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a b s t r a c t

For an infinite-horizon discounted Markov decision process with a finite number of states and actions,
this note provides upper bounds on the number of operations required to compute an approximately
optimal policy by value iterations in terms of the discount factor, spread of the reward function, and
desired closeness to optimality. One of the provided upper bounds on the number of iterations has
the property that it is a non-decreasing function of the value of the discount factor.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Value and policy iteration algorithms are the major tools for
solving infinite-horizon discounted Markov decision processes
(MDPs). Policy iteration algorithms also can be viewed as imple-
mentations of specific versions of the simplex method applied
to linear programming problems corresponding to discounted
MDPs [6,17]. Ye [17] proved that for a given discount factor the
policy iteration algorithm is strongly polynomial as a function of
the total number of state–action pairs. Kitahara and Mizuno [7]
extended Ye’s [17] results by providing sufficient conditions for
strong polynomiality of a simplex method for linear program-
ming, and Scherrer [13] improved Ye’s [17] bound for MDPs. For
deterministic MDPs Post and Ye [10] proved that, for the version
of policy iterations improving the policy at one state at each
iteration, there is a polynomial upper bound on the number of
operations, which does not depend on the value of the discount
factor. Feinberg and Huang [4] showed that value iterations are
not strongly polynomial for discounted MDPs. Earlier Tseng [16]
proved weak polynomiality of value iterations.

In this note we show that the value iteration algorithm com-
putes ϵ-optimal policies in strongly polynomial time for a given
ϵ, discount factor, and spread of the reward functions. This is
an important observation because value iterations are broadly
used in applications, including reinforcement learning [1,2,15],
for computing nearly optimal policies.

∗ Correspondence to: Department of Applied Mathematics and Statistics,
Stony Brook University, Stony Brook, NY 11794-3600, United States of America.
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Let us consider an MDP with a finite state space X = {1,
2, . . . ,m} and with a finite nonempty set of actions A(x) available
at each state x ∈ X. Each action set A(x) consists of kx actions.
Thus, the total number of actions is k =

∑m
x=1 kx, and this number

can be interpreted as the total number of state–action pairs. Let
α ∈ [0, 1) be the discount factor. According to [13], Howard’s
version of the policy iteration algorithm finds an optimal policy
within NPI

I (α) iterations, and each iteration requires at most NPI
O

operations with

NPI
I (α) := (k − m)

⌈
1

1 − α
log

1
1 − α

⌉
= O

(
k

1 − α
log

1
1 − α

)
,

NPI
O := O

(
m3

+ mk
)
. (1.1)

This paper shows that for each ϵ > 0, the value iteration
algorithm finds an ϵ-optimal policy within NVI

I (ϵ) iterations, and
each iteration requires at most NVI

O operations, where

NVI(ϵ)
I (α) := max

{⌈
log (1−α)ϵ

[R+(1+α)V ]

logα

⌉
, 1

}
, NVI

O := O (mk) , (1.2)

where R and V are the constants defined by a one-step reward
function r and a function of terminal rewards v0. In addition,
NVI(ϵ)

I (α) is non-decreasing in α ∈ [0, 1).
To define the values of R and V , let us denote by sp(u) the span

seminorm of u ∈ Rm, where Rm is an m-dimensional Euclidean
space,

sp(u) := max
x∈X

u(x) − min
x∈X

u(x).

The properties of this seminorm can be found in [11, p. 196].
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Let r(x, a) be the reward collected if the system is at the state
x ∈ X and the action a ∈ A(x) is chosen. Let v0(x) be the reward
collected at the final state x ∈ X. Then

V := sp(v0). (1.3)

We denote by

v1(x) := max
a∈A(x)

r(x, a), x ∈ X, (1.4)

the maximal one-step reward that can be collected at the state x.
Then

R := sp(v1) = max
x∈X

max
a∈A(x)

r(x, a) − min
x∈X

max
a∈A(x)

r(x, a). (1.5)

Observe that

R ≤ sp(r) := max
x∈X

max
a∈A(x)

r(x, a) − min
x∈X

min
a∈A(x)

r(x, a).

Of course, the total number of operations to find an ϵ-optimal
policy is bounded above by NVI(ϵ)

I (α)·NVI
O for the value iteration al-

gorithm. The total number of operations to find an optimal policy
is bounded above by NPI

I (α)·NPI
O for the policy iteration algorithm.

Each iteration in the policy iteration algorithm requires solving a
system of m linear equations. This can be done by Gaussian elim-
ination within O(m3) operations. This is the reason the formula
for NPI

O in (1.1) depends on the term m3, which can be reduced to
mω with ω < 3 by using contemporary methods for solving linear
equations. For example, ω = 2.807 for Strassen’s algorithm [14].
According to [8], the best currently available ω = 2.37286, but
this method of solving linear equations is impractical due to the
large value of the constant in O.

Bounds in (1.1) and (1.2) can be used to compare upper bounds
on computational complexities for finding an optimal policy by
policy iterations and for finding an ϵ-optimal policy by value
iterations. The upper bound for the former is NPI

I (α) · NPI
O =

O(m3k + mk2), and, if the spread R of one-step rewards does not
grow with the size of the problem, then the upper bound for the
latter is NVI(ϵ)

I (α) · NVI
O = O(mk) (the constant V is controlled by

the algorithm, and ϵ and α do not depend on m and k). The latter
bound is asymptotically better than the former.

The upper bounds NVI(ϵ)
I (α) and NPI

I (α) on the number of
iterations increase in α. Therefore, an upper bound on the number
of iterations for some α∗

∈ [0, 1) is also the bound for all discount
factors α ∈ [0, α∗). In addition to (1.2), more accurate upper
bounds on the number of iterations for computing ϵ-optimal
policies by value iterations are presented in (3.5), (3.8), and (3.10).
However, the bounds in (3.5) and (3.8) depend on the additional
constant γ defined in (3.4), and finding γ requires additional
computations. Bounds (3.5) and (3.10) may not increase in α ∈

[0, 1), and, as Example 1 demonstrates, it is possible that these
upper bounds for some α ∈ [0, 1) are not upper bounds on the
number of iterations for a smaller discount factor.

As is well-known and clear from (1.1) and (1.2), the number of
operations at each step is larger for the policy iteration algorithm
than for the value iteration algorithm. If the number of states m is
large, then the difference (NPI

O −NVI
O ) can be significant. In order to

accelerate policy iterations, the method of modified policy itera-
tions was introduced in [12]. This method uses value iterations to
solve linear equations. As shown in Feinberg et al. [5], modified
policy iterations and their versions are not strongly polynomial
algorithms for finding optimal policies.

2. Definitions

Let N and R be the sets of natural numbers and real numbers
respectively. For a finite set E, let |E| denote the number of
elements in the set E. We consider an MDP with a finite state

space X = {1, 2, . . . ,m}, where m ∈ N is the number of states,
and nonempty finite action sets A(x) available at states x ∈ X. Let
A :=

⋃
x∈X A(x) be the action set. We recall that k =

∑
x∈X |A(x)|

is the total number of actions at all states or, in slightly different
terms, the number of all state–action pairs. For each x ∈ X, if
an action a ∈ A(x) is selected at the state x ∈ X, then a one-
step reward r(x, a) is collected and the process moves to the next
state y ∈ X with the probability p(y|x, a), where r(x, a) is a real
number and

∑
y∈X p(y|x, a) = 1. The process continues over a

finite or infinite planning horizon. For a finite-horizon problem,
the terminal real-valued reward v0(x) is collected at the final state
x ∈ X.

A deterministic policy φ is a mapping φ : X ↦→ A such that
φ(x) ∈ A(x) for each x ∈ X, and, if the process is at a state
x ∈ X, then the action φ(x) is selected. An arbitrary policy π
can be randomized and history-dependent; see e.g., Puterman
[11, p. 154] for definitions of various classes of policies. In partic-
ular, a nonrandomized Markov policy ϕ is defined by a sequence
of mappings (ϕt )t=0,1,... such that ϕt : X ↦→ A with ϕt (x) ∈ A(x)
for all x ∈ X and t = 0, 1, . . .. We denote by Π , M, and F the set
of all policies, Markov nonrandomized policies, and deterministic
policies respectively; F ⊂ M ⊂ Π .

Let α ∈ [0, 1) be a discount factor. For a policy π ∈ Π and for
an initial state x0 = x, the expected total discounted reward for
an n-horizon problem is

vπn,α(x) := Eπx

[
n−1∑
t=0

αt r(xt , at ) + αnv0(xn)

]
, n ∈ N, x ∈ X,

and for the infinite-horizon problem it is

vπα (x) := Eπx

∞∑
t=0

αt r(xt , at ), x ∈ X,

where Eπx is the expectation defined by the initial state x and the
policy π , and where xt and at are states and actions at epochs
t = 0, 1, . . .. The value functions are defined for initial states x ∈ X
as

vn,α(x) := sup
π∈Π

vπn,α(x), n ∈ N, x ∈ X, (2.1)

for n-horizon problems, and

vα(x) := sup
π∈Π

vπα (x), x ∈ X, (2.2)

for infinite-horizon problems. Note that vπ0,α = v0,α = v0 for all
α ∈ [0, 1) and π ∈ Π .

A policy π is called optimal (n-horizon optimal for n = 1, 2, . . .)
if vπα (x) = vα(x) (vπn,α(x) = vn,α(x)) for all x ∈ X. It is well-
known that for discounted MDPs with finite action sets there
exist nonrandomized Markov optimal policies for finite-horizon
problems and deterministic optimal policies for infinite horizon
problems; see [11, p. 154]. Therefore, (2.1) and (2.2) can be
rewritten as vn,α(x) := supϕ∈M v

ϕ
n,α(x) and vα(x) := supφ∈F v

φ
α (x)

respectively.
A policy π is called ϵ-optimal for ϵ ≥ 0 if vπα (x) ≥ vα(x)−ϵ for

all x ∈ X. A 0-optimal policy is optimal. The objective of this paper
is to estimate the complexity of the value iteration algorithm for
finding a deterministic ϵ-optimal policy for ϵ > 0. The rest of this
paper deals only with deterministic policies.

3. Main results

For a real-valued function v : X → R, let us define

T a
αv(x) := r(x, a) + α

∑
y∈X

p(y|x, a)v(y), x ∈ X, a ∈ A(x). (3.1)
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We shall use the notation Tφα v(x) := Tφ(x)α v(x) for a deterministic
policy φ. For v : X → R we also define the optimality operator
Tα,

Tαv(x) := max
a∈A(x)

T a
αv(x), x ∈ X. (3.2)

Every real-valued function v on X can be identified with a vector
v = (v(1), . . . , v(m)). Therefore, all real-valued functions on X
form the m-dimensional Euclidean space Rm.

For each n ∈ N and all v0 ∈ Rm, the expected total discounted
rewards vφn,α and vφα satisfy the equations

vφn,α = Tφα v
φ

n−1,α, vφα = Tφα v
φ
α ,

the value functions vn,α , vα satisfy the optimality equations

vn,α = Tαvn−1,α, vα = Tαvα,

and value iterations converge to the infinite-horizon expected
total rewards and optimal values

vφα := lim
n→∞

(
Tφα
)n
v0 = Tφα v

φ
α ,

vα := lim
n→∞

(Tα)nv0 = lim
n→∞

vn,α = Tαvα,
(3.3)

and a deterministic policy φ is optimal if and only if Tφα vα = Tαvα;
see, e.g., [3], [11, pp. 146–151]. Therefore, if we consider the
nonempty sets

Aα(x) = {a ∈ A(x) : vα(x) = T a
αvα(x)},

then a deterministic policy φ is optimal if and only if φ(x) ∈ Aα(x)
for all x ∈ X.

For a given ϵ > 0, the following value iteration algorithm
computes a deterministic ϵ-optimal policy. It uses a stopping
rule based on the value of the span sp(vn,α − vn−1,α). As men-
tioned in [11, p. 205], this algorithm generates the same number
of iterations as the relative value iteration algorithm originally
introduced to accelerate value iterations.

Algorithm 1 (Computing a Deterministic ϵ-optimal Policy by Value
Iterations).

ForgivenMDP, discountfactorα ∈ (0, 1), andconstantϵ > 0 :

1. selectavectoru := v0 ∈ Rmandaconstant

∆ >
1 − α

α
ϵ (e.g., choose∆ := ϵ/α);

2. while∆ >
1 − α

α
ϵcomputev = Tαu,∆ := sp(u − v)andset

u∗
:= u, u := vendwhile;

3. chooseadeterministicpolicyφsuchthat

v = Tφα u
∗
; thispolicyisϵ−optimal.

If α = 0, then a deterministic policy φ is optimal if and only
if r(x, φ(x)) = maxa∈A(x){r(x, a)}. As is well-known, Algorithm 1
converges within a finite number of iterations (e.g., this follows
from (3.3)) and returns an ϵ-optimal policy φ (e.g., this follows
from [11, Proposition 6.6.5]).

Following Puterman [11, Theorem 6.6.6], let us define

γ := max
x,y∈X

a∈A(x),b∈A(y)

[
1 −

∑
z∈X

min {p(z|x, a), p(z|y, b)}

]
. (3.4)

We notice that 0 ≤ γ ≤ 1. If γ = 0, then p(z|x, a) = p(z|y, b)
for all x, y, z ∈ X and a ∈ A(x), b ∈ A(y), which implies that
all deterministic policies have the same transition probabilities.
Therefore, a deterministic policy φ is optimal if and only if it
maximizes the one step reward at each state, that is, r(x, φ(x)) =

maxa∈A(x){r(x, a)}. If an MDP has deterministic transition prob-
abilities and there are two or more deterministic policies with
nonidentical transition matrices, then γ = 1.

Finding the value of γ requires computing the sum in (3.4) for
all couples {(x, a), (y, b)} of state–action pairs such that (x, a) ̸=

(y, b). The total number of such couples is k(k−1)/2 = O(k2). The
number of arithmetic operations in (3.4), which are additions, is
m for each couple. Therefore, the straightforward computation of
γ requires O(mk2) operations, which can be significantly larger
than the complexity to compute a deterministic ϵ-optimal policy,
which is the product of NVI(ϵ)

I (α) and NVI
O defined in (1.2). Puter-

man [11, Eq. (6.6.16)] also provides an upper bound γ ′
∈ [γ , 1],

where γ ′
:= 1 −

∑
z∈X minx∈X,a∈A(x) p(z|x, a), whose computation

requires O(mk) operations.
For α ∈ (0, 1), γ ∈ (0, 1], ϵ > 0, and sp(v1,α − v0) > 0, we

define

n∗(α) := max

⎧⎨⎩
⎡⎢⎢⎢
log (1−α)ϵγ

sp(v1,α−v0)

log(αγ )

⎤⎥⎥⎥ , 1
⎫⎬⎭ . (3.5)

In addition to α, the values of n∗(α) depend also on other param-
eters presented in (3.5). If all the parameters are fixed in (3.5),
except s := sp(v1,α − v0), then n∗(α) = 1 when s is close to 0. So,
we set n∗(α) = 1 when sp(v1,α − v0) = 0. If all the parameters
are fixed except γ , then the function n∗(α) has the property that
it has a right limit in γ at γ = 0. We set n∗(α) equal to this limit
if γ = 0. It is easy to see that n∗(α) ∈ {1, 2} if γ = 0. It is easy to
see that the functuion n∗(α) is non-decreasing in γ ∈ [0, 1].

Theorem 1. For α ∈ (0, 1) and ϵ > 0, Algorithm 1 finds a
deterministic ϵ-optimal policy within no more than n∗(α) iterations.
In addition, each iteration uses at most O(mk) operations.

Proof. As follows from (3.1) and (3.2), each iteration uses at
most O(mk) arithmetic operations. Let n be the actual number of
iterations. According to its steps 2 and 3, the algorithm returns
the deterministic policy φ, for which vn,α = Tαvn−1,α = Tφα vn−1,α ,
and

sp(Tαvn−1,α − vn−1,α) ≤
1 − α

α
ϵ.

In view of [11, Proposition 6.6.5, p. 201], this φ is ϵ-optimal.
By [11, Corollary 6.6.8, p. 204],

sp(vn,α − vn−1,α) ≤ (αγ )n−1 sp(v1,α − v0). (3.6)

Therefore, the minimal number n ∈ N satisfying

(αγ )n−1 sp(v1,α − v0) ≤
1 − α

α
ϵ (3.7)

leads to the definition of n∗(α) in and below (3.5). □

Given a discount factor α, formula (1.1) provides an upper
bound on the number of iterations for a policy iteration algorithm
for all discount factors smaller than or equal to α. This is true
because this bound is monotone increasing in the discount factor
α. Therefore, monotonicity of the bound in the discount factor is a
desired property. The following example shows that bound (3.5)
may be exact, and it may not be monotone. As shown in Post
and Ye [10], the version of policy iterations changing the policy
at each iteration at one state has strongly polynomial bounds for
deterministic MDPs. Example 1 also shows that this is not true
for Algorithm 1.

Example 1. This example shows that the bound in (3.5) can be
exact, and it may not be monotone in the discount factor. Let the
state space be X = {1, 2, 3}, and the action space be A = {b, c}.
Let A(1) = A, A(2) = A(3) = {b} be the sets of actions available



546 E.A. Feinberg and G. He / Operations Research Letters 48 (2020) 543–548

at states 1, 2, and 3 respectively. The transition probabilities are
given by p(3|1, b) = p(2|1, c) = p(2|2, b) = p(3|3, b) = 1. The
one-step rewards are r(1, b) = r(1, c) = 0, r(2, b) = 1, and
r(3, b) = −1; see Fig. 1.

We set v0(1) = 1, v0(2) = 2, v0(1) = −2. As discussed above,
γ = 1 for this MDP with deterministic transitions. Straightfor-
ward calculations imply that

vn,α =

(
αn

+

n∑
k=1

αk, αn
+

n∑
k=0

αk, −αn
−

n∑
k=0

αk

)
,

vn,α − vn−1,α =
(
2an − an−1, 2an − an−1, −2an + an−1) ,

sp(vn,α − vn−1,α) = 2αn−1
|2α − 1| = αn−1sp(v1,α − v0),

where the ith coordinates of the vectors correspond to the states
i = 1, 2, 3. The last displayed equality implies that inequality
(3.6) holds in the form of an equality for this example. Therefore,
the bound in (3.5) is also the actual number of iterations executed
by Algorithm 1 for this MDP, which is

n∗(α) = max

{⌈
log (1−α)ϵ

2|2α−1|

logα

⌉
, 1

}
for α ̸= 0.5 and ϵ > 0. If α = 0.5, then Algorithm 1 stops after
the first iteration. Let ϵ = 0.02. Then n∗(0.24) = 3, n∗(0.47) = 4,
and n∗(0.48) = 3, which shows that n∗(α) is not monotone in α.
It is easy to see that limα↗1 n∗(α) = ∞. □

Let us consider the vector v1 ∈ Rm defined in (1.4). The
following theorem presents a bound which is slightly worse than
the bound in Theorem 1, but it monotonically increases in the
discount factor α.

Theorem 2. Let α ∈ (0, 1). For fixed ϵ > 0, γ ∈ (0, 1], and v0,
v1 ∈ Rm such that sp(v1) + sp(v0) > 0, Algorithm 1 finds a
deterministic ϵ-optimal policy after a finite number of iterations
bounded above by

F (α) := max

{⌈
log (1−α)ϵγ

sp(v1)+(1+α)sp(v0)

log(αγ )

⌉
, 1

}
. (3.8)

Furthermore, the function F (α) defined in (3.8) for α ∈ (0, 1) has
the following properties for an arbitrary fixed parameter γ ∈ (0, 1]:

(a) lim
α↓0

F (α) = 1, lim
α↑1

F (α) = +∞;

(b) F (α) is non-decreasing in α.

Proof. By (3.1) and (3.2),

v1,α(x) = max
a∈A(x)

{
r(x, a) + α

∑
y∈X

p(y|x, a)v0(y)

}

≤ max
a∈A(x)

{
r(x, a) + α

∑
y∈X

p(y|x, a)max
z∈X

v0(z)

}
= max

a∈A(x)
r(x, a) + αmax

z∈X
v0(z).

Similarly, v1,α(x) ≥ maxa∈A(x) r(x, a) + αminz∈X v
0(z). Therefore,

sp(v1,α) = max
x∈X

v1,α(x) − min
x∈X

v1,α(x)

≤ max
x∈X

max
a∈A(x)

r(x, a) + αmax
z∈X

v0(z)

− min
x∈X

max
a∈A(x)

r(x, a) − αmin
z∈X

v0(z)

= sp(v1) + αsp(v0).

By the properties of seminorm provided in [11, p. 196],

sp(v1,α − v0) ≤ sp(v1,α) + sp(v0) ≤ sp(v1) + (1 + α)sp(v0), (3.9)

which together with αγ ∈ [0, 1) and definitions of F (α), n∗(α) in
(3.5), (3.8) implies F (α) ≥ n∗(α).

The formulae in (a) follow directly from (3.8). To prove (b),
we recall that R = sp(v1) and V = sp(v0); see (1.5) and (1.3). By
the assumption in the theorem, R + (1 + α)V > 0. The function
log (1−α)ϵγ

R+(1+α)V is decreasing in α ∈ (0, 1), and the function log(αγ )
is negative and increasing in α ∈ (0, 1). Thus, the function

f (α) :=
log (1−α)ϵγ

R+(1+α)V

log(αγ )

is increasing when log (1−α)ϵγ
R+(1+α)V < 0, which is α > ϵγ−R−V

ϵγ+V . This
implies that F (α) is increasing on the interval (b, 1), where b :=

max{ ϵγ−R−V
ϵγ+V , 0}. Thus, if ϵγ−R−V

ϵγ+V ≤ 0, then the theorem is proved.
Now let ϵγ−R−V

ϵγ+V > 0. For every α ∈ (0, ϵγ−R−V
ϵγ+V ] we have that

log (1−α)ϵγ
R+(1+α)V ≥ 0, which implies f (α) ≤ 0. In view of (3.8),

F (α) = max{⌈f (α)⌉ , 1} = 1 for all α ∈ (0, ϵγ−R−V
ϵγ+V ]. Therefore, we

conclude that the function F (α) is non-decreasing on (0, 1). □

As explained in the paragraph preceding Theorem 1, it may
be time-consuming to find the actual value of γ for an MDP. The
following corollary provides the bounds that do not use γ .

Corollary 1. Let α ∈ (0, 1). For a fixed ϵ > 0, if sp(v1)+sp(v0) > 0,
then

n∗(α) ≤ Nϵ(α) := max

⎧⎨⎩
⎡⎢⎢⎢
log (1−α)ϵ

sp(v1,α−v0)

logα

⎤⎥⎥⎥ , 1
⎫⎬⎭ , (3.10)

F (α) ≤ NVI(ϵ)
I (α) := max

{⌈
log (1−α)ϵ

sp(v1)+(1+α)sp(v0)

logα

⌉
, 1

}
, (3.11)

and Nϵ(α) ≤ NVI(ϵ)
I (α).

Proof. We recall that n∗(α) is defined as the smallest n ∈ N
satisfying (3.7). The right-hand side of (3.10) is the smallest n ∈ N
satisfying αn−1sp(v1,α − v0) ≤

1−α
α
ϵ. Since 0 ≤ αγ ≤ α, the

inequality in (3.10) holds. The inequality in (3.11) holds because
of the similar reasons, where F (α) and NVI(ϵ)

I (α) are the smallest
n ∈ N satisfying (αγ )n−1

[sp(v1) + (1 + α)sp(v0)] ≤
1−α
α
ϵ and

αn−1
[sp(v1) + (1 + α)sp(v0)] ≤

1−α
α
ϵ respectively. The inequality

Nϵ(α) ≤ NVI(ϵ)
I (α) follows from (3.9). □

Remark 1. If γ = 1 in (3.8), then NVI(ϵ)
I (α) = F (α). Therefore,

the function NVI(ϵ)
I also satisfies properties (a) and (b) stated in

Theorem 2.

We notice that, if the function F from (3.8) is minimized in
v0, then the smallest value is attained when sp(v0) = 0, that is,
v0 = const . The following corollary provides upper bounds for
v0 = const including v0 ≡ 0.

Corollary 2. Let α ∈ (0, 1), γ > 0 and let v0 = const. If sp(v1)
> 0, then Algorithm 1 finds a deterministic ϵ-optimal policy after a
finite number of iterations bounded above by

F∗(α) := max

{⌈
log (1−α)ϵγ

sp(v1)

log(αγ )

⌉
, 1

}
≤ max

{⌈
log (1−α)ϵ

sp(v1)

logα

⌉
, 1

}
.

Proof. This corollary follows from (3.11). □

Example 2. This example illustrates the monotonicity of the
upper bound F (α) for computing ϵ-optimal policies and non-
monotonicity of the number of calculations to find an optimal
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Fig. 1. MDP diagram for Example 1.

Fig. 2. MDP diagram for Example 2.

Fig. 3. Exact numbers of iterations for finding optimal policies and NVI(10−5)
I in Example 2. (Numbers of iterations are integers, and the graphs display step functions.

This figure is generated by the Matlab, and the graphs are automatically smoothened to clarify comparisons.)

policy by value iterations. The following MDP is taken from [4].
Let the state space be X = {1, 2, 3} and the action space be
A = {b, c}. Let A(1) = A, A(2) = A(3) = {b} be the sets of actions
available at states 1, 2, 3 respectively; see Fig. 2. The transition
probabilities are given by p(2|1, c) = p(3|1, b) = p(2|2, b) =

p(3|3, b) = 1. The one-step rewards are r(1, b) = r(2, b) =

0, r(3, b) = 1, and r(1, c) = 1 − exp (−M) where M > 0. We
set v0(x) = 0 for x ∈ X.

As shown in [4], for α = 0.5 the number of value iterations
required to find an optimal policy increases to infinity as M
increases to infinity. This shows that the value iteration algorithm
for computing the optimal policy is not strongly polynomial.
However, sp(v1) = 1 does not change with the increasing M in
this example. As follows from Corollary 2, for fixed ϵ > 0 and
α ∈ (0, α∗

] with α∗
∈ (0, 1), the number of required iterations

NVI(ϵ)
I for Algorithm 1 is uniformly bounded no matter how large

M is; see Fig. 3. □

Let N(α) be the exact number of iterations required for com-
puting an optimal policy by value iterations with discount factor
α. Lewis and Paul [9] provide examples of MDPs for which N(α)
could be unbounded for discount factor bounded away from 1.
In other words, there may exist α̃ ∈ (0, 1) and a sequence
of discount factors {αn}n=0,1,... such that limn→∞ αn = α̃ and
limn→∞ N(αn) = ∞. Here we provide a significantly simpler
example.

Example 3. This example shows that exact number of value
iterations to compute an optimal policy may be unbounded on
any neighborhood of some discount factor α̃ ∈ (0, 1). Consider
an MDP with the state space X = {1, 2, 3}, with the action

space A = {b, c}, and with the sets of actions A(1) = A and
A(2) = A(3) = {b} available at states 1, 2, and 3 respectively;
see Fig. 4. The transition probabilities are given by p(2|1, c) =

p(3|1, b) = p(2|2, b) = p(3|3, b) = 1. The one-step rewards are
r(1, c) = r(2, b) = 1, r(1, b) = 2, and r(3, b) = 0.

We set v0(x) = 0 for x ∈ X. There are only two deterministic
policies denoted by φ and ψ , which differ only at state 1 with
φ(1) = c and ψ(1) = b. Observe that vφα (x) = v

ψ
α (x) = vα(x) for

x = 2, 3. Hence, to compare φ and ψ , we only need to consider
the value function of initial state 1. In addition,

vφα (1) =

∞∑
k=0

αk
=

1
1 − α

, vψα (1) = 2,

which shows that ψ is optimal for α ∈ [0, 0.5], and φ is optimal
for α ∈ [0.5, 1). Now let us see which policy value iterations pick
at the nth iteration. Clearly vn,α(3) = 0 and vn,α(2) =

∑n−1
i=0 α

i for
all n ∈ N. If n = 1, 2, then vn,α(1) = 2, and value iterations
always select policy ψ . For n ≥ 3, let βn ∈ (0, 1) such that∑n−1

i=0 (βn)i = 2. Notice that 0.5 < βn < 1, βn strictly decreases
in n, and limn→∞ βn = 0.5. Thus, by (3.2) we have

vn,α(1) = max

{
1 + α

n−2∑
i=0

αi, 2 + 0

}

=

{
2, if α ∈ (0, βn];∑n−1

i=0 α
i, if α ∈ [βn, 1),

for n ≥ 3.

If α ∈ (0, 1), then at the nth value iteration policy φ is selected
if vn,α(1) =

∑n−1
i=0 α

i > 2. Therefore, the definition of βn implies
that for each α ∈ (βn+1, βn) value iterations select the optimal
policy φ for the first time at the (n + 1)th iteration. Hence
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Fig. 4. MDP diagram for Example 3.

N(αn) = n + 1 for αn :=
1
2 (βn+1 + βn) → 0.5 as n → ∞. Thus

limn→∞ N(αn) = ∞, and α̃ := limn→∞ αn = 0.5. □

Examples 2 and 3 represent the main difficulties of running
value iterations for computing optimal policies. Nevertheless, the
results of this paper show that these difficulties can be eas-
ily overcome by using value iterations for computing ϵ-optimal
policies.
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