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Abstract: Layered hyperbolic metamaterials are able to support bulk modes with 
wavevectors much larger than light in free space. These modes are the foundation of many 
proposed metamaterial devices. In this paper, we present experimental data measuring the 
dispersion relationship of these modes in infrared semiconductor hyperbolic metamaterials. 
The metamaterial optical properties are modeled by taking into account the functional form of 
the carrier density in the sample due to conduction band bending and the non-parabolicity of 
the effective mass. In two different samples, we observe multiple volume plasmon polariton 
modes, and the mode dispersion is traced out by using grating couplers with multiple 
periodicities. We close by discussing ways to improve these materials. 
© 2017 Optical Society of America 
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1. Introduction 

In comparison to normal materials, which exhibit closed isofrequency surfaces, hyperbolic 
metamaterials (HMMs) have open hyperbolic isofrequency surfaces that can support the 
propagation of optical modes with wavevectors much larger than light in free space [1–4]. 
One way to create an HMM is by constructing a superlattice of alternating subwavelength 
metal and dielectric layers. The optical properties of the superlattice can be described by 
effective medium theory so long as the layers are much thinner than the wavelength of light 
[5,6]. The HMM has effective parallel (in the plane) and perpendicular (out of the plane) 
permittivities given by 
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where ω  is the frequency of the light, ( )
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⊥
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difference in sign leads to the aforementioned open hyperbolic isofrequency surface. This 
open surface allows light with a large wavevector to propagate in the material, rather than 
decay exponentially close to the surface. These high-wavevector modes can be used for a 
variety of applications, including enhanced sensing, emission control, waveguiding, strong 
coupling, and subwavelength imaging and focusing [7–17]. 

At a fundamental level, these large-wavevector modes arise from the coupling of surface 
plasmon polaritons (SPPs) at every metal/dielectric interface in the superlattice [18,19]. In a 
single subwavelength metallic layer surrounded by dielectric materials, two SPPs can be 
excited: one on the top surface and one on the bottom surface. When the dielectrics on either 
side of the metallic layer are identical and the metallic layer is much thinner than the 
wavelength of light, these SPPs can couple into symmetric and antisymmetric modes. These 
are sometimes called long-range plasmon polaritons and short-range plasmon polaritons, 
respectively [20]. For the inverse case of two metallic films separated by a thin 
subwavelength dielectric, the SPPs excited at each metal/dielectric interface can couple across 
the dielectric. Symmetric and antisymmetric modes are again excited, with the symmetric 
mode sometimes referred to as a “gap plasmon” [21,22]. As more layers are added to the 
structure, more interfaces are created, and the structure can support complex large-
wavevector modes. These large-wavevector modes have been called by a variety of names, 
including multilayer plasmons [23], bulk plasmon polaritons [7,18,24], and volume plasmon 
polaritons (VPPs) [2,10,16,19,25,26]. We will adopt the latter terminology in this paper. A 
structure with four metal layers can support a maximum of three VPPs in addition to the long- 
and short-range plasmon polaritons [18]. These modes will have zero, one, or two nodes in 
the magnetic field profile as a function of depth and exhibit wavevectors many times larger 
than light in free space. The maximum number of VPP modes present in an ideal structure 
will always be one less than the number of metallic layers. However, a real structure will 
always have a maximum wavevector beyond which the VPP modes cannot exist. This 
happens when the size of the VPP wavevector becomes comparable to the size of the layers 
comprising the HMM and the modes no longer experience a homogeneous effective medium. 
In order to excite the large-wavevector VPP modes, we must add momentum to the incident 
photons. One way to add momentum is through a metallic grating coupler [26], which 
increases the wavevector of the light by 2 /π Λ , where Λ  is the period of the grating. The 
ratio of momentum in the plane of the HMM ( )

x
k  to the momentum of incident light ( )ok can 

be expressed as: 

 sinx

o

k

k

λ
θ= +

Λ
 (2) 

where θ  is the incident angle, and λ  is the wavelength of incident light. In our study, 
multiple pieces from the same HMM chip are fabricated with different grating periods to map 
out the dispersion of the VPP modes. 

Doped semiconductors have previously been shown to be good plasmonic materials in the 
infrared [27–33]. The carrier density can easily be controlled in these materials, leading to 
tunable optical properties across wide bandwidths. III-V semiconductors like InAs and 
InGaAs can be grown by molecular beam epitaxy (MBE), an ultra-high vacuum technique in 
which the materials are grown one atomic layer at a time. MBE is well-known as an excellent 
technique for the growth of superlattices and is a natural way to create a layered 
semiconductor HMM [14,34,35]. In our previous work, we created HMMs using a single 
semiconductor material system: doped InAs for the metallic components and undoped InAs 
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for the dielectric components [36]. We demonstrated discontinuity of the Brewster angle as 
well as negative refraction, both hallmarks of an HMM. The samples described in that work 
are used in this manuscript as well. In this paper, we report on our efforts to excite VPP 
modes in semiconductor HMMs and map out their dispersion. Due to their large wavevectors, 
VPP modes are particularly exciting for infrared applications including waveguiding, 
imaging, and focusing. Before we can harness VPPs in infrared devices, we must understand 
how to model and measure them in real materials. In this paper, we discuss how to model 
these materials while including band bending at the interfaces. We then show experimental 
data demonstrating our ability to excite VPP modes in single-material semiconductor HMMs; 
to our knowledge, this is the first demonstration of VPP modes in the infrared. We use a 
grating to couple into the VPP modes, and by changing the period of the grating, we are able 
to experimentally map out the dispersion of these modes. We close by discussing ways to 
improve these materials. 

2. Experimental setup 

The samples used for these experiments were grown by molecular beam epitaxy (MBE) and 
their unpatterned bulk optical properties previously reported in [36]. In this article, we report 
VPPs excited in Sample 1 and Sample 3 from our previous paper; we keep the same 
nomenclature in this report for simplicity. Sample 1 has metal and dielectric layers with 
thicknesses of 110nm, a plasma wavelength in the doped layers of 5.8μm, and a scattering 
rate in the doped layers of 1.9x1013 s−1. Sample 3 has metal and dielectric layers with 
thicknesses of approximately 90nm and 110nm, respectively, a plasma wavelength in the 
doped layers of 9.5μm, and a scattering rate in the doped layers of 1.4x1013 s−1. The plasma 
frequency and scattering rate are determined using far-field measurements and effective 
medium theory. For both samples, GaAs substrates are used, followed by a 500nm undoped 
InAs buffer layer to account for the difference in lattice constant between the substrate and 
the HMM. The HMM is grown with ten repeats of the doped and undoped layers, for a 
thickness in Samples 1 and 3 of 2.8μm and 2.4μm, respectively. Details of the growth process 
can be found in [36]. Standard electron-beam lithography, electron-beam deposition, and 
liftoff techniques are used to create Ti/Au gratings on top of the samples. The thickness of the 
gold grating is 100nm with a 15nm Ti adhesion layer on the bottom. Each HMM superlattice 
ends with an undoped InAs layer, separating the metal gratings from the doped semiconductor 
layers by ~100nm. A combination of SEM and optical microscopy were used to verify the 
grating period, stripe width, height, and sidewall profile. 

After fabrication, the optical properties of the samples are measured. TM- and TE-
polarized reflection spectra are taken using a Bruker Vertex 70V Fourier transform infrared 
(FTIR) spectrometer with a wide-range DTGS detector and a KRS-5 holographic wire grid 
polarizer. A Pike 10spec accessory whose reflection angle is set to be 10 degrees for both the 
incident and collected light enables us to take specular reflection data inside the sample 
compartment. A gold mirror is used to collect polarized background spectra. The scan 
velocity is 2.5 kHz and the scan resolution is 2cm-1. 

3. Modeling 

Due to the small conduction band offset in the Si:InAs/InAs superlattice, electrons are not 
always well-confined to the Si:InAs layer. As previously discussed, VPPs arise from coupled 
SPPs excited at each interface in the superlattice. The precise shape of the interface 
significantly affects the properties of the VPPs. To model our samples accurately, we must 
consider the actual shape of the conduction band as a function of depth [37]. The first step in 
our modeling process is to use a one-dimensional self-consistent Poisson solver (1D Poisson 
made freely available by G. Snider [38]) to study the shape of the conduction band and 
resulting electron distribution inside the structure. The modeling assumes ideal structural 
parameters: the electron density in the doped regions is equal to the density of silicon donor 
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atoms and the thicknesses of the doped and undoped layers are as designed. The plasma 
wavelength in the doped regions is calibrated with FTIR measurements on thick silicon-doped 
InAs films. 

Results from this modeling for Sample 1 are shown in Fig. 1(a). Sample 3 is similar. The 
conduction band shows a clear transition area between the heavily doped regions and the 
undoped regions. The carrier density is therefore not a square-wave type function, but a more 
complex function of position. We can study the structure by separating it into three areas as 
denoted in Fig. 1(a): uniformly doped areas denoted with an “a,” graded areas shaded in gray 
and denoted with a “b,” and undoped areas denoted with a “c.” To model the shaded regions 
accurately, we need a functional form for the carrier density as a function of depth. We find 
empirically that the Boltzmann equation fits well. For example, the following equation 
describes the graded area of Sample 1 where the electron doping density changes from high to 
low: 

 
max

1.5170
( ) 0.5226

225.5435
1 exp

38.8166

n z n
z

= − +
−

+

 
 
 

   
  

 (3) 

where maxn  is the maximum doping density (7.35x1019 cm−3 for Sample 1 and 1.25x1019 cm−3 

for Sample 3). This fitting equation was normalized to the maximum doping density in 
section “a” to allow us to use the same equation to fit multiple samples. Now that we have an 
accurate functional form describing how the carrier density changes as a function of depth, 
we can use this to simulate the optical properties of our samples. 

 

Fig. 1. (a) Conduction band profile (black) and carrier density (red) in the Si:InAs/InAs 
superlattice from Sample 1 as calculated using a self-consistent Poisson solver. In region a, the 
material is modeled as a Drude metal with a constant carrier density, while in region c, the 
material is modeled as undoped InAs with a constant permittivity of 12.3. In the shaded region 
b, the carrier density depends on depth as described below. (b) Experimental (symbols) and 
empirical model (black line) for plasma frequency as a function of carrier density in doped 
InAs. Data from [29]. 

We used COMSOL Multiphysics 5.2a, a commercial finite element modeling program, to 
simulate the reflection from our grating-coupled HMMs at a 10 degree incident angle using 
mesh sizes ranging from 0.01nm to 12nm inside the sample. A built-in Drude-Lorentz 
dispersion model is used to model the optical properties of both the uniformly doped and 
graded areas. COMSOL requires the plasma frequency and scattering rate as inputs for each 
material. For area “a” as denoted in Fig. 1(a), the plasma frequency is constant and is 
determined through calibration films as well as modeling of the unpatterned samples, as 
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described in detail in [36]. Values for Samples 1 and 3 are given in Section 2. Area “c” is 
modeled as a dielectric with permittivity equal to the high frequency permittivity of InAs, 
12.3. However, in area “b,” the doping density varies with depth, which will cause the plasma 
frequency to vary with depth. Unfortunately, a simple Drude model relationship between the 
plasma frequency and the carrier density is not appropriate for these materials, because the 
effective mass in InAs is highly non-parabolic and thus is also a function of carrier density. 
Instead, we developed a semi-empirical equation to describe the relationship between doping 
density and plasma frequency. We took data from three references [27,39,40] that give the 
plasma frequency for a variety of carrier densities in doped InAs. This data is plotted as 
symbols in Fig. 1(b). We then used the following equation to fit the data 

 13 9 0.23363( ) 4.5433 10 8.44 10p n nω = − × + × ×  (4) 

In this equation, 
p

ω  has units of rad/s while n  has units of cm−3. It should be emphasized that 

this equation includes the effects of the non-parabolic effective mass and is only applicable 
for samples with carrier densities between ~5x1016-1x1020 cm−3. Using this equation in 
combination with Eq. (3) describing the carrier density as a function of depth, we can 
describe the plasma frequency as a function of depth in the graded areas. This enables us to 
use COMSOL to simulate the TE and TM reflection spectra for Samples 1 and 3 using the 
real depth-dependent carrier profile. Further details on the modeling are available in 
Appendix 1. 

4. Results and discussion 

 

Fig. 2. Reflection spectra for Sample 1 without a grating (blue and yellow) and with a grating 
(black and red) for both TM (black and blue) and TE (red and yellow) polarized light. For both 
polarizations without the grating and for TE-polarized light with the grating, no VPP modes 
are observed. Only for TM-polarized light with the grating are long-wavelength VPP modes 
visible. 

Figure 2 shows TM- and TE-polarized reflection data for Sample 1 both with and without a 
2 mμΛ =  gold grating coupler. Data is presented only for the type II HMM region where 

||
0ε <  and 0ε

⊥
> . Other samples show similar behavior. The TM- and TE-polarized data 

without the grating, shown in blue and yellow respectively, show high reflectivity across this 
spectral range, as expected for a type II HMM. The TE-polarized reflection data with the 
grating (red curve) also shows a large reflectivity, again as expected since TE-polarized light 
will not excite the VPP modes. Finally, the TM-polarized data with the grating (black) shows 
a clear absorption feature near 12.5μm. As will be discussed later, this can be attributed to 
two overlapping VPP modes. It should be noted that these features are not simply diffraction 
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resonances from the grating. For a grating with a 2μm period and incident and reflected 
angles of 10 degrees, all grating resonances are at wavelengths of 0.7μm and shorter. For a 
grating with a 4.6μm period (the largest used in this study), all grating resonances are at 
wavelengths of 1.6μm and shorter. The grating is only used to add momentum to the light in 
order to excite the VPP modes. It should also be noted that the overall goal of this project is to 
understand the VPP modes in semiconductor HMMs. The grating parameters (material, 
thickness, stripe width, and separation from the HMM) were not optimized. A systematic 
walk through parameter space would almost certainly result in a more efficient grating 
coupler. However, as discussed below, the grating parameters used in this project were 
sufficient to excite VPP modes and measure their dispersion. 

 

Fig. 3. (a) Experimental and (b) simulated TM-polarized reflection from Sample 3 for four 
different period gratings, as indicated in the legend. VPP modes are clearly visible and marked 
with arrows in (a). In (b), the out-of-plane magnetic field profile is shown for two VPP modes. 
The shorter wavelength resonance has no nodes, while the longer wavelength resonance has 
one node, as expected for VPPs. 

In Fig. 3(a), we show experimental TM-polarized reflection data for Sample 3 with four 
different gratings whose periods range from 1.8μm to 4.6μm. Two clear VPP resonances are 
visible and are marked with arrows. A third, longer wavelength VPP mode is present in the 
1.8μm and 2.8μm samples. This mode is not clearly visible in the other samples, as its 
expected resonant wavelength overlaps with the optical phonon band for InAs. As the grating 
period increases, the VPP modes shift to longer wavelengths. In Fig. 3(b), we show the TM-
polarized reflection data for Sample 3 simulated using COMSOL. This simulation takes into 
account the real electron distribution in the sample and the empirical dependence of plasma 
wavelength on carrier density, as described in Section 3. The carrier density and conduction 
band profiles remain constant as the wavevector is changed. In this model, no fitting 
parameters are used. The maximum carrier density is known and a single scattering rate is 
used throughout the uniformly doped and graded areas. Despite the lack of fitting parameters 
and the complexity of the shape of the interface, the simulation reproduces the salient features 
of the data. The VPP modes are clearly visible and shift to longer wavelengths as the period 
increases. The features are, however, red-shifted in the model compared to the experiment. 
We attribute this mainly to the difficulty in knowing the precise electron distribution in the 
sample. Small changes in the electron distribution or the maximum electron density can 
strongly affect the precise position of these resonances. Rather than arbitrarily changing the 
electron distribution to match our data, we opted to use the model as described above. In 
addition to simulating the TM-polarized reflection, we are also able to extract the out-of-plane 
magnetic field profile in the sample. Two example profiles at the VPP resonant wavelengths 
are shown as insets in Fig. 3(b). The shorter wavelength mode has no nodes in the magnetic 
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field, while the longer wavelength mode has one node. This is as expected for VPP modes, 
where each subsequent higher-order (lower-energy) mode has one more node in the magnetic 
field [18]. These profiles indicate that we are, indeed, observing VPP modes. 

In Fig. 4(a) and (b), experimental and simulated TM-polarized reflection data for Sample 
1 are shown. Again, the simulation reproduces the relevant features of the experimental data, 
though the VPP modes are still redshifted in the simulation with respect to the experiment. 
These modes occur at shorter wavelengths than those observed in Sample 3, since Sample 1 
has a higher doping density and thus a transition to type II HMM behavior at shorter 
wavelengths. In this case, two VPP modes are present, but they are not well-separated; the 
resonance widths are larger than the mode spacing. The existence of two VPP modes is easier 
to see in the modeled data where there are two distinct dips. 

 

Fig. 4. (a) Experimental and (b) simulated TM-polarized reflection from Sample 1 for five 
different period gratings, as indicated in the legend. Two VPP modes are visible, though they 
are not well-separated. 

In order to understand the dispersion of these modes, we must extract the positions of the 
VPP resonances and plot them as a function of wavevector. For Sample 3, this is relatively 
straightforward, as the VPP modes are well-separated. However, for Sample 1, the 
overlapping modes make this more difficult. To extract the peak positions, we fitted the 
spectra in Figs. 3 and 4 with multiple Lorentzians. For Sample 1, two Lorentzians were 
needed to fit the data, while for Sample 3, three Lorentzians were used for all spectra except 
the experimental 4.0μm and 4.6μm grating samples. The third VPP resonance was not clearly 
observed for these samples due to interference from the InAs optical phonons. More modes 
are visible in Sample 3 compared to Sample 1. This is likely due to the larger scattering rate 
in Sample 1 resulting from its higher doping density. The modeling results in Appendix 1 
clearly show that the scattering rate has a strong effect on the number of visible VPP modes. 

After the resonant wavelengths were extracted, the wavevector was calculated as 
described in Eq. (2). The dispersion curves are shown in Fig. 5. For both samples, the 
experimental data is at a smaller /

x o
k k  than predicted. We attribute this mismatch to the 

difficulty in knowing the exact distribution of carriers in the sample as a function of depth as 
well as an imperfect model for how the plasma frequency depends on carrier density. Despite 
the imperfect match between experiment and modeling, both sets of dispersion curves show 
the expected dependence for VPP modes. In the case of Sample 3, we are able to 
experimentally excite VPP modes with wavevectors an order of magnitude larger than free 
space. 
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Fig. 5. Dispersion relations for VPP modes for experimental (filled symbols) and simulated 
(open symbols) data for Sample 1 (a) and Sample 3 (b). Lines are a guide to the eye. 

In the future, more well-separated VPP modes could be accessed in samples with a larger 
conduction band offset between the doped and undoped regions, such as Si:InGaAs/InAlAs or 
Si:InAs/GaSb. In these material systems, the carriers will be more strongly confined to the 
doped regions, eliminating the graded transition region between the doped and undoped 
material layers. These sharper interfaces will, in turn, result in sharper VPP modes, as 
confirmed by the modeling shown in Appendix 1. It may also be possible to design a more 
efficient grating coupler by adjusting the material or the grating width or height. 
Nevertheless, in this very simple system we have clearly excited VPP modes in 
semiconductor HMMs with wavevectors an order of magnitude larger than the light used to 
excite them. 

5. Conclusions 

In summary, we have fabricated grating couplers with a range of periods on semiconductor 
hyperbolic metamaterials to excite volume plasmon polariton modes and map their dispersion 
relationship. Reflection measurements were performed on these samples and resonances 
observed only for TM-polarized reflection with the grating coupler, as expected for VPP 
modes. We used a self-consistent Poisson solver to model the carrier density as a function of 
depth and developed an empirical model to describe the plasma wavelength as a function of 
carrier density in doped InAs, accounting for the carrier-dependent effective mass. These 
models were then used as inputs to allow us to model the reflection from our samples using 
COMSOL. The model reproduced the relevant experimental features well, though the 
resonant positions were red-shifted. We extracted magnetic field profiles for these large-
wavevector resonances and found that they were consistent with those expected for VPP 
modes. Finally, we plotted the VPP mode dispersion and demonstrated the ability to excite 
modes with wavevectors an order of magnitude larger than light in free space. The dispersion 
relationships shown are consistent with VPP modes. Now that these modes have been 
observed and characterized, they can be harnessed for applications in subwavelength 
focusing, waveguiding, and the improvement of infrared emitters and detectors. 
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6. Appendix 1 

 

Fig. 6. Comparison of models for TM-polarized reflection for Sample 1 with a 2μm period 
grating. Experimental data is shown in black, modeled reflection assuming a sharp interface 
with low scattering (Γ = 2x1013 rad/s) is shown in red, a sharp interface with high scattering (Γ 
= 4x1013 rad/s) is shown in yellow, and the graded interface is shown in green. 

In Fig. 6, we show experimental TM reflection data in black as well as modeled reflection 
data using a variety of carrier density profiles for Sample 1 with a grating with period 2μm. 
When first attempting to fit the experimental data, we assumed a sharp interface between the 
doped and undoped layers. The simulated TM-reflection obtained using this sharp interface 
model is plotted as the red and yellow curves. The red curve has a lower scattering rate 
(Γ=2x1013 rad/s) while the yellow curve has a higher scattering rate (Γ=4x1013 rad/s). The red 
curve clearly shows many strong, well-separated VPP modes. As the scattering rate is 
increased in the yellow curve, the VPP features decrease in strength, with some weaker 
modes disappearing entirely. However, it is clear that regardless of the scattering rate, neither 
of these sharp-interface models will reproduce the experimental data well. The green curve 
plots the simulated TM-reflection using the graded interface model as described in Section 3 
of the main text. The VPP features near 12μm and 15μm have broadened and overlapped, 
similar to what is observed in the experimental data, and the qualitative shape of the reflection 
curve has changed. As described in the main text, this graded interface model uses no fitting 
parameters other than the maximum carrier density and scattering rate, which are obtained 
from other measurements. Despite the imperfect fit with the experimental data, the agreement 
in the overall shape of the curves makes it clear that the graded interface model is a much 
more accurate way to describe our samples. 
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