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Abstract
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elastic scattering with light quarks, leptons, gluons and photons, including all possible operators of
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I. INTRODUCTION

In the SM the neutrinos interact with matter through exchanges of W and Z bosons.
In addition, in the presence of new physics, the neutrinos could interact with matter via
new mediators. Such Non-Standard neutrino Interactions (NSI) were contemplated already
40 years ago by L. Wolfenstein in the seminal paper on neutrino oscillations in matter [1].
Since then the NSI were studied extensively, but with a strong focus on neutrino oscillations,
see, e.g., [2-11]. The bounds from neutrino oscillations are limited in scope, since they are
sensitive only to a subset of possible NSI. The common NSI effective Lagrangian relevant

for neutrino oscillations contains only dimension 6 operators, see, e.g., [12],

o= T 3 ouPus) (<L P + el P ) (1)

fa,B8
The dimensionless coefficients 53;‘,5/;7 5£’2 parametrize the strength of the NSI relative to the
SM weak force, controlled by the Fermi constant, Gy ~ 1.167 x 10=> GeV 2. The indices o
and 8 run over the three neutrino flavours, and f over light charged fermions, f = e, u, d, s.

Eq. (1) does contain all possible dimension 6 NSI operators. Still, these are not all the
possible NSI. In these paper we list a complete basis of NSI operators up to and including
dimension 7. The additional dimension 5 and dimension 7 operators either do not contribute
to neutrino oscillations, because they lead to zero forward scattering matrix elements, or
give contributions that are additionally suppressed by neutrino masses (tensor operators
may be relevant for neutrino oscillations in polarized matter [6]). The dimension 5 and 7
NSI can be probed through neutrino inelastic scattering, and by precise measurements of
solar neutrino scattering rates.

A qualitatively new set of NSI probes is opening up through the coherent neutrino scat-
tering measurements. The first measurement of coherent neutrino scattering on nuclei was
achieved by the COHERENT collaboration roughly a year ago, Ref. [13]. This result, and
similar measurements in the future, now make it possible to probe a wide variety of NSI at
low momenta exchanges.

The aim of present manuscript is to perform a systematic study of such NSI. We assume
the NSI are described by an Effective Field Theory (EFT), i.e., that the new mediators are
heavier than about O(100 MeV). In the analysis we include operators up to and includ-

ing dimension 7, covering all possible chirality structures for neutrino currents. Our work



extends previous NSI analyses of coherent neutrino scattering, where a subset of EFT op-
erators were discussed [14-21]. For projections of bounds on NSI from neutrino scattering
in DUNE see [22, 23], while the potential of dark matter direct detection experiments for
probing NSI using solar neutrinos was discussed in [20, 24-35]. For the potential of super-
beam experiments to probe NSI, see [36]. For bounds on the neutrino dipole moment portal
to heavy right-handed neutrino, see [37].

The paper is organized as follows. In Section II we formulate the EFT for coherent elastic
neutrino-nucleus scattering (CEvNS?!) in the presence of NSI. The EFT valid at p ~ 2 GeV
in which neutrinos couple to light quarks, gluons and photons, is nonperturbatively matched
onto an EFT with nonrelativistic nucleons in Section IIT A, with the resulting CEvNS cross
sections given in Section III B. Section IV reviews bounds on NSI from neutrino oscillations,
and Section V the deep inelastic scattering (DIS) probes of NSI, while Section VI contains our
numerical analysis. In Section VII we explore the connection with physics above the scale
of electroweak symmetry breaking, and draw our conclusions in Section VIII. Appendix
A contains the definitions of nucleon form factors, Appendix B the predictions for the
differential rates for various NSI operators, and Appendix C the numerical predictions for

differential rates as functions of NSI Wilson coefficients.

II. OPERATOR BASIS FOR NSI

We are interested in the experiments where momenta exchanges are ¢ < O(100MeV),
and thus well below the electroweak scale. The interactions of neutrinos with matter, i.e.,
with quarks, gluons, photons, electrons and muons, are described by an effective Lagrangian,
obtained by integrating out the heavy degrees of freedom. These are the heavy SM particles:
t,b,c quarks, 7 lepton, W and Z bosons and the Higgs, as well as any heavy new physics
particles.

The interaction Lagrangian for v, — v transition is given by a sum of non-renormalizable

operators,

EVa‘”’ﬁ = Z éc(Ld) Q((Id) + h.c. + - 5 where CAC(Ld) == m . (2)
a,d=5,6,7

1 While not all of the NSI scatterings will be coherently enhanced we keep the, by now standard, CEvNS ter-

minology.



Here the C\” are dimensionless Wilson coefficients, while A can be identified, for O(1) cou-
plings, with the mass of the new physics mediators. We consider a complete basis of EFT
operators up to and including dimension seven. The sum in (2) runs over operator dimen-
sions, d = 5,6, 7, and operator labels, a, while in the notation we suppress the dependence
on neutrino flavors «a, . The renormalization scale is fixed to u = 2 GeV, unless specified
otherwise.

We first write down the full basis of EF'T operators assuming neutrinos are Dirac fermions,
and then comment below on what changes are needed, if neutrinos are Majorana. We use
four-component notation, following the conventions of Ref. [38]. There is one dimension-five

operator for each v, — v transition,?

5 € _
Qg ) = @(Vﬁgu PLV(X)F/,Wa (3>

where [, is the electromagnetic field strength tensor. The dimension-six operators are

Qf} = (D/B’YMPLVOL)(JC_VM.}C)? ng} = (Dﬁ’YuPLVa)(f’YM’75f) . (4)

The basis of dimension seven operators can be chosen such that there are four operators

coupling neutrinos to photon or gluon field strengths,

7 a v 7 o v

Qg ) = E(VBPLVQ)F“ Fl, g) = g(VBPLVa)F” B, (5)
7 Qs _ apv va 7 As o ap ya

o) = 127T(V5PLVa)G MG, V= g(”ﬁPLVa)G "G (6)

three types of operators with chirality-flipping quark currents,

Q") = my (7 PLva) (fF), Q) = my(7sPva) (firsf) (7)
O} = mp(730" Pova) (Fo,uf) . (8)

and four types of operators with additional derivatives on the neutrino currents,

O} = (730, Puva) (7). Q) = (750, Pova) (F1" 5 f) (9)
Q%),f = (V0™ Prva) (fwf) Qﬁ?,f = 0, (V30" PLvo) (s f) - (10)

2 We use the phase convention in which the QED covariant derivative is D, = (9, +ieQyA, )1, with Qy
the electric charge of ¥. For Majorana neutrinos, for « = /3, one needs to include in the definitions of the

operators an extra factor of 1/2.



Here wa is the QCD field strength tensor, é;w = %qugG”” its dual (and similarly for
QED, ﬁW = %5WPUFP"), and a = 1,...,8 the adjoint color indices. The fermion label, f =
u,d, s, e, u, denotes the light quarks, electrons or muons, while (Dz%ul/) = (id,v) — (ﬁ;_aul/).
We assume flavor conservation for charged fermions, while we do allow changes of neutrino
flavor.

For Dirac neutrinos the dimension 5 and dimension 7 operators, Eq. (3) and Eqgs. (5)-
(10), have a chirality flipping neutrino current. An incoming left-handed neutrino of flavor v,
is converted to a right-handed neutrino of flavor 4. In contrast, the dimension 6 operators,
Eq. (4), preserve the chirality of the incoming neutrino. For Dirac neutrinos there are
then two additional dimension 6 operators, Q1 e Q2 ., » obtained from (4) through P, —
Pr replacements. These operators cannot be well tested in neutrino experiments, since
the production of right-handed neutrinos through SM weak interactions is neutrino mass

(6)’

1q Q(ﬁ) further in our analysis.

suppressed. We therefore do not consider the operators Q

In the case of Majorana neutrinos the dimension 5 and dimension 7 operators, Eq. (3)
and Eqs. (5)-(8), violate lepton number by two units (note that we use the conventions of
Ref. [38] also for Majorana neutrinos). Furthermore, for a Majorana neutrino the operators
Qf’ n (3), Qg} in (8), and QlOf’ Q171)f in (10) vanish identically for & = /3, and thus only
mediate flavor changing transitions. Finally, for « = 8 we include in the definitions of the
operators an extra factor of 1/2 to compensate for the additional Wick contraction so that
our results for cross sections and the bounds on Wilson coefficients can be used without
change (cf. App A of Ref. [39] for explicit normalization of such operators, albeit for DM
interactions).

Note that in general the above operators are not Hermitian, and thus can have complex
Wilson coefficients, ¢, The exception are dimension 6 operators with @ = (3, in which
case the operators are Hermitian, and thus the corresponding Wilson coefficients are real
(for these operators the “h.c.” in Eq. (2) should be dropped).

Note that the SM neutrino interactions with quarks are also described by the effective
Lagrangian (2), though not all the operators are generated. The SM neutral currents (NC),
i.e., due to the tree level Z exchanges, and the SM charged currents (CC), due to the tree
level W exchanges, generate the operators Q1 + and Q2 » see Fig. 1. Integrating out the

Z and W bosons gives for the Wilson coefficient relevant for neutrino scattering on matter,
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Figure 1: Integrating out the Z and W bosons at tree level NC and CC (left) generates the effective

four-fermions interaction (right). The blob vertex indicates an operator insertion of Ql f and Q(6)

i.e., on light quarks and electrons,

5( Gr 8(4) 5( Gr

C% i lon = 5 (1 - s%v) Sap, C) st = iﬁéaﬂ (11)
~ GF A GF
Cilon = 5 (1= 4si)das = 2acdie) s O]y = =75 (ag = Wacdn) . (12)

where s, = sin®fyw ~ 0.2223 with 6y the weak mixing angle. The second terms in Eq.
(12) are due to CC, cf. Fig. 1. In the presence of NSI the above SM Wilson coefficients are
modified to

o)

_ 4(6) 5(6) Gr V)
12).f — Cl(%f‘SM + Cl@%f‘NSI’ with  C{f) (13)

1(2), f‘NSI \/5 Cap
where in the last equality we used the ¢ notation of the NSI Lagrangian, Eq. (1).

In the SM the dimension 5 and dimension 7 EFT operators, Eq. (3) and Egs. (5)-(10),
are suppressed by the neutrino masses and thus negligible for all practical purposes. In this

case an appreciable Wilson coefficient would immediately signal the existence of NSI.

ITI. NSI AND ELASTIC SCATTERING

This section describes the nuclear response to the elastic neutrino scattering on nucleus
A at low energies, vA — v A, due to either the SM and/or NST interactions. The calculation
is done in several steps. In Section IIT A we first match onto an EFT describing neutrino
interactions with non-relativistic protons and neutrons. The corresponding nuclear response
to elastic neutrino scattering (CEvNS ) is given in Section III B. For ease of comparison we
also give the naive dimensional analysis (NDA) estimates for CEvNS cross sections induced

by each of the EFT operators, while leaving the detailed numerical analysis for Section VI.
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A. Interactions of neutrinos with nonrelativistic nucleons

The neutrons and protons inside nuclei are non-relativistic and their interactions are
well described by a chiral EFT with nonrelativistic nucleons. The momentum exchange,
¢, in CEvNS scattering is small so that nuclei remain intact, while neutrons and protons
are non-relativistic throughout the scattering event. For instance, in the COHERENT
experiment [13], the typical momentum exchange is ¢ ~ 30 — 70 MeV. This is well below the
cut-off of chiral EFT, Acyegrr ~ O(1 GeV), so that the effective neutrino interactions in Eq.
(2) can be included in the chiral EFT framework. We work at leading order in the chiral
expansion for each of the EFT operators in (2), counting the light pseudoscalar masses to be
parametrically of the order m, ~ O(q). At leading chiral order the neutrino interacts only
with a single nucleon, while interactions of a neutrino with two nucleons are suppressed by
powers of ¢/Acherr. The exception to this rule are the dimension seven Rayleigh operators,
Eq. (5), which we discuss separately in Section IITC.

The effective Lagrangian describing neutrino interactions with non-relativistic nucleons
is given by

Lnn =Y d%(@)OR (+hee.), (14)
i,N

where N = n, p, while d counts the number of derivatives in the operator, which gives the
suppression of the operator in terms of soft momenta, O(¢?). The momentum exchanged,
" = (¢°,q), is given by,

q" =ky — Ky =pi —ph. (15)
with K12y, p1(2) the incoming(outgoing) nucleon and neutrino momenta, respectively, cf.
Fig. 2. The nuclear recoil energy, Er = ¢%/2my, can, for fixed neutrino energy, be any-
where between Eg i, = 0 for forward scattering, to a maximal value of Er pax > 2FE2 /ma
obtained in the case of neutrino back-scattering.

The matching of quark and gluon currents onto nonrelativistic nucleon currents is per-
formed using heavy baryon chiral perturbation (HBChPT) theory [40, 41], while neutrino
currents maintain their relativistic form. In this way one can explicitly show that the chi-
raly leading interactions of neutrinos are with a single nucleon current. We write the non-
relativistic operators in the Lagrangian (14) using the heavy nucleon formalism of HBChPT,

where the nucleon mass is effectively integrated out. To the order we are working, the heavy
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Figure 2: The kinematics of neutrino scattering on nucleons, v(p1)N (k1) — v(p2)N (k2).
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Figure 3: The chirally leading diagrams for the neutrino-nucleus scattering (the first and second
diagrams), and a representative diagram for two nucleon scattering (the third diagram). The
effective neutrino—nucleon and neutrino—meson interactions are denoted by a circle, the dashed

line denotes a pion, and the dots represent the remaining A — 2 nucleon lines.

nucleon field, N,, is given by

iy

w-0+2my — i€

N = e—imN”(l + )Nv , (16)

where v* is the nucleon four-velocity, which we may take to coincide with the lab frame,
v = (1,0,0,0), while 9 = 90" — v¥v-0 is the soft momentum. The momentum due to
the heavy nucleon mass, myv*, has been factored out from the definition of N, by the
exponential prefactor.

The nonrelativistic operators in (14) are, for proton and with d = 0,

O) = (757, Prve) (0" Pupy), OX) = (77, Prva) (5o Skp) (17)
OF) = (75 PLva) (Bupo) OF) = (730, Prva) (5.0" D) (18)

and a similar set of operators for neutrons with p — n. Here we have defined v/ = ~* — "¢,

o" = [v,~%] and the spin operator Sk = 57/ /2. There are two relevant operators with

9



a single derivative, d = 1,

1 _iq- Sy 1 _ _ p12- Sy
O( ) — (VﬁPLVa)< v pv) 5 Oé; = (V,BPLVQ) (pv pv) ) (19)
my
and one relevant d = 2 operator,
2 1q, P12y, _ v
OF) = L2 (5 PLy)(p,o! ) (20)
my

where pY, = p 4+ py. We work in the isospin limit in which the proton and neutron masses

are equal, so that my = m, = m,, ~ 939 MeV. Above, the nucleon operators with ¢/ are

related to the nucleon spin through
Nyo’ N, = 26" %0, (N, Sy sN,) (21)

where €¢#%? is the totally antisymmetric Levi-Civita tensor, with €"'?3 = 1. In (14) the
Hermitian conjugation is present in the sum for almost all the operators — the exception are
(95?;, (9 , for a = (3, in which case the two operators are already Hermitian. The coefficients

of these operators are thus real, while for the other operators they can be complex in general.

The nonrelativistic coefficients in (14) are (summations are over ¢ = u, d, s),

o Z FPe®) (22)
) =2 Z FiPes), (23)

= el Z (-@ Fq“’c + FYC) 2B, K () +€7)), 29)
o) = Z F%’c”) (25)
ol ch”) +> R, (26)

q

02p ZQm q/p +C0 ') (27)

e? my Fa/p0)
ZQq47T22 2 FyC, (28)

where E, = (p; + ps) - v/2 is the average energy of the neutrino before and after scattering.
In COHERENT experiment the incoming neutrinos have energy ~16-53 MeV, so that E, ~

O(q) £ O(my). The coefficients for neutrons are obtained through p — n replacement. The

10



form factors, F;, describe the hadronization of quark and gluon currents. They are functions
of ¢> = —¢® only, and their definitions are given in appendix A.

In order to derive the above expressions for the nonrelativistic coefficients in Eqgs. (22)-
(28) we used the non-relativistic reduction of the nucleon currents summarized in ap-
pendix A. We keep only the leading terms in the ¢/my expansion for each of the non-
standard neutrino interaction operators, Eqs. (3)-(10). The leading contributions start at
different orders in ¢ expansion, depending on the structure of the NSI operators. For in-
stance, the operators Qf), Q(GT;, Qg;, and Q(l?q, all match onto non-relativistic operators
with one derivative, and thus their contributions to the scattering amplitude start only at
O(q). All the other operators have contributions already at O(q°).

There are two specific exceptions, where these leading contributions naturally vanish.
For the QED dipole operator, Q@, the leading scattering on neutrons comes from operators
with two derivatives. This is despite the QgS) also contributing to the O(¢°) nonrelativistic
operator, see Eq. (24). The reason is that for the neutron }_, Qqqu/n(O) = 0, so that in
this case the contribution to (24) vanishes. Similarly, the absence of valence strange quarks
in nucleons gives F;/~(0) = 0, so that we need to keep the form factor F:/™(¢?) expanded
to quadratic order. Note as well, that the contributions from the axial current form factor
Fpi(q?) are proportional to the neutrino masses and thus neglected, even though Fp/(q¢?) is
1/m?2 enhanced due to the pion pole, corresponding to the middle diagram in Fig. 3.

In summary, in Egs. (22)-(28) most of the form factors are to be evaluated at ¢* — 0,
EN @) = BN O0) 4+ (29)

since this gives the chirally leading contribution, and we neglect the ¢*/m% suppressed
contributions, denoted above with the ellipsis. The three exceptions are the form factors
FIZ/ N Fg}/ N and Ff/ ™ where we keep the ¢ dependence. The chirally leading contributions
to F' ;i/ N and Fg/ Y have pion and 7 pole contributions (corresponding to the second diagram

in Fig. 3),

FIN () = g TN (30)
m2— g Pm 2 g2 b
q° N ¢’ N N
FY(¢%) = Ll iz = +b3 A+ (31)
while for the vector form factor of the neutron we need to go to O(¢?),
F™M () = M0+ F™M0)¢ + (32)

11



s/N

since for the strange quark £y’ (0) = 0. For simplicity we keep quadratic orders in F: f/ Ng?

also for ¢ = u,d.®> The input values of the nonperturbative parameters are given in [42].

B. Nuclear response to nonstandard neutrino interactions

The NSI coupling neutrinos to nonrelativistic nucleon currents, Eq. (14), are of two types
— the neutrinos either couple to the nucleon number operator, N,N,, or to the nuclear spin,

N,S%N,. In the notation of Ref. [43] the effective Lagrangian is
‘CNR: (I;ZQPLI/)lN—FQ(ﬂZ_;,PLV) §N+ 5 (33)

where the ellipsis denote terms with Prv, irrelevant for our case where the incoming flux is

due to left-handed neutrinos.* The two Dirac structures are,

lo = Cl Nﬁ +C3 z)va (34)
1 (0) 0) _pra 1q" (1) ip’f2 (1) v 1qaP12 4aP12,8 (2)
ly = T NV = ey ne” 70,005 — o CiLN — MCQ,N — Py, m%v CiL,N- (35)

Note that only the spatial three-vector components of I enter the leading order nonrelativis-
tic Lagrangian, (33). The EFT counting is such that all components of neutrino momenta

count as the neutrino energy, F,, while the nucleon currents are expanded in q/my, as

discussed in the previous subsection. The results for the cl(-f?[ coefficients, that are in general

functions of ¢%, are given in (22)-(28).
The cross sections for the neutrino—nucleus scattering is

doa dog  mp—
o, BoA _ ma 36
iy~ Mg T e (36)

where Fpg is the recoil energy of the nucleus and the averaged amplitude square is given

by [44],

M = 57, +1Z| 2J +1 3 (R;;’WT + REWI + RE W ) (37)

7,7'=0,1

3 Incidentally, in this way we also capture the first nonzero term in C3n ) from C; 55 for scattering on neutrons,
cf. Eq. (24). In that case the leading term in cg% from C( ) cancels because neutron has zero electric
charge. Note that the leading contribution from CA§5) for neutrino scattering on neutrons is described by
cﬁ” Eq. (28), while the contribution from cé?,)l is relatively O(q) suppressed.

A contribution to CEvNS from right-handed neutrinos in the incoming flux requires two insertions of NSI
interactions, one in the production and one in the scattering on nucleus, and is thus of second order in

small perturbations.

12



where .J4 is the spin of the target nucleus, the Wy, s sv(q) are the nuclear response functions

and ¢ = ¢/q. The sum is over the isospin, 7,7’ = 0, 1, with the kinematic factors

= Tr (Pop,I{ P lo.r). (38)
T =T (Ppp ETp i )i & (39)
T =Tr (Pop i p,le ) (67 — G @), (40)

where the summations over spatial indices, 7,57 = 1,2, 3, are implied. In the evaluation of
the kinematic factors we only keep the leading terms in Fr/E, and E,/my,q/my, which

gives (note that Er = ¢%/(2my))

w=(4E? — )0+ P (41)
-1 2 1 -
4 (1) (1)« Eq (1) (1)« q 2 (0) (0)= 2 (0) (0)«
o _4m?vc“ Ly + T, —16mi (4E; —q ) 1Cyp T 16E cy ey ],
+2¢ﬂ472(c(”c(0) — ) +2¢ﬁ(c(”c(°)7 OO (42)
my 1,747/ 4,717/ mamy 2,74, 4,772,
Euq_4 1 1)x* 1 1)*
+ dmam?, (cilcé}/ + 057302/ ),
1 * * (] *
g =7 (B2 + @) + (B2 — ) (4e)el) + L))
N
q_Q 2 0 0 2
Cam ) T (0 4 ) =
N

(4E2 —f)f( 1) (Dx . MN (1) 0 (0) (1)«
v /10 , — Qg —— , — , )
+ 4m?\7 C2,TCQ,T ZmA (62,764,7 04,7—02,7' )

Here 7,7/ = 0,1 denote the isospin so that,

1 1
d d d d d d
@=1(@rd),  d=1(m-d9). "

The non-relativistic coefficients describing neutrino interactions with protons and neutrons,

A and ¢ are listed in Eqs. (22)-(28).

zp zn’

Before proceeding, we give NDA estimates for the neutrino—nucleus scattering cross sec-

tion (36), switching on a single NSI Wilson coefficient qu, Egs. (3)-(10), at a time. Sub-
tracting the contribution induced by the SM neutrino interactions gives the correction to

the scattering cross section due to the presence of NSI,

AUNSI =0 —O0sM ™~ O(RQWQ). (45)

13



Note that Aongr can be negative, if NSI interfere with the SM. In the last equality in (45)
we show the parametric dependence on kinematical factors and nuclear response functions,
W,, taking Egr ~ O(E?/my). The subscript is any of « = M,Y, %", depending on the
Wilson coefficient CA'qu) .

In the long wavelength limit, ¢ — 0, the nuclear response functions, W,,, have the follow-

ing parametric sizes,

Wi ~O(A%), Wi ~0(1),  WE ~0(). (46)

77/ 77/

The response functions W{7 and W] encode the response of nucleus to the transverse
and longitudinal axial operators, and thus measure the spin content of the nucleus. The
values of ng’/z,, depend critically on the details of the nuclear wave function and can be
much smaller than (46) for nuclei with all protons and neutrons paired. The W}7' response
functions count, in the long wavelength limit, the number of nucleons inside nucleus. This
leads to coherent enhancement, also present for neutrino scattering through SM interaction
— the tree level Z exchange, Eq. (11). The Z boson couples most strongly to neutrons, so
that in the SM case the enhancement is O(N?), where N is the number of neutrons in the
nucleus. Depending on the flavor structure the NSI can be due to couplings to proton or
neutrons or both.

The NSI operators, Egs. (3)-(10), fall into three categories: the operators that interfere
with the SM contribution, the operators that do not interfere with the SM but still lead to
coherently enhanced scattering, and the operators that are not coherently enhanced. The
NDA estimates of the scattering cross sections for each of the three sets of operators are as
follows.

The operators that interfere with the SM contribution. These are the operators with
(6)

1,9

quark vector currents, Q;, in (4). The SM contribution to the corresponding Wilson coef-
ficient is given in Eq. (11). The NDA estimate of the NSI correction to the scattering cross

section is

2
E,
A2

where we used that the interference with the SM dominates over the purely NP contribution.

Aoxst ~ (C’fﬁq) ) SM

(0(6)

l,q)NSI

A% (47)

Coherently enhanced but no interference with the SM. The operators that lead to coher-

ently enhanced scattering, but do not interfere with the SM contribution, are the ones that

contribute to cé?])\, nonrelativistic coefficients. These are the dimension 5 magnetic dipole

14



operator, Qf’), Eq. (3), and the set of dimension 7 operators, the Q:(;) operator in (6) that
couples the neutrino current to gluons, the operator Qg; in (7) that couples neutrino and
quark scalar currents, and the operators Qs e Qw , in Egs. (9), (10) that involve derivatives
on the neutrino currents. The corresponding modification of the scattering cross section is

parametrically,

E

(e” + o.05)eh) ) + = (el + ¢ff, ) + 2 A c<5>] A2 (48)

Aonst ~

A A A An B,

Eg |:mN
Here we counted ¢ ~ O(E,), and only show the parametric dependence, neglecting O(1)
factors. All the Wilson coefficients are due to NP. Above we thus dropped the NSI subscripts
on the Wilson coefficients.

No coherent enhancement. The remaining operators do not receive coherent enhance-

ment. The correction to the neutrino scattering cross section is then parametrically given

by

Eg 2(6) (6) E;l EV 7) mym m 2
AUNSI ~ F (027Q)SM (027Q)NSI + — A6 C4 m qCG q E:j] C7 q . (49)

To shorten the expression we did not include addltlonal numerical suppressions present for

the case of strange quarks.

C. Scattering from Rayleigh operators

Finally, we include the estimates for the CEvNS induced by the Rayleigh operators, Qg)
and Qg) in (5). The CP even Rayleigh operator Qg) leads to a coherently enhanced cross
section, given by Eq. (36) with the following matrix element squared [45] (for earlier work

see [46, 47])

Z( - 1>Q0Fpp(q)
1 a2 0 0)x* T/ 2
(Yo | Y e ) |

7,7'=0,1
The first term is due to a contribution from two-body currents, calculated in Ref. [45],

(50)

where the two photon lines attach to two different protons in the nucleus, while the second
contribution is due to both photon lines attaching to the same proton. The two contributions

to the cross section scale as 0 o O(Z1Q%/m?%) and o < O(Z?), respectively (not showing
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the common factors and interference terms). For Qy/my ~ 0.1 the two contributions are
parametrically of the same size for light nuclei Z ~ O(10), while the first term dominates
for heavy nuclei, Z ~ O(50).

For the 2-proton form factor we use the phenomenological ansatz from Ref. [45],

_ e 1 732 _ 5 3 _
Fpp(q) =e v/ 1+ ch N 2_\/§q * <§ B Eq * CQ) QQ} ’ (51)

with ¢ = |¢]/Qo and Qy = (0.5 GeV) x (0.3 + 0.9A4Y/3)~! the inverse of the charge radius
of the target nucleus. In the numerics we set the unknown coefficients to c; o = 1, while
varying them in the range ¢; 2 € [—1, 1] does not change results appreciably.

The single nucleon matrix elements of the di-photon operators are not well known. We

parametrize them as

e _

(Ny|F,, F*|N,) = Eag)]vaNv\Nvawv), (52)
nIng - « (1) T iq-S

(Nul Fyu F™ [N,y = —ap) (N | N S2XN, [N, (53)

with ag?])v(qQ) and a&)\,(QQ) the form factors. The NDA estimates for their values are, for
¢*~0

ag; ~ O(1), ag}) ~ 0, and a%)p ~ a%)n ~ O(1). (54)

With these definitions the contributions to neutrino scattering due to two photon exchanges

with a single nucleon are obtained by setting the coefficient of the Oé?])\, operator to C:(;(,)z)v =

ag)]\,rrz]\;oz2 /(4872) for contributions from the Q" operator, while for the CP-odd Rayleigh

operator, Qg), one can set the coefficient of the Oﬁv non-relativistic operator to cglj)v =

Q%)N()éz/(BQﬂ'z).

The CP odd Rayleigh operator leads to spin-dependent interactions, both from the single
nucleon matrix element, (53), as well as from the 2 nucleon contributions. The two nucleon
contributions arise from one photon interacting with the proton charge, and the second
photon with the magnetic moment of the other nucleon, be it proton or neutron. The
single nucleon and two nucleon contributions to the cross section are parametrically o o
O((q/mp)?) and o < O((ZqQo/mA)?) (not showing the common factors and interference
terms). The two-body current contribution is thus expected to dominate for heavy nuclei,
Z ~ 50, while for light nuclei, Z ~ 10 the single current contributions are important. The

formalism for the two-body current contribution was worked out in [45], however, without
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deriving estimates for the resulting form factor. In the phenomenological analysis we thus

0

PN coefficient,

conservatively ignore the 2-nucleon term and take as nonzero only the a
using the NDA estimate in (54). While this estimate for the cross section does not capture
the largest contribution for heavy nuclei, where the NDA suggest the cross section to be
~ (ZQo/mn)* ~ 20 times bigger for Z ~ 50, the resulting error on bounds on A will be
only ~ (ZQo/my)*?3 ~ 3, which suffices in view of other uncertainties in our estimates for

this particular operator.

IV. NSI AND NEUTRINO OSCILLATIONS IN MATTER

Neutrino oscillation data bound a subset of NSI — the ones that result in a nonzero
forward scattering amplitude. The forward scattering of neutrinos on electrons and nuclei
gives rise to matter effects in neutrino oscillations, described by an effective potential [48].
In this section we review the simplest case — electrically neutral unpolarized medium at rest.
For extension to a polarized medium see [6], while for extensions to sterile neutrinos see,
e.g., [49-51].

In the SM the effective potential receives contributions from both CC and NC. The
NC contribution is neutrino flavor universal. It induces an overall phase shift in neutrino
oscillation that is not observable (though it needs to be considered for oscillations into sterile
neutrinos). The CC contributes to forward scattering of electron neutrinos on electrons.
Electron neutrino scattering on an isotropic, homogeneous gas of unpolarized electrons is

therefore described by the following effective Hamiltonian, see, e.g., [48],

+5CC

Heff ’SM = \/éGFne (ﬂeLVOVeL)y (55)

where n, is the number density of electrons. The resulting potential energy,

(&, — hip))
2b,

leads to a change in the oscillation frequency for electron neutrinos. Here p is the neutrino

VI = (valp, h)| / PaHey [Valp, h)) = V2Gpn, S, (56)
1%

momentum, « its flavor and h its helicity. The integral is performed over a finite volume V'
which is also included in the normalization of the states, |va(p, h)) = (2E,V)~Y2aM1(p)|0),
and thus drops out in the final result. Since weak interactions couple to left-handed fields,

the h = —1 ultrarelativistic neutrinos obtain the effective potential energy
Vég) = \/éGFneéaea (57)
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while the positive helicity, h = +1, neutrinos are exposed to a negligible effective potential,
VS ~ Om2/E).

The above SM results are readily extended to NSI that couple neutrinos to the charged
fermion vector current, i.e., the operators Qf])c in Eq. (4). These lead to nonzero forward
scattering amplitudes and thus induce an effective potential (the dependence on neutrino

flavors is implicit)

(=) ~ 5(6) 5(6) (6)
Ver ‘NSI ~ —Cle ‘NSIne B (Clvu‘NSI T 2Cl d‘NSI) - ( |NSI + Cl d‘NSI) Tp- (58)

Here n, = n. is the number density of protons, equal to the number density of electrons in
an electrically neutral medium, and n,, the number density of neutrons. The global fits to
neutrino oscillation data then lead to severe bounds on the parameters €,5 (see Section VI).

The other NSI operators are poorly constrained from neutrino oscillations. This is most
easily seen by analyzing the effects of NSI using the nonrelativistic basis, Eqgs. (17)-(20).
) 0% oW o) 0 vanish for un-

The matrix elements of spin-dependent operators, oy 1 O1p0 050, 0145

2,p)
polarized medium, and thus are not bounded by global fits of neutrino oscillations. The
two sets of operators that have non-vanishing forward scattering elements are the operators
Og?])\, and O:())?])V. The Os)])v leads to the effective potential in (58), while the operator Oé?])\,

results in an effective Hamiltonian
Y (0 _
Hest O —C3 NN (VaRrV5L), (59)

where ny is the nucleon number density. This gives the effective potential that is suppressed
by the neutrino mass matrix, Vég) o~ —cé?])\,n nvmy(my)ag, and thus gives only extremely weak

constraints on NSI.

V. NSI AND DEEP INELASTIC SCATTERING

For completeness we include the bounds on NSI that arise from deep inelastic neutrino—
nucleon scattering (DIS). While the DIS data were obtained at much higher momenta ex-
changes, ¢ ~ O(10 GeV), the constraints are severe enough that the EFT description may
still be valid at least in parts of the parameter space. Throughout this section we thus as-
sume that the EFT Lagrangian in Eq. (2) is valid also for DIS. We comment on the validity

of this assumption in Section VI where we confront predictions with data.
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Figure 4: Kinematics in neutrino Deep Inelastic Scattering (DIS).

In neutrino—nucleus DIS the typical momentum exchange, ¢, is much larger than the
inverse radius of the nucleus. The total cross section is therefore an incoherent sum of

contributions from neutrino scattering on protons and neutrons inside the nucleus,
o, =Zoy,+ (A—Z)oy,, (60)

where

1
OuN = / dx E Gu;i(x) fin(x) +-- -, N =n,p. (61)
0 i

The ellipses indicate power suppressed corrections to the factorization [52]. The sum runs
over the partons, j = u,d,s,c,g,7, with f;n(x) the corresponding parton distribution
functions (PDF) for the nucleon N.

The kinematics of the process are shown in Fig. 4, with p;(p3) the incoming neutrino
(outgoing lepton) momentum, py the incoming nucleon momentum a fraction x of which
is carried by the parton, and we sum over the hadronic final state, X. We work in the
limit of large neutrino energy, E,, and large momentum exchanged, ¢?, i.e., E, > my and
q® > m3;. The usual DIS variables, the partonic center of mass energy squared, §, and the

fraction, y, of incident neutrino energy transferred to the hadronic system, are,

§=(p+ap)® ~2omyE,, y=1-—2Y (62)

where E , is the out-going neutrino (lepton) energy.
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The double-differential neutrino—nucleon DIS cross section is,

dUVN MV]2
Z' ), (63)

167xs

where § = xs. We neglect the intrinsic charm content of the proton, take the off-diagonal
CKM matrix elements to zero, while V4, Ves — 1. In vq and vq (pq and vq) scattering, the
total spin of the initial state is J = 0(1), so that the cross section is y independent (has
(1 —y)? angular dependence).

We will be interested in neutrino DIS measurements by the CHARM collaboration [53],
which used the target material that is to a very good approximation isoscalar, i.e., composed
of equal number of protons and neutrons. The average neutrino—nucleon scattering cross
section for an isoscalar target is given by,

d2 14 1 d2 U d2 vn
TN _ (S0 B (64)
dxdy dxdy  dxdy

For an isoscalar target the SM predictions for the CC neutrino-nucleon scattering, vN —

¢~ X and N — (T X, are,

2,;(CO) 2myE, _ - 2
ddxudf; - G . E x{u(a;>+d(a:)+2s(x)+ [a(a) +d(z)] (1 - y) } (65)
2650 Sy B, (o 2
o w Crm By L) + () +25(2) + u(e) +d@)] (1 9}, (66)

where we assumed isospin symmetry,

u(r) = fupp(®) = fam(x),  d(x) = fapp(x) = fum(x),  8(2) = fopp(x) = fon(). (67)

and similarly for antiquarks, g(z) = fz/p(). In (65), (66) we integrated out the W, and
traded the my, dependence for the Fermi constant, Gp.

The NC neutrino—nucleon scattering is, in the SM, given by,

dQU,(}?VC) myE, A2 A2 7 2
dady 7 x{ (CL”‘ + CL@) Z (g(2) + (=) (1 = 9)")
q=u,d

+(Chu+ Ca) D (ale) (1= y)” + (@) (68)

q=u,d

where

Cny= 5 (E9+65).  Cuy=— (€9 -0, (69)



with the Wilson coefficients given in (11). The antineutrino cross section is obtained by
exchanging L < R.

The NSI, Eq. (2), only affect the NC scattering cross section in (68). The matrix elements
squared, Eq. (63), come from a sum of the EFT operators,

STIMDF+ Y 2Re (M M) (70)
id

itk,d,d'

2
d
Myl =[S M| =
id

where ./\/l - is the matrix element of the operator Q ) for neutrino scattering on parton j.
The dlmensmn six operators only interfere among themselves, since the spin average of the

axial-vector Dirac structure and the scalar or tensor currents vanishes. This gives,

2 5 56)\ 2 56)) 2 5(6) 5(6)
(MO = 1652 {(cig) (4 (1= )% + (C5) (L4 (1= )®) + 29(2 = y)ReCHEL" ||
(71)
where the Wilson coefficients contain both the SM contributions and the NSI correction, cf.

eq. (13). The matrix elements squared for dimension 5 and dimension 7 operators are

M?,LP = 5|50 . (72)
ML ) > = 16 \?6(7))\2%37 (73)
M = 16| 5250 | 6707, (74)
MG awal” = 8m2 |C) | 507, (75)
M7 = 642 |E] 8 (21— ) 42— 7). (76)
M) el = 64 /€0 Sty = 1), (77)
’M%)(n),q;uq = 32 ‘610(11),(1 §3y(y - 1)- (78)
The remaining non-zero interference terms are,
Re (M, MU, ) = 168%(y — 2)m2Re (CTCT) (79)
Re (Még),q;qu%)(jl),q;yq> = 64§3y(y —1)Re (68(9) ch)n) q> (80)

In order to calculate DIS cross sections, we use the ManeParse package [54] to get the quarks

and gluon PDFs (we use the CT10 NLO pdf set), while we take the photon PDF from [55].
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VI. CONSTRAINTS ON NEW NEUTRINO INTERACTIONS

Utilizing the results from Sections III-V we now derive the bounds on the NSI Wilson
coefficients, Eq. (2), from neutrino oscillations, CEvNS [13], DIS [56] and from searches for
neutrino dipole moment [57]. We also explore the reach of future CEvNS measurements in
reactor experiments [58]. We restrict the analysis to interactions of v, and v, since these

are the NSI probed in CEvNS . The results are summarized in Figs. 6 and 7.

A. Constraints on NSI from oscillations

The oscillation data constrain the NSI contributions to the operators Qf}, Eq. (4). The
global fits to oscillation data allow at 95% C.L. [9] (in the notation of Eq. (13))

—0.182 <% < 0.264, —0.120 <&y, < 0.120, (81)
—0.008 <c2 < 0.618, —0.111 <e}y < 0.402, (82)
—0.012 <% < 0.361, —0.103 <&l < 0.361 . (83)

There are also bounds on operators that change neutrino flavor, or involve v, (for details
see Ref. [9]). The oscillations do not constrain NSI couplings to strange quarks, because the

corresponding forward scattering matrix elements vanish.
!

The above ranges on €,

}; imply the following lower bounds on the NP scale, for f = e(u, d),
setting C{} = 1 in Eq. (2),

ve v s A > 571(373, 488) GeV (84)
V.= vyt A > 847 (463, 488) GeV . (85)

B. Constraints on NSI from CEvNS

Roughly a year ago the COHERENT collaboration measured for the first time the cross
section for coherent neutrino-nucleus scattering [13] (see also data release in [59]). The
target was 14.6 kg of CsI[Nal, while stopped pion decays, 7+ — v, (0™ — e v.1,), acted

as a source of neutrinos. The resulting time integrated neutrino fluxes per energy interval,

o0, (B,) = N1 2L (1 _ 5) , (36)

3
m, 2 my

¢y,, are well known [19],
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61E2 (3 B,
05, (Ey) = N m3 (_ - _> ’ (87)

ao\4d omy
2 .2
6 (B) = N3 (B, = ") 9

Here m, (m,,) is the charged pion (muon) mass, E, the energy of the neutrino, and N =
rNpor/(4mL?) the time integrated neutrino flux, for each flavor, reaching the COHERENT
detector. It depends on Npop = 1.73 x 10?3, the delivered number of protons on target
(POT), on r = 0.08, the number of neutrinos per flavor produced for each POT, and on
L = 19.3m, the distance between the neutrino source and the detector.

The expected number of CEvNS events for each neutrino flavor, a = v,, v, v, is

= / " 48, 6u(B,) AE) (89)

dE
N= n,p me R

dER

where Eg is the nuclear recoil energy, E, the energy of the incoming neutrino, and ny the
number of nucleons of type N = n, p, in the detector. The lower boundary in the integration
over E, is given by E, yin ~ \/]\/[ATR/Q, the minimal energy neutrinos need to have in order
to induce nuclear recoil energy E'r. The upper integration boundary, £, nax, is given by the
highest energy in the incoming neutrino flux. The v, and 7, are produced in muon decay
and thus have the maximal energy E, nax = m,/2, while v, is produced in pion decay, and
has F, max ~ 30 MeV. The maximal nuclear recoil energy deposited by v. and 7, in the
detector is thus Eg max >~ 47 keV, while for v, it is Er max =~ 15 keV. The differential elastic
neutrino—nucleus scattering cross section, doa/dFEg, is given in Eq. (36).

The prediction for the total number of CEvNS events expected in the COHERENT
experiment is obtained by integrating Eq. (89) over Er € [0,47] keV, convoluted with the
signal acceptance fraction for COHERENT, given in Fig. S9 of [13] (which has an onset
at about 4.25 keV). The experimentally allowed difference from the SM prediction then
translates into bounds on the Wilson coefficients for the NSI operators, c}(f’), Eq. (2), using
Egs. (37), (41)-(44), and (22)-(28).

In the numerical analysis we take only a single NSI Wilson coefficient at a time to be
nonzero (apart from the SM contributions, Eq. (11)). For simplicity we assume that the NSI

affect either only v, or only v,. To derive the 90 % C.L. allowed ranges for C\? we follow
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opers. F; OF, Oa opers. F; OF, Oa
w,d/N

655)7652/&éé,?a/d;lo,u/d £y 0) 0% 0.28 é§7) FY () 2% 0.28
55,6375§73;1o,8 FN0) 50% 057 ctn FX¥(g) 20%  0.39

2 O e AN 3-7% 034 D BY0) 2% 034
G5 Conn,s FNo)  16% 037 N FY(0) 4% 0.34
ééz/ J FUN(0) 28 —31% 0.40 ¢ BN 2% 27

e FSN0)  18% 033 Cf) el 4—11% 0.35

Table I: Form factors uncertainties, or,, and the resulting relative theoretical uncertainties on
CEvNS cross sections, o, for different Wilson coefficients ééd) (see the main text). Unless specified,
the uncertainty is the same for all quark flavors and for both nucleons. For F%/év (0) the quark

masses are fixed to m, = 2.3 MeV, my = 4.8 MeV, mys = 95 MeV.

the COHERENT collaboration [13, 60] and define,

N 2
X <é§d>,a) - (Nm _ Ntzgc§d>)(1 ’ a)> + (;)2 (90)
stat «

where Npeas = 142 is the number of detected CEvNS events, o4, = 31 its statistical

uncertainty, and Ny ((fc(ld)) the number of CErNS events when Wilson coefficent ééd) is taken
to be nonzero. The theoretical uncertainties are taken into account by marginalizing x? over
the parameter a. The relative theory error, o,, on the prediction for Nygp ((féd)), depends
on which Wilson coefficent é,gd) we consider, and is a quadratic sum of errors from: the
uncertainty on signal acceptance (£5%), neutrino flux (£10%), quenching factor (+25%),
from nuclear response functions W; (estimated conservatively, both for scattering on I and
Cs, as £10% for Wy, which multiplies the F{I/N7 FY, Fg/N form factors, and +20% for Wy s
response functions, multiplying the other form factors), and from the nucleon form factors
(oF, listed in Table I). The central values for the form factors and the uncertainties are taken
from [42]. The resulting o, are shown in Table I for each of the Wilson coefficients. For the
dipole, CAP, in general two NR operators contribute, (9:(,,?])\, and Oﬁ)\, However, for heavy
elements the latter is negligible, giving the estimate for o, in Table I. The central values
for W; are taken from [44]. Our estimates for the theoretical errors on W; are educated
guesses. While this suffices at present, since these are subleading to the other uncertainties,

a dedicated study would be desired in the future.

24



0.5

uVv
ee

e

=]

-0.5F

-0.5 0.0 0.5

av
ee

Figure 5: The regions allowed at 90% C.L. for electron neutrino NSI with vector up and down
quark currents (1). The black, orange and red regions correspond to CHARM, COHERENT and

expected Nal 2T constraints, respectively, see text for details.

Our prediction for the SM rate in the COHERENT detector is Ny, ((i(ld)|sM) = 188 +
53 events. Comparison of this prediction with the COHERENT measurement gives the
following 90% C.L. bounds on the NSI due to dimension 6 operators,

—0.11 <% <049, —0.10 < e® < 0.44, (91)
—0.06 < e}, < 0.12, —0.06 < &), < 0.11. (92)

This is comparable to the sensitivity obtained in the global fits to the oscillation data, cf.
Egs. (82), (83). The limits on €4y, %% are corelated, see Fig. 5 for the case of v,. For NSI
couplings to the strange quark we obtain a relatively weak bound, |52£W| < 103, because the
sensitivity comes only from the O(¢?) term in the expansion of F} / N(@?), see Eq. (32). The

qA

axial couplings €%/

and 5%‘ are also poorly constrained, since they lead to spin-dependent
interactions that are not coherently enhanced.

We collect the 90% C.L. bounds on the NSI coefficients in Table II for v, — vx transitions
and in Table III for v, — vx transitions. The bounds on ol = /A4 are converted

to lower bounds on the NP scale, A, setting the dimensionless Wilson coefficients to cW =

1. The two tables also contain bounds from deep inelastic scattering, Section VIC, and
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the expected reach from the proposed 2 ton Nal experiment [61], cf. Table IV. For easier
comparison the bounds are also illustrated with barcharts in Fig. 6 for dimension 5 and
dimension 7 operators, and in Fig. 7 for dimension 6 operators. For dimension 6 operators
with vector couplings to quarks there are two possibilities. For flavor diagonal transitions,
v, — v, and v, — 1., the NSI contributions interfere with the SM. The resulting bounds
are shown in Fig. 7 (left). If the transition is not flavor diagonal, the bounds are weaker,
shown in the right panels in Fig. 7. For all the other operators the final neutrino, vy, can
be of any neutrino flavor, including sterile neutrinos.

The bound on CA’Q is controlled by the s-quark tensor form factor F;/év , which is not
well known. At present it is even consistent with zero, which implies that there is no
reliable bound on the éé? In Tables II, IIT we use the central value F;{év/ms =32-1074
from [42], with or, = 0, to gauge the rough potential reach of COHERENT, once lattice
determinations of F;/év become precise enough. We use a similar approach for the Rayleigh
operators, CA'YQ) where we (i) use the phenomenological form factor for two body currents for
CA'Y), Eq. (51), (ii) neglect the two-body current contributions for CA'S), and (iii) and use
the NDA estimates (54) for the non perturbative single nucleon matrix elements, and do
not assign any associated errors to these approximations. The bounds shown are thus just
giving a rough potential reach of CEvNS experiments once theoretical errors will be under
control (with probably a better guesstimate for C’fﬂ than C{").

Tables II, III show in the case of dimension 6 operators the bounds for flavor non-diagonal
processes v, — vx with X # e, and v, — vx with X # pu, respectively. For flavor diagonal
transitions, v, — v, or v, — v, the bounds on NSI from the COHERENT measurement

are instead

cfi{(d,s): A > 417(440,1.1) GeV (1), A >443(458,1.7) GeV (1), (93)
c;ﬁg(d@): A >229(11.7,4.5) GeV (1), A >23.1(11.9,4.6) GeV  (v,), (94)

The relative sizes of bounds in Tables II, III are easy to understand using approximate

. . 5 6 7 7
scalings in Eqs. (47)-(49). The O(A?) enhancements of operators Qg ), Qg’;, Q:(,) ), Qé’;
and Qg;, Q%{q, Eq. (48), translate into more stringent bounds for A. The bounds are
significantly weaker for the remaining non-enhanced operators. The bounds on operators
with strange quarks are also weaker, since the corresponding form factors are smaller.

The bounds on NSI from CEvNS experiments are set to improve in the future with a
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Lower bounds on A in GeV, v, — vx transitions

¢\  COHERENT CHARM Nal2T (!  COHERENT CHARM Nal 2T
¢ 33.10° 45 83-108 () 13 (%Mf Y75 29 <23mM>1 ’
¢ 603 349 993 ¢ 1. (%)1/3 87 24 (48N v
¢ 632 349 1.04-10% ¢ 0.33-(%)1/3 19 0.75(%)1/3
¢t 1.1 239 48 1) 64 75 83.4

o) 19.1 349 182 C) 59 68 86.2

¢y 9.8 349 1464 C7) 1.2 56 7.7

s 45 239 154 7 2.2 75 5.3

o 1.7 5.6 22 (1) 1.4 68 3.7

st 0.01 6.4 0.02 ¢ 0.74 56 1.8

¢ 21 31 273 Cly), 57 67 83.4

¢t 0.9 36 16 €, 59 61 86.2

csn 11 3.8 17.3  Cp), 2.8 50 7.7

¢in) 14.4 45 223 (7, 2.2 67 5.3

¢sn 16.4 9.9 237 C, 1.4 61 3.7

cn 1.3 3.8 21 C7, 0.74 50 1.8

s 1.7 4.5 27 — — —

) 1.3 9.9 2.1 — — — —

Table II: The 90 % C.L. lower bounds on A from COHERENT, CHARM, and Nal 2T for v, — vy,
(X # e, for X = e see main text) NSI Wilson coefficients, Ca , Eq. (2), setting céd) =1, and
assuming only one such NSI Wilson coefficient is nonzero. For C’é S) (Cp) we use only the central

value of the form factor (NDA estimates) so the bounds are merely indicative, see main text for

details.

number of new detectors either already taking data or being planned. The COHERENT
collaboration is operating a 10kg Ge detector, a 22kg single-phase liquid Ar detector, and a
185 kg Nal[T1] scintillating crystal detector [61]. The liquid Ar may increase to 1ton, and
Nal[T1] to 2 tons, in the future [62], cf. Table IV. To take full advantage of these experimental
progress an increased precision in the predictions of nuclear response functions and nuclear
form factors will be called for.

In Tables IT and III we show the expected improvements in the sensitivity to NSI due

27



Lower bounds on A in GeV, v, — vx transitions

¢\  COHERENT CHARM Nal2T (!  COHERENT CHARM Nal 2T
¢ 48108 471 12100 A7 14 (%)1 T ol61 34 (%)1 ’
¢ 726 826 12:10° ¢ 12 (4 %W)w 183 2.7 (%)1/3
¢ 767 607 13-10° C0F 04 (957{;{6")1/ 377 0.9 (%)1/3
¢t 1.74 463 5.8 g 64.7 160.6 94.5

o) 23.1 826 943 () 67.5 143.4 97.7

¢y 11.9 697 555 CLl) 3.2 109.1 8.7

s 4.6 463 185 Y7 2.4 160.6 6

o 1.9 12.3 25 € 1.6 143.4 4.2

st 0.01 12.5 0.02 57 0.8 109.1 2

ésn 23.7 67.9 312 ¢, 64.7 143.1 94.5

¢t 1 7.8 18 C, 67.5 127.7 97.7

csn 12.6 8.2 9.7 C), 3.2 97.2 8.7

¢sn) 15.6 9.4 255  Ci7, 2.4 143.1 6

¢sn 19 19.3 271 €, 1.6 127.7 4.2

cn 1.5 8.2 24 C7, 0.8 97.2 2

s 1.9 9.4 3.1 — — — —

) 1.5 19.3 2.4 — — — —

Table III: The 90 % C.L. lower bounds on A from COHERENT, CHARM and Nal 2T for v, — vx
(X # p, for X = p see main text) NSI Wilson coefficients, (féd), Eq. (2), setting CC(Ld) =1, and
assuming only one such NSI Wilson coefficient is nonzero. For C’gs) (CAYQ)) we use only the central

value of the form factor (NDA estimates) so the bounds are merely indicative, see main text for

details.

to the 2 ton Nal detector proposed by the COHERENT Collaboration [61], with the same
neutrino source but with a baseline of 28m and a lower energy threshold of ~ 13 keV.
Furthermore, in the projections we assume that the total theoretical uncertainty is reduced
10-fold compared to the present ones, quoted in Table I. This would give the projected total
theoretical uncertainties op, ~ 3 — 5%. This will require more precise determinations of the
neutrino flux, which is already planned, as well as a much better knowledge of the quenching

factors, and major advances in the purely theoretical inputs — the form factors and nuclear
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Figure 6: Limits from COHERENT, CHARM, Borexino, and projected limits from a Nal 2T
experiment on the scale A of dimension 5 and dimension 7 NSI operators for electron neutrinos

(top) and muon neutrinos (bottom).

response functions entering the SM prediction. While such a decrease of uncertainties may
be aggressive, they do give us a useful gauge of the potential reach of CEvNS experiments.

In Nal detector the neutrino recoils on both the iodine and sodium nuclei. For the
SM neutrino interactions the scattering on iodine completely dominates. The coherently

enhanced cross section is ~ 40 times larger for neutrino scattering on iodine as it is for
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Figure 7: Limits from COHERENT, CHARM, neutrino oscillations and projected limits from a
Nal 2T experiment on the scale A of dimension 6 operators for electron neutrinos (top) and muon
neutrinos (bottom). The two panels on the left correspond to lepton flavor conserving operators

(v; = 14), the ones on the right to lepton flavor violating operators (v; — v}, i # j).

sodium. This is the case also for coherently enhanced NSI interactions, where scattering
on iodine similarly dominates. Spin-dependent interactions, on the other hand, can be
comparable, depending on the operator. We find that scattering on iodine dominates except

for the operators Q2 e Q and Qé 3, for which the main contribution to the scattering rate
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Tin Baseline (m) Target Mass (kg) Source

Nal 2T COH[61] 13 keV 28 Nal 2000 SPD
Ge COHJ[61] 5 keV 22 Ge 10 SPD
LAr COH [61] 20 keV 29 Ar 22 SPD
RED100 [58] 500 eV 19 Xe 100 3 GW reactor
MINER [63] 10 eV 1 2Ge+28Si 30 1 MW reactor
CONNIE [64] 28 eV 30 Si 1 3.8 GW reactor
RICOCHET [65] 50-100 eV <10 Ge/Zn 10 8.54 GW reactor
NU-CLEUS [66] 20 eV <10 CaWO0y4,Al03 0.001 8.54 GW reactor
vGEN [67] 350 eV 10 Ge 4x0.4 3 GW reactor
CONUS [68] <300 eV 17 Ge 4 3.9 GW reactor
TEXONO [69] 150-200 eV 28 Ge 1 2x2.9 GW reactors

Table IV: A list of proposed experiments to detect CEvNS using (anti)neutrinos from Stopped Pion
Decay (SPD) or from reactors, with recoil energy threshold, Ty, the distance from the source, the

target material and its mass given in 2nd to 4th columns.

is from sodium, while the two cross sections are of the same order for Q§5). The expected
bounds from v, , — vx scattering are shown in Tables II and III.
For flavor diagonal transitions, v, , — V. ,, the expected bounds on dimension 6 operators

from the Nal 2T detector are,

C%uyt A >993(1040,48) GeV (1), A >1200(1300,5.8) GeV  (v,), (95)

Cue A >803(45.2,14.9) GeV  (v,), A >97.6(53.8,17.8) GeV  (1,), (96)

While COHERENT uses stopped pions as a source of neutrinos, there are also a number
of planned or already operating CEvNS experiments that use reactor antineutrinos, see
Table IV as well as, e.g., Refs. [15, 70, 71]. Reactors produce large quantities of low energy
electronic antineutrinos. On average about ~6 antineutrinos are produced per fission, for a
total of ~ 2 x 10?7, per second per GW of thermal reactor power [71-73], with a maximum
energy of ~ 8 MeV.

As two representative examples of reactor CEvNS experiments we chose the proposed
RED100 [58] and MINER [63] experiments, and checked their respective sensitivities to
different NSI, assuming in both cases a total uncertainty of op ~ 10%. REDI100 has a
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Figure 8: Effect at high recoil energy of the operator QEJ), assuming CAA(Z) = 0.1 GeV~3, for four
different neutrino energies, using monochromatic neutrino beams for illustration. The black dashed

line is the SM rate.

proposed 100kg target of liquid Xenon, with a baseline of 19m from a 1GW reactor and an
energy threshold of 500 eV. While this energy threshold is lower than for stopped pion decay
experiments, it is the highest among the reactor experiments. MINER [63] has a proposed
30kg detector composed of ™Ge and 2%Si in 2:1 ratio, with a baseline of 1m from a 1MW
detector and a very low energy threshold of 10 eV.

Because of lower thresholds, both RED100 and MINER would have one to two orders
of magnitude better sensitivity to the neutrino dipole moment, C}S), compared to Nal 2T.
The reach for the vector NSI current operators, C?ﬁz( a could exceed the ones from global
oscillation fits, while there would be also an appreciable improvement on the derivative
couplings, Cqu), CA%?q. The operators inducing spin-dependent interactions, on the other hand,
cannot be probed better in these experiments, since xenon has a smaller nuclear spin than
iodine, while Ge and 28Si have nuclear spin 0.

Future experiments can improve their sensitivity to specific NSI operators by changing
experimental conditions. As just stated, lowering the energy threshold improves the sensi-
tivity to the magnetic monopole operator Qf), whose contribution is enhanced by the 1/¢?
photon pole, cf. Eqs. (24), (48). For instance, the CONNIE collaboration proposes a lkg
Si detector with the energy threshold of 28 eV that would be situated 30m away from the
reactor [64]. Taking all the other parameters as in our projection for the Nal 2T limit,

leads to a projected limit for Qf’) of A ~ 50 TeV, to be compared with 8.3 TeV at Nal 2T,
Table II.
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Varying the neutrino energy, E,, as well as increasing the range of nuclear recoil energies,
Eg, can also be beneficial. In this way one could uncover §? dependence of the neutrino
scattering cross section that differs from the SM one. We illustrate this in Fig. 8, taking
as the example the Qf) operator. The QEJ) operator matches onto the NR operator OSJ)V,
whose matrix element squared starts at O(q*) and is independent of F,, see Eq. (42).
In contrast, the SM matrix element squared grows with neutrino energy, oc E2. For high
enough recoil energies, Er ~ O(100 keV), and neutrino energies E, ~ O(100 MeV), there
is clear distinction between the scattering rate with and without the presence of fo) (the

NP scale was taken very low in Fig. 8 to exaggerate the effect).

C. Constraints on NSI from deep inelastic scattering

The CHARM neutrino detector [74] was composed of 78 plates of marble (CaCOj3) with
a total fiducial mass of 87.4 tons. The target is to a very good approximation an isoscalar —
the correction to the cross section from the isotriplet component is O(0.2%) [56]. Data were
recorderd exposing the detector to neutrinos and antineutrinos from the CERN 400 GeV
SPS proton beam dump.

In our analysis we focus on the ratio of NC and CC total cross sections for electron

neutrinos and antineutrinos that has been measured to be [53]

o(VeN = V. X) 4+ (VN — 1. X)

R. =
o(VeN = e~ X) 4+ o(U.N — et X)

= 0.406 = 0.140, (97)

where an equal flux of v, and 7, has been assumed, while similarly for muon neutrinos [75]

oy N = v, X)
T o(,N = pX)

The ratios R, and R,, are predicted in the SM to be [76, 77]

R

= 0.3093 == 0.0031, (98)

REM =0.3221 +£0.0006, R = 0.3156 = 0.0006. (99)

The dominant theoretical uncertainty in the two predictions is due to the approximation
that the target was taken to be an isospin singlet, which is correct within O(0.2%).

Since the neutrino CC cross section is strongly constrained, we can assume that NSI only
affect NC transitions. The ratio R, in Eq. (99) then receives the NSI correction as

Ao NSI
b

RN = RSM (100)

occ
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where occ is the total neutrino and antineutrino CC cross section and Aoygr is the NSI
contribution to the NC cross section. In the analysis we take only a single NSI operator at

a time to be nonzero. Similarly, R, is modified to

Vi

RYS' = RSM %, (101)
where the cross sections in the ratios now refer to the muonic neutrino only. Comparing
Egs. (100) and (101) with the experimental results in Egs. (97) and (98), gives the upper
bound on the allowed sizes of NSI Wilson coefficients, ¢l , Eq. (2). Taking the dimensionless
Wilson coefficients to be C\¥ = 1, this translates to a 90% CL lower bound on NP scale A
for each NSI operator, given in Tables II and III. These bounds are also shown as dark blue
bars in Figs. 6 and 7.

The relative values of bounds are easily understood from the matrix elements in Eqs. (72)-
(76). In particular, the two scalar operators Qg; and Qgg have exactly the same matrix
elements and thus the same bounds for given flavor ¢q. The difference between the bounds
on A for three light quark flavors comes predominantly from the factor m, that is part of
the definition of the operators, leading to ~ (mg/m..4)'/% larger A exclusion for the strange
quark. The matrix element of the tensor operator, Q%, is bigger, cf. Eq. (76), which

translates to roughly factor of 2 more stringent bounds on A.

In the case of flavor diagonal transitions, the bounds on dimension 6 operators are

C) i) A > 480(239,198) GeV  (v.), A >826(697,463) GeV (v,),  (102)
Clue A >301(324,231) GeV (), A >826(697,463) GeV (1),  (103)

For the reader’s convenience we translate the CHARM bounds on dimension 6 operators

also into the bounds on ¢; parameters, Eq. (1). For the electron neutrino, one obtains

—0.11 <% < 0.27, —0.38 < "4 < 0.69, (104)
—0.24 <% < 0.08, —0.59 < e <0.44, (105)
—0.74 <&f¥ < 1.60, — 117 < <101, (106)

while for the muon neutrino

uV uA

~0.03 <& < 0.06, —0.11 < &4 < 0.08, (107)
dVv dA

~0.05 <&V <0.02, ~ 031 <M <015, (108)
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sV sA
—0.20 <& < 0.11, —0.54 < 34 < 0.40. (109)

For the case of the electron neutrino these bounds are comparable, yet somewhat stronger,
than the bounds from oscillations for vector currents involving u and d quarks, Eqs. (82)
and (83), and are significantly stronger for the case of the muon neutrino.

Note that for a number of operators the bounds on A from the CHARM experiment are
comparable to the momentum exchange ¢ ~ O(10 GeV). This means that the EFT analysis
may be applicable only for strongly coupled mediators, with couplings larger than O(1).
Another general comment regarding CHARM constraints on NSI is that for light media-
tors these are comparatively less effective than CEvNS constraints where the momentum

exchange is smaller.

D. Other constraints

The contribution to the neutrino scattering rates due to the neutrino magnetic moment
has a pole at @ = 0, cf. Fig. 9 in Appendix B. This means that experiments with lower
E'R thresholds will have better sensitivity to the magnetic moment. Furthermore, scattering
on electrons will in general lead to lower ¢2. Measurements of solar neutrinos scattering on
electrons in Borexino [57] give the current most stringent limits on the magnetic moment

[y, , Or, equivalently, on the Wilson coefficient Cf),
¢ A>27-10°GeV (1) A>18-10°CeV  (1,). (110)

The measured neutrino scattering rates in Borexino can also be translated in a bound on
Rayleigh operators CQ The neutrino interactions mediated by the two Rayleigh operators
result either in vA — v A scattering through 1-loop matrix elements or in vA — v A7y, i.e.,
with an emission of an extra photon. In the Borexino experiment both processes lead to
the same signal. Using the results from Section II1 C for the 1-loop contribution, with NDA
estimates for the single nuclear matrix elements and neglecting two-body currents for Qg)
operator, and adding the cross section for the process with a photon emission, give the total
NSI scattering rate. Comparing it with the Borexino measurement [57] of the solar neutrino

flux gives
¢ A>136GeV (), A>119GeV (1), (111)
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¢ A>104GeV (r), A>119CeV (1. (112)

A different set of bounds on NSI operators (4)-(10) comes from collider experiments. For
a proper analysis we need to extend the EFT analysis to above the electroweak symmetry
breaking scale, which we do in the next section. However, some of the bounds directly apply
to the operators (4)-(10). For instance, the searches for dark matter can be re-interpreted
as bounds on NSI operators with two neutrinos replacing the two DM particles in the final
state.

The monojet searches at CMS and ATLAS [78-80] thus result in lower limits of A 2 1
TeV for (axial-)vector current operators, Eq. (4), A 2 200 GeV for gluon-gluon operators,
Eq. (6), A 2 40 GeV for scalar operators, Eq. (7), and A 2 20 GeV for tensor current
operators, Eq. (8), after converting to our normalization of the operators. The monophoton
searches bound di-photon operators, Eq. (5), giving A 2 30 GeV [81]. These bounds, apart
from (axial-)vector current operators, are quite weak, with values of A allowed that are even
below the kinematical cuts on pr and/or MET. One may thus question the applicability of
the EFT with the actual bounds from colliders in reality even weaker, unless the couplings
are large. We do not attempt to correct for these effects since this is beyond the scope of
present manuscript, see, however, [82] on how to properly obtain EFT bounds from LHC
searches.

Once the EFT is uplifted above the electroweak scale, the bounds from collider searches
can become more severe. For instance, searches for charged fermion contact interactions at
LEP [83] give constraints on the SU(2), x U(1)y symmetric operators, defined in Eqs. (116)-
(119) below. These operators result in dimension 6 NSI operators (4) below the electroweak
scale, but with bounds on A from LEP of about O(1 TeV) even when coupling only to
leptons (see Section VII for details).

VII. NSI ABOVE THE ELECTROWEAK SCALE

In this Section we turn to the question of how the NSI interactions (2) are generated.
Since the bounds on many of the operators are relatively mild, cf. Tables IT and III , it is
possible that light NP could be responsible for their generation. This interesting direction
was pursued, e.g., in Refs. [34, 35, 84, 85].
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The other option is that the NP responsible for NSI is heavy, heavier than the electroweak
scale. If this is the case, the NP states can be integrated out leading to an EFT that is valid
between the scale of NP, A, and the electroweak scale, vgw, with the effective Lagrangian

(see also [86-89])
%
Lrw = Z = . (113)
a,d

where Q¢ are SU(2);, x U(1)y invariant operators. In constructing the electroweak (EW)
EFT operators we add to the SM field content the right-handed neutrino, vg, which is a
SM singlet. This allows for SM neutrinos to be either Dirac or Majorana. In the rest of
this Section we discuss the bounds on operators Q¢ and their matchings onto the low energy
EFT for NSI, Eq. (2). We only consider operators that do not violate lepton number, since
the lepton number violating operators are severely constrained by bounds on neutrinoless
double beta decay.

The two dimension 6 operators in EW EFT that lead to an neutrino magnetic dipole
moment are (throughout this section we do not display generational indices on leptonic
fields, and assume flavor conservation for quark currents)

(row HIL) B, Q) = L2 (bro, HIT* L) W | (114)

6 _ 91
Ql’B N &2

82
where H = iooH*, with H the Higgs doublet, L, the lepton doublet, B, and W}, the
hypercharge and SU(2),, field strengths, and 7* the SU(2), generator in the fundamental
representation. Both of the above operators contribute below the EW scale to the dimension

five magnetic dipole operator, Eq. (3),

5(5 VEW 6) , L 6
¢ = NI ((J{g + 50{’%), (115)

where vgw =~ 246 GeV is the Higgs vev. If either Qf])g or Qﬁ),v are generated in the UV,
the neutrinos will have magnetic moments. The exception is, if the two contributions cancel
against each other, i.e., for 26’%% = —C'@V, in which case the neutrino magnetic moment
vanishes.

The dimension six operators Q%L s Ea. (4), can arise from the following four-fermion
operators in the EW EFT (for ¢ = j the QL(S;)W operator is equivalent to Q:(Sv),ii and should
be dropped),

Q% = (LimLy) (Q11"Q1) - Qupyy = (Lir L) (@7'7°Q1) » (116)
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Qf(}?‘;,ij ([_’iLWLiL> (I_’%V“Li) ) Qz(gz,ij = ([_JiL%TaLiL) (I:JLVMT(ZLJL) ) (117)

Qi = (LivuLl) (Eeh) Quray = (LivaLy) (") | (118)
Qi = (LiuLy) (dpydy) | (119)

which will then give for the Wilson coefficients of dimension 6 operators below electroweak

scale (u; = u, dy = d,dy = s and « the lepton flavor, not displayed on Lh.s.)

5(6 1 [ 6 1 6 6

Ci(;),ul = 22 i<Cl(F?,a1 + ZcéF?,od) + C(gF?,al ) <120)
5(6 1 [ 6 1 6 6

C§(;),dl = N2 i<C£F?,ozi + 102(}7),042) + CgF?,ai ) (12]‘)
5(6 1 [ 6 1 6 6

Ci(%),e = 22 i<C§F),a1 + ZOZEF?,()d) + CEEF?,QI : (]‘22>

The problem with generating large contributions to CA%) f Wilson coefficients in this way

is that the dimension 6 operators in Eq. (116) are extremely well bounded. Translating
the results from [77, 90] the bounds for Qf{?m for electrons coupling to first generations
quarks, i = 1,5 = 1 are A > 4.7,;4.8;3.4;4.4;3.3; 3.5 TeV, while for muons, i = 2,5 = 1,
A > 1.6;3.1;3.6;3.6;1.0; 0.4 TeV, where respectively n = 1,2, 3,5,6,7, and we set ij}{ij =1
(for Qﬂ%ﬂ the bound is of the same order as for Qz(,f?’m, but a precise determination would
require a correlation matrix to properly account for the change of basis). For electron-quark
couplings the most stringent bounds come from measurements of d — wer transitions and
atomic parity violation, and are much more severe than the bounds from neutrino scattering.
For muon-quark couplings the most stringent bound for Qg})m is from d — wpv transitions,
while for the other operators, Qﬁ%%, g‘}{%, Q(%Qi, it is mainly from neutrino scattering.
The severe bounds from transitions involving charged leptons can be avoided in the special
case, where C’f?i = %Cé?i, with all the other Wilson coefficients zero, since then the quarks
only couple to neutrinos.

Another option is that the leading contributions arise from dimension eight operators

with two Higgs insertions (see also, e.g., [91]),

QW = (LoHv HLL) (Q4"QL) . QW = (LoH~ HILL) (Loy"Ly) ,  (123)
S = (LLHY,H'Ly) (er7"er) | Q%) = (Lol H L) (amy"ug) | (124)
i = (Lo HAy H L) (digydsy) - (125)
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After the Higgs obtains a vev only the neutrino is projected out of the lepton doublet,

HL L — VLvpw/ V2. The Wilson coefficients for low energy dimension 6 operators are in

this case,
2) ur 2A4 1F 1 + 4F" ) > 1(2),d; — IN4 1F’ i + 5F ) > ( )
2
5(6 v 8 8
Ch)e = 2% [ + ] (127)

Since these operators only lead to couplings of quarks to the neutrinos and not to charged
leptons, this relaxes some of the bounds. The remaining bounds are “inevitable”, as they
come from processes that involve neutrinos — these are the bounds discussed at the end of

Section VID.

The gauge-gauge operators in (5) and (6) can arise from dimension eight operators

(a H'L,)B"B,, Q) = g—;(pRﬁT L.)B"B,,, (128)
e (TR H L)W W, QW) = gi(pRﬁTLL)Wa e, (129)
ng = (y HiTL,)W** B, , QY = 212 (ZrH' L)W B,,,  (130)
( RHTL,) GG, Q%) = (;T (7rH'LL)G*" G, (131)

giving the Wilson coefficients
60 = (Ol O+ 50 ) =Bl a3

The reinterpretation of the 8 TeV ATLAS W+MET search, Ref. [92], bounds Qﬁ;)w to
A 2 0.7(0.8) TeV [93], while the 7 TeV ATLAS Z+MET search, Ref. [94], gives bounds on
Qg, e ,va%, operators of roughly comparable strength, but with the details dependening
on the relative sizes of photon and Z exchange contributions [95].

The operators (7) and (8) can arise from the following dimension six operators

= (7rLy) (Qhut) &= FrowLr) (Qhowuy) . (133)
O = (L) (dRQ1) | = (row L) (d%0,,Q%) | (134)
O = (7rL1) (erLr) , & = (7row L) (ErowLy) - (135)

The resulting Wilson coefficients are

(6)
o ReC 1(3)R,i o ImC 1(3)R,i N M (136)
Sui(ds) 2y, (4 ,A2’ Gui(di) ™ oy d~)A2 7,ui(d;) Qmu(d,)m’
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(6)
Csr
2meA2 '

(6) (6)
s _ ReCip s _ ImCip

= ¢l = ¢l
¢ om A2 6e ™ om A2 Te

(137)

The bounds on these chirality flipping operators are quite stringent. For instance, from
pp — 0+ B+ X searches at the LHC we can expect bounds on the NP scale of the operators
(133)-(135) at the order of A 2 O(5TeV) and at the similar level from semileptonic decays of
light pseudoscalar mesons. (This estimate is based on the bounds for tensor current SM-EFT
operators with left-handed neutrinos obtained in [96], which only give quadratic corrections
to the SM rates, as do the operators (133)-(135). A dedicated analysis of operators with
right-handed neutrinos is called for, which, however, is beyond the scope of our work.)

No such bounds exist for dimension eight operators,

QlHl vRHTL) (QY Hul), Qs = (7rowW HLy) (QL Hoyul), (138)
S = (rH'Ly) (QLHAY), Q\h: = (vroW HLL) (QL Hody), (139)
& = (vrH'Ly) (LyHeg), QS = (7roWH'LL) (LiHo er) (140)
Q%) = (Pel'°LL) (Qur*Huy). Qs = (Paoyu 17 Ly) (Qr* Houiy),  (141)
Q9H1=< 170 L,) (Qr Hily). Qm (rrow 17 L1) (Qur* Hody) . (142)
O = (e'7°Ly) (Lur*Her). QW = (royu 17°Le) (Lur* Hower),  (143)

which, after the Higgs obtains the vev, have the form (7g...v.)(f... f). The relevant con-
straints on these operators thus come only from neutrino scattering experiments, discussed
in the previous section. In principle there are also constraints from Higgs decaying to four
body final states, h — 2jvv. However, these are at present much less constraining.

The Wilson coefficients of the low energy EFT operators (7) and (8), generated from the

above operators, are

5 1 vZ . 1 v2 1

Cé?s},ui = F27I;]1W Re{Im}( 1Hq T C§§3{,i>> C% = FZ?I;,W. (CZ(i)(,i + _05521')’ (144)
A 1 v3 1 4 1 v

Cég},di ~ Ao, “Ew Re{Im} (CZS},Z' + Zlcsg?},z')a C’gigi ~ Aoy Ew <C£Hz + CIOH z>7 (145)
(7 1 'U 8 1 8 5( 1 ’U

CE(){ZS} e A QEW Re{Im} (CE()B)I + ZC&}LI)’ C — A4 2EW (CGH + 012H> (146)

Finally, the dimension 7 low energy EFT operators with derivatives on the neutrino cur-

rent, Eqgs. (9) and (10), can arise from the following electroweak EFT dimension 8 operators,
(D = 0u(Fro H'LL) (Q17,Q) ) = (Ri0, AT L) Q4G 147
QlD,i u(VRU L)( L%QL)7 2D,i (VRZ 7 L)( LY QL)a (147)
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Q) = 0, (rro™ H'Ly) (L Ly), Q) = (7pid, HL) (LA Ly), (148
Q5 = 0u(7ro™ HILy) (W) | 8 s = (oRi, HLy) (e u),  (149)
Qs = 0u(Pro H'Ly) (A dy). 8 = (ori0, H'Ly) (@i dly). (150)

Q) = 9, (7ro" H'Ly) (erver), Q¥ = (7r fauﬁTLL) (ery"er). (151)

After the Higgs obtains the vev, the operators have the form of (neutrino current) x (charged
fermion current). The most relevant bounds on these operators are, again, due to neutrino
scattering experiments discussed in the previous Sections. The matching gives for the low

energy Wilson coefficients

5(7 VEW 7 VEW 8
Cé{é},m: A4 Re {I }< 2D1+06D2)7 Cio?{n}ulz A4 Re {I }( 1D,i+CéD),i>7 (152)

5 VEW VEW
Cég} a; = a1 Re{lm }< 2D T CSDz)? C%?{n},dl = —x1 Re{lm} (Cﬁgi + CégD)i)’ (153)

v 5 v
Cézg} e EW Re{Im }<Cg + Cl?)D)’ Cg?{n} e EW Re{Im }( 3p T 09%)> (154)

VIII. CONCLUSIONS

In this manuscript we obtained predictions for CEvNS in the presence of nonstandard
neutrino interactions described by an EFT at 2 GeV. Our analysis covers the complete basis
of EFT operators up to and including dimension 7, and thus covers most of the viable models
as long as the mediators are heavier than about 100MeV. We recast the recent measurement
of CEvNS by the COHERENT collaboration using a Csl detector to obtain bounds on the
EFT operators, assuming that only one NSI operator at the time contributes appreciably.
The main results are collected in Figures 6 and 7, where they are compared with the bounds
on NSI from neutrino oscillations, the solar neutrino flux measurements at Borexino, and
from deep inelastic scattering. The obtained bounds apply to incoming electron or muon
neutrinos scattering either through flavor diagonal interaction, or even, if the neutrino flavor
changes (including scattering to sterile neutrinos).

We see that already now the CEvNS measurements lead to the most stringent limits for
some of the NSI operators, for instance for scalar currents. The NSI reach of CEvNS ex-
periments is set to significantly improve in the future, with a number of new experiments
either already running or being planned. In Figures 6 and 7 we also show the projected

limits for the Nal 2 ton detector planned by the COHERENT collaboration, also assuming
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that systematic errors can be decreased by an order of magnitude. The new experiments, as
we show in the paper, can also increase their sensitivity to NSI by modifying running con-
ditions, such as the incoming neutrino energy, the nuclear recoil energy thresholds, but also
by trying to perform measurements at higher recoil energies. For this it will be important to
investigate how well one can distinguish between NSI and the subleading corrections to our
predictions (for instance from ¢ dependence of nuclear form factors away from zero recoil
point, see, e.g., [97]).

When using our results it is important to note their validity. The DIS bounds assume
that the mediators are heavier than a few 10s of GeV, the COHERENT bounds that they
are heavier than about 100 MeV, while Borexino and oscillation bounds apply also to very
light mediators (a typical momentum exchange in solar neutrinos scattering on electrons in
Borexino is ¢ ~ few 100 keV—1 MeV, which sets the lower bound on mediator mass, such
that use of EFT is justified for interpreting Borexino measurement). For light mediators,
with masses below 10 GeV the bounds from DIS would get suppressed, and similarly for
COHERENT bounds for mediators lighter than a few 10s MeV. It is easy to recast our
bounds also in such cases, but one does need at least simplified models for the mediators in
that case (some examples are, e.g., [98-100]). More challenging would be to extend our work
to the intermediate range of ¢> ~ (few) GeV?, where neither ChPT methods that we used,
nor the factorization used for DIS, apply. The benefit, on the other hand, is that many of
the neutrino experiments are taking data precisely in this theoretical difficult intermediate
regime, so that any theoretical advances would be highly desired.
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Appendix A: Nucleon form factors and nonrelativistic limits

The nucleon form factors, F;, in Egs. (22)-(28), are defined as [42],

_ _ i v
(Vg alN) = i [ F (@27 + 5 (0o 0 . (A1)
1
(N'|qy"y5qIN) =ty [FZ/N(QQ)V“% + MFI?{N(qQ)Vsq“] un (A2)
(N'lmqgalN) = F§™(¢%) (A3)
(N'lmqginsal N) = FE™ () dlyingun (A4)
Qs apv ya =
UWEG G IN) = FE (%) wyuy (A5)
Xs ~apw Fa =
<N/|§G : G},LV|N> = Fg(QQ) U§V275UN, (A6>
— v _ v 4 v
(N'|mygoq|N) = ay | F7 (7)o + 5V B (¢P)
: ] /NN (A7)
+ m_gq[ukiszq“g (¢*) |ux
N
where we suppressed the dependence of nucleon states on their momenta, (N'| = (N (ks)],

|IN) = |N(k1)), and similarly, @y = un(k2), uy = un(k1), while kfy = k' + kY and ¢* =
Ky — ki, and AltgY = Aigr — gty

The form factors, Fj, are functions of ¢? only.

In the derivations of Egs. (22)-(28) a non-relativistic reduction of nucleon currents is
required. Counting v - 9 ~ O(q?), with ¢ the typical soft three-momentum, the leading

terms are [42)]

NN — N,N, + O(¢%), (AB)
NinsN — miNau(st]@Nv) + O, (A9)
NA*N — v"N,N, + O(q), (A10)

NA¥ysN — 2N, SN, + O(¢?), (A11)
No" N — N,o'"N, + O(q) (A12)
No*insN — 2N,S¥IN, + O(q) . (A13)
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Figure 9: The v, — vx (left) and v, — vx (right) rates in the COHERENT CsI detector including
Q(15) NSI operator contribution, for CA’(({S) = 1/Aq;min, where Agmin is taken to be the corresponding
lower bound in Tables II and III, respectively. The SM rate is denoted by the solid black line,
dashed blue line denotes the NSI only prediction, and solid blue line the sum of the two. The

vertical red line denotes the energy threshold of the detector.
Appendix B: The NSI predictions for differential rates in COHERENT

In this appendix we show the differential scattering rates in the presence of NSI, dN/dEg,
for the CsI[T1] detector of the COHERENT collaboration. In the numerical evaluations only
one NSI operator, Egs. (3)-(10), is taken to be nonzero. We set its Wilson coefficient to

d—4
cis‘”—( ! ) | (B1)

a;min

where Ay in 1s the current lower limit for this operator, as obtained in Section VIB from
the COHERENT measurement, and listed in Tables I1I and II.

The predicted differential scattering rates, dN/dEg, Eq. (89), are plotted in Figures 9-12.
For the nuclear response functions, W;, we use the values from [44], while the value of nuclear
form factors are taken from [42]. In Figures 9-12 we show separately the scattering rates
due to the v, (left panels) and v, + 7, (right panels) incoming neutrinos. The corresponding
fluxes are given in Eqs. (86)-(88). Note from eq. (24) that the operators Qg; and Q%{q
have the same matrix element and will give rise to the same differential scattering rate; same
happens for the operators Qg; and Qg?,q, see eq. (26).

The neutrinos are due to stopped muons, which sets the maximal recoil energy, Eg max, to
be around 47 keV for v. — vx and v, — vx, and about 15 keV for v, — vx transitions. The

muon neutrino flux is monoenergetic, with £, ~ 30 MeV. As a consequence, for v, — vx
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scattering there is an abrupt drop in the predicted differential rate, dN/dEg, at Er =~
15 keV, since none of the v, can contribute to more energetic recoils. This discontinuity is
clearly visible for Qéﬁg, see Fig. 10 bottom right, Qg), e ,QEJ), see Fig. 11 right, and for
Qg;, ceey Q(E)lo) o See Figures 12 right, and Fig. 13 upper right.

For SM prediction there is no such discontinuity in dN/dEg at Er ~ 15 keV, but rather
only a change in the slope of dN/dEg. The spin-independent scattering induced by the
SM neutrino interaction with quarks contains the kinematical pre-factor (2E% — ¢?), see the
coefficient of ¢} Tcg . in (42). This prefactor goes to zero when when the maximal Ep for
given value of FE, is reached, i.e., when the incoming neutrinos backscatter. This means
that the contribution from 7, — vx to the SM dN/dep scattering rate goes to zero at
Er ~ 15 keV.

In order to obtain the number of events predicted in the CsI[T1]] COHERENT experiment
the predictions in the left and the right panels of Figs. 9-12 need to be added up, and then
convoluted with the signal acceptance fraction of the detector. At present the acceptance
has a lower threshold at around 4.25 keV, denoted as a vertical red line in Figures 9-12.

From the figures we see that a number of operators lead to a significantly different Eg
dependece compared to the SM predictions. The magnetic dipole moment leads to dN/dFEg
that has a pole at ¢2 = 0, clearly showing a significant increase in the rate at small values of
ER, see Fig. 9. Lowering the energy threshold can thus lead to an increase sensitivity to this
NSI operator, as long as the background can be kept low. In other case probing larger recoils
may be beneficial. For instance, the scattering matrix element due to Qﬁ is proportional
to FY /N1 (0)g? and thus grows with the increased Eg, see Fig. 10 (top). A dedicated analysis
is required to see to what extend this contribution can be distinguished from the subleading

corrections in the SM rate that come from the ¢* dependence of the F}’ N and Fld N form

factors, and from the uncertainties in the nuclear response function Wj,.
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Figure 10: The ve — v (left) and v, — v, (right) scattering rates in the presence of a single
NSI operator, either Qﬂ (top) or Qg?; (bottom), setting CA'((ZG) =1/ Aﬁ;min, where Agmin is taken
to be the corresponding lower bound in Tables II and III, respectively. The SM event rate is
denoted by the black solid line, dashed lines denote NSI only and solid lines the sum of SM and
NSI contributions (with blue, brown and purple representing couplings to up, down and strange

quark currents, respectively). The energy threshold of the experiment is denoted by the vertical

red line.
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Figure 11: The v, — vx (left) and v, — vx scattering rates in COHERENT Csl detector in the
presence of NSI operators Qg7), Qg), Qg), QEJ) (top to bottom) setting 6*57) = 1/A3 The

a;min*

notation is as in Fig. 9.
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Figure 12: The v, — vx (left) and v, — vx scattering rates in COHERENT CslI detector in the
presence of NSI operators Qg;, Qg;, Q%, (top to bottom) setting CA’,SU =1 /Ai;mm. The notation

is as in Fig. 10.

A very striking difference in the kinematical dependence of dN/dFEg arises in the case of
monoenergetic neutrino beams, as already mentioned above. This can be seen in Figures 10-
13 (right panels). Observing experimentally any such discontinuity would be a clear signal
for the presence of NSI. The discontinuity if especially pronounced for Qg), 1(17), Fig. 11,
and Qg;, Fig. 12, since these operators contribute to the non-relativistic operator (981)\,, see

Egs. (26), (53). This leads to an additional ¢* dependence in the scattering rate, see Eq.

(42). For NSI generated by g), 7 or Qg; operators the sensitivity increases for higher
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Figure 13: Same as Fig. 12 but for Qgg (top) and Qg; (bottom).

ER recoils. 57), f), or le) operators the sensitivity increases for higher FE recoils. This

was also illustrated in the main text, in Fig. 8.

The operators Qg), Qg) and Qg; match onto the nonrelativistic operator O:(s?z)v which
leads to a @2 prefactor in the scattering rate instead of the 4E% — ¢ one for the SM, see
Eq. (41). This different Er dependence clearly shows in Figures 11 and 12 (left panels).
Similar comment applies to the Qgg operator, which matches onto Oéﬁl}\,, which leads to a
kinematic prefactor E% in the scattering event rate, cf. Eq. 42, and thus a very different

different recoil dependence compared to the SM rate, see Fig. 13.

Appendix C: Numerical values of CEvNS scattering cross sections

In this appendix we provide numerical expressions for CEvNS differential cross sections
in the presence of a single nonzero NSI operator di). We normalize the NSI cross sections
to the SM, so that they take the form

(dU/dER)NSI

=1+ gW(E,, ER)CY + f\(E, Ep)|CP*. C1
(do-/dER)SM + 9, ( ) R)Ca +fa ( ) R)| a ‘ ( )
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These expressions are valid for any neutrino flavor scattering on nuclei, v, A — v3A. Here
E, is the energy of incoming neutrino, and Ei the recoil energy of the nucleus.

Below we give the numerical values for the coefficients gC(Ld) and fc(Ld) for CEvNS on nuclei
Na, Ge, ?T and Xe. For Germanium and Xenon we calculate the average cross sec-
tions for natural abundance of stable isotopes, namely °Ge, Ge, Ge, ™Ge and “Ge for
Germanium and #Xe, 12Xe, 3%Xe, ¥1Xe, 132Xe and ¥*Xe for Xenon. For the numeri-
cal evaluation we use the nuclear response functions from [43, 44]. We only quote central
values for the coefficients géd) and féd), but comment when these estimates are particularly
uncertain.

Since only dimension 6 operators interfere with the SM amplitude for CEvNS | these are

the only ones that have both g,(ld) and f(gd) nonzero, while for dimension 5 and dimension 7

operators ggd) = (. are the dimension six operators. For dimension 6 operators we provide
the ggd) and féd) functions both for the NSI notation that uses the ¢ parameters and for our
notation with the canonically normalized Wilson coefficients. In the results we only keep
the lowest order in Eg in the expressions of g((lfg(Ey, FEgr) and féf?(Ey, ER). These quoted

results for these functions are thus reliable for recoil energies up to Eg ~ 10 — 20 keV, while

for higher energies one needs to take into account corrections from higher powers of E.

1. Numerical results for CEvNS on 2*Na

To shorten the notation we define the following functions of incoming neutrino energy,

E,, and nuclear recoil, Eg,

1

D = [(E,/MeV)* — 10.8(Egr/keV)] ", (C2)
Ra = [(E,/MeV)? +10.8(Er/keV)| D, for CEVNS on #**Na. (C3)
Ry = [(E,/MeV)? — 7.97(Eg/keV)| D, (C4)

We first give the results for NSI parametrized by ¢;, Eq. (1). Using ¢;, instead of the

Wilson coefficients (f'iﬁq)(z 9 in Eq. (C1), the corresponding coefficients are

ggV — _12'27 fsuv = 37.0, (05)
g =125, & =39.2, (C6)
gV =320 10°5( L), f2 =256 - 107 ()", (C7)
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g = 1.86- 10 Ra, [ =1.34-107Ry, (C8)
g4 = —6.53- 107 Ry, fEt=1.65-107'Ry, (C9)
g = =719 107 R, J4 =2.00-10"Ra, (C10)
where the function R4 for CEvNS on ?*Na is given in (C3).
We give next the results for NSI induced scattering rates for dimension 5, 6 and 7 op-

erators. For dimension 5 operator the nonzero coefficient in the CErNS scattering cross

section, Eq. (C1), is for #Na

¥ =6.36-107 ()% (E2) "' D, (C11)

with D given in (C2). For dimension 6 operators the coefficients in Eq. (C1) are for
CEvNS on *Na

9¥) = —~1.05- 10°, 9% = —1.08 - 105, 9% =0.276 (L= (C12)

£ =275 10", £ =292 10", O —1.90-1072(E2)*,  (C13)

9%) = 1.61-10Ry, 9% = —56.3 Ry, ggi) — —6.20R,, (C14)

9 —9096-10°R,,  f1%9 =1.22-10°R,4, ) =149 Ry, C15
2,u 2,d

with the R, function given in (C3). For dimension 7 operators the coefficients are, for

CEvNS on #Na, given by

D = —26.3 (En)’D, 0= 244107 (£2)°D C16

keV (_1\%/'

D =134-10° (E2)D, 7 =1.05-107(&&)'D
) D,
Ee)’D

C17
0 =865-10"(Z8)D, fi7) =395 10%(Le

= 59.7(£8)°D, C19

(C16)

(C17)

) =579-10%(L=2)D, (C18)

) =77.3(Z8)D, fi) = 3.67-10%(Zx (C19)
(€20)

7 7 7 _
0 =2.79-10% Ry, (" — 80.3 Ry, D 774102 Ry, (C20

while for operators with derivatives on neutrino currents the coefficients are,

S0y = 6.88 10 (:2)°D, S = 430 - 10%(£), (C21)
Fittoya =729 10" (58)"D, s = 528(2%). (C22)
. = 1901072 () " (%) D, Fotny.« = 0-642(iZ%). (C23)

The g coefficients are zero for all dimension 7 operators. The D and Ry functions are given
in Egs. (C2) and (C4), respectively. Note that for the Rayleigh operators in Eq. (C16) we

used the NDA estimates from Section III C, which are only very approximate.
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2. Numerical results for CEvNS on Ge

For Germanium we give cross section for natural abundances of Ge in the detector. To

shorten the notation we define the following three functions,

D = [(E,/MeV)? — 34.2(Ep/keV)] ", (C24)
Ra = [(E,/MeV)? + 34.2(Eg/keV)|D,  for CEVNS on Ge, (C25)
Ry = [(E,/MeV)® - 25.3(Eg/keV)]D. (C26)

We start with the results for NSI parametrized by ¢;, Eq. (1). Using ¢; instead of C}Gq)@ "
in Eq. (C1), the corresponding coefficients for CEvNS on Ge are given by

geV = —-10.9, =297, (C27)
gV = —11.8, % =35.0, (C28)

V'=9.33-10"%(&z2), £V =218-1071 (£8)?, (C29)
g4 = —8.19- 109 Ry, [ = —2.42 107 Ry, (C30)
g =2.02-107" Ry, fA4 = 146 - 107" R, (C31)
g = —7.15-10°R,, A= —1.85-10""Ry. (C32)

Next, we give the coefficients in the expression for cross section Eq. (C1) using our
notation for the NSI operators. The dimension 5 magnetic dipole operator does not interfere
with the SM contribution, and thus only has the quadratic term nonzero. For CEvNS on
Ge we have

F¥ =144 107 ()% (E2) "' D, (C33)

with D given in (C24). For dimension 6 operators the cross section coefficients for CEvNS on

Ge are given by

9% = —9.40, £ =221 10", (C34)
g% = ~1.02-10°, £ = 2.60- 10", (C35)
91 = 0.804 (%), fiil = 1.62- 104 ()", (C36)
gk, = ~T.06Ra, ) = ~1.80- 10°Ry, (C37)
%) = 17.4R., £ = 110 - 10°R., (C38)
9%} = —~0.616Ra, £12 = —1.37-10°Ra, (C39)
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where the Ry is given in (C25).
For dimension 7 operators only the fZ coefficients in CEvNS cross section expression are

nonzero. For CEvNS on Ge they are given by

=
@

%

w)'D.

A7 =136-10% (£2)°D, f7 =2.27-107 (£2)°D,
(Z2)D, f{” =1.54-107

—~
-

(C40)
(C41)
C o AD=156-10°(E2)D, (C42)
(C43)
(C44)

A =230-10%(E2)D,  £7) =107-10°(£2)D
f) =11.8(E2)°D, fi =341-10%(E2)°D, £ =55.5(L2)"D, C43
D = 25.5Ry, f) = TA1Ry, A0 =7.14-107 Ry, C44

while for dimension 7 operators with derivatives in the neutrino current, the coefficients are

fEEZl)O),u =553 1010( ) 5(71)1) = 24. 6<ke\/) (C45)
fggo) —6.50 - 10'° (%)’ D fg((?w = 1.50 - 10?(L£8), (C46)
f8((71)0) =0. 162(MeV)2(E_€/) ’ f9((71)1),s = 0'188(keV) (047)

The D and Ry functions for CEvNS on Ge are given in (C24) and (C26), respectively. Note
that for the Rayleigh operators in Eq. (C40) we used the NDA estimates from Section I11C,

which are only very approximate.

3. Numerical results for CEvNS on 1271

In order to shorten the notation we define functions,

1

D = [(E,/MeV)? — 59.6(Er/keV)] ", (C48)
Ra = [(E,/MeV)® +59.6(Er/keV)] D, for CEvNS on '#71, (C49)
Rr = [(E,/MeV)? — 44.0(Eg/keV)]| D. (C50)

The cross section coefficients in Eq. (C1) for CEvNS on *7I for dimension 6 NSI operators,

using the e; notation, are given by

gV = —10.3, vV =264, (C51)
gV = —11.5, % =33.0, (C52)
gV =1.56-107°(&z), £V =6.05-10"1(£z)?, (C53)
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A =347 107°Ry, fuA =3.47-107°Ry, (C54)
A =6.69-107*Ry, i = 2891071 Ry, (C55)
g =1.20-107°Ry, 34 =-922-108Ry4, (C56)

with R4 for CEvNS on '*7T given in (C49).

For dimension 5 operator we have, for CEvNS on 271,
£ =6.80-10° (£)*(E2) "' D (C57)
keV ,

and gf’) = 0, while for dimension 6 operators the NSI cross section coefficients are given by

9% = —8.87-10°, £9 = 1.96- 10", (C58)
9\ = ~9.90 - 107, £8) =245 10", (C59)
g = 134(Z%), fi) = 0.449( &), (C60)
g5 = T5.0R4, £ = 3.63 - 10°R,, (C61)
9% = —5T.TR, 38 = 2.15-10°Ry, (C62)
9%} = ~1.03Ra, £9 = 6.854 - 10°R,, (C63)

with function R4 for CEvNS on 27T given in (C49). For dimension 7 operators the cross

section coefficients for CEvNS on 27 are given by

AP =130-10° (£2)°D, fi7 =2.41-107* (£2)°D, (C64)
A7 =575-10° (Z2)D, £ =2.67-1072 (Z2)"D, (C65)
A0 =365-10%(Z2)D, f)=172-10°(Z8)D, £V =248-10°(Z=)D, (C66)
£ =76.4(L2)°D, fih =5.16-10*(E2)°D, £ =83.9(L2)"D, (C67)
A0 =9.06Rr, 1) = 2.61Ry, ) =251-10%Ry,  (C68)

while for dimension 7 operators with derivatives in the neutrino current, the coefficients are

S0 = 491 10°(£%)" D, D= 49.6(E8), (C69)
fifhoya = 61210 (58%) "D, Tyt = L8L(ER), (C70)
fs (10),s — =0. 449( )Q(E_%)zD’ f9((71)1),s - 0‘115(1%)7 (C71)

The D and Ry functions for CEvNS on '*7T are given in (C48) and (C50), respectively.
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4. Numerical results for CEvNS on Xe

Here we show the numerical results for NSI induced corrections to CEvNS on Xe targets,
assuming natural abundances of Xe isotopes (for numerical results of cross section on single
isotopes, see [101]). To shorten the expressions we define three functions for incoming

neutrino energy, F,, and nuclear recoil energy, Fg,

1

D = [(E,/MeV)* — 61.3(Eg/keV)] ", (C72)
Ry = [(E,/MeV)® + 61.3(Eg/keV)]| D, for CEvNS on Xe, (C73)
Ry = [(E,/MeV)? — 44.9(Eg/keV)]| D. (C74)

For dimension 6 operators we have, using ¢;, notation for CE¥NS on Xe,

gV = -10.2, oV =259, (C75)
gV = —114, Y =326, (C76)
gV =1.59-107°(L&a), £V =631-10""(L8)?, (CT7)
Goun = 1.48 - 1079 Ry, foun = 4.32-107°Ry, (C78)
Gein = —3.74-107° Ry, feaa =2.75-107°Ry, (C79)
gesa = 1.35-107°R, foea =3.56-10"°Ry, (C80)

with the R4 function given in (C73).
For dimension 5 operator the only nonzero coefficient is for quadratic dependence on the

Wilson coefficient. For CEYNS on Xe we have

f¥ =6.38-10° (£«)*(E2) "' D, (C81)

with the D function given in (C72). For dimension 6 operators the CEvNS on Xe cross

section coefficients are given by

g\ = —8.77 - 10°, L = 1.92- 10", (C82)
9 = —9.85 - 10°, fiid =242 10", (C83)
o2 = 17(5%) = v )", (o34
o) — 198R,, ) =3.21-10'Ry, (C85)
9%} = —3.23Ra, £ =2.05-10° R, (C86)
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95 = 0.116R 4, ) =2.64-10°Ra, (C87)

where the R4 function is given in (C73). For dimension 7 operators only the f2 coefficients

are nonzero,

A7 =2.08-10° (E2)’D, £7 =138-107" (Z2)°D, (C88)
F =510 (B)D, A7 = 30810 (£5)'D, (c89)
A0 =369-10%(E2)D,  f7=174-10°(E2)D, 0 =252.10°(Z2)D, (C90)
f§) = 43.7(E2)? D, £ =2.08-10%(E2)°D,  f{) =33.8(&%)"D, (C91)
A0 = 4.97Ry, £ = 1.43Ry, A0 =1.28-107%Ry, (C92)

while the operators with derivatives on the neutrino current have the following coefficients

for CEvNS on Xe

f;g L= 480-10"(£%)°D fg((?l) =7.81(E8), (C93)
oy = 6:06- 10" ()" D Fotnya = 498(:2%) , (C94)
S0y = 0469 (2% )2(E—%) , Faly., = 6441072 (£2 ), (C95)
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