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Abstract. This paper describes Fatou’s lemma for a sequence of measures converging weakly
to a finite measure and for a sequence of functions whose negative parts are uniformly integrable
with respect to these measures. The paper also provides new formulations of uniform Fatou’s lemma,
uniform Lebesgue’s convergence theorem, the Dunford–Pettis theorem, and the fundamental theorem
for Young measures based on the equivalence of uniform integrability and the apparently weaker
property of asymptotic uniform integrability for sequences of functions and finite measures.
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1. Introduction. The Fatou lemma states that under appropriate conditions
the integral of the lower limit of a sequence of functions is not greater than the lower
limit of the integrals. This inequality holds under one of the following conditions:
(i) Each function is nonnegative; (ii) the sequence of functions is bounded below
by an integrable function; (iii) the sequence of negative parts of the functions is
uniformly integrable; see [30, Chap. II, section 6, Theorem 2 and Chap. II, section 13,
Problem 10]. Serfozo [29, Lemma 3.2] established the Fatou lemma for a sequence of
measures converging vaguely on a locally compact metric space and for nonnegative
functions. Feinberg, Kasyanov, and Zadoianchuk [15, Theorem 4.2] provided the
Fatou lemma for a sequence of measures converging weakly and for functions bounded
below by a sequence of functions satisfying a certain minorant condition, which is
satisfied for nonnegative functions. In this paper, we establish the Fatou lemma for
a sequence of measures converging weakly and for functions whose negative parts
satisfy the uniform integrability condition.

Uniform integrability of a family of functions plays an important role in probabil-
ity theory and analysis. The relevant notion is the asymptotic uniform integrability
of a sequence of random variables [34, p. 17]. In this paper, we introduce the defi-
nitions of uniformly integrable (u.i.) and asymptotically uniformly integrable (a.u.i.)
functions with respect to (w.r.t.) a sequence of finite measures, and we show that
these definitions are equivalent. This equivalence provides alternative formulations
and proofs for some facts that involve uniform integrability or asymptotic uniform in-
tegrability assumptions. For the case of a single probability measure, this equivalence
is established in [25, p. 180].

The Fatou lemmas for weakly converging measures have significant applications
to various areas and fields, including stochastic processes [5], [7], [21], [26], statis-
tics [31], [32], [19], control [6], [12], [14], [17], [35], game theory [22], functional analy-
sis [20], optimization [37], and electrical engineering [28]. Our initial impetus for
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studying the Fatou lemma for variable probabilities came from its usefulness in the
proof of the validity of optimality inequalities and the existence of stationary op-
timal policies for infinite-horizon, Borel-state, average-cost Markov decision process
with noncompact action sets and unbounded costs [14]. These results have significant
applications to inventory control [11], [18].

Other versions of the Fatou lemmas for variable measures are also important for
applications. The recently discovered uniform Fatou lemma and uniform Lebesgue
convergence theorems [16] play the central role in establishing sufficient optimality
conditions for partially observable Markov decision processes with Borel state and
action spaces [17]. Unlike the classical Fatou lemma, which provides sufficient condi-
tions for the Fatou inequality, the uniform Fatou lemma states necessary and sufficient
condition for the uniform version of the Fatou inequality. If all the functions are abso-
lutely integrable, these necessary and sufficient conditions are more general than the
conditions in the classic Fatou lemma. One of two necessary conditions in the uniform
Fatou lemma [16, Theorem 2.1] is that the sequence of negative parts of functions is
uniformly integrable w.r.t. the measures; see (2.1) below. The central result of this
paper, Theorem 2.4, states that this condition is sufficient for the validity of the Fa-
tou inequality for weakly converging measures. The examples in section 3 show that
this condition and the sufficient condition in Assumption 2.5, which was introduced
in [15], do not imply each other. In particular, Theorem 2.4 is useful for studying
Markov decision processes and stochastic games with cost functions unbounded from
above and from below; see [9], [13], [23], where such problems were examined.

The Fatou lemma and the Lebesgue convergence theorems for probabilities are
classical facts in probability theory. However, their versions for finite measures are
also important for probability theory and its applications. This is why this paper
and [16] are concerned with finite measures rather than probabilities. For example,
the theory of optimization of Markov decision processes with multiple criteria is based
on considering occupancy (also often called occupation) measures, which typically are
not probability measures [4]. Another example is [26], where the Fatou lemma for
nonnegative functions and finite measures is used.

Though uniform integrability and asymptotic uniform integrability properties of
a sequence of functions w.r.t. a sequence of finite measures are equivalent, it is typ-
ically easier to verify the asymptotic uniform integrability. This is important for
applications. For this reason we provide in section 4 alternative formulations of the
uniform Fatou lemma and Lebesgue convergence theorem from [16] and two classical
facts important for applications. In these formulations, the uniform integrability is
replaced by the asymptotic uniform integrability.

Section 2 of this paper provides definitions, describes the equivalence of uniform
integrability and asymptotic uniform integrability, and states the Fatou lemma and
the Lebesgue dominated convergence theorem for weakly converging measures. In
particular, the Fatou lemma is formulated in section 2 for weakly converging mea-
sures and for a.u.i. sequences of functions, which is equivalent to the assumption that
the sequence of functions is u.i. Section 3 illustrates by means of examples that the
uniform integrability condition stated in Theorem 2.4 neither implies nor is implied
by the minorant condition; see Assumption 2.5 and Corollary 2.7 below. Example 3.3
demonstrates that lim sup in inequalities (2.7) in Assumption 2.5 cannot be relaxed to
lim inf. By employing the equivalence of the uniform integrability and the asymptotic
uniform integrability, section 4 provides alternative formulations of the uniform Fatou
lemma, the uniform Lebesgue dominated convergence theorem, the Dunford–Pettis
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theorem, and the Ball fundamental theorem for Young measures. Section 5 provides
proofs of the Fatou lemma for weakly converging measures and relevant results for-
mulated in section 2.

2. Main results. Let (S,Σ) be a measurable space, let M (S) be the family of
all finite measures on (S,Σ), and let P(S) be the family of all probability measures
on (S,Σ). When S is a topological space, as a rule we consider Σ := B(S), where
B(S) is the Borel σ-field on S. Let R be the real line, and let R := [−∞,+∞]. We
write IA for the indicator of an event A.

Throughout this paper, we deal with integrals of functions that can take both
positive and negative values. The integral

∫
S f(s)µ(ds) of a measurable R-valued

function f on S w.r.t. a measure µ is defined and equal to∫
S
f(s)µ(ds) =

∫
S
f+(s)µ(ds)−

∫
S
f−(s)µ(ds)

if

min

{∫
S
f+(s)µ(ds),

∫
S
f−(s)µ(ds)

}
< ∞,

where f+(s) = max{f(s), 0}, f−(s) = −min{f(s), 0}, s ∈ S. All the integrals in the
assumptions of the theorems and corollaries throughout this paper are assumed to be
defined.

Definition 2.1. A sequence of measurable R-valued functions {fn}n=1,2,... is
called

— uniformly integrable (u.i.) w.r.t. a sequence of measures {µn}n=1,2,... ⊂ M (S)
if

(2.1) lim
K→+∞

sup
n=1,2,...

∫
S
|fn(s)| I{s ∈ S : |fn(s)| > K}µn(ds) = 0;

— asymptotically uniformly integrable (a.u.i.) w.r.t. a sequence of measures
{µn}n=1,2,... ⊂ M (S) if

(2.2) lim
K→+∞

lim sup
n→∞

∫
S
|fn(s)| I{s ∈ S : |fn(s)| > K}µn(ds) = 0.

We remark that the limit as K → +∞ in (2.1) (resp., (2.2)) exists because the
function

(2.3) K 7→ sup
n=1,2,...

(lim sup
n→∞

)

∫
S
|fn(s)| I{s ∈ S : |fn(s)| > K}µn(ds)

is nonincreasing in K > 0.
If µn = µ ∈ M (S) for each n = 1, 2, . . . , then an (a.)u.i. w.r.t. {µn}n=1,2,...

sequence {fn}n=1,2,... is called (a.)u.i. For a single finite measure µ, the definition of an
a.u.i. sequence of functions (random variables in the case of a probability measure µ)
coincides with the corresponding definition broadly used in the literature; see, e.g.,
[34, p. 17]. Also, for a single fixed finite measure, the definition of a u.i. sequence
of functions is consistent with the classical definition of a family H of u.i. functions.
We say that a function f is (a.)u.i. w.r.t. {µn}n=1,2,... if the sequence {f, f, . . . } is
(a.)u.i. w.r.t. {µn}n=1,2,.... A function f is u.i. w.r.t. a family N of measures if

lim
K→+∞

sup
µ∈N

∫
S
|f(s)| I{s ∈ S : |f(s)| > K}µ(ds) = 0.
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The following theorem states the equivalence of the uniform and asymptotic uni-
form integrability properties introduced in Definition 2.1. The proof of Theorem 2.2 is
presented in section 6. Several examples of applications of Theorem 2.2 are provided
in section 4. As mentioned in the introduction, for µn = µ, where µ is a probability
measure, n = 1, 2, . . . , Theorem 2.2 was presented in [25, p. 180].

Theorem 2.2 (equivalence of u.i. and a.u.i.; cf. [25, p. 180]). Let (S,Σ) be a mea-
surable space, let {µn}n=1,2,... be a sequence of measures from M (S), and let
{fn}n=1,2,... be a sequence of measurable R-valued functions on S. Then there
exists N = 0, 1, . . . such that {fn+N}n=1,2,... is u.i. w.r.t. {µn+N}n=1,2,... if and only
if {fn}n=1,2,... is a.u.i. w.r.t. {µn}n=1,2,....

We recall that the Fatou lemma claims that, for a sequence of nonnegative measur-
able functions {fn}n=1,2,... defined on a measurable space (S,Σ) and for a measure µ
on this space,

(2.4)

∫
S
lim inf
n→∞

fn(s)µ(ds) 6 lim inf
n→∞

∫
S
fn(s)µ(ds).

Although a sequence of functions is u.i. if and only if it is a.u.i., in many cases it is
easier to verify that the sequence of functions is a.u.i. rather than it is u.i.

Definition 2.3. A sequence of measures {µn}n=1,2,... on a metric space S con-
verges weakly to a finite measure µ on S if for each bounded continuous function f
on S,

(2.5) lim
n→∞

∫
S
f(s)µn(ds) =

∫
S
f(s)µ(ds).

The following theorem is the main result of this section. We provide the proof of
this theorem in section 5.

Theorem 2.4 (the Fatou lemma for weakly converging measures). Let S be a met-
ric space, let {µn}n=1,2,... be a sequence of measures on S converging weakly to µ ∈
M (S), and let {fn}n=1,2,... be a sequence of measurable R-valued functions on S such
that {f−

n }n=1,2,... is a.u.i. w.r.t. {µn}n=1,2,.... Then

(2.6)

∫
S

lim inf
n→∞, s′→s

fn(s
′)µ(ds) 6 lim inf

n→∞

∫
S
fn(s)µn(ds).

Consider the following assumption introduced in [15]; this is a sufficient condition
for the validity of the Fatou lemma for weakly converging measures.

Assumption 2.5. Let S be a metric space, let {µn}n=1,2,... be a sequence of mea-
sures on S that converges weakly to µ ∈ M (S), and let {fn, gn}n=1,2,... be a sequence
of measurable R-valued functions on S such that fn(s) > gn(s) for each n = 1, 2, . . .
and s ∈ S, and such that

(2.7) −∞ <

∫
S

lim sup
n→∞, s′→s

gn(s
′)µ(ds) 6 lim inf

n→∞

∫
S
gn(s)µn(ds).

We note that Assumption 2.5 implies under certain conditions that the sequence
of functions {f−

n }n=1,2,... is u.i. w.r.t. {µn}n=1,2,...; see Theorem 2.6 below. In general,
these two conditions do not imply each other; see Examples 3.1 and 3.2. The following
theorem, whose proof is provided in section 5, describes a sufficient condition for
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the case when the uniform integrability is more general than Assumption 2.5. In
addition, according to Example 3.1, these two assumptions are not equivalent under
the sufficient condition stated in Theorem 2.6.

Theorem 2.6. Let Assumption 2.5 hold. If a sequence of functions {gn}n=1,2,... is
uniformly bounded from above, then there exists N = 0, 1, . . . such that {f−

n+N}n=1,2,...

is u.i. w.r.t. {µn+N}n=1,2,....

For weakly converging probability measures, the Fatou lemma was introduced
in [29] and generalized in [15, Theorem 4.2]. The following corollary extends [15,
Theorem 4.2] to finite measures. The proof of Corollary 2.7 is provided in section 5.
Example 3.3 demonstrates that Corollary 2.7 is incorrect if Assumption 2.5 is weak-
ened by replacing lim sup with lim inf in formula (2.7).

Corollary 2.7 (the Fatou lemma for weakly converging measures; cf. [15, The-
orem 4.2]). Inequality (2.6) holds under Assumption 2.5.

The following corollary is the Lebesgue dominated convergence theorem for weakly
converging measures. A similar result was given in [29, Theorem 3.5] in the form of
a necessary and sufficient condition for nonnegative functions and for locally compact
spaces. Though local compactness is not used in the proof of [29, Theorem 3.5], there
is a difference between the cases of nonnegative and general functions. If the func-
tions can take both positive and negative values, the converse to Corollary 2.8 does
not hold. This can be seen from Example 3.2.

Corollary 2.8 (the Lebesgue dominated convergence theorem for weakly con-
verging measures; cf. [29, Theorem 3.5]). Consider a metric space S. Let {µn}n=1,2,...

be a sequence of measures on S that converges weakly to µ ∈ M (S), and let {fn}n=1,2,...

be a sequence of measurable R-valued functions on S such that limn→∞, s′→s fn(s
′) ex-

ists for µ-a.e. s ∈ S. If {fn}n=1,2,... is a.u.i. w.r.t. {µn}n=1,2,..., then

(2.8) lim
n→∞

∫
S
fn(s)µn(ds) =

∫
S

lim
n→∞, s′→s

fn(s
′)µ(ds).

Proof. The corollary follows directly from Theorem 2.4, as applied to the se-
quences {fn}n=1,2,... and {−fn}n=1,2,....

The following assumption provides a sufficient condition for a sequence of measur-
able functions {fn}n=1,2,... to be u.i. w.r.t. a sequence of finite measures {µn}n=1,2,....

Assumption 2.9. Let S be a metric space, let {µn}n=1,2,... be a sequence of mea-
sures on S that converges weakly to µ ∈ M (S), and let {fn, gn}n=1,2,... be a sequence
of pairs of measurable R-valued functions on S such that |fn(s)| 6 gn(s) for each
n = 1, 2, . . . and s ∈ S, and such that

(2.9) lim sup
n→∞

∫
S
gn(s)µn(ds) 6

∫
S

lim inf
n→∞,s′→s

gn(s
′)µ(ds) < +∞.

Corollary 2.10 (theLebesguedominatedconvergence theoremforweaklyconver-
ging measures; cf. [29, Theorem 3.3]). If Assumption 2.9 holds and limn→∞, s′→s fn(s

′)
exists for µ-a.e. s ∈ S, then equality (2.8) holds.

Proof. According to Theorem 2.6, as applied to

fn(s) := −|fn(s)| and gn(s) := −gn(s), n = 1, 2, . . . , s ∈ S,

Assumption 2.9 implies that {fn}n=1,2,... is u.i. w.r.t. {µn}n=1,2,.... In view of Theo-
rem 2.2, the rest of the proof follows from Corollary 2.8.
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3. Counterexamples. The following two examples illustrate that the uniform
integrability of {f−

n+N}n=1,2,... for some N = 0, 1, . . . neither implies nor is implied
by Assumption 2.5. In Example 3.1, {f−

n }n=1,2,... is u.i. w.r.t. {µn}n=1,2,..., but As-
sumption 2.5 does not hold.

Example 3.1. Consider S := [0, 1] endowed with the standard Euclidean metric,
and consider the probability measures

(3.1)
µn(C) :=

∫
C

n I{s ∈ [0, n−1]} ν(ds),

µ(C) := I{0 ∈ C}, C ∈ B(S), n = 1, 2, . . . ,

where ν is the Lebesgue measure on [0, 1]. Then µn converges weakly to µ as n → ∞.
Let fn : S 7→ R, n = 1, 2, . . . , be

(3.2) fn(s) =

{
−i if s ∈ [n−1(1− 2−(i−1)), n−1(1− 2−i)), i = 1, 2, . . . ,

0 otherwise.

Then ∫
S
fn(s) I{s ∈ S : fn(s) 6 −K}µn(ds) =

∞∑
i=⌈K⌉

−i

2i
= −⌈K⌉+ 1

2⌈K⌉−1

for each K > 0 and for all n = 1, 2, . . . . Since (⌈K⌉+ 1)/2⌈K⌉−1 → 0 as K → +∞,
the sequence {f−

n }n=1,2,... is u.i. w.r.t. {µn}n=1,2,.... Now, we show that Assump-
tion 2.5 does not hold. Consider an arbitrary sequence of measurable functions
{gn}n=1,2,... such that gn(s) 6 fn(s) for all n = 1, 2, . . . and for all s ∈ S. Let
us prove that (2.7) does not hold. Assume, on the contrary, that (2.7) holds. Let
G := lim supn→∞, s′→0 gn(s

′). Since gn(s) 6 fn(s) 6 0, we have G 6 0. In view
of (3.1), inequalities (2.7) become

(3.3) −∞ < G 6 lim inf
n→∞

∫
S
gn(s)µn(ds).

Note that if (2.7) is true for {gn}n=1,2,..., then it is true for {g̃n} such that g̃n(s) :=
gn(s) − C, where C > 0. Therefore, we can select {gn}n=1,2,... such that G ∈
{−2,−3, . . . }. Then we show that lim infn→∞

∫
S gn(s)µn(ds) < G. Observe that

the definition of G implies

lim
m→∞

sup
n>m, s∈[0,1/m]

gn(s) 6 G;

in fact, the equality takes place, but we do not need it. Then, for every ε > 0, there
exists N(ε) > 0 such that gn(s) 6 G+ ε for all n > N(ε) and for all s ∈ [0, 1/N(ε)].
Therefore, gn(s) 6 min{G + ε, fn(s)} for all s ∈ [0, 1/N(ε)] and for all n > N(ε),
which implies

(3.4)

∫
S
gn(s)µn(ds) 6

∫
S
min{G+ ε, fn(s)}µn(ds), n > N(ε).
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Let ε ∈ (0, 1). For n > N(ε),∫
S
min{G+ ε, fn(s)}µn(ds)

=

∫ (1−2G+1)/n

0

(G+ ε)µn(ds) +

∫ 1/n

(1−2G+1)/n

fn(s)µn(ds)

= (G+ ε)(1− 2G+1) +
∞∑

i=−G

−i

2i
= (G+ ε)(1− 2G+1)− −G+ 1

2−G−1

= G+ ε− (1 + ε) · 2G+1,(3.5)

where, as follows from (3.2), the first equality holds because

fn(s) > G+ 1 > G+ ε for s ∈ [0, n−1(1− 2G+1)),

fn(s) 6 G < G+ ε for s ∈ [n−1(1− 2G+1), n−1).

As follows from (3.4) and (3.5), for every ε ∈ (0, 1),

lim inf
n→∞

∫
S
gn(s)µn(ds) < G+ ε− 2G+1,

and therefore lim infn→∞
∫
S gn(s)µn(ds) 6 G − 2G+1 < G, which contradicts the

second inequality in (3.3). Hence, Assumption 2.5 does not hold.

In addition, the example in Kamihigashi [24, Example 5.1] of a sequence of
functions, which is not u.i., demonstrates that Assumption 2.5 does not imply that
{f−

n+N}n=1,2,... is u.i. w.r.t. {µn}n=1,2,... for some N = 0, 1, . . . . The following exam-
ple is a slight modification of [24, Example 5.1].

Example 3.2 (cf. [24, Example 5.1]). Consider S := [−1, 1] endowed with the
standard Euclidean metric. Let µn = µ, n = 1, 2, . . . , be the Lebesgue measure on S,
and for n = 1, 2, . . . and s ∈ S let

fn(s) =


−n if s ∈ [l − n−1, 0),

n if s ∈ (0, n−1],

0 otherwise.

Then lim infn→∞
∫
S fn(s)I{s ∈ S : fn(s) 6 −K}µ(ds) = −1 for each K > 0,

which implies that {f−
n }n=1,2,... is not a.u.i. Hence {f−

n+N}n=1,2,... is not
u.i. for each N = 0, 1, . . . ; see Theorem 2.2. For each n = 1, 2, . . . , since∫
S lim supn→∞,s′→s fn(s

′)µ(ds) =
∫
S fn(s)µ(ds) = 0, it follows that (2.7) holds for

µn = µ with gn = fn.

The following example demonstrates that Corollary 2.7 fails if inequalities (2.7)
in Assumption 2.5 are replaced by

−∞ <

∫
S

lim inf
n→∞,s′→s

gn(s
′)µ(ds) 6 lim inf

n→∞

∫
S
gn(s)µn(ds).(3.6)

Example 3.3 (inequalities (3.6) hold, but inequality (2.6) and the second inequal-
ity in (2.7) do not hold). Let S := [0,+∞), µn(S) = µ(S) :=

∫
S
2−sds, S ∈ B(S),

fn(s) := −2nI{s ∈ [n, n+ 1)},
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and

gn(s) := fn(s)−
2s−1

ln 2

2n−1∑
k=0

I

{
s ∈

[
2k

2n
,
2k + 1

2n

)}
for all s ∈ [0,+∞) and n = 1, 2, . . . . Note that fn(s) > gn(s) for all s ∈ [0,+∞) and
n = 1, 2, . . . . Also,

(3.7) lim inf
n→∞, s′→s

fn(s
′) = lim sup

n→∞, s′→s
gn(s

′) = 0, s ∈ [0,+∞).

Indeed, limn→∞,s′→s fn(s
′) ≡ 0 because fn(s

′) = 0 for s′ ∈ [0, s+1), when n > ⌊s⌋+2
and s ∈ [0,+∞), where ⌊a⌋ is the integer part of a real number a ∈ R. Since gn(s) 6 0
for all s ∈ [0,+∞) and n = 1, 2, . . . , the second equality in (3.7) follows from

(3.8) 0 > lim sup
n→∞,s′→s

gn(s
′) > lim

n→∞
gn

(
2⌊2n−1s⌋+ 3/2

2n

)
= 0, s ∈ [0,+∞),

where the second inequality in (3.8) holds because

s− 1

2n+1
<

2⌊2n−1s⌋+ 3/2

2n
6 s+

3

2n+1

for each n = 1, 2, . . . and because

lim
n→∞

(
s− 1

2n+1

)
= lim

n→∞

(
s+

3

2n+1

)
= s,

and the equality in (3.8) holds because

2⌊2n−1s⌋+ 3/2

2n
/∈

2n−1⋃
k=0

[
2k

2n
,
2k + 1

2n

)
for each n = 1, 2, . . . . Therefore, equalities (3.7) hold.

We observe that

(3.9) lim inf
n→∞, s′→s

gn(s
′) = −2s−1

ln 2
I{s ∈ [0, 2]}, s ∈ [0,+∞).

Indeed, since gn(s) > fn(s) − (2s−1/ln 2) I{s ∈ [0, 2]} for each s ∈ [0,+∞) and
n = 1, 2, . . . , and the function s 7→ lim infn→∞, s′→s gn(s

′) is lower semicontinuous,
equality (3.9) follows from

(3.10) lim inf
n→∞, s′→s

gn(s
′) = lim

n→∞
gn

(
2⌊2n−1s⌋+ 1/2

2n

)
= −2s−1

ln 2
, s ∈ [0, 2),

where the first equality in (3.10) holds because

s− 3

2n+1
<

2⌊2n−1s⌋+ 1/2

2n
6 s+

1

2n+1

for each n = 1, 2, . . . and because

lim
n→∞

(
s− 3

2n+1

)
= lim

n→∞

(
s+

1

2n+1

)
= s,
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and the second equality in (3.10) holds because

2⌊2n−1s⌋+ 1/2

2n
∈

2n−1⋃
k=0

[
2k

2n
,
2k + 1

2n

)
for n > max{1, ⌊− log2(2− s)⌋}. Therefore, equality (3.9) holds.

Equality (3.9) implies

(3.11)

∫ ∞

0

lim inf
n→∞, s′→s

gn(s
′)µ(ds) = −

∫ 2

0

1

2 ln 2
ds = − 1

ln 2
.

For each n = 1, 2, . . . ,

(3.12)

∫ ∞

0

fn(s)µ(ds) = −2n
∫ n+1

n

2−s ds =
2n

ln 2
(2−n−1 − 2−n) = − 1

2 ln 2

and

(3.13)

∫ ∞

0

gn(s)µ(ds) =

∫ ∞

0

fn(s)µ(ds)−
1

2 ln 2

2n−1∑
k=0

1

2n
= − 1

ln 2
.

Inequalities (3.6) hold because, according to (3.11) and (3.13),

−∞ < − 1

ln 2
=

∫
S

lim inf
n→∞, s′→s

gn(s
′)µ(ds) 6 lim inf

n→∞

∫
S
gn(s)µn(ds) = − 1

ln 2
.

However, inequality (2.6) does not hold because, according to (3.12) and (3.7),

− 1

2 ln 2
= lim inf

n→∞

∫
S
fn(s)µn(ds) <

∫
S

lim inf
n→∞, s′→s

fn(s
′)µ(ds) = 0.

The second inequality in (2.7) does not hold either, because, according to (3.13)
and (3.7),

− 1

ln 2
= lim inf

n→∞

∫
S
gn(s)µn(ds) <

∫
S

lim sup
n→∞, s′→s

gn(s
′)µ(ds) = 0.

Therefore, inequalities (3.6) hold, but inequality (2.6) and the second inequality
in (2.7) do not hold.

4. Examples of applications of Theorem 2.2. The usefulness of these ap-
plications lies in the fact that it is typically easier to verify the asymptotic u.i. w.r.t.
a sequence of measures than u.i.

4.1. The uniform Fatou lemma and the uniform Lebesgue dominated
convergence theorem for measures converging in total variation. The fol-
lowing results are Theorem 2.1 and Corollary 2.9 of [16], with conditions (ii) replacing
the conditions that {f−

n }n=1,2,... and {fn}n=1,2,... are u.i. w.r.t. {µn}n=1,2,..., respec-
tively. As explained in [16], inequality (4.1) is stronger than the inequality in the
Fatou lemma, and the sufficient condition in Proposition 4.1 can be viewed as the
uniform version of the Fatou lemma. Since the convergence in (4.2) is a uniform
version of convergence of integrals, the sufficient condition in Proposition 4.2 can be
viewed as the uniform version of the Lebesgue dominated convergence theorem.
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Proposition 4.1 (the uniform Fatou lemma; cf. [16, Theorem 2.1]). Let (S,Σ)
be a measurable space, let a sequence of measures {µn}n=1,2,... from M (S) converge
in total variation to a measure µ ∈ M (S), and let {f, fn}n=1,2,... be a sequence of
measurable R-valued functions on S. Assume that f ∈ L1(S;µ) and fn ∈ L1(S;µn)
for each n = 1, 2, . . . . Then the inequality

(4.1) lim inf
n→∞

inf
C∈Σ

(∫
C

fn(s)µn(ds)−
∫
C

f(s)µ(ds)

)
> 0

takes place if and only if the following two conditions hold :
(i) For each ε > 0,

µ
(
{s ∈ S : fn(s) 6 f(s)− ε}

)
→ 0 as n → ∞;

(ii) {f−
n }n=1,2,... is a.u.i. w.r.t. {µn}n=1,2,....

Proof. The proposition follows from Theorem 2.1 of [16] and Theorem 2.2.

We notice that, since ∅ ∈ Σ, the left-hand side of (4.1) is nonpositive. Therefore,
inequality (4.1) takes place if and only if it holds in the form of the equality. Since
the left-hand side of (4.1) is the lower limit of a sequence of nonpositive numbers, the
lower limit in (4.1) is the limit.

Proposition 4.2 (the uniform Lebesgue dominated convergence theorem; cf. [16,
Corollary 2.9]). Let (S,Σ) be a measurable space, let {µn}n=1,2,... be a sequence of
measures from M (S) converging in total variation to a measure µ ∈ M (S), and let
{f, fn}n=1,2,... be a sequence of measurable R-valued functions on S. Assume that
f ∈ L1(S;µ) and fn ∈ L1(S;µn) for each n = 1, 2, . . . . Then

(4.2) lim
n→∞

sup
C∈Σ

∣∣∣∣∫
C

fn(s)µn(ds)−
∫
C

f(s)µ(ds)

∣∣∣∣ = 0

if and only if the following two conditions hold :
(i) {fn}n=1,2,... converges to f w.r.t. the measure µ;
(ii) {fn}n=1,2,... is a.u.i. w.r.t. {µn}n=1,2,....

Proof. The proposition follows from Corollary 2.9 of [16] and Theorem 2.2.

4.2. On the Dunford–Pettis theorem. As follows from the Eberlein–Šmulian
theorem, the Dunford–Pettis theorem implies that a sequence {fn}n=1,2,... ⊂ L1(S;µ)
has a weakly convergent subsequence {fnk

}k=1,2,... to f ∈ L1(S;µ) in L1(S;µ) if
and only if {fn}n=1,2,... is u.i.; see, for example, [1, Theorem 5.2.9, p. 109], [3, The-
orem 4.7.18], [8, p. 93], [10, Theorem 4.21.2, p. 274], [27, Theorem 23, p. 20], [33,
Theorem 46.1, p. 471], and [36, Theorem 12, p. 137].

The main result of this subsection has the following formulation.

Proposition 4.3. Let (S,Σ) be a measurable space, let µ ∈ M (S), and let
{fn}n=1,2,... ⊂ L1(S;µ) be a sequence of measurable R-valued functions on S. Then
the following conditions are equivalent :

(i) There exists {fnk
}k=1,2,... ⊂ {fn}n=1,2,... such that fnk

→ f weakly in L1(S;µ)
for some f ∈ L1(S;µ);

(ii) there exists N = 0, 1, . . . such that {fn+N}n=1,2,... is u.i.;
(iii) {fn}n=1,2,... is a.u.i.

Proof. In view of the Eberlein–Šmulian theorem, conditions (i) and (ii) are equiv-
alent due to the Dunford–Pettis theorem. The equivalence of conditions (ii) and (iii)
directly follows from Theorem 2.2.
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4.3. The fundamental theorem for Young measures. In this subsection we
provide an equivalent formulation of the fundamental theorem for Young measures
from [2]. Let n,m = 1, 2, . . . , and let Ω ⊂ Rn be Lebesgue measurable and C ⊂ Rm

be closed. Let meas denote the Lebesgue measure on Rn. Consider the Banach
spaces L1(Ω) and L∞(Ω) of all integrable and essentially bounded functions on Ω,
respectively, endowed with the standard norms.

Proposition 4.4. Let z(j) : Ω 7→ Rm, j = 1, 2, . . . , be a sequence of Lebesgue
measurable functions satisfying z(j)( · ) → C in measure as j → ∞, i.e., for every
neighborhood U of C in Rm

lim
j→∞

meas{x ∈ Ω: z(j)(x) /∈ U} = 0.

Then there exist a subsequence {z(jk)}k=1,2,... of {z(j)}j=1,2,... and a family (νx),
x ∈ Ω, of positive measures on Rm, depending measurably on x, such that

(i) ∥νx∥M :=
∫
Rm dνx 6 1 for a.e. x ∈ Ω;

(ii) supp νx ⊂ C for a.e. x ∈ Ω; and
(iii) f(z(jk)) → ⟨νx, f⟩ =

∫
Rm f(λ) dνx(λ) weakly star in L∞(Ω) for each contin-

uous function f : Rm 7→ R satisfying lim|λ|→∞ f(λ) = 0.

Suppose further that {z(jk)}k=1,2,... satisfies the asymptotic boundedness condition

(4.3) lim
K→+∞

lim sup
k→∞

meas{x ∈ Ω ∩BR : |z(jk)(x)| > K} = 0,

for every R > 0, where BR = BR(0̄) is a ball of radius R and center 0̄ in the Euclidean
n-space Rn. Then ∥νx∥M = 1 for a.e. x ∈ Ω (i.e., νx is a probability measure), and,
given any measurable subset A of Ω,

(4.4) f(z(jk)) → ⟨νx, f⟩ weakly in L1(A)

for any continuous function f : Rm 7→ R such that {f(z(jk))}k=1,2,... is sequentially
weakly relatively compact in L1(A).

Remark 4.5. Theorem from [2] is Proposition 4.4 with (4.3) replaced with

(4.5) lim
K→+∞

sup
k=1,2,...

meas{x ∈ Ω ∩BR : |z(jk)(x)| > K} = 0.

Remark 4.6. Condition (4.3) is equivalent to the following one: given any
R > 0, there exists a continuous function gR : [0,+∞) 7→ R satisfying the condition
limt→∞ gR(t) = +∞, such that

(4.6) lim sup
k→∞

∫
Ω∩BR

gR(|z(jk)(x)|) dx < ∞;

see [2, Remark 1]. Without loss of generality, we can also replace limit superior with
limit inferior in (4.6) if condition (4.3) is replaced with the condition in this remark.

Remark 4.7. If A is bounded in Proposition 4.4, then Proposition 4.3 implies that
the condition that {f(z(jk))}k=1,2,... is sequentially weakly relatively compact in L1(A)
is satisfied if and only if {f(z(jk))}k=1,2,... is a.u.i.

Proof of Proposition 4.4. All assertions follow from the theorem of [2] and The-
orem 2.2, as applied to S := Ω ∩ BR endowed with the Lebesgue σ-algebra Σ on
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Ω ∩BR,

fk(s) := |z(jk)(s)| I{s ∈ S : |z(jk)(s)| > 1},

µk(S) :=

∫
S

ds

|z(jk)(s)| I{s ∈ S : |z(jk)(s)| > 1}
,

for each S ∈ Σ and sufficiently large k > 1. Indeed, since∫
S
|fk(s)| I{s ∈ S : |fk(s)| > K}µk(ds) = meas{x ∈ Ω ∩BR : |z(jk)(x)| > K},

for each K > 1 and sufficiently large k > 1, we see that Theorem 2.2 implies that (4.3)
and (4.5) are equivalent, and, therefore, the conclusions of Theorem from [2] and
Proposition 4.4 are equivalent. Proposition 4.4 is proved.

5. Proofs of Theorems 2.4, 2.6 and Corollary 2.7. This section contains
the proofs of Theorems 2.4, 2.6 and Corollary 2.7.

Proof of Theorem 2.4. Let us fix an arbitrary K > 0. Then

lim inf
n→∞

∫
S
fn(s)µn(ds) > lim inf

n→∞

∫
S
fn(s) I{s ∈ S : fn(s) > −K}µn(ds)

+ lim inf
n→∞

∫
S
fn(s) I{s ∈ S : fn(s) 6 −K}µn(ds).(5.1)

The following inequality holds:

(5.2) lim inf
n→∞

∫
S
fn(s) I{s ∈ S : fn(s) > −K}µn(ds) >

∫
S

lim inf
n→∞, s′→s

fn(s
′)µ(ds).

Indeed, if µ(S) = 0, then

lim inf
n→∞

∫
S
fn(s) I{s ∈ S : fn(s) > −K}µn(ds)

> −K lim
n→∞

µn(S) = 0 =

∫
S

lim inf
n→∞, s′→s

fn(s
′)µ(ds),

where the equalities hold because µn(S) → µ(S) = 0 as n → ∞. Otherwise, if

µ(S) > 0, then Theorem 4.2 of [15], as applied to {f̃n}n=1,2,... := {fn+N}n=1,2,...,
g̃n ≡ −K, µ̃n(C) := µn+N (C)/µn+N (S), and µ̃(C) := µ(C)/µ(S), for each n =
1, 2, . . . and C ∈ B(S), where N = 1, 2, . . . is sufficiently large, implies

lim inf
n→∞

∫
S
fn(s) I{s ∈ S : fn(s) > −K}µn(ds)

>
∫
S

lim inf
n→∞, s′→s

fn(s
′) I{s′ ∈ S : fn(s′) > −K}µ(ds).(5.3)

Here we note that {µ̃n}n=1,2,... ⊂ P(S) converges weakly to µ̃ ∈ P(S). We also note
that

(5.4) fn(s) I{s ∈ S : fn(s) > −K} > fn(s)

for all s ∈ S because K > 0. Thus, (5.2) follows from (5.3) and (5.4).



FATOU’S LEMMA FOR WEAKLY CONVERGING MEASURES 13

Inequalities (5.1) and (5.2) imply

lim inf
n→∞

∫
S
fn(s)µn(ds) >

∫
S

lim inf
n→∞, s′→s

fn(s
′)µ(ds)

+ lim
K→+∞

lim inf
n→∞

∫
S
fn(s) I{s ∈ S : fn(s) 6 −K}µn(ds),

which is equivalent to (2.6) because {f−
n }n=1,2,... is a.u.i. w.r.t. {µn}n=1,2,.... Theo-

rem 2.4 is proved.

Proof of Theorem 2.6. Let Assumption 2.5 hold. According to Theorem 2.2, it is
sufficient to prove that {f−

n }n=1,2,... is a.u.i. w.r.t. {µn}n=1,2,..., i.e.,

(5.5) lim
K→+∞

lim inf
n→∞

∫
S
fn(s) I{s ∈ S : fn(s) 6 −K}µn(ds) = 0.

Let us prove (5.5). Indeed, since fn(s) > gn(s),

I{s ∈ S : fn(s) 6 −K} 6 I{s ∈ S : gn(s) 6 −K},

for all n = 1, 2, . . . , K > 0, and s ∈ S. Therefore,

lim
K→+∞

lim inf
n→∞

∫
S
fn(s) I{s ∈ S : fn(s) 6 −K}µn(ds)

> lim
K→+∞

lim inf
n→∞

∫
S
gn(s) I{s ∈ S : gn(s) 6 −K}µn(ds).(5.6)

Inequalities (2.7) imply

lim
K→+∞

lim inf
n→∞

∫
S
gn(s) I{s ∈ S : gn(s) 6 −K}µn(ds)

>
∫
S

lim sup
n→∞, s′→s

gn(s
′)µ(ds)

+ lim
K→+∞

lim inf
n→∞

∫
S
(−gn(s)) I{s ∈ S : gn(s) > −K}µn(ds).(5.7)

Since the functions {gn}n=1,2,... are bounded from above by the same constant, Theo-
rem 2.4, as applied to the sequence of the functions {fn}n=1,2,..., which are uniformly
bounded from below, where fn(s) := −gn(s) I{s∈ S:gn(s) > −K}, s ∈ S, n = 1, 2, . . . ,
implies

lim inf
n→∞

∫
S
−gn(s) I{s ∈ S : gn(s) > −K}µn(ds)

> −
∫
S

lim sup
n→∞, s′→s

gn(s
′) I{s′ ∈ S : gn(s′) > −K}µ(ds)(5.8)

for each K > 0. If for each s ∈ S

(5.9) lim sup
n→∞, s′→s

gn(s
′) I{s′ ∈ S : gn(s′) > −K} ↓ lim sup

n→∞, s′→s
gn(s

′)

as K ↑ +∞, then (5.6)–(5.8) directly imply (5.5), i.e., {f−
n }n=1,2,... is a.u.i. w.r.t.

{µn}n=1,2,....
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Let us prove (5.9). Since for each s′ ∈ S and n = 1, 2, . . .

gn(s
′) I{s′ ∈ S : gn(s′) > −K} ↓ gn(s

′)

as K ↑ +∞, we have

sup
m>n, s′∈Bδ(s)

gm(s′) I{s′ ∈ S : gm(s′) > −K} ↓ sup
m>n, s′∈Bδ(s)

gm(s′)

as K ↑ +∞, for each n = 1, 2, . . . and δ > 0, where Bδ(s) is the ball in the metric
space S of radius δ centered at s. Therefore,

inf
n>1, δ>0

sup
m>n, s′∈Bδ(s)

gm(s′) I{s′ ∈ S : gm(s′) > −K}

↓ inf
n>1, δ>0

sup
m>n, s′∈Bδ(s)

gm(s′)

as K ↑ +∞, i.e., (5.9) holds for each s ∈ S. Thus, {f−
n }n=1,2,... is u.i. w.r.t.

{µn}n=1,2,....

Proof of Corollary 2.7. Theorem 2.4, as applied to the sequence of nonnegative
functions {fn − gn}n=1,2,..., implies∫

S
lim inf

n→∞, s′→s
fn(s

′)µ(ds)−
∫
S

lim sup
n→∞, s′→s

gn(s
′)µ(ds)

6
∫
S

lim inf
n→∞, s′→s

(fn(s
′)− gn(s

′))µ(ds) 6 lim inf
n→∞

∫
S
(fn(s)− gn(s))µn(ds)

6 lim inf
n→∞

∫
S
fn(s)µn(ds)− lim inf

n→∞

∫
S
gn(s)µn(ds),(5.10)

where the first and third inequalities follow from the basic properties of infima and
suprema. Inequality (2.6) follows from (5.10) and Assumption 2.5. Corollary 2.7 is
proved.

6. Appendix. Proof of Theorem 2.2. This appendix contains the proof of
Theorem 2.2. This proof is close to that of a similar result in [25, p. 180] for the
case of a single probability measure. The main reason for providing this appendix is
that reference [25] may not be available to the majority of the readers. We were not
aware of [25] for a long time. Once the first version of our paper, which contained
a direct proof of Theorem 2.2, was published on arxiv.org, Professor G. M. Shevchenko
informed us about the book by M. V. Kartashov [25].

Lemma 6.1 (Kartashov [25, p. 134]). Consider a sequence of real-valued functions
εn(K), where K > 0, such that

(a) εn(K) ↓ 0 as K → +∞ for each n = 1, 2, . . . ; and
(b) limK→+∞ lim supn→∞ εn(K) = 0.
Then (c) limK→+∞ supn=1,2,... εn(K) = 0.

Proof. Assume on the contrary that (c) does not hold. In this case, the limit
in (c) is equal to δ for some δ > 0. Observe that supn=1,2,... εn(K) > δ for all K > 0,
since this function does not increase w.r.t. K. For each m = 1, 2, . . . there is a natural
number nm such that εnm(m) > δ/2. If the sequence {nm}m=1,2,... is bounded, then
it is possible to choose nm = k for some k ∈ {1, 2, . . . } and for an infinite subset of
integer numbers m. Therefore, εk(m) > δ/2 for these numbers, which contradicts
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assumption (a). For m > K, from the monotonicity in (a), we have εn(K) > εn(m),
which implies

(6.1) lim sup
n→∞

εn(K) > lim sup
m→∞

εnm(K) > lim sup
m→∞

εnm(m) >
δ

2
> 0,

where K > 0 is an arbitrary real number. Now (6.1) contradicts condition (b).
Lemma 6.1 is proved.

Proof of Theorem 2.2. The uniform integrability w.r.t. {µn+N}n=1,2,... of the se-
quence {fn+N}n=1,2,... for some N = 0, 1, . . . implies the asymptotic uniform integra-
bility w.r.t. {µn}n=1,2,... of the sequence {fn}n=1,2,....

Vice versa, let {fn}n=1,2,... be a.u.i. w.r.t. {µn}n=1,2,.... Then there exists N =
0, 1, . . . such that fn ∈ L1(S;µn) for each n = N +1, N +2, . . . . Indeed, if there were
a subsequence {fnk

}k=1,2,... of {fn}n=1,2,... such that
∫
S |fnk

(s)|µnk
(ds) = ∞, then

we would have ∫
S
|fnk

(s)| I{s ∈ S : |fnk
| > K}µnk

(ds) = ∞

for each K > 0 and k = 1, 2, . . . . Therefore,

lim
K→+∞

lim sup
n→∞

∫
S
|fn(s)| I{s ∈ S : |fn(s)| > K}µn(ds) = ∞,

contradicting the assumption that {fn}n=1,2,... is a.u.i. w.r.t. {µn}n=1,2,....
Consider εn(K) :=

∫
S |fn+N (s)| I{s ∈ S : |fn+N (s)| > K}µn+N (ds), n = 1, 2, . . . .

Since fn+N ∈ L1(S;µn+N ) for each n = 1, 2, . . . , condition (a) in Lemma 6.1 holds.
Condition (b) holds because {fn}n=1,2,... is a.u.i. w.r.t. {µn}n=1,2,.... Then Lemma 6.1
implies the validity of (2.1) for {fn+N}n=1,2,... w.r.t. {µn+N}n=1,2,.... Theorem 2.2 is
proved.

Acknowledgment. The authors thank G. M. Shevchenko for bringing their
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REFERENCES

[1] F. Albiac and N. J. Kalton, Topics in Banach Space Theory, 2nd ed., Grad. Texts in Math.
233, Springer, Cham, 2016.

[2] J. M. Ball, A version of the fundamental theorem for Young measures, in PDEs and Continuum
Models of Phase Transitions (Nice, 1988), Lecture Notes in Phys. 344, Springer, Berlin, 1989,
pp. 207–215.

[3] V. I. Bogachev, Measure Theory, Vol. I, Springer-Verlag, Berlin, 2007.
[4] V. S. Borkar, Convex analytic methods in Markov decision processes, in Handbook of Markov

Decision Processes, Internat. Ser. Oper. Res. Management Sci. 40, Kluwer Acad. Publ., Boston,
MA, 2002, pp. 347–575.

[5] J. P. Chen and B. E. Ugurcan, Entropic repulsion of Gaussian free field on high-dimensional
Sierpinski carpet graphs, Stochastic Process. Appl., 125 (2015), pp. 4632–4673.

[6] S. Chu and Y. Zhang, Markov decision processes with iterated coherent risk measures, Internat.
J. Control, 87 (2014), pp. 2286–2293.
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[23] A. Jaśkiewicz and A. S. Nowak, Stochastic games with unbounded payoffs: Applications to

robust control in economics, Dyn. Games. Appl., 1 (2011), pp. 253–279.
[24] T. Kamihigashi, A generalization of Fatou’s lemma for extended real-valued functions on

σ-finite measure spaces: With an application to infinite-horizon optimization in discrete time,
J. Inequal. Appl., 2017 (2017), 24.

[25] M. V. Kartashov, Invariance, Processes, Statistics, Kiev Univ. Press, Kiev, 2008 (in Ukrain-
ian).

[26] D. Landriault, B. Li, and H. Zhang, A unified approach for drawdown (drawup) of
time-homogeneous Markov processes, J. Appl. Probab., 54 (2017), pp. 603–626.

[27] P. A. Meyer, Probability and Potentials, Blaisdell Publ.,Waltham, MA, 1966.
[28] X. Ren, J. Wu, K. H. Johansson, G. Shi, and L. Shi, Infinite horizon optimal transmission

power control for remote state estimation over fading channels, IEEE Trans. Automat. Control,
63 (2018), pp. 85–100.

[29] R. Serfozo, Convergence of Lebesgue integrals with varying measures, Sankhyā Ser. A, 44
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