximum length per Fragment File T (rows)

Length of the original file S (seconds of data/2)

Padding at the start and end of each fragment T

Number of Duplicate datapoints of S in T

Upper limit of total datapoints per fragment T

Amount of data streams in file S

Index of Fragment File T

Column/observation within Fragment File T

Time required per script per observation

Gaussian filter result per datapoint t

The value of the observation at time t

Standard deviation of Gaussian distribution

Time of observation/column (similar to j)

Gaussian function for one dimension

Gaussian function to compute Smooth Vectors

Smooth Width for peak detection algorithm

Preliminary set of Smooth Vectors

Final set of Smooth Vectors

Height of observation after applying smoothing

Amplitude threshold for peak Detection

Derivative of smoothed observation

Amplitude threshold for Derivative analysis

TABLE I

VARIABLES USED IN CONVERSION, REVERSE

CONVERSION, PEAK DETECTION AND ANALYSIS

Eq. (1) ensures that files of T are filled with information from
S. The first and last p numbers within file 7 are used as padding.

There shall be l%] amount of chunks 7 created. This

depends on how many chunks of size mL can fit into the total
amount of datapoints (oL) from § after multiplying the amount
by D. Ignoring the padding p and considering the chunk of File
i the equation is currently on, D identical copies from S are
placed in D different spots of T} until the second padding half
is reached (mL-p). The number of chunks 7 increases as more
recordings are taken. The parameter p allows for scaling of
padding; mL allows for the maximum size of each chunk,
including 2p; oL is defined by the size of the original file S; D
determines the number of duplicates, if D is adjusted so should
mL.

In the case of the above mentioned flowgraph and USRP setup,
a limit of ~2475 data entries (w) was observed which was
obtained by multiplying the amount of data streams (c¢) with
the number of recordings in time prior to the terminating
character (“X” for USRP transmission). With this limit w an
optimal mL may be found using Eq. (2)

w
=53t @)
mL==
lDr:loLLJ then signifies how many fragments are created

depending on the D, oL, and mL per fragment. The graph
depicted in Figure 5 demonstrates how mL is affected by
changing input parameters D and ¢ while considering a word
limit w of 2475 and a static padding p of 50 rows at the start
and end of each file.

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on November 16,2020 at 15:32:13 UTC from IEEE Xplore. Restrictions apply.



Data Streams vs. File Fragment Size over a limit of 2475
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Fig. 5. A graph showcasing the reduction of observations per fragment as
data streams increase per duplicate

2) Reverse-conversion and Mode of data: After transmitting
and receiving each fragment 7 of the original file, they are
merged back together using a separate script. If there is a
substantial amount of errors in a chunk, the script will alert
users and prompt a re-transmission of that chunk. If instead
there are only numerical errors caused by random noise, taking
the Mode of all D transmitted values will still eliminate the
error and result in the true value of that reading.
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Fig. 6. A diagram showcasing the distribution of observations across files
from the source file S to the individual fragments 7 to the recovered file R

In the case of the reverse-conversion function, the files use an
operator that takes D amount of numbers to take a mode of.
Padding may be cut off irregularly and must be removed on a
chunk-by-chunk basis in order to only consider real values. The
resulting file R will have the same size and content as the
original file S, allowing for real-time, 1-to-1 recovery of multi-
stream sensor data. Figure 6 sums up this process from
converting all data streams from source S to multiple chunks T’
with D=3 and back to, creating a full circle of data processing.
Algorithm 1 below showcases the entire transmission and
recovery workflow.
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Algorithm 1 Transmission workflow

Input: Source file S, length of source file S: oL, amount of
input streams c, duplication factor D, file padding p, word
limit w.

1: Use Eq. (2) to obtain a value for mL
2: Use Eq. (1) to map S=>T

3:do
4: | Use Eq. (3) to map {T ... TIM 2R
mL
5: if returns no errors
6: | return R
7: else
8: Request re-transmission of erroneous file
9: Overwrite erroneous file with re-transmission
10: | end if

11: while Eq. (3) returns errors
IV. Testing Methods

A. Transmitting larger files and multiple streams of data
There are two ways to adjust for larger file sizes: Either allow
less rows mL to be included in a fragment 7 or decrease D to
lower the number of duplicates sent per entry at the potential
loss of accuracy. To find the best values of each, Eq. (2) and
its outcome, Figure 5 are used given certain input data streams
and a cumulative time period of recordings to find the best mL
as ¢ and D increase.

B. Interference and Frequency Testing

Signal to Noise Ratio (SNR) and Bit Error Rate (BER) of
transmissions are common metrics in wireless communication
testing. GNU Radio includes a BER block which is
implemented in the flowgraph in Figure 2. BER is noted and
averaged across all transmissions of chunks to result in average
BER per frequency (Figure 7). BER averages will be computed
in Non-line of sight transmission (NLoS) and Line of Sight
(LoS) environments respectively at each frequency. In order to
obtain a percentage based BER, the obtained log 10 form from
GNU Radio is taken as an exponent to 10 (10"BER = %BER).
BER is recorded at various frequencies. The necessity to switch
to higher frequencies for the emerging age of 5G is real and
will require testing for usable up-to-date research results. It is
not directly possible to reach 5G frequencies such as 60GHz
with the SBX daughterboards used in this paper. There are
methods and equipment described in [1] that allow for this to
occur, though it was not possible to acquire these resources for
the purpose of these tests. From results in BER gathered at
various frequencies, 5G results may, however, be interpolated
to show how higher frequencies may affect the results of
transmission.

C. Validation Testing of Substance use Data
File S and R may be compared to validate the claim of this
paper of 1-tol transmission. There are two forms of validation
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and processing chosen for this project, both of which are
detailed further below.

1) Excel Validation of recovered sensor data: Validation with
this method includes loading S and R into the same excel file
and comparing each entry j on a row by row basis for each c.
Performing this validation is done by listing each row side by
side and executing the “=EXACT(COLI, COL2)” command to
observe identical entries. Comparing the amount of TRUE vs.
FALSE values results in a precise depiction of the accuracy and
errors of the used transmission scheme and script modifiers.

2) Algorithm Validation Example of Cocaine Data: Once the
data is validated to be identical, or in the case in which it is not
possible to do so, it is useful to observe whether the results with
the original file correspond with the results of the file after
transmission. Peak detection is used to check whether results
in S correspond to results in R.

For peak detection algorithms, we use two different algorithms.
The first one, Local Maximum Search (LMS), is an algorithm
that looks for a point that is larger than its adjacent points.
Specifically, in this case, we use the Gaussian filter to smooth
the data, linear interpolation for baseline correction of the data,
and finally use local maximum for finding the peak points. The
Gaussian filter is calculated as

y(@) = x() X w(t) 4
Where x(t) is the signal at time t and
PR
w(t) = Ee 202 %)

For linear interpolation, we correct the baseline by dividing the
data into small segments and using the median of each segment
as the baseline point. Finally, the peak is determined if it is a
local maximum of N neighboring points.

The second algorithm is The Smoothed Z-score Peak Detection
Algorithm (SPDA) [6], based on the theoretical normal
distribution of the acceleration. The signal of a peak is
determined when the new data point is greater than a given x
number of standard deviations away from a given moving
average. For this case, we decide to use median instead of the
mean for better robustness.

Using the results from the peak detection, we can validate the
results of recovered data automatically by using the number of
peaks and their corresponding time in the data.

D. Detecting Cocaine Use in Real-time

Another method for peak detection provided by [11] smooths
data as it arrives from a data stream and detects any peaks
above a user-set amplitude threshold parameter 4. In the case
of cocaine use, observers may most likely be interested in
changes in three surrogates of sympathetic nervous system, i.e.,
valleys of temperature and peaks of sharp increase in
Locomotion and electrodermal activity (EDA). The algorithm
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may run in parallel to detect peaks in both data streams at the
same time. After finding such a peak, additional information is
computed and displayed to the user including location of the
peak and width derived from a least-squares curve-fit of a
Gaussian function. For the purposes of this experiment, simply
knowing the height and location of a peak is enough.

g= e<—%@ (6)

V= g;Vj€[l...n] @)

m; =Z£:'Vk,v]' €1...n] ®)

hj = (i m_; « R )Vj €[0...0L —n] Q)
d; = %,we[n...u] (10)

In order to find these peaks, the algorithm hinges on the
gaussian function provided in [11] and transcribed in Eq. (6) to
manipulate all observations within a range of a given smooth
width n. Preliminary Smooth Vectors V are calculated for all
numbers in the Smooth width range /7 ... n] (Eq. (7))which are
then all divided by the sum of all Smooth Vectors to give a
finalized gaussian scale of smooth vectors m (Eq. (8)). This
scale is applied to every observation from 7 to oL of file R by
taking the previous n observations, applying the smooth
vectors m to each corresponding observation and adding all
vectors to obtain the final corresponding smoothed point / that
may be plotted and analyzed by peak detection algorithms.
This algorithm therefore loses the first n observations in order
to obtain smoothed points. In order to run Eq. (9) in real-time,
only one datapoint j and its n predecessors are required. Instead
of looking ahead as Eq. (9) suggests, the datapoint would
consider prior datapoints instead of successive ones. These
smoothed data points may also be used to determine
significance of the detected peak by observing the rate of
change of data within a data stream. Eq. (10), taken from [11]
does this with derivatives which have their own defined
amplitude threshold a to describe significance. With these
equations, after smoothing, datapoints may be considered for
peak detection using the algorithm below.

Algorithm 2 Real Time Peak Detection

Input: Result file R, length of result file R: oL, amount of
input streams ¢, amplitude threshold A, derivative amplitude
threshold a, smooth width n

1: Use Algorithm 1 to obtain a result file R
2: Use Eq. (6), Eq. (7) and Eq. (8) to obtain n amount of
smooth vectors m

3:do

4: | for each c

S: if current datapoint j in ¢ <n
6: | Skip
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7: Else

8: Use Eq. (9) tomap j > h;

9: Use Eq. (10) to map h; = d;

10: ifhj_, <h;_; and h;_; > h; and h;_,> A and
d] >a

11: | Report a significant peak for c at j-1

12: end if

13: end if

14: | end for

15: | if all ¢ report significant peaks within n observations

16: | return j

17: | end if

18: while Algorithm 1 returns a new file R

Cocaine use has been found to cause a sharp increase in EDA
and body motion while causing a decrease in body temperature
over time. Using these metrics concurrently allows us to
predict when cocaine was administered to a user. The data
streams used in this study contains labelled events of cocaine
use which can be detected using Algorithm 2 above. This is
completed by detecting changes in three surrogates of
sympathetic nervous system, a significant peak in EDA,
locomotion (Z-axis measuring xxx), and a valley in
temperature (obtained by using the absolute values of the real
time temperature data to detect peaks, though decreased after
cocaine use). Significance here is defined as a high peak of the
first derivative of a stream followed by a valley. This is
interpreted as a sudden increase or decrease (since Eq. (10)
considers absolute values of derivatives) in the original data.
These peaks are detected within 3 minutes of their initial
occurrence which is the maximum time frame it takes for
cocaine side effects to be observable, thus giving an almost
real-time evaluation of cocaine use.

V. Testing Results

A. Transmitting larger files and multiple streams of data
GNU Radio was found to have a file size limit described earlier
in this paper as w. It was found that files larger than this limit
experienced premature cutoffs (terminating character X was
placed prior to end of file) and incomplete data streams
amongst other displacements of observations within the file.
This limit also needs to be downsized further when considering
more data streams for transmission as the recording period
increases. For example, utilizing 2 streams of data ¢ allows for
a chunk-size mL of up to 200 rows whereas 6 columns/streams
of data may only allow for chunk-sizes of 80 rows as there are
more bits needed to represent all streams. These numbers are
examples of file size when considering D=5. Reducing this
number will significantly increase the number of rows
available, but, as mentioned before, may reduce accuracy
overall (Figure 5).

B. Interference and Frequency Testing
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5 frequencies of 1.8GHz, 2.4GHz, 3.0GHz, 3.8GHz, and
4.4GHz were evaluated on both a LoS and NLoS basis at 40
cm distance between antennae. All eleven fragments of the
original file were transmitted twice per frequency, once for
LoS and once for NLoS; if an error occurred, they were re-
transmitted. BER was observed in all cases. Figure 7 below
shows the output average BER of all eleven files including re-
transmissions per frequency. As frequency increases, BER
decreases in a mostly linear fashion. BER also remains higher
in NLoS scenarios than LoS scenarios for the most part. An
interesting piece to note about this data is that in some cases,
BER was the exact same in LoS and NLoS, up to the precision
of 107-6. It is likely that all BER values are skewed to be higher
than their actual values due to the padding cutoff problem
avoided by the conversion and reverse conversion scripts; as
noted before, transmitted files are often cut-off prematurely by
GNU Radio transmission and started after around 8 values.
These errors occur consistently and may cause a large initial
bit difference per transmission, resulting in a skewed BER.
Even in this small sample, an overall decrease in BER is still
observed as frequency increases in both LoS and NLoS
situations.

BER vs. Frequency
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Fig. 7. BER vs. Frequency conducted at the 5 mentioned frequencies

C. Validation Testing

1) Excel Validation of recovered data: Excel validation
following the steps outlined above was performed after
validating each resulting fragment in the reverse conversion
script. All NLoS and LoS transmissions resulted in accurate 1-
to-1 results. Some fragments needed to be repeated as
requested by the reverse conversion script. This ensured that R
was indeed accurate and representative of the original data.

2). Algorithm Validation of Cocaine Data: In Figure 8, we are
using the LMS and the SPDA for validation of the data. From
this figure, we observed that the peaks detected using both
algorithms are identical in the ground-truth data and the
recovered data. Thus, we can conclude that the data has the
same shape before and after transmission giving us 1-to-1
results.

Additionally, as an emulation tool for real-time machine
learning testing in substance use data streams, we demonstrate
the usability of peak detection algorithms on the transmitted
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data. We simulate the real-time application of the data by
passing signals into the algorithm as they would in a practical
situation. From Figure 9, we can see that there is an extended
period of negative peak event in the subject’s temperature,
which suggests that this is the period of cocaine’s usage due to
the effect of cocaine on body temperature. Another peak
detection scheme is described in more detail in the next section.
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Fig. 8. Validation of recovered data using peak detection
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D. Detecting Cocaine Use in Real-time

The smooth width 7 set for this algorithm is 351 (where 360 is
equivalent to 3 minutes) to detect peaks within at most 3
minutes of the initial occurrence. The labeled peaks in Figure
10 are confirmed cocaine administration to compare results of
Algorithm 2 to. The amplitude threshold A to detect these
peaks was 30*C for temperature, 1.5 for EDA, and 0.5 for Z.
These amplitude thresholds were tuned after considering noise
reduction and outliers within the three data streams. For

derivative amplitude thresholds, @=1 was used for all variables.

These limits are used for testing and validation purposes.

The confirmed drug use cases at Peak 1 and Peak 2 were
detected by the smoothed data streams generated by Eq. (9) in
Algorithm 2. Temperature experienced valleys which were
deemed significant while EDA and Z experienced significant
peaks within a time period of 3 minutes after the events (Figure
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10). While there was a deep valley detected in temperature at
Peak 1 (26*C), Peak 2 saw diminishing effects since it was the
second one within an hour. Temperature was not affected as
strongly as it was during the first use. However, EDA and Z
saw significant changes at Peak 2, making it less subtle and
easier to detect.
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Fig. 10. Graph of the absolute value of the first derivative of negative
temperature (top left, triangles), EDA (top right, circles), absolute value of Z-
axis locomotion (bottom left, squares) and all three streams combined over
time (bottom right) for peak detection. Confirmed peaks are labeled. These
graphs are derived from Eq. (10)

While Peak 1 wasn’t as easily detected due to delays in effects,
Peak 2 is much more promising despite diminished
temperature effects. Both Peak 1 and Peak 2 were, however,
found and validated in real time using Algorithm 2, showcasing
the strength and speed of the proposed detection scheme.

VI. Conclusion

Considering only a short distance of 40 cm, the 5
aforementioned frequencies were tested in LoS and NLoS
environments to simulate a common environment between on-
body temperature sensors and receivers. Results from Figure 7
suggest that data sent from sensors will be transmitted with
higher accuracy when considering higher frequencies.

The dataset used was of real-time, biomedical nature,
concerning substance use detection, specifically cocaine, based
on skin temperature, locomotion, and EDA change, based on
[10]. Data is collected 2 times each second and needs to be
transmitted at a faster or equal rate to constitute real-time
requirements and allow for accurate detection of drug use.
Running Algorithm 2 allows for an estimate of time required
to transmit and analyze one datapoint on average. Adding the
time needed to convert (b,), transmit (b,), reverse (b,), and

run detection algorithms (bg) per column ¢ gives us bg,g =
0.43+23.2+0.476+3+0.00017831

2310
on average out of oL datapoints within one of the files used for

testing (see Eq. 11 for details). Since data is collected twice
each second, one second of sensor data can be sent, recovered

= (0.01s, or 10.44ms per datapoint
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and analyzed in roughly 20.871 ms on average, constituting
real time recovery.

b betbetbrrctbg
avg — oL

(11
The context of cocaine use detection may be expanded to other
drugs as well. The detection algorithms aren’t limited to
datasets and transmissions aren’t limited by frequencies. There
is a lot of potential for new research within substance use data,
signal processing and 5G networks with this new, easily
accessible and free tool, allowing for rapid development in
sensor hardware and software for medical or other purposes.

Further developments in this area may aim to implement the
proposed transmission scheme in 5G capable USRP equipment
proposed in [1]. Another future improvement may use Out of
Tree Modules (OOT Modules) for the scripts described in this
paper. OOT Modules are scripts imported into GNU Radio as
blocks that function as other GNU Radio packages would.
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