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Dynamics of Kresling origami deployment
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Origami-inspired structures have a rich design space, offering new opportunities for the development of
deployable systems that undergo large and complex yet predictable shape transformations. There has been
growing interest in such structural systems that can extend uniaxially into tubes and booms. The Kresling
origami pattern, which arises from the twist buckling of a thin cylinder and can exhibit multistability, offers great
potential for this purpose. However, much remains to be understood regarding the characteristics of Kresling
origami deployment. Prior studies have been limited to Kresling structures’ kinematics, quasistatic mechanics,
or low-amplitude wave responses, while their dynamic behaviors with large shape change during deployment
remain unexplored. These dynamics are critical to the system design and control processes, but are complex
due to the strong nonlinearity, bistability, and potential for off-axis motions. To advance the state of the art, this
research seeks to uncover the deployment dynamics of Kresling structures with various system geometries and
operating strategies. A full, six-degrees-of-freedom model is developed and employed to provide insight into
the axial and off-axis dynamic responses, revealing that the variation of key geometric parameters may lead to
regions with qualitatively distinct mechanical responses. Results illustrate the sensitivity of dynamic deployment
to changes in initial condition and small variations in geometric design. Further, analyses show how certain
geometries and configurations affect the stiffness of various axial and off-axis deformation modes, offering
guidance on the design of systems that deploy effectively while mitigating the effects of off-axis disturbances.
Overall, the research outcomes suggest the strong potential of Kresling-based designs for deployable systems
with robust and tunable performance.
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I. INTRODUCTION

Origami is an ancient paper folding art, employing specific
crease patterns to transform a flat sheet into intricate three-
dimensional objects. In recent years, origami principles have
received significant attention among engineering and science
researchers as a way to conceive and analyze new types of
structures and materials [1]. This approach has led to a vast
array of systems that employ the fundamental kinematic and
geometric relationships of foldable systems to achieve dra-
matic shape change. Such systems can be folded to minimize
their volume for storage and transport, then unfolded or de-
ployed into an extended state in their operational environment
[2]. Certain applications, such as deployable space booms and
solar arrays [3–5], have well-defined storage and operational
configurations. These structures are unlikely to undergo a
reverse transformation back to the folded state once deployed.
Others, such as deployable shelters [6,7] and self-assembling
robots [8–10], may require repeated and rapid transformations
between states. In both cases, an origami-based approach
offers advantages in terms of manufacturability, size, and
predictable large-scale shape change [1].

The range of systems that may be designed using origami
principles is incredibly vast, but tubelike compositions of
origami have been the subject of significant recent interest
due to their ability to support loads while offering tunable
mechanical response [11–13]. Such designs are well suited
for applications that call for uniaxial expansion, such as
deployable booms and shelters [14,15]. Origami tubes can be

assembled by stacking sheets with compatible crease patterns
to enclose a volume. The Miura pattern [3] is among the
most widely employed crease pattern for this purpose, and
has been shown to exhibit features such as large volume
change, negative Poisson’s ration, and anisotropic stiffness
[13,16–19]. Incorporating stiffness elements or fluid pressure
to these Miura-based tubes has been shown to enable tunable
multistability and energy absorption [12,20].

Crease patterns for tubular origami structures may also
arise from natural phenomena. One example is the Yoshimura
pattern [21], whose horizontal valley folds and diagonal
mountain folds arise from the axial buckling of a near-ideal
thin cylinder. Structures constructed from this pattern and its
derivatives have been studied for their mechanical response
and energy absorption characteristics [22,23]. However, they
are not suitable for deployable or shape-changing systems,
as any deviation from the nominal postbuckled configuration
of Yoshimura-patterned tubes causes the panels to experience
very large in-plane strains [24,25]. When a thin-walled cylin-
der is subject to twist buckling, a different type of crease
pattern is formed. Commonly known as the Kresling pattern
[26], it is characterized by alternating mountain and valley
folds angled along the direction of the twist. An example is
presented in Fig. 1. Like the Yoshimura pattern, the Kresling
pattern is not rigidly foldable around its postbuckled con-
figuration [27]. However, unlike the Yoshimura pattern, the
Kresling pattern may be bistable, as shown in Fig. 1. It may
require only moderate panel deformations to compress to a
compact state, rendering it far more suitable to the design of
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FIG. 1. Kresling origami module showing the arrangement of
alternating mountain and valley creases around the circumference,
oriented in the direction of twist. This particular geometry exhibits
bistability, with (a) an expanded stable state and (b) a compressed
stable state.

deployable tubular structures. Further, while the Yoshimura
pattern may manifest in many layers of triangulated cells
during axial buckling [21], the Kresling pattern only manifests
in one layer of triangulated panels for each twist buckling
load. This means that multilayer Kresling origami structures
can be folded or assembled manually from individual Kresling
modules. Since each Kresling layer may be bistable, such
an arrangement can lead to complex, multistable systems
in which each constituent module can be independently de-
ployed or collapsed to its extended or compressed state, as
shown in Fig. 2.

Past research on Kresling-inspired structures has revealed
that varying geometric parameters can lead to tailorable stiff-
ness and bistability [28], and can bear large loads by ex-
ploiting a mechanical diodelike effect to lock into a deployed
state [29]. These characteristics, along with the ability to fold
into a more compact, flat configuration, make the Kresling
pattern an attractive platform for new deployable systems.
The prior studies have been limited to kinematics, quasistatic
mechanics, [28–30] or low-amplitude wave propagation [31].
However, deployment is an inherently dynamic process with
large-amplitude changes in displacement, and it may occur
quickly in Kresling structures due to rapid snap-through
motions between stable configurations. These fast dynamics
are likely to depend strongly on the structure’s geometry.
Furthermore, prior investigations have considered only the
axial and twist motions of Kresling origami, while the other
degrees of freedom and directions have been neglected. In
practice, there may be no feasible means to constrain off-axis

FIG. 2. Origami wine tote (Built NY, USA) at different stages
of deployment. Each configuration shown is stable. The structure is
composed of multiple serially connected Kresling layers.

motions and thus neglecting these motions in analysis may
prevent other phenomena from being revealed.

From the above discussions, while prior research indi-
cates that Kresling origami is well suited for the design of
deployable structures, there are important dynamic features
that remain to be understood before this potential can be
fully realized. Therefore, to advance the state of the art, the
present research objective is to uncover the multi-degrees-
of-freedom and multidirectional dynamic characteristics of
Kresling origami structures during deployment. Through a
systematic study of energy landscapes, transient dynamics,
and off-axis motions, this investigation seeks to offer insight
and guidance for the development of robust and effective
deployable Kresling-based systems. To address this research
goal, this paper first introduces a full, six-degrees-of-freedom
model of a Kresling structure using a Newton-Euler approach.
This model is then used to study the role of geometric param-
eters on the structures’ mechanics and energy landscapes. Dif-
ferent regions of the energy landscape are explored in further
detail, revealing how the multistability and energy barriers
between states affect the transient deployment process. Lastly,
the response of Kresling structures to off-axis perturbations
is discussed, aided by modal analyses of the system at the
different stable configurations.

II. MODEL FORMULATION

Unlike many well-studied origami patterns such as the
Miura, the Kresling origami pattern is not rigidly foldable
and cannot deform from the nominal, expanded state shown
in Fig. 1(a) purely by folding at the creases [17,32]. Due to
this kinematic incompatibility, transitions between the various
configurations shown in Figs. 1 and 2 require the triangular
panels to bend or stretch to accommodate changes to the
crease fold angle. Since traditional models of rigidly foldable
origami cannot be employed, past research has adopted differ-
ent approaches to reflect this nonrigid behavior. One method
is to add extra, virtual folds to the triangular facets, allow-
ing them to change shape and deform [32]. This approach
provides good insight on the relatively large contribution of
panel deformations to the total strain energy in the structure.
However, it is ill suited to investigate dynamics since the
moving virtual folds are difficult to model using generalized
coordinates. Another approach is to treat the creases as bars or
trusses that deform axially, resulting in stretching and shear-
ing of the triangular facets [29]. While this approach does
not account for Kresling panel bending, it has been shown
that panel stretching and shearing are generally sufficient to
account for the mechanical response [33]. Furthermore, the
treatment of origami creases as truss elements is well suited
for dynamic analysis, as the energy potential of each truss is
simply a function of the distance between the two nodes to
which it connects.

Based on the discussion above, this paper adopts a truss
representation of a Kresling module as depicted in Fig. 3.
To facilitate a parameter study, the model is developed in
a nondimensional form. The length scale is defined by the
stress-free height h0 of the Kresling module at which all
trusses are undeformed. The upper and lower panels are
rigid, regular n-sided polygons circumscribed by a circle of

063003-2



DYNAMICS OF KRESLING ORIGAMI DEPLOYMENT PHYSICAL REVIEW E 101, 063003 (2020)

FIG. 3. Truss model of a Kresling module in its stress-free
configuration showing (a) a perspective view and (b) a top view. The
upper and lower panels are regular, n-sided polygons circumscribed
by a circle of radius R0. They are connected between vertices by sets
of vertical and diagonal creases with unstrained lengths a0 and b0,
respectively. In the unstressed state, the upper panel is oriented by
an angle δ0 with respect to the lower panel. Coordinate systems are
attached to the two panels. In the stress-free configuration shown,
both coordinate systems are equivalent.

radius R0. Since all distances are quantified in terms of h0,
a radius R0 = 1 means the circumscribing radius is equal to
the module’s stress-free height. The panels are connected by
2n trusses. Vertical trusses, denoting the mountain folds of
the twist-buckled Kresling crease pattern, connect node Ai on
the lower panel with node Bi on the upper panel. Diagonal
trusses representing the Kresling valley folds connect node Ai

FIG. 4. (a) Truss model with an arbitrary displacement and rota-
tion of the upper panel. The center of mass B0 of the upper plate has a
position �pB0/A0 with respect to the center of mass of the lower panel.
The corresponding space- and body-fixed coordinates are presented
in (b), showing a rotation of the body-fixed coordinates and a general
expression of �pB0/A0 in space-fixed coordinates.

with node Bi+1, for i ∈ {1 · · · n}. At the nominal stress-free
configuration, the vertical and diagonal trusses have lengths a0

and b0, respectively. Further, there is a stress-free orientation
angleδ0, denoting the relative orientation of the upper and
lower panels in this configuration. In this model, the poly-
gon sides n, radius R0, and stress-free orientation δ0 are the
three nondimensional parameters required to fully define the
Kresling module’s geometry.

A Newton-Euler approach is adopted to represent sys-
tem dynamics. Space-fixed orthonormal coordinate vectors
[ �E1, �E2, �E3] are attached to A0 at the center of the lower panel.
Coordinate vectors [�e1, �e2, �e3] are fixed to B0 at the center of
the upper panel. At the initial stress-free orientation depicted
in Fig. 3, the space- and body-fixed basis vectors are identical.
The position of B0 with respect to A0 is �pB0/A0 = �E3 = �e3 in
this configuration, since the stress-free height is used as the
length scale for nondimensionalization.

Figure 4 presents a module subject to an arbitrary deforma-
tion. This deformation cannot be addressed by prior modeling
treatments of Kresling structures [28,29] as pairs of vertical
and diagonal trusses are not identically deformed. In general,
�pB0/A0 can be written in terms of space-fixed or body-fixed
coordinates as

�pB0/A0 = pA1 �E1 + pA2 �E2 + pA3 �E3 = pB1�e1 + pB2�e2 + pB3�e3,

(1)
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where pAi and pBi are coordinates in frames attached to A0 and
B0, respectively. An arbitrary deformation of the module may
also impart a rotation of the upper panel, and thus also of the
body-fixed coordinates. This rotation is defined by the rotation
tensor R, as �ei = R �Ei ∀i ∈ {1, 2, 3}. The rotation tensor is
constructed by employing a standard 3-2-1 set of Euler angles
� = [γ , β, α]. They describe any arbitrary three-dimenisonal
(3D) rotation as a sequence of three chained rotations around
specified axes [34]. The final rotation tensor R is a product of
the individual rotation tensors,

R = R1R2R3, (2)

where

R1 =
⎡
⎣cos γ − sin γ 0

sin γ cos γ 0
0 0 1

⎤
⎦, (3a)

R2 =
⎡
⎣ cos β 0 sin β

0 1 0
− sin β 0 cos β

⎤
⎦, (3b)

R3 =
⎡
⎣1 0 0

0 cos α − sin α

0 sin α cos α

⎤
⎦. (3c)

Position vectors of the nodes Ai with respect to the center
of the lower panel A0 have the following representation in the
space-fixed frame:

�pAi/A0 = R0 cos

(
2π

n
i

)
�E1+ R0 sin

(
2π

n
i

)
�E2, ∀i ∈{1 · · · n},

(4)
while �pBi/B0 , the position of nodes on the upper panel with
respect to its center of mass, is

�pBi/B0 = R0 cos

(
2π

n
i + δ0

)
�e1 + R0 sin

(
2π

n
i + δ0

)
�e2,

(5a)

=

⎧⎪⎨
⎪⎩R

⎡
⎢⎣

R0 cos
(

2π
n i + δ0

)
R0 sin

(
2π
n i + δ0

)
0

⎤
⎥⎦

⎫⎪⎬
⎪⎭

T ⎡
⎢⎣

�E1

�E2

�E3

⎤
⎥⎦. (5b)

Equations (1), (4), and (5) are combined to write the
relative position vectors of the nodes spanned by vertical and
diagonal trusses, respectively, as

�pBi/Ai = �pB0/A0 + �pBi/B0 − �pAi/A0 , (6a)

�pBi+1/Ai = �pB0/A0 + �pBi+1/B0 − �pAi/A0 . (6b)

Since the base of the Kresling structure is fixed, the nodes
on the lower panel are stationary. Thus, the relative velocity
vectors are

�̇pBi/Ai
= �̇pB0/A0

+ �̇pBi/B0

= ṗA1 �E1 + ṗA2 �E2 + ṗA3 �E3 + �ωB × �̇pBi/B0
, (7a)

�̇pBi+1/Ai
= �̇pB0/A0

+ �̇pBi+1/B0

= ṗA1 �E1 + ṗA2 �E2 + ṗA3 �E3 + �ωB × �̇pBi+1/B0
, (7b)

where �ωB is the angular velocity of the upper panel. In general,
the basis vectors around which the 3-2-1 Euler angle rotations
take place are not orthogonal. Hence, the Euler angle rates
�̇ = [γ̇ , β̇, α̇] are not equivalent to the components of �ωB in
any orthonormal basis. Instead, the angular velocity is related
to the Euler angle rates through the following transformation:

�ωB = RωB�̇
T =

⎡
⎣0 − sin γ cos β cos γ

0 cos γ cos β sin γ

1 0 sin β

⎤
⎦�̇T . (8)

Equations (1)–(8) describe the system’s kinematics, but
development of governing dynamic equations require a de-
scription of system inertias as well as the conservative and
nonconservative forces. Inertial properties are defined by as-
suming the upper and lower panels are circumscribed by disks
of radius R0 and thickness t0. The mass of the polygon panels
is defined as

mB = ρ

ρ0
πR2

0, (9)

where ρ

ρ0
parametrizes the planar mass density and allows

the mass to be expressed in terms of other nondimensional
parameters. Consequently, the panel’s inertia tensor in the
body-fixed frame is

IB0 = ρ

4ρ0
πR4

0

⎡
⎣1 0 0

0 1 0
0 0 2

⎤
⎦. (10)

The trusses are modeled as linear elastic elements,
parametrized by rk = kb

ka
, the ratio between the axial stiffness

of the diagonal and vertical trusses. Similarly, parameter rc =
cb
ca

parametrizes the ratio between viscous damping in these
trusses. In this research, both ratios are set to be equal to 1
for generality. In practice, however, the relative stiffness and
damping of the trusses would depend on the material and
manufacturing process. The force exerted at node Bi of the
upper panel by the vertical and diagonal trusses is

�FBi = (∣∣ �pBi/Ai

∣∣ − a0
)
p̂Bi/Ai − rk

(∣∣ �pBi/Ai−1

∣∣ − b0
)
p̂Bi/Ai−1

− 2ζ
(
�̇pBi/Ai

· p̂Bi/Ai

)
p̂Bi/Ai

− 2ζ rc
(
�̇pBi/Ai−1

· p̂Bi/Ai−1

)
p̂Bi/Ai−1 , (11)

where the circumflex symbol (^) denotes a unit vector. The
torque exerted by the trusses at node Bi around the panel’s
center of mass B0 is

�TBi = �pBi/B0 × �FBi . (12)

The above equations are combined to express the angular
and rotational accelerations of the upper panel:

�̈pB0/A0 = 1

mB

n∑
i=1

�FBi , (13a)

�̇ωB = (
RT IB0 R

)−1

[
n∑

i=1

�TBi − �ωB × (
RT IB0 R

)
�ωB

]
.

(13b)
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FIG. 5. Under a quasistatic, axial displacement control, the Kresling undergoes a coupled, twist motion where both the rotation angle
γ and height pA3 vary simultaneously along a minimum energy path. (a) Minimum-energy deployment path along the (pA3, γ ) plane for a
Kresling module with stress-free orientation δ0 = 32◦, R0 = 0.917, n = 8, and rk = 1. Contour colors indicate strain energy for given pA3 and
γ , assuming all other degrees of freedom are fixed. At pA3 = 1, the structure is in its stress-free state with γ = 0. (b) Strains in the vertical and
diagonal trusses along the deformation path. (c,d) Perspective and top views of the truss model, respectively, illustrating the rotation γ of the
upper panel during compression.

In order to facilitate numerical dynamic analyses, the equa-
tions are written in a state-space form:

x =

⎡
⎢⎢⎢⎣

�pB0/A0

�T

�̇pB0/A0

�ωB

⎤
⎥⎥⎥⎦, (14)

and its time derivate is computed as

ẋ =

⎡
⎢⎢⎢⎢⎣

�̇pB0/A0

R−1
ωB

�ωB

�̈pB0/A0

�̇ωB

⎤
⎥⎥⎥⎥⎦. (15)

The governing equations above describe the dynamics of
only one Kresling module. However, they can be extended to
enable the analysis of multimodule structures by calculating
rotation tensors for each panel and computing the displace-
ment and velocity of each of the truss connection points.
Given a structure composed of N serially connected modules,
the motion of the jth panel can be expressed as

�̈p j0 = 1

mj

∑ �Fj/ j+1 +
∑ �Fj/ j−1, (16)

�̇ω j = (
RT Ij0 R

)−1
[∑ �Tj0/ j+1 +

∑ �Tj0/ j−1

− �ω j × (
RT Ij0 R

)
�ω j

]
, (17)

where
∑ �Fj/ j+1 and

∑ �Fj/ j−1 are the forces on panel j due
to truss connections with panel j + 1 and j − 1, respectively,

063003-5



N. KIDAMBI AND K. W. WANG PHYSICAL REVIEW E 101, 063003 (2020)

FIG. 6. (a) Contour plot showing strain energy stored along the
minimum energy path, as shown in Fig. 5(a), for modules with differ-
ent values of the stress-free orientation angle δ0. The other geometric
parameters are fixed at n = 8 and R0 = 0.917, while stiffness ratio
rk = 1. Red dashed curves show the stable states, corresponding to
local or global minima of strain energy. The presence and location of
these states leads to a natural division of the design space into four
regions with different stability characteristics. (b) Compaction ratio
η between the compressed and extended stable lengths as the design
parameter is varied.

while
∑ �Tj0/ j+1 and

∑ �Tj0/ j−1 are the torques exerted on the
center of mass of panel j due to truss connections with panel
j + 1 and j − 1, respectively. The base of the structure is fixed
to the ground, while the N th panel at the end of the structure
only experiences truss forces from connections to the N–1st
panel. The equations of motion for an N-layer structure can
be written in state-space form as in Eqs. (14) and (15). The
state vector for an N-layer structure has 12N entries.

III. QUASISTATIC DEPLOYMENT
AND ENERGY LANDSCAPES

As described in Sec. IV, the geometry of Kresling struc-
tures can be described by the radius R0, the orientation an-
gle δ0, and the number of sides to the polygonal panels n.
Variations in these geometric parameters may yield a range
of interesting properties, such as bistability, self-locking, and
tunable stiffness [28,29]. A thorough investigation of the
energy landscapes spanned by variations in design parameters
and loading conditions will provide insight into the suitability
of different designs for deployable structure applications and
set the stage for dynamic studies of Kresling deployment.

The model developed in this research does not constrain
any degrees of freedom of the system, facilitating investiga-
tions of axial and off-axis dynamics. However, to develop
initial insight, quasistatic analyses are first performed with
a controlled displacement in the �E3 direction, reflecting the
desired deployment direction of Kresling structures [29].
Under quasistatic, pure axial deployment, off-axis motions
are not activated, and the structure exhibits a twist-coupled
response with displacements and rotations along and around
�E3. An example deployment path is presented in Fig. 5(a)
for a Kresling module with R0 = 0.917 and n = 8. These
values reflect measurements from the commercially available
wine tote in Fig. 1. The stress-free orientation angle is set
to δ0 = 32◦ in order to give rise to an asymmetric bistability
and a large deployment distance between these stable states,
and stiffness ratio is set to rk = 1. Figure 5(a) illustrates how
the rotation angle γ varies with prescribed Kresling height
along a path that minimizes strain energy. As seen from
the overlain contour plot, deviations from this deployment
path would result in a dramatic increase in strain energy.
The strain energy along this path is due to deformations of
the vertical and diagonal trusses, as shown in Fig. 5(b). When
the module is displaced from the stress-free state at pA3 =
1, the vertical truss strain �a

a0
and diagonal truss strain �b

b0
become nonzero. Figures 5(c) and 5(d) illustrate how the truss
model deforms under axial load for pA3 < 1, more clearly
showing the orientations of the trusses and nodes. This result
from the full six-degrees-of-freedom (6DOF) model is consis-
tent with prior results from both the virtual fold models [32]
and simplified two-degrees-of-freedom (2DOF) truss models
[25,28].

IV. VARIATION OF DESIGN PARAMETERS

To gain more insight into how strain energies vary along
this minimum-energy deployment path for different Kresling
geometries, Fig. 6(a) presents a strain energy landscape for
fixed radius R0 = 0.917, truss stiffness ratio rk = 1, and as-
suming octagonal upper and lower panels n = 8. The ori-
entation angle δ0, a design parameter, is varied along the
horizontal axis, and the prescribed Kresling height pA3, a
loading parameter, is varied along the vertical axis. The
red curves denote local minima of strain energy, indicating
stable heights pA3 for given values of design parameter δ0.
Figure 6(b) shows the theoretical compaction ratio η = hc/hd ,
where hc and hd are the compressed and deployed stable
lengths, respectively. The compaction ratio is only relevant
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(a) δ0 = 20°

(d) δ0 = 53°
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(c) δ0 = 49°

(f) δ0 = 80°

p
A3

p
A3

p
A3

(b) δ0 = 32°

(e) δ0 = 67°

p
A3

FIG. 7. Strain energy landscapes along minimum energy deployment paths for Kresling modules with varying stress-free orientations δ0.
(a) A module with δ0 = 20◦ lies in the monostable region (I) in Fig. 6, and has just one stable position at its stress-free height of 1. (b)
When δ0 = 32◦, the system is in the asymmetric bistable region (II). There is one global energy minimum at the stress-free height and a local
minimum at pA3 = 0. (c) For δ0 = 49◦, the configuration at pA3 = 0 is a second global energy minimum and corresponds to the bifurcation
seen in Fig. 6 marking the transition from region (II) to region (III). (d) For δ0 = 53◦ in region (III), the second stable position is at a compact
state pA3 < 1 while for (e) δ0 = 67◦, there is a double root at the stress-free height, resulting in locally zero stiffness around the stable point. (f)
For δ0 = 80◦, the second energy minimum is at a further extended state pA3 > 1, placing this module in region (IV) in Fig. 6. Corresponding
animations are in the Supplemental Material [35].

for regions of the parameter space that are bistable. There
is a range for which the theoretical compaction ratio is 0,
though in practice the structure’s minimum volume would be
constrained by the thickness of the material.

The design space shown in Fig. 6 is divided into several
different regions based on the qualitative nature of the energy
landscape. For region (I) δ0 < 24◦, there is only one stable
state at the nominal, stress-free height pA3 = 1. Kresling
modules in this region are monostable. Figure 7(a) presents an
energy curve along the quasistatic, minimum-energy deploy-
ment path of a module in this region, with δ0 = 20◦, clearly
illustrating the presence of a single local energy minimum.
In region (II) where 24◦ < δ0 < 49.5◦, the fully compressed
state is stable, but not stress free. It is therefore referred to as
the asymmetrically bistable region. This is exemplified by the
example shown in Fig. 7(b) for a module with δ0 = 32◦, which
shows a local minimum at pA3 = 0 and a global minimum
at pA3 = 1. A deployment from the fully compressed state
to the expanded state would therefore require overcoming an
energy barrier. δ0 = 49◦ represents a bifurcation point, above
which the fully compressed state is no longer stable. The
corresponding strain energy curve is shown in Fig. 7(c). In
region (III), where 49◦ < γ0 < 67.5◦, the structure is bistable
with one stable state at pA3 = 1 and a second at 0 < pA3 < 1.
Both states are characterized by stress-free trusses with zero
strain energy, and the system is thus symmetrically bistable.

An example is presented in Fig. 7(d) for δ0 = 53◦, which
reflects the geometry of the commercially available wine tote
depicted in Fig. 1. Both stable branches intersect at pA3 = 1
when δ0 = 67.5◦, leading to a local zero-stiffness property.
This geometry is shown in Fig. 7(e). For the very large twist
angles in region (IV), where δ0 > 67.5◦, the second stable
state is at a position pA3 > 1. As in region (III), the bistability
is symmetric with both states having zero strain energy. An
example energy curve with δ0 = 80◦ is presented in Fig. 7(f).
Animations corresponding to all cases in Fig. 7 are included
in the Supplemental Material [35].

A similar parameter analysis is conducted for R0, the radius
of the Kresling module. A contour plot summarizing the
results is presented in Fig. 8(a). The horizontal axis denotes
variations in the design parameter R0, for which a few ex-
amples are visualized in Fig. 8(b). The vertical axis denotes
the prescribed module height. The other geometric parameters
are fixed at δ0 = 53◦ and n = 8. For small radii R0 < 1.02,
the modules are bistable. They have a stable nominal stress-
free height at pA3 = 1 and another stable state at pA3 < 1.
The potential energy landscapes are qualitatively similar to
region (III) in Fig. 6. For larger radii 1.02 < R0 < 1.42, the
system is asymmetrically bistable. The stable, fully compact
state at pA3 = 0 has some nonzero strain energy, similar to
region (II) in Fig. 6. For very large radii R0 > 1.42, the
fully compact state loses stability and the system is simply
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FIG. 8. (a) Contour plot showing strain energy stored along the
minimum energy path for modules with different values of the stress-
free orientation angle R0. The other geometric parameters are fixed at
n = 8 and δ0 = 53◦, while stiffness ratio rk = 1. Red dashed curves
show the stable states, corresponding to local or global minima of
strain energy. The presence and location of these states leads to a
natural division of the design space into three regions with different
stability characteristics, with characteristics qualitatively similar to
equivalent regions in Fig. 6. (b) Images showing the effect of R0

on the shape of the stress-free state at pA3 = 1. (c) Theoretical
compaction ratio η for designs in the bistable regions.

monostable. Figure 8(c) shows the theoretical compaction
ratio η for designs with R0 in the bistable and asymmetrically
bistable regions.

The results of Figs. 6 and 8 illustrate a few key points
regarding the suitability of various designs for deployable
structure applications. Structures in regions (I) and (IV) in
Fig. 6 have large strain energy in the compact state, and it
may thus be infeasible to fully compact and constrain them
without a sufficiently large external force. On the other hand,
once released from the compacted state, structures in these
regions will automatically deploy a stress-free state pA3 = 1
[or pA3 � 1 in the case of region (IV)] without the need to
overcome an additional energy barrier. If practical packaging
restrictions permit, monostability without exceedingly high-
energy compact configurations may be achieved by increasing
the radius as shown in Fig. 8. Structures in regions (II) and
(III) are stable for some compacted state pA3 < 1, so they
can be collapsed and stored without the need for an extra
constraining force. However, as illustrated in Figs. 7(b)–7(d),
transitions from the compacted to the expanded stress-free
state require overcoming an energy barrier. The highly nonlin-
ear nature of the dynamic response of bistable and multistable
systems means that predicting the final configuration from
initial conditions is not trivial [36,37].

V. DYNAMIC ANALYSIS

The quasistatic analyses presented in the prior section
shed light on the various qualitative mechanical properties
and stability characteristics of Kresling structures. However,
they are insufficient to properly understand the dynamics of
Kresling deployment. Often, origami-inspired structures are
intended to reconfigure quickly [6,32], and rapid shape change
may not smoothly follow the minimum energy paths presented
in Figs. 5 and 7 in structures with multiple degrees of freedom
[38]. Furthermore, quasistatic analyses were conducted only
along the �E3 axis, which is the direction in which Kresling
structures are designed to deploy [15]. However, perturba-
tions, manufacturing imperfections, and transverse loads may
excite off-axis dynamics as well. To address these points, this
section discusses the dynamic responses of Kresling struc-
tures during deployment. Simulations are conducted using
MATLAB’S ODE45 solver, which is a fifth order Runge-Kutta
method. In these dynamic analyses, the planar mass density
of each plate is assigned as ρ

ρ0
= 1

πR2
0
. The damping ratio

ζ is selected such that a module supported only by vertical
trusses is critically damped and rc = 1. Unless otherwise
noted, geometric parameters are R0 = 0.917 and n = 8, while
the stiffness ratio is rk = 1. Boundary conditions reflect free
deployment from a fixed base. The base of the structure is
attached to the ground and the deployment process is powered
by stored strain energy when the structure is packaged and
under compression. During and after deployment, no loads of
constraints are applied to the end of the structure.

A. Axial deployment

1. Deployment of a four-module structure

As described in Sec. IV, the different stability regions
spanned by the variations of δ0 and R0 shown in Figs. 6
and 8 may require different approaches and strategies for
system deployment. For example, deployment from any
compact or compressed state to the extended, stress-free
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FIG. 9. (a) Position pA3 along �E3 and first Euler rotation angle
γ during dynamic deployment of a four-layer chain of Kresling
modules with δ0 = 22◦. The structure is fixed at its base, compressed
to 40% of its initial height, and then released. It settles in its extended,
stress-free state. Snapshots before, during, and after deployment,
shown above, indicate a small overshoot.

configuration is inevitable in the monostable region (I). There
is no other energy minimum to which the system may eventu-
ally settle. In this parameter region, the Kresling structure may
be constrained and transported in a compressed configuration.
When the constraint is released, the system will naturally

expand and release the stored elastic energy, settling in the
final deployed state. The results in Fig. 9 present an example
for four serially connected modules with R0 = 0.917, n = 8,
δ0 = 22◦, and rk = 1. The snapshots presented above show
the initial, intermediate, and final states of the structure. The
second snapshot illustrates that the deployment does not nec-
essarily occur simultaneously or sequentially. This is due to
the strong geometric nonlinearity and influence of the reaction
forces at the fixed boundary [36]. The third snapshot shows a
small overshoot, which is reasonable given the selection of
damping ratio ζ .

Kresling structures in the bistable regions of Figs. 6 and
8 may have less predictable dynamic responses, since there
are two states to which the system may settle. For example,
Fig. 10 considers the deployment of a four-module structure
with δ0 = 55◦ initially compressed to (a) 22.5% and (b)
25% of its extended, stress-free height. The systems are then
released and allowed to come to rest. The initial condition in
(a) causes all four modules to deploy to the fully extended
configuration. On the other hand, the slightly lower strain
energy in the initial condition in (b) means that one of the
modules does not cross the energy barrier and deploy to the
extended state. Figure 10(c) presents a case with 22.5% initial
compression, but with damping reduced by half. The results
show that the reduced dissipation results in residual kinetic
energy after all modules are deployed. This residual energy
results in a larger overshoot and causes the first layer to
cross back over its energy barrier and to a compressed stable
configuration. The results in Fig. 10 illustrate the sensitivity
of Kresling deployment to changes in initial conditions and
damping. This sensitivity is expected given the highly nonlin-
ear, multistable nature of the system, but necessitates careful
selection of initial conditions to achieve desired deployment
performance.

FIG. 10. Position pA3 along �E3 and first Euler rotation angle γ during dynamic deployment of a four-module system with δ0 = 55◦, placing
the structure in the bistable region (II) in Fig. 6. Responses when the structure is compressed to (a) 22.5% and (b) 25% of its nominal, stress-free
length and then released. The slightly larger quantity of stored energy in (a) is sufficient to cause all modules to overcome the energy barrier
between bistable states and deploy to the extended configuration. Snapshots of the deployment process are shown above. (c) An underdamped
case where the linearized damping ratio is reduced by half compared with (a,b) and the structure is initially compressed to 22.5% of its nominal
length. The response shows an overshoot due to residual kinetic energy after all layers are deployed, which causes the first layer to overcome
the energy barrier in the reverse direction and return to a compressed stable state.
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FIG. 11. Basin of attraction maps showing aggregated results of dynamic simulations starting at different values of initial compression
pA30 as a design parameter is varied along the horizontal axis. (a) Horizontal axis varies the stress-free orientation angles δ0 within the bistable
region (II) in Fig. 6. (b) Variations of the radius R0 within the bistable region (II) in Fig. 8. The red dashed curve shows the locations of the
stable states of pA3 for the given value of the design parameter. Blue regions indicate that the final configuration is the compressed stable state,
while yellow regions denote final states that are in the stress-free, expanded states.

2. Basins of attraction of a single module

To gain further insight into how initial conditions and
geometries may affect transient deployment, Fig. 11 shows a
basin of attraction map for a single module in a portion of the
bistable regions in Figs. 6 and 8. The horizontal axis denotes
variations in the design parameter δ0 or R0, while the vertical
axis indicates the initial compression as a fraction of the nom-
inal, stress-free height. Colors indicate the final configuration
for a given design and initial condition. To achieve reasonable
fidelity, δ0 and R0 are varied in increments of 0.02° and 0.01,
respectively. Since the governing equations are deterministic,
the simulations are repeatable for a given combination of

design and initial condition. Dark colored squares indicate
that the module comes to rest in its expanded state where
pA3 = 1, while lighter squares indicate that the module comes
to rest at some stable state pA3 < 1. Red dashed lines denote
the positions of these stable states. While Fig. 11 aggregates
dynamic results for structures composed of just one module,
it nevertheless shows how the transient deployment process
may be highly sensitive to variations in design and initial
compression. From a practical standpoint, it may be prudent
to design structures and specify initial conditions that lie in
regions that are less sensitive to changes in these parameters.
This would help ensure predictable deployment performance

FIG. 12. Transient response of a module with δ0 = 55◦ from an initially compressed state with (a) initial velocities (ṗA3 = 0.1, ωB20 = 0.3).
All modules in the system fully deploy to the extended, stress-free configuration and the off-axis perturbation is quickly diminished. (b) An
initial condition of ωB20 = 0.4 results in only one of the four modules deploying to the fully extended state, and the transient response shows
significant oscillation in the axial and off-axis directions. (c) Response with no perturbations in the off-axis direction, but where trusses along
one side of the structure have stiffness and damping reduced by 50%. Overall, the results suggest that the extended state is significantly stiffer
and more robust to off-axis perturbations than the compressed state.

063003-10



DYNAMICS OF KRESLING ORIGAMI DEPLOYMENT PHYSICAL REVIEW E 101, 063003 (2020)

that is less likely to be compromised by variability in manu-
facturing and/or initial conditions.

B. Off-axis response

The results and analyses presented in the prior sections
have been pursued on models that include all six degrees of
freedom, although only axial motions were perturbed when
varying initial conditions. As a result, only dynamic responses
in pA3 and γ were observed. In practical applications, off-axis
motions may be perturbed for a variety of reasons, including
imperfections in fabrication, the influence of gravitational
and other forces, or disturbances from the environment. In
order to provide some initial insight into the performance
of Kresling structures in response to off-axis perturbations,
Fig. 12 presents three examples of transient responses for a
structure composed of four modules with δ0 = 55◦ subject to
some off-axis perturbation. Curves trace the three components
of displacement and the three Euler angles of the upper panel
in the chain. In Fig. 12(a) the last panel is given an initial
velocity in the vertical direction, ṗA3 = 0.1, and initial angular
velocity along the off-axis �E2 direction, ωB20 = 0.3. The
transient response shows that the system deploys to its fully
extended state, and that the off-axis oscillations in pA1, pA2,
α, and β diminish rather quickly. Figure 12(b) presents a
response with initial angular velocity component ωB20 = 0.4.
Under this initial condition, the system does not fully deploy,
and three of the four modules settle in the compressed stable
state. Moreover, the off-axis oscillations take much longer to
diminish than in Fig. 12(a). Figure 12(c) presents a case where
there are no off-axis perturbations due to initial conditions, but
where the two vertical trusses along one side of the structure
have stiffness and damping reduced by 50%. This may reflect
a manufacturing defect or damage due to impact or wear.
The initial compression is the same as in Fig. 10(a), but
imperfection of the trusses on one side prevents full deploy-
ment and causes off-axis oscillations. Images above all three
plots in Fig. 12 show snapshots at specified points in time.
Off-axis oscillations in Fig. 12(a) are smaller and diminish
more quickly than in Figs. 12(b) and 12(c), suggesting that the
fully deployed, stress-free configurations may be more robust
to off-axis perturbations.

To further understand the off-axis responses in the ex-
panded and compressed stable states, this section analyzes
the structures’ vibration modes in both configurations. The
system is first linearized around the stable states and small
amplitude motions are assumed. This assumption means that
Euler angle rates �̇ and angular velocity components of �ωB

in the �E3 coordinate basis are approximately equivalent. The
mass matrix and stiffness matrix are constructed as follows:

M =
[

mBI3 0
0 IB0

]
, (18a)

K =
⎡
⎣ ∂ �FB

∂�rB0/A0

∂ �FB
∂�

∂ �TB
∂�rB0/A0

∂ �TB
∂�

⎤
⎦, (18b)

where I3 is the 3×3 identity matrix and the components of the
stiffness matrix K are calculated by taking partial derivatives
of Eqs. (11) and (12).

(deg)

FIG. 13. (a) Images illustrating the shapes of the first three
linearized modes around the nominal, stress-free configuration. The
axial and off-axis modes are decoupled. (b) Modal frequencies of
the axial and off-axis modes for different values of the stress-free
orientation angle δ0. Other parameters are fixed at R0 = 0.917,
n = 8, and rk = 1. Branch A corresponds to the nominal stress-free
state at pA3 = 1, while branch B corresponds to the compressed or
extended stable configuration in the bistable region of Fig. 6, which
is presented as an inset for reference. The axial mode is generally the
fundamental mode and has a zero-stiffness response at δ0 = 67◦.

The resulting eigenvalue problem is solved in Mathematica
to yield natural frequencies and mode shapes. This procedure
is carried out for both stable branches shown in Fig. 6 for
variations of the design parameter δ0. Considering only the
three lowest eigenvalues corresponding to the three lowest
natural frequencies, the results reveal a decoupling between
axial and off-axis modes. That is, the eigenvectors either lie
on the subspace spanned by (pA3, γ ), indicating a pure axial
mode, or are orthogonal to it. This is visually interpreted in
Fig. 13(a). The axial mode has components only in pA3 and γ ,
denoting motion along and around the �E3 axis. The off-axis
modes have components in the pA1, pA2, α, and β directions
and are fully uncoupled from axial motions.
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Figure 13(b) shows the modal frequencies of the axial
and off-axis modes of the linearized stable states in Fig. 6
as the parameter δ0 is varied. For reference, the inset shows
the contour plot of Fig. 6. Stable branch A corresponds to
the nominal, stress-free stable configuration at pA3 = 1 and
branch B denotes the compressed or extended stable states
in the bistable region. Due to symmetry, the two lowest-
frequency off-axis modes have the same eigenfrequency but
orthogonal eigenvectors. Aside from a small portion of branch
A for δ0 < 28◦, the axial mode is the fundamental mode
for the majority of the design space. Furthermore, for δ0 <

67◦, the axial and off-axis modes in branch A have higher
model frequencies than their counterparts in branch B. These
findings help explain why the results of Fig. 12 showed more
robustness to off-axis perturbations when fully deployed, and
can help guide the design of deployable Kresling structures
that are relatively soft in the axial direction and thus easy to
deploy, but are stiff in the off-axis direction and are thus robust
to perturbations. Another interesting outcome in Fig. 13(b)
is the clear zero-stiffness axial mode observed for δ0 = 67◦.
Kresling structures designed near this point may have attrac-
tive vibration isolation properties.

VI. CONCLUSIONS

This research explores the rich mechanical properties and
deployment dynamics of Kresling origami-inspired structures.
Through a systematic study of energy landscapes, transient
dynamics, and off-axis motions, this investigation offers in-
sight into the potential for Kresling origami as a platform to
develop deployable systems. To capture dynamic responses
in all six degrees of freedom, this paper develops a truss
model that accounts for off-axis motions that have often been
overlooked in prior study. Systematic quasistatic analyses
are conducted on Kresling structures with varying geomet-

ric properties. It is shown that by tuning these geometric
parameters, the energy landscapes of the Kresling module
may qualitatively change between monostability, asymmet-
ric bistability, and symmetric bistability. Each region of the
design space may be best suited for a different deployment
strategy. For example, monostable structures can be deployed
simply by compressing the structure to a compact state,
then releasing the constraining force when needed. However,
monostable Kresling structures may have large strain energy
when compacted, and applying sufficient constraining force
may pose practical challenges. The deployment of systems
in the bistable region may not require as much energy, but
deployment to the full, extended state is sensitive to small
changes in initial conditions and geometric parameters. Basin
of attraction maps help interpret aggregate transient dynamic
responses, providing insight into the Kresling designs that
may limit the negative effects of this sensitivity. Further anal-
ysis of the dynamic response of Kresling structures reveals
that certain designs may be robust to perturbations in the
off-axis directions in the fully extended state, but sensitive to
such perturbations in a compressed configuration. Linearized
modal analyses in the extended and compressed state give
insights into this behavior and help guide the designs that
balance deployability in the axial direction with robustness to
out-of-axis loads and perturbations. Overall, this research de-
velops a thorough understanding of the rich mechanical prop-
erties and dynamic responses of Kresling structures during the
deployment process, offering potential for the development of
robust and effective deployable structures.
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