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ABSTRACT 
Although exploring alternatives is fundamental to creating
better interface designs, current processes for creating
alternatives are generally manual, limiting the alternatives
a designer can explore. We present Scout, a system
that helps designers rapidly explore alternatives through
mixed-initiative interaction with high-level constraints and
design feedback. Prior constraint-based layout systems use
low-level spatial constraints and generally produce a single
design. To support designer exploration of alternatives, Scout
introduces high-level constraints based on design concepts
(e.g., semantic structure, emphasis, order) and formalizes them
into low-level spatial constraints that a solver uses to generate
potential layouts. In an evaluation with 18 interface designers,
we found that Scout: (1) helps designers create more spatially
diverse mobile interface layouts with similar quality to those
created with a baseline tool and (2) can help designers avoid a
linear design process and quickly ideate layouts they do not
believe they would have thought of on their own.

Author Keywords 
Interface design, alternatives, program synthesis, constraints.

CCS Concepts 
•Human-centered computing → Systems and tools for
interaction design;

INTRODUCTION 
Alternatives are important in interface design. Studies have
found that creating multiple designs in parallel results in
higher-quality and and more diverse solutions [8, 13]. When
designers explicitly compare alternatives, it can enable them to
make stronger critiques and better decisions [12, 48]. However,
designers face many barriers in creating high-quality and
diverse alternatives. First, it is difficult to overcome fixation
to think of completely new ideas [22]. Designers often sketch
alternatives on paper [8], but such sketches can be difficult to
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change and a designer is still limited by the ability to envision
new ideas to sketch. Example galleries [19] (e.g., Behance,
Dribble) can help designers find inspiration from other design
examples. However, a designer still needs to manually adapt
examples into design alternatives. This may require low-level
resizing, restyling, and relocating of interface elements. This
can be particularly challenging for novice designers, as it
requires knowledge of usability and visual design principles
[30, 37] to maintain quality across alternatives.

To aid designers in exploring and creating alternatives, we
present Scout, a mixed-initiative system to help designers
rapidly explore mobile interface layout alternatives. A
designer can use Scout to express their interface elements
and high-level constraints (e.g., semantic structure, order,
emphasis), and Scout generates multiple alternative layouts
satisfying those constraints to augment the designer’s ideation.

Scout applies constraint solving techniques to automatically
generate alternatives. Constraints have a rich history in interface
design and visualization [7, 20, 24, 52, 55, 56]. However,
such research has generally focused on reducing ambiguity
in constraints to produce a single design. In contrast,
our goal with Scout is to leverage a constraint solver to
generate many diverse designs. Additionally, constraint-based
systems have generally focused on low-level spatial constraints
(e.g., constraints expressed as mathematical equations in Apple
Auto Layout [21]), which can be confusing and difficult for
designers. Scout lets designers specify high-level constraints
based on usability and visual design principles like emphasis [1]
and clear hierarchies [26, 50], which Scout translates into
low-level spatial constraints used by the underlying solver. The
key contributions of this work are:
• Scout, a system to help designers rapidly visualize many

layout alternatives for mobile interfaces through interaction
with high-level constraints and feedback on alternatives.

• A set of constraint encodings based on design principles,
with solving algorithms that enable generating a range of
diverse layouts for a set of interface elements.

• An evaluation with 18 interface designers, finding: (1) that
Scout can help them create more spatially diverse designs
with similar quality to those created with paper and a
baseline prototyping tool, and (2) qualitative feedback
demonstrating Scout’s potential as a tool for early ideation
and breaking out of a linear design process.

http://dx.doi.org/10.1145/3313831.3376593
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Figure 1. The Scout interface has four main panels: (1) Designers import their interface elements by dragging their SVGs into the Widgets panel.
(2) Designers create hierarchy and high-level constraints (e.g., grouping, order, emphasis) in the Outline panel. (3) Designers control generation of
alternatives through the Feedback panel, which they can activate by clicking an element in the Outline panel or on an element in the Layout Ideas panel.
(4) The Layout Ideas panel presents alternative layouts, which a designer can save, discard, or zoom in on.

MOTIVATING SCENARIO 
To describe and motivate Scout, we consider an example
scenario in which Eunice, a UX designer, is redesigning a
recipe app landing page. Eunice has conducted a desirability
study [5] of the current page. In such a study, people
assign emotional and descriptive keywords to a design
(e.g., “creative”, “simple”). The top keywords assigned to
Eunice’s current design were “dull” and “unrefined”. Eunice
would like to change reactions to her landing page by using
Scout to explore alternatives. First, Eunice imports a set of
interface elements from her company’s design library into
Scout’s Widgets panel (Figure 1.1). Then, Eunice clicks
on elements in the widgets panel to add instances to her
design’s outline panel. Specifically, she adds 3 alternatives
for a smoothie placeholder image, a header and subtext,
calorie and time labels and icons, and a “View Recipe” button.
Her elements appear in Scout’s outline panel (Figure 1.2).

Specifying Hierarchy and High-Level Constraints 
Eunice next specifies high-level constraints on her elements.
Scout lets designers group related elements, specify a relative
order, and give elements high, normal, or low emphasis. We
designed Scout’s high-level constraints from common design
principles for clear and usable layouts (e.g., [10, 26, 30]).

Eunice’s first goal is to create a hierarchy. A key design
principle is that interfaces should have a clear and organized
hierarchy [30]. Similarly, the structure principle [10] states
that interfaces should keep related things together and
unrelated things separate, motivated by Gestalt theory [26].
In Scout’s Outline panel (Figure 1.2), Eunice creates a group
for the “Green Smoothie” and “By Zoey M.” labels. For
each group, Scout creates constraints to ensure these elements
appear as visually distinct groups in layouts Scout generates.

Eunice next wants to specify that the “Green Smoothie” label
should always appear before the “By Zoey M.” label. A usability
principle is that elements should appear in the order they
are used for a task [37]. Scout lets Eunice specify that order
is important or unimportant for each group. When order is
important, Scout encodes a constraint to maintain the spatial
reading order of grouped elements (i.e., left to right, top to
bottom). Scout also lets Eunice specify an element should
appear first (e.g., a header) or last (e.g., a footer) in a layout.

Many interfaces include repeating patterns of elements
(e.g., a list, a grid). Scout supports repeat groups to ensure
the layout of subgroups is consistent. Eunice creates a repeat
group for the calories and minutes labels and icons (Figure 1.2).
When Scout generates layouts (Figure 1.3), it keeps the layout
of the subgroups of elements that a designer places in the group
consistent (i.e., alignment, arrangement, order, padding). Scout
also infers repeating patterns of elements within a group to
suggest when this constraint can be applied.

Finally, Eunice wants to see layouts that use alternate versions
of the smoothie image placeholder, so she creates an alternate
group with 3 different placeholder images (Figure 1.2,
“Alternate”). When Scout creates layouts, it uses only one
of the three placeholders in each layout.

Eunice has created her high-level constraints, so she clicks
“See more layout ideas” at the top of Scout’s Outline panel
(Figure 1.2). Scout displays a set of 20 layouts satisfying
Eunice’s high-level constraints in the Layout Ideas panel
(Figure 1.4). Eunice sees that some layouts show the smoothie
image too small and the calorie icon pairs too large in relation
to other elements. She decides to set emphasis levels for
these elements. Emphasis is an interface design principle [50],
stating that interfaces should have a main focal point to let
a person know what to do next [1]. Scout allows specifying
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Figure 2. (1) Designers can click nodes in Scout’s Outline panel to make
them the primary selection, which highlights corresponding elements in
each layout in the Layout Ideas panel. (2) Designers can hover over a
layout, and Scout highlights conflicting feedback annotations.

High, Normal, or Low emphasis. Eunice uses the Feedback
Panel to give the smoothie placeholder High Emphasis and the
minutes and calories repeat group Low Emphasis. Scout will
then adjust the size and position of her elements to make them
more or less visually prominent.

Feedback & Layout Curation 
After reviewing Scout’s generated layouts, Eunice decides to
use a horizontal layout for the minutes and calories group. She
clicks a layout with a horizontal group, and Scout displays
a pink outline around the selected element (Figure 2.1) to
indicate the Feedback panel is active for that element. The
Feedback panel displays feedback properties that let Eunice
“Keep” or “Prevent” specific property values in the alternatives
(e.g., “Keep alignment left”). Eunice clicks the “Keep” button
next to the arrangement dropdown to tell Scout to use a
horizontal arrangement for the group in future alternatives.
Eunice’s feedback appears in Scout’s Outline panel as a
feedback annotation (i.e., “Keep arrangement horizontal”).
Eunice can also activate the Feedback panel by clicking an
element in the Outline panel. In that case, Scout will set
each feedback property dropdown to “Vary” until a “Keep” or
“Prevent” feedback is applied. Scout supports multiple “Keep”
and “Prevent” values for a property (e.g., “Keep arrangement
horizontal OR vertical”). Scout lets Eunice give several types
of feedback, including on the top-level canvas (e.g., “Keep
layout grid 4 columns”), groups (e.g., “Keep arrangement
horizontal”), and elements (e.g., “Keep location here”).

Values that a designer “Keeps” or “Prevents” can cause a
conflict in existing layouts. Eunice sees that Scout has put
red diagonal stripes over two layouts. She hovers her mouse
over one of the layouts, and Scout highlights the conflicting
feedback, "Keep arrangement horizontal", in red (Figure 2.2).
This layout has a conflict because the minutes and calories
repeat group is vertical, and not horizontal. When Scout detects
a conflict, Scout tries to repair the layout to match the designer’s
feedback. If it cannot repair the layout, Scout retrieves a new
layout to replace it, ensuring that Eunice’s Layout Ideas panel is
continually filled with new layouts as she applies her feedback.

Adobe XD

Figure 3. Designers can export their saved layout ideas to an SVg to
import into a prototyping tool like Adobe XD.

Using Scout, Eunice explores over 100 layouts. She discards
several by clicking the trashcan icon above each layout. As she
finds layouts she likes, she saves them for export by clicking
the star icon above each layout. Scout pins these to the top of
the Layout Ideas panel (Figure 1.4). After Eunice has found
3 diverse layouts, she decides to refine them by exporting
them out of Scout to edit in her favorite interface design tool
(Figure 3). Scout exports each layout as an SVG with editable
shapes and properties. Using Adobe XD, Eunice adjusts the
alignment and relative size of the layouts until she feels they
are ready for further feedback from her colleagues.

SCOUT ARCHITECTURE AND IMPLEMENTATION 
Before developing the current version of Scout, we conducted
informal interviews with 6 UX designers, including their use
and feedback on an early version of Scout. We draw upon
their insights to support several key system design choices,
including: (1) prioritizing interactive performance, (2) improving
design quality through a design quality ranking model and
utilizing a layout grid, and (3) providing stability in a designer’s
current set of designs through a feedback resolver which can
repair designs that conflict with new designer feedback.

Figure 4 illustrates Scout’s architecture. A designer provides a
set of interface elements, each as an SVG (Figure 4.1). When
the designer requests new layouts, Scout sends their interface
elements and high-level constraints to the server (Figure 4.2),
which launches multiple solver threads to generate layouts
with interactive performance (Figure 4.3-5). Each thread
produces a layout, consisting of an x position, y position, width,
and height for each element. Scout ranks each layout by a
score computed with a quality model (Figure 4.6) based on
design quality metrics (e.g., alignment, balance). Scout then
displays the ranked set of layouts to the designer visually as an
SVG layout canvas. A designer can give feedback on layouts,
and a feedback resolver (Figure 4.5) applies the feedback and
attempts to repair conflicting layouts.

Generating a Layout Alternative 
Scout generates layouts through a modified branch and bound
search [41], which generates a satisfying set of variable
assignments (e.g., alignment, arrangement) (Figure 4.3) with
respect to a set of design and high-level constraints on interface
elements (Figure 4.4). Each variable has a domain of values
Scout can assign through its search (e.g., alignment is one of
top, left, x-center, y-center, bottom, right). Each constraint is a
formalized as an equation encoded into the Z3 [11] constraint
solver operating on one or more variables (e.g., element size
and position). Throughout this paper, we format constraint 
names in a typewriter font and variable names in italics. The
next section details Scout’s constraints and variables.

Figure 4 shows Scout’s process to generate a layout. First,
Scout’s search process (Figure 4.3) generates a single variable
assignment for an element or group. The constraint resolver
(Figure 4.4) then uses the Z3 [11] constraint solver to determine
whether the assignment is valid. The constraint resolver
translates high-level constraints specified by designers into
formalized low-level variables and constraints on interface
elements and layout behavior, which we detail in a later section.
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Figure 4. Scout System Overview: (1) A designer gives input to Scout via an outline of interface elements and feedback on layout alternatives. (2) A web
server generates layouts by launching multiple solver threads. (3) Each solver thread searches over variable assignments. (4) A constraint resolver checks
the assignments against constraints. (5) A feedback resolver applies designer feedback and repairs layouts. (6) A quality model ranks resulting layouts.

If the assignment is not valid, Scout backtracks in the search
and reassigns the variable. If the assignment is valid and other
variables remain unassigned, Scout assigns another variable
and checks it through the constraint resolver. Finally, when
Scout has assigned all variables, it produces a layout with a
position and size for each interface element.

To create spatially diverse layouts, Scout randomizes
assignment order of variables and values using a uniform
distribution. After Scout produces a layout, it encodes a
constraint that prevents that same layout from appearing again.
If a solver thread cannot produce a layout, Scout discards that
thread. Scout can be configured to launch a variable number
of threads based on system capabilities. For our evaluation,
we configured Scout to launch 20 solver threads each time
the designer requests new layouts. On the machine we used
(Ubuntu 18.10 with AMD Ryzen 7 1800x processor, 8 cores x
16 threads, 32 GB memory), Scout typically returned 15 layouts
per request, containing 9 elements each, in less than 5 seconds.
Such resources are common for many designers (e.g., who also
work with image and video data), but Scout could also run in
a configuration with solver threads shifted to a scalable cloud
service. Scout currently supports a complexity typical of many
mobile interfaces, but future research would likely be needed to
scale Scout’s algorithms to larger and more complex interfaces.

Ranking Layouts by Quality Metrics
Scout’s layout search space is extremely large (i.e., trillions).
Some layouts are not well-aligned or visually pleasing, and
designers need a way to prioritize higher-quality layouts during
their exploration. We created a quality model (Figure 4.6) to
compute a layout quality score for each layout, formalizing
some design principles described in interface design literature.
Scout uses these scores to rank higher-scored layouts toward
the top of the Layout Ideas panel. We adapted this model
from [40], which presents a set of metrics to computationally
measure mobile interface complexity (e.g., misalignment,
imbalance, density). For each group of elements G =
{e1, . . . ,en} in a layout, Scout computes qualityg(G) which
considers element size, balance, and alignment.

qualityg(G) = ssize(G)+ sbalance(G)+ salignment(G)

The size score penalizes groups with excessively large or small
elements. It computes the sum of the normalized width and
height of each element (i.e., normalized by the width and
height of the canvas), divided by the number of elements.

ssize(G) =
1

2|G| ∑e∈G
(

e.w
W

+
e.h
H

)

The balance score rewards groups with evenly-spaced margins
between consecutive pairs of elements. It computes the
difference between the average horizontal and vertical margins
G.avg_marginh, G.avg_marginv and the maximum horizontal
and vertical margins G.max_marginh, G.max_marginv.

sbalance(G) =
1
2
(

G.avg_marginh

G.max_marginh
+

G.avg_marginv

G.max_marginv
)

The alignment score measures quality of alignment within
a group. For each pair of elements e1,e2, NumAlignment
returns the number of horizontal (i.e., top, y-center,
bottom) and vertical (i.e., left, x-center, right) alignments
between those elements. NumPossibleAlignments returns the
maximum number of alignments the two elements could have.
For example, if e1 and e2 are horizontally arranged and have the
same height, they can have a maximum of 3 alignments (i.e., top,
y-center, bottom). The score therefore measures the proportion
of alignment pairs out of the total number of alignments.

salign(G) =
1
|G| ∑

(ei,e j)∈G, i, j

NumAlignment(ei,e j)

NumPossibleAlignment(ei,e j)

Finally, Scout computes an overall layout quality score as
a weighted-average of each group quality score qualityg(G),
where each group is weighted by its area. The layout quality
score also includes: (1) a density score sd to measure the
ratio of the entire layout area covered by elements, and (2) a
group quality score treating the top-level set of groups as an
additional group (i.e., to measure the quality of layout of those
top-level groups on the canvas).

qualityl(L) =
∑

G∈L
G.area ·qualityg(G)

∑
G∈L

G.area
+ sd +qualityg(L)
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Feedback & Layout Repair 
After Scout produces an initial set of layouts, a designer can
update the outline (i.e., change the grouping, emphasis, or
order of elements) or give feedback on variables (i.e., canvas,
group, or element variables), prompting Scout’s feedback
resolver (Figure 4.5) to recheck the validity of each layout. For
any “Keep” feedback, Scout encodes an equality constraint
into the solver (e.g., group_arrangement == “vertical00).
Conversely, “Prevent” feedback is encoded as an inequality
constraint (e.g., group_arrangement , “vertical00). Scout
checks validity of each layout with respect to the outline
and constraints, then updates their validity in the interface
(i.e., with red diagonal stripes over invalid layouts). Scout uses
Z3’s [11] unsat core to obtain the smallest set of constraint
clauses that cannot be satisfied. When a designer hovers over
an invalid layout, Scout examines these conflicting clauses
and highlights the corresponding feedback annotations.

A designer can apply feedback that makes many layouts
invalid. To prevent the designer from needing to frequently
request new layouts, Scout continuously generates layouts as
a designer applies feedback. To minimize disruption to the
current set of layouts, Scout tries to return similar layouts
through a layout repair module (Figure 4.5). Layout repair
iteratively selects variable assignments to remove from an
invalid layout from z3’s [11] unsat core until it becomes
valid (Figure 4.4, Layout Repair). To prevent overwhelming
a designer with too many layouts, Scout does not repair or
generate new layouts if the Layout Ideas panel has more than
50 valid layouts (i.e., the number that could reasonably be
visible on a 24-inch monitor). However, a designer can still
request new layouts with the “See more layout ideas” button.

Constraint Encodings & Design Variables 
Scout generates layouts through an assignment of concrete
values to a set of variables, allowing it to explore many
combinations of element arrangement, alignment, position,
and size. Scout defines canvas variables (e.g., layout grid,
margin, baseline grid), group variables (e.g., arrangement,
alignment, padding), and element variables for position
(e.g., x, y), and size (e.g., width, height). Each variable
has a domain, curated from design guidelines [2] and layout
design literature [3], together with constraints defining its
behavior. Scout uses these constraints, a designer’s high-level
constraints, and basic design quality constraints, to check
the validity of a layout (Figure 4.4). We include formalized
equations for all constraints in our supplementary materials.

Ensuring Basic Design Quality 
Scout encodes three basic design quality constraints for
every layout, an approach also used by Beilik et. al. [6]
in encoding a set of “Robustness Properties” for Android
layouts. For each element, Scout enforces a stay-in-bounds 
constraint that keeps elements inside the bounds of the layout
canvas. Scout also encodes a pairwise non-overlapping 
constraint on the bounding boxes of each pair of elements.
Finally, Scout encodes minimum sizing constraints for each
element from design guidelines (e.g., touch targets should be
at least 48x48 pixels [2]).

Placing Elements on the Layout Canvas 
Scout uses a layout grid to place elements on a canvas
by encoding constraints on an element’s bounding box.
A layout grid is a common method designers use to place
elements, which can improve alignment, consistency, and visual
organization [49]. It consists of margins (i.e., spacing on the
outside of the canvas that all elements must be placed inside),
columns (i.e., vertical containers for placing elements on the
canvas), and gutters (i.e., spacing between columns where
elements must not be placed). Mobile interfaces typically use a
2 to 4 column layout grid [2], within which elements or groups
must begin and end on a column and not in a gutter, and can
span multiple columns. Scout defines 4 layout grid variables
for a canvas: margin, columns, gutter width, and column width.
Based on these variables’ values, Scout encodes layout grid 
constraints requiring the left and right edges of elements and
groups that are direct children of the canvas to begin and end
on the edge of a column.

Baseline grids define the vertical spacing of a design, aid
horizontal alignment, and create hierarchy [3]. They consist
of horizontal lines at even intervals to which all components
should align. Scout defines a baseline grid variable that allows
designers to examine different baseline grid options. Based on
this, Scout encodes baseline grid constraints specifying
that elements have a y position aligned to a baseline grid line
and a height that is a multiple of the baseline grid value.

Resizing Elements 
To explore different element sizes, Scout defines a size
variable for each element with a domain of the form
(width,height,sizing_ f actor). sizing_ f actor is used to
enforce consistent resizing within groups. Scout pre-computes
width and height domains using two strategies: maintain
aspect ratio and increase width. For both strategies, Scout
computes a set of (width,height,sizing_ f actor) triples along
baseline grid increments (i.e., 4px), where width values
range from a minimum determined by element type to
the canvas width (e.g., [(20,20,1), (24,24,2), ...]).
For maintain aspect ratio elements (e.g., images, icons), height
values vary from a minimum for each element to the canvas
size. For increase width, height values do not vary (e.g.,
[(120,40,1), (124,40,2), ...]). Scout encodes each
pre-computed set of triples as the domain to a size variable.
This is a performance optimization because Z3 does not
efficiently compute multiplication constraints (i.e., otherwise
needed for maintaining an aspect ratio).

Grouping and Order 
Designers can group elements in the Outline panel to keep
them together. Scout varies layout of grouped elements based
on three variables: alignment, arrangement, and padding.
Scout encodes constraints aligning grouped elements along 6
possible alignment axes: left, x-center, right, top, y-center, and
bottom. Scout currently aligns all elements within a group to a
single axis. Scout defines four arrangement domain values for
each group: horizontal, vertical, balanced rows, and balanced
columns. Each arrangement constraint encodes rules based
on the position and size of grouped elements. Scout defines
padding constraints that work with arrangement constraints
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to add spacing between grouped elements while keeping them
relatively close to each other. Finally, Scout defines visual 
hierarchy constraints to keep the within-group padding
smaller than the group’s distance to other groups in the layout
to visually separate them.

To allow designers to control element order, Scout lets
designers specify order of groups as important or unimportant.
For groups with important order, Scout encodes an ordering 
constraint that combines with arrangement constraints to
keep the elements in the fixed order specified in the outline.
For groups with unimportant order, Scout encodes a constraint
on the height and width of the group bounding box, according
to the arrangement variable. This allows elements to
change position if other constraints are met (e.g., horizontal
arrangement). If order is important for the top-level canvas,
Scout encodes a constraint on each pair of elements such that
the bottom edge of an element must be equal to or above any
element later in the ordering. Scout also lets designers specify
that an element should be first or last in a group, which enables
specifying a fixed position for elements like a label, header,
or footer. Scout encodes constraints requiring these elements
to be first or last in the group. For the top-level canvas, Scout
encodes pairwise constraints stating the top edge of a first
element should be above all other elements and the bottom
edge of a last element should be below all other elements.

Emphasis 
To support designers specifying a visual hierarchy, Scout
includes emphasis constraints based on design guidelines [50]
that state emphasis can be increased or decreased by modifying
an element’s size in relation to other elements and position
in the reading order. Scout supports 3 levels of emphasis
levels: low, normal, and high. All elements have normal
emphasis by default. For elements with low or high emphasis,
Scout encodes a size decrease only or size increase 
only constraint on the element’s size variable that allows the
element’s area to decrease or increase from its original area.
Scout also specifies a relative size constraint stating that
(1) elements with high emphasis should have a larger height or
width than elements without high emphasis, and (2) elements
with high emphasis should either have a larger area or appear
earlier in the order than elements without high emphasis. Scout
encodes similar low emphasis constraints, constraining low
emphasis elements to have a smaller height or width than
elements without low emphasis, and to either have a smaller
area or appear after elements without low emphasis.

Alternate Representations and Repeating Patterns 
Alternate groups let a designer show alternate elements
(i.e., SVGs) in different layouts. For each alternate group,
Scout creates a representation variable with a domain
corresponding to the elements the designer groups. Scout’s
search (Figure 4.3) assigns a value to this variable, which a
designer could “Keep” or “Prevent” like other variables.

Repeat groups indicate a layout should be kept consistent
across multiple subgroups (e.g., a list, a grid). A repeat group
contains a set of subgroups, each with the same number of
elements, the same types (e.g., button, text, image), in the
same order. Each element in a subgroup has a corresponding
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Figure 5. Our provided components for the Social Media and Weather 
scenarios, including alternate images for the profile picture and sunny icon.

element in all other subgroups, determined by their order.
Figure 1.2 shows a repeat group containing two pairs of icon
and label (i.e., minutes and calories labels with corresponding
icons that should always be arranged similarly). For each
subgroup in a repeat group, Scout encodes a constraint that
requires the arrangement, alignment, padding, and order
variable values of all subgroups to be equal. Scout also
encodes a constraint requiring any increase or decrease in
the size variable be the same for corresponding elements in
each subgroup.

EVALUATION 
To understand Scout’s benefits and limitations, and to examine
how different designers might use mixed-initiative layout
ideation, we conducted a within-subjects, mixed-methods
evaluation centered on three research questions:
• RQ1: Does Scout help designers of varying expertise generate

more diverse interface layouts than with a baseline tool?
• RQ2: Does Scout help designers of varying expertise generate

higher quality interface layouts than with a baseline tool?
• RQ3: How does Scout affect designer processes of

exploring potential interface layouts?

Participants 
We recruited 18 interface designers (5M, 13F, ages 18-32),
9 in each of 2 Experience Level groups: (1) Professional
Designers, with >=1 year of professional UI/UX design
experience; and (2) Non-Professional Designers, who had
built at least one complete interface prototype but had <1 year
of professional experience. Professional designers reported a
range of professional experience (1 to 3 years of experience: 5;
3 to 5 years: 2; more than 5 years: 2). Five Non-Professional
designers self-reported no professional UI/UX experience,
while four reported less than 1 year of experience.

Procedure 
Each participant completed two wireframe prototyping tasks,
varying Interface to use Scout and a Baseline prototyping
tool, Adobe XD. To better examine the use of Scout, rather
than participant learning of Scout’s interface, participants
completed a 20-minute Scout tutorial and warmup task
(i.e., exploring layouts for a To Do List). After the tutorial and
before proceeding with the task, participants demonstrated
how to use Scout’s grouping, alternate, and repeat group
constraints. All participants had experience with Adobe XD
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s_rel(L, L0) = 
2 · ∑ |dist(ei,e j) − dist(ei

0 ,e0 j)|n(n− 1) 1≤i< j≤n

Spatial Diversity = 0.194 Spatial Diversity = 1.53

Figure 6. To illustrate our spatial diversity score, the least diverse (left) and
most diverse (right) pairs of participant-produced Social Media layouts.

and had used similar tools (e.g., Figma, Sketch), so we did not
include a corresponding Baseline warmup task. We collected
screen and audio recordings and notes while participants
completed tasks, then interviewed them after each task to
reflect on their process using each Interface and on differences
in using Scout versus their current process.

We developed two Scenario as a hypothetical setting for
participant tasks: redesigning two app screens for a design
agency: (1) a Social Media profile screen (Figure 5.1), and
(2) a Weather app screen (Figure 5.2). We selected familiar
screen types so designers could focus on improving screen
layout rather than the content. As in the scenario with Eunice
described earlier, our task scenarios described that the agency
had conducted a desirability study [5] and that keywords
assigned to the weather and social media app screens were
“dull” and “familiar”. We asked designers to redesign for the
keywords “clean” (i.e., "uncluttered and well-aligned") and
“compelling” (i.e., "has a clear point of emphasis"), attributes
of good layouts from design guidelines [1, 30, 50].

We had the designers create three diverse layouts as alternative
redesigns of the Social Media and Weather screens. We
provided pre-created wireframe elements for the original
design, 2 alternate profile pictures for Social Media, and 2
alternate sunny icons for Weather (Figure 5). The task content
encouraged using Scout’s repeat group (e.g., for the days
of the week and weather icons), but we did not require the
designers to use any particular constraint. The app screens
were similar in complexity (e.g., number of elements, groups
of elements). Because Scout is focused on layout, we limited
designer use of Adobe XD to spatial features (e.g., position,
size, font size) and not non-spatial features (e.g., color, font
type). We required the designers to use only the provided
elements without overlapping or rotating them.

Each designer completed a 30 minute task for each of 2
conditions: Baseline and Scout. We allowed sketching on
paper in both conditions. In Baseline, the designers could
use the time to sketch and create alternatives. For Scout, the
designers used Scout for 20 minutes, saved 3 layouts, and
spent 10 minutes refining and finalizing the layouts in Adobe
XD. We interviewed the designers after each task, and at the
end of the study. The total session time was less than 2 hours
per designer. To address learning or other carryover effects,
we counterbalanced Interface (i.e., Scout or Baseline) and
Scenario (i.e., Social Media or Weather) using a Latin square

G RG AG O E FB
Prop. (n=180) 20% 9% 9% 24% 21% 17%
% Des. (n=18) 94% 78% 89% 94% 83% 72%

Table 1. The proportions of high-level constraints of each type specified
by designers after the Scout task, and the percentage of designers who
specified each type of high-level constraint (i.e., group (G), repeat group
(RG), alternate group (AG), order (O), emphasis (E), feedback (FB).

design. We performed our analysis using mixed effect models,
treating Participant as a random effect and modeling Interface,
Scenario, and Experience Level as fixed effects.

Results 
Overall, the designers generated an average of 97 layouts
during the Scout task (min: 19, max: 280, SD: 81). At the end
of the Scout task, designers had an average of 10 high-level
constraints specified (min: 6, max: 17: SD: 3.8). Table 1
summarizes the percentage of designers that used each type
of high-level constraint and the proportions of each type of
high-level constraint specified at the end of the study.

RQ1: Does Scout help designers of varying expertise generate
more diverse interface layouts than with a baseline tool?
We wanted to understand Scout’s impact on helping designers
explore more diverse layouts. Given Scout’s focus on
spatial arrangement, we defined diversity as spatial diversity.
Although there are existing computer vision dissimilarity
metrics [34], they are not suitable to compare the wireframes
from our study (i.e., the fact that wireframes are primarily
whitespace causes these approaches to fail). We instead
developed a spatial diversity score to estimate the effort
needed to adapt one layout to another (i.e, transformation
distance [16]). Gajos et. al. [14] present a dissimiliarity metric
capturing transformation distance by comparing each layout
along a set of dimensions (e.g., orientation, representation).
We adopted a similar approach, defining spatial diversity for
a pair of layouts containing the same elements in terms of 3
metrics: (1) mean position change computes the mean of the
distance that each element moved between the two layouts,
(2) mean size change computes the mean of how much the
area of each element changed between the two layouts, and
(3) mean relational distance change (s_rel) measures the mean
of the position change of an element in relation to all other
elements in the layout, computed as follows, where dist(ei,e j) 
calculates the distance between the centers of two elements.

Overall spatial diversity was a weighted sum of mean position
change, mean size change, and mean relational distance
change. To weight the metrics, we divide by the maximum
value of that metric for any pair of elements across all layouts
in our evaluation (i.e., normalizing metrics into the range
[0, 1]). Figure 6 shows two pairs of designs from our study
with the smallest and largest spatial diversity scores.

To examine Scout’s impact on spatial diversity within designs
created by individual designers, we conducted a within-designer
analysis. We computed spatial diversity for each pair of
designs created by a designer with each Interface, excluding
the original design (i.e., 3 pairs per designer per Interface).
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Figure 7. Violin plots of the spatial diversity scores for each set of pairs
by a designer within an Interface/Scenario combination. Scout layouts
had higher spatial diversity for both scenarios.
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Figure 8. Violin plots of spatial diversity scores across all design pairs
by all designers within a Interface/Scenario combination. Scout layouts
had higher overall spatial diversity for both scenarios.

Figure 7 shows violin plots by Interface and Scenario. The 54
pairs of Scout designs were 12 percent more spatially diverse
(M = 0.880,SD = 0.290) than the 54 Baseline pairs (M = 
0.788,SD = 0.356). Spatial diversity scores were not normally
distributed, so we conducted an aligned-rank-transform
analysis [51], which indicated a significant effect of Interface
on spatial diversity (F1,86 = 5.05, p < 0.027,d = 0.435). The
analysis did not find a significant effect of Experience Level
on spatial diversity score (F1,14 = 0.009, p < 0.926).

To examine whether Scout helped designers create layouts
that were more spatially diverse relative to the original
design, we computed a spatial diversity score for each
layout relative to the original (i.e., 3 pairs per designer per
Interface). Scout helped designers create layouts that were 15
percent more spatially different (F1,86 = 5.35, p < 0.023,d = 
0.45) than the original design (Scout − M = 0.926,SD = 
0.343, Baseline : M = 0.807,SD = 0.315). Although the
effect of Experience Level on spatial diversity was not
significant (F1,14 = 0.038, p < 0.848), our analysis showed a
significant interaction effect between Interface and Experience
Level (F1,86 = 4.46, p < 0.038). Using Scout increased
spatial diversity by 35% for Non-Professional participants
(Baseline : 0.749, Scout : 1.01), while decreasing spatial
diversity for Professional participants by 2 percent (Baseline :
0.866,Scout : 0.847). An interaction contrast, corrected
with Holm’s sequential Bonferroni procedure, indicated this
difference when using Scout according to Experience Level
was significant (χ2(1,n = 27) = 4.46, p < 0.035,d = 0.41).

Finally, we examined Scout’s effect on overall spatial diversity
across designers. We computed the entire set of pairwise
spatial diversity scores within the Social Media and Weather
scenarios. Figure 8 shows Scout increased the overall mean
spatial diversity score for the Social Media scenario by 26
percent (Baseline : M = 0.811,SD = 0.290,n = 351, Scout :
M = 1.02,SD = 0.289,n = 361) and for the Weather scenario
by 10 percent (Baseline : M = 0.926, SD = 0.296, n = 351,

n = 54 VB TH E A W LQ
Scout (M) 2.67 3.07 2.39 2.5 2.82 5.37
Scout (Std) 0.97 0.84 1.09 0.82 0.87 1.0

Baseline (M) 3.09 3.01 2.65 2.83 2.77 5.73
Baseline (Std) 0.96 0.79 1.13 0.88 0.98 1.24

Table 2. Summary statistics of the sum of the two quality scores
awarded by expert evaluators to designers’ layouts from our user study,
including visual balance (VB), typographical hierarchy (TH), emphasis
(E), alignment (A), whitespace (W), and overall layout quality (LQ).

Scout : M = 1.02,SD = 0.306,n = 351). Spatial diversity
scores were not normally distributed (Shapiro-Wilk W > 
0.974, p < .0001). Using the Wilcoxon rank sum test, we
found a significant difference in means for both the Social
Media (W = 50640, p < .0001,r = 0.342) and Weather (W = 
37243, p < .0001,r = 0.154) scenarios.

RQ2: Does Scout help designers of varying expertise generate
higher quality interface layouts than with a baseline tool?
We assessed the quality of participant designs with a panel
of 2 independent interface designers, each with at least
3 years of professional UX design experience, who each
evaluated each design on a layout evaluation rubric. The
rubric included 5 items. The first 3 focused a design being
“compelling”: (1) visual balance - “The layout is easy to
scan, and all elements are aligned with respect to axes of
symmetry”, (2) typographical hierarchy - “All elements
follow a typographical hierarchy and are easily readable
and proportionally sized with respect to each other.”, and
(3) clear point of emphasis - “The wireframe has a
clear point of entry or a single visually salient feature, that
does not overwhelm the design.”. The final 2 focused on a
design being “clean”: (4) alignment - “All elements in the
wireframe are aligned with one or more other elements.”, and
(5) whitespace - “Whitespace effectively used to separate
unrelated components.” The designers score each rubric
item as “Great” (2 points), “Good” (1 point), or “Needs
Improvement” (0 points). For each design, we computed an
overall layout_quality score which weights the “compelling”
scores (i.e., visual balance (vb), typographical hierarchy (th),
and emphasis (e)) and “clean” scores (i.e., alignment (a) and
whitespace (w)) equally, summed across the two designers (d).

vb+ th+ e a+ w
layout_quality(L) = ∑ +

3 2d∈D

Overall, the Scout designs had slightly lower layout_quality
scores (M = 5.37, SD = 1.0, n = 54) than the Baseline (M =
5.73, SD = 1.24, n = 54). The layout quality scores were not
normally distributed, so we assessed their significance using
an aligned-rank-transform analysis [51] which indicated the
difference in the mean layout_quality score was not significant
(F1,87 = 2.35, p < 0.13). Table 2 shows the results for
individual quality rubric items, suggesting that Scout designs
can be improved for visual balance, emphasis, and alignment.

RQ3: How does Scout affect designer processes of exploring
potential interface layouts?
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We asked designers to reflect on their process to explore
alternative layouts. After each task, we conducted semi-
structured interviews asking designers to describe their
strategy to develop diverse, compelling, and clean designs. We
conducted an additional semi-structured interview at the end
of the session, where designers compared their experiences
using each tool and discussed how they might or might not use
a tool like Scout in their design process. To analyze this data,
two of the researchers collaboratively conducted a qualitative
inductive content analysis [39] on the interviewer’s notes, with
a sensitizing concept of differences across design processes
when using Scout versus using other tools.

Designers viewed Scout layouts as compelling over clean.
8 designers felt their Scout designs were more “compelling”
than their Baseline designs, while 4 designers thought
their Baseline designs were more compelling. However,
“compelling” to the designers did not necessarily mean having
a clear point of entry and clean hierarchy (i.e., as defined
in the task). Some designers interpreted “compelling” as
“interesting”, or “atypical”, like P4:

“It does a good job with the compelling thing...The hierarchy is not
dull or boring or and to some extent is not even familiar. ... Like
this [Scout design], it breaks [design] cliches, that’s for sure. It
does a good job of not being boring...”

Conversely, when comparing their Baseline and Scout designs,
10 designers felt they produced “cleaner” designs in the
Baseline (5 designers thought their Scout designs were
cleaner). P20 noted that making clean designs with Scout
might take more work:

“You’d have to put a lot of rules on it to get it as clean as you’d
want it to be. For example, this [Scout design I made] is not very
clean-looking, but I could picture moving it around a bit, and it
would be clean...”

Designers followed a “mix and match” process with Scout.
When discussing the strategy they followed to explore layouts
in Scout, 11 designers mentioned a “mix and match” practice
where they observed some portion of a Scout layout that
they liked, then either (1) combined the portion with part
of one or more other layouts during the “Refinement” phase,
or (2) used feedback to “Keep” one or more properties of
the layout to see how it would pair with alternatives for
the remaining layout. Designers also mentioned an iterative
strategy of looking through the initial set of layouts and
giving feedback (5 designers) or adjusting the high-level
constraints (5 designers) based on what they saw in the set of
layouts. 9 designers also mentioned that Scout was useful to
visualize many combinations of element layouts. In seeing
many alternate arrangements, P7 found it useful to have both
effective and ineffective layouts to choose from.

“It stretches your understanding of what’s possible. They were wide
and broad and messy, and they draw attention to why they don’t
work... You can look at it more as this is close but we need to change
something a little bit to make it better.”

Designers followed a less linear process with Scout.
Scout may have also helped designers follow a less linear
process of creating alternatives. When discussing their
Baseline task process, 12 designers mentioned a linear process
of looking at a design and thinking about how to change it into
a new design. In contrast, only 2 designers mentioned a linear

design process in Scout. A few designers mentioned Scout
could help them resist focusing in on a few designs too early,
and as a consequence, explore more divergent ideas.

Scout can help designers think of new ideas.
Nine designers mentioned that Scout helped them think of new
ideas they might not have had on their own. P2 mentioned
struggling to create three diverse designs in the Baseline task:

“I feel like I was able to get two really good designs, but the middle
one I really don’t like. I wasn’t able to come up with a third one...I
feel like I probably just needed more time...”

After the Scout task, P2 described Scout helping them create a
design that they would not otherwise have come up with:

“[T]he way Scout helped with that was, I wasn’t even looking to
make something like the third layout. I wouldn’t have thought to put
the image at the bottom of the page, this gigantic one.”

11 designers mentioned that some or all of their Scout layouts
were different than a typical weather or social media profile
screen. This was desirable for the study because we asked
them to create diverse layouts. desirable. However, 2 designers
noted that breaking design conventions might not always be
desirable, and said that they tend to prioritize familiarity more
to prevent from distracting the user.

Designers would use Scout during layout ideation.
When asked to describe their current ideation strategies,
designers mentioned sketching, whiteboarding, and looking
for examples to ideate new layouts. 13 designers mentioned
simply placing elements on a design tool’s canvas and moving
them around to try to generate new ideas. After using Scout, 14
designers said they would use Scout to quickly ideate layouts.
When comparing their approaches to ideating alternatives with
Scout versus the Baseline, 6 designers mentioned struggling
to think of ideas in the Baseline task, like P5:

“It was definitely more time consuming because I wanted to see a
bunch of different things upfront, just to see if different concepts
would even work...[P5 describes different ways they moved the
elements around the screen.] It would have been nice to quickly see
that, like, I didn’t want every [element] up there [top of screen], I
just wanted profile picture, name and title.”

In contrast, P4 pointed out how much easier Scout made it to
come up with alternatives:

“It was way quicker for me to come up with these three [Scout
designs]. What I struggled with the most on the first [Baseline
task] was really brainstorming and ideating, these sort of different
variations. Scout made brainstorming a much easier process.”

When asked to describe how Scout might fit into their design
process, P6 replied that they might use it to see alternatives
that already contained their elements, rather than needing to
imagine them based on other examples:

“Instead of searching on the Internet for alternative layouts or
existing things that are out there, [Scout] just makes it easy with
what you already have. You already see what [the layout] could look
like with the information that you have, and not other information.”

RELATED WORK 
Scout is inspired by past systems for interacting with
alternatives. DesignScape [38] provides alternative suggestions
for graphic design layouts using an energy-based model
based on design principles. Sketchsplore [47] is an interface
sketching tool that provides alternatives generated by human
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performance models. Scout improves upon these systems
by letting designers give direct feedback on attributes
of alternatives and by letting designers create high-level
constraints on the semantics and emphasis of their interfaces.

Designers frequently explore alternatives by looking for
examples [19, 28]. D.Tour lets designers search for examples
by color and style, but not adapt them into their own designs.
Other example exploration tools [9, 28] let designers both
search for examples and extract styles [9, 28], copy elements
from examples [17], or transform a layout into the content
and style of another [27]. Rewire [43] lets designers convert
examples into editable vectorized mockups. While adapting
elements of examples can be useful, the designer cannot
easily see the example design with their own elements. Scout
lets designers quickly visualize alternatives with their own
elements without needing to rearrange or restyle examples.

Systems for creating and managing alternatives have been
created for 2D graphic designs, 2D interfaces, and 3D
modeling. For 2D interfaces, Juxtapose [18] supports
simultaneous editing of linked alternatives. Subjunctive
interfaces [32] lets a person simultaneously manage
alternatives by editing parametric models. In Parallel Paths
[46], people can create alternatives by branching from an
initial design. Unlike these systems, Scout requires specifying
only high-level semantics (e.g., emphasis), does not require an
initial design, and focuses on early ideation support. For 2D
generative designs, GEM-NI [53] supports parallel creation
and exploration of alternatives. For 3D designs, Dream
Sketch [25] and Dream Lens [33] enable exploration of large-
scale generative design alternatives through sketching [25] or
through interface tools for selecting, filtering, and visualizing
parameters [33]. Scout supports a similar scope of capabilities
(i.e., generating, viewing, and comparing alternatives), but
focuses on support for exploring 2D interface alternatives.

To create alternatives, Scout systematically modifies design
variables (e.g., arrangement, alignment). This concept is like
Parameter Spectrum’s approach [45] that previews alternatives
from a range of parameter values. Juxtapose [18] extends
this to interface design by enabling the creation of parallel
alternatives through code-based tuning of design parameters.
Scout does not expose these parameters to designers, however,
it would be possible to make these customizable.

Model-based user interfaces [54, 42, 44, 31, 36] let designers
specify a high-level model and generate alternatives maintaining
the model. Smart Templates [36] and Damask [31] use models
to maintain interface conventions across platforms. Scout
similarly maintains high-level constraints across alternatives.
Rather than creating templates or patterns, Scout requires
defining only high-level constraints between elements, which
can enable it to generate many more alternatives. Scout’s
approach is conceptually closer to previously-discussed
generative design approaches [33, 25] or similar approaches
in data visualization [35], yet focuses on 2D interface design.

Scout enables rapid generation of alternatives through constraint
solving techniques [55, 24, 4, 7, 52, 56]. Many past
constraint-based layout tools focus primarily on creating a

single design. Scout instead can aid ideation by generating
many alternatives. Scout’s approach is like that of PBM [20],
which exploits constraint ambiguities to explore alternative
data visualizations, or Supple’s [15] generation of interfaces
customized to motor and vision abilities. Zeidler et. al. [57]
and Jiang et. al. [23] apply constraints to generate layouts
adapted to alternate screen dimensions or orientations.

Machine learning has also been applied to explore alternatives
by transforming the content of an interface into the style
and layout of another [27]. LayoutGAN [29] synthesizes
alternative layouts with a generative adversarial network based
on modeling geometric relations of 2D elements. Scout’s use
of constraint solving, rather than machine learning, gives it
direct control over the attributes of layouts that the generation
algorithms explore. Scout can also generate reasonable
alternatives without requiring a design dataset.

DISCUSSION AND CONCLUSION 
Scout can enhance designer ideation by helping rapidly
visualize many layouts through mixed-initiative interaction
with high-level constraints and feedback on alternatives. Our
evaluation found Scout can aid designers in creating layout
ideas they do not believe they would have otherwise thought
of, can help designers avoid developing too early of a focus
on a single design, and can help designers consider layouts
different from established patterns. Scout designs were also
more spatially diverse both within and across designers.

Although not statistically significant, our quality analysis found
Scout designs were awarded slightly lower overall quality scores
by expert designers. This suggests opportunities to improve
Scout in terms of balance, emphasis, and alignment. However,
participants also had access to the functionality of Adobe XD to
refine their designs after Scout ideation (i.e., the same tool used
in the baseline). Any difference in quality may therefore be due
to a lack of time. Scout required time for specifying elements as
well as their grouping, ordering, and emphasis, which may have
left less time for refinement of designs at the end of the task.
Future work could explore integrating capabilities developed in
Scout as a feature in an existing design tool (e.g., Adobe XD),
such that elements, grouping, ordering, and emphasis could be
inferred from an existing layout to generate new alternatives.

Scout points to a new approach to using constraints to support
ideation and presents new techniques for providing feedback
to systems applying constraint solving. Future systems can
explore: (1) formalizations of interface design principles into
tools that help designers apply those principles, especially when
supporting novice designers, (2) scaling interactive constraint
solving to larger interfaces (e.g., webpages), and (3) defining
more layout variables and constraints to enable systems like
Scout to explore larger and higher-quality spaces of alternatives.
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